Goal orientations, motivational climate and dispositional flow of high school students engaging in extracurricular involvement in physical activity

Authors:

EDUARDO M. CERVELLÓ
SOCIAL AND JURIDICAL SCIENCES FACULTY
UNIVERSITY MIGUEL HERNÁNDEZ (ELCHE)

JUAN A. MORENO
EDUCATION SCIENCES FACULTY
UNIVERSITY OF MURCIA

NESTOR ALONSO VILLODRE
RESEARCH GROUP ON PHYSICAL EDUCATION AND SPORTS
UNIVERSITY OF MURCIA

DAMIÁN IGLESIAS
TEACHER TRAINING FACULTY
UNIVERSITY OF EXTREMADURA

1Address correspondence to Dr. Eduardo M. Cervelló Gimeno, Facultad de Ciencias Sociales y Jurídicas, Universidad Miguel Hernández, Avda. de la Universidad, s/n 03202 ELCHE (Alicante) Spain or e-mail (ecervello@umh.es).
Summary. The purpose of this study was to examine the role of goal orientations, motivational climates and dispositional flows in physical education lessons on extracurricular involvement in physical activity. Questionnaires were administered to 1103 (athletes $N = 792$; non-athletes $N = 311$) secondary school students (M age $= 14.3$ yr., $SD = 0.7$). Data analysis showed significant differences between athletes and non-athletes in goal orientations and dispositional flows in physical education lessons. No differences were found in the perception of motivational climates. These findings suggest that dispositional variables are related to extracurricular involvement in physical activity.

Key Words: Involvement in physical activity, goals orientations, motivational climate, flow.
A recent study developed by Bagøien and Halvari (2005) suggested that involvement in physical activity mediated between motivation and perceived sports competence. These authors found involvement in physical activity can be related to psychological variables. Research has demonstrated that motivational regulations can influence involvement in physical activity in different ways. Some investigations (e.g., Wankel, 1993) have shown links between intrinsic motivation and exercise adherence. Nevertheless, it is not clear if motivation influences involvement in physical activity, or if involvement in physical activity influences motivation. Another issue is the possible role played by contextual variables. Past research has indicated that external rewards have less influence upon participation in sports. The work of Bagøien and Halvari (2005) also showed that external variables such as controlled motivation do not have relationships with involvement in physical activity.

Achievement goal theory (Nicholls, 1989) has been applied to research on motivation in sport and exercise in order to explain how dispositional and contextual variables affect performance and involvement in physical activities (Duda, 2001; Roberts, 2001). However, relatively few investigations have been conducted that have assessed the interrelationships among individuals’ personal motivational characteristics, perceived situational variables and participation in physical activities (Duda 1989). A key component of achievement goal theory involves the individual differences that exist among people in the criteria that they use to judge their competence in achievement settings, and the differential effects of using these success criteria upon subsequent behavior in achievement settings. When individuals evaluate their own ability in relation to the ability of others, in such a way that they feel success when they demonstrate greater ability than others, this orientation is known as an “ego
orientation”. However, when individuals assess their success according to self-referenced criteria that reflect feelings of personal improvement, effort, and task mastery, the person is considered to have a “task orientation” toward achievement.

In addition to a personal disposition, or tendency, to prefer the use of one type of success criteria as opposed to another, the social environment can also have considerable impact upon the success criteria that are used in any given moment (Ames, 1992). The achievement environment or motivational climate is multidimensional in nature. As Duda and Hall (2000) commented, “differential structures such as the standards, methods, and criteria underlying evaluation, the nature of recognition and the manner in which it is expressed, the source of authority, the way tasks are structured, and the manner in which individuals are grouped are held to constitute the overriding climate operating in achievement settings” (p. 419). Research suggests that the perceptions of ego-involving or task-involving motivational climates affect motivation in a different manner. In general, results showed that perceptions of task-involving motivational climates in sport settings, are linked to more enjoyment and levels of involvement in sport activities (Duda, 2001).

Finally, some investigations have showed the relevance of flow in the study of motivation to practice sport and physical activities. Flow is defined how and optimal psychological state (Jackson, 1996). When in flow, a person becomes totally involved in the activity and undergoes a number of positive experiences, including freedom for self-consciousness, enjoyment, concentration, clarity of goals, feelings of control and sense of being totally in tune with the activity (Marsh & Jackson, 1999). Research in flow also suggest the possibility of and autotelic personality to explain in part why some people experience flow more frequently than others. Some investigators suggest that this trait
of personality can be explaining differences on involvement on sport and exercise activities (Jackson, Thomas, Marsh, & Smethurst, 2001).

To extend previous research, the objective of this investigation was to analyze the relationships between goal orientations, perception of motivational climate and disposition to flow in high school students, and the differences between students involved or non-involved in extracurricular sports or exercise activities.

METHOD

Participants and procedure

1103 secondary school students (athletes $N = 792$; non-athletes $N = 311$) participated in the study. The age for participants was 14 (M age $= 14.3$ yr., $SD = 0.7$).

Permission to participate in the study was previously obtained from the students’ parents, their teachers, and from the students themselves. The students were informed of the general purpose of the research, their rights as study participants and signed a consent form. The questionnaires were completed during a physical education class.

Measures

Goal orientations. A Spanish version of the Perception of Success Questionnaire (POSQ: Cervelló, Escartí, & Balagué, 1999; Roberts, Treasure, & Balagué, 1998) was used to measure dispositional goal orientations. This 12-item inventory consists of two factors measuring Task Orientation (e.g., “I feel successful when I reach a personal goal”), and Ego Orientation (e.g., “I feel successful when I am the best”).

Motivational Climate: The Learning and Performance Orientations in Physical Education Classes Questionnaire (LAPOPECQ) was employed (Papaioannou, 1994). This instrument consists in a pool of 27 items. With five first-order factors (teacher initiated-learning orientation, students’ learning orientation, students’ competitive
orientation, students’ worries about mistakes and outcome orientation without effort) and a structure of two higher-order factors (performance and learning/mastery). For this investigation, only the two higher-order factors (Perception of Performance Climate and Perception of Learning Climate) solution was employed. In a previous work, the Spanish version of this scale showed good validity and reliability (Jiménez, 2004).

Dispositional Flow. The Spanish version (Santos-Rosa, 2003) of the Flow Trait Scale (Jackson, Kimiecik, Ford, & Marsh, 1998) was employed in this investigation. This instrument consists in a set of 36 items grouped in a nine first-order factor distribution and a higher-order factor (Dispositional Flow) including the 36 items. The higher-order Spanish version of this instrument has demonstrated high levels of reliability (Cronbach Alpha > .90).

The scoring format for each of the scales was the same and was structured to conform to the manner of evaluation in the Spanish academic context. In this context, all evaluations of pupils’ academic performance range from 0 to 10. Since the subjects were all currently in school and familiar with this system, the same 11-point system was employed using Likert scales that were anchored by strongly disagree (0) to strongly agree (10).

Complementary, subjects indicated if they participated in some extracurricular sport or physical activity.

RESULTS

Descriptive statistics and Cronbach Alphas for all measures were obtained and simple correlations were calculated to test the relationships between variables (Table 1). To assess the differences on goal orientations, perception of motivational climate and
dispositional flow between the students, a MANOVA was calculated to explore group
differences in terms of extracurricular involvement in physical activity.

The descriptive statistics and correlations for the study variables for the full
sample of students, are presented in table 1. In an absolute sense, the students reported
moderate to high scores on all study variables, excepting the Perception of Performance
Climate, that shows moderate lowers scores. The Cronbach Alpha shows that all
coefficients were above the minimum criterion of .70 (Nunnally, 1978), indicating that
measures reliability assessed the constructs of interest.

Further, there were significant positive relationships between Task Orientation,
Perception of Learning Climate and Dispositional Flow. Additionally, Ego Orientation
was positively related to Perception of Performance Climate and Dispositional Flow.
The two dimensions of motivational climate were positively related to Dispositional
Flow, but the relation between Dispositional Flow and the Perception of Performance
Climate can be interpreted with caution, due the lower correlation value.

A MANOVA was conducted to explore group differences in terms of
extracurricular involvement in physical activity. MANOVA revealed a significant
involvement effect, Wilk’s = .95, p < .001. Univariate F Values indicated that athletes
and non-athletes differed on Task Orientation (F = 20.39, p < .001), Ego Orientation (F
= 19.13, p < .001) and Dispositional Flow (F = 38.82, p < .001). Specifically, compared
to non-athletes, athletes were found to report a higher Task orientation (M = 7.96 vs.
7.30), Ego Orientation (M = 5.27 vs. 4.34) and Dispositional Flow (M = 6.68 vs. 6.02)
DISCUSION

The purpose of this investigation was to test whether goal orientations, motivational climate and dispositional flow, mediate the involvement in extracurricular physical activity. The findings suggest that dispositional variables such as goal orientations and dispositional flows can influence decisions regarding participation in extracurricular physical activity. These results are in accordance with the results obtained by other investigators that remark the relevance of the motivational variables in the involvement in physical activities (Bagøien & Halvari, 2005; Wankel, 1993). Our results showed that the perception of competence (independently of the orientation of this sense of competence) and the dispositional flow, differences the athletes and the non-athletes. Further, some investigations indicate that the predisposition to be in flow can be a predictor of the subject’s approximation to sport and physical activities (Jackson et al., 2001). Our results indicate that Dispositional Flow was a “motivational difference” between athletes and non-athletes. However, contrary to the hypotheses and to previous research, results indicates that perception of learning climates are related to more levels of participation and enjoyment in sport and physical activities (Duda, 2001). Perception of a learning-involving motivational climate was not a relevant variable for explaining involvement in out of school physical activity.

Moreover, the inspection of the correlational results, shows stronger relationships between perception of learning motivational climate, and task orientation and disposition to flow. More research is needed to determine if the effect of the perception of motivational climate on involvement is mediated for the task orientation and the dispositional flow. To conclude, this research has showed the relevance of the motivational variables in the involvement in extracurricular physical activity in
adolescent students. Clearly, other variables are likely to affect student’s motivation to
sport involvement, but, generally speaking, adolescent’s motivation influence the
decision making related to involvement in extracurricular physical activity.

REFERENCES

In G. C. Roberts (Ed.), Motivation in sport and exercise (pp.161-176).
Champaign, IL: Human Kinetics.

activity, and perceived sport competence: Structural and mediator models.
Perceptual and Motor Skills, 100, 3-21.

metas disposicional y la satisfacción con los resultados deportivos, las creencias
sobre las causas de éxito en deporte y la diversión con la práctica deportiva.
Revista de Psicología del Deporte, 8, 7-19.

Ames, y M. Maehr (Eds.), Advances in Motivation and Achievement: Vol. 6. (pp.

Duda, J. L. (2001) Achievement goal research in sport: Pushing the boundaries and
clarifying some misunderstandings. In G. Roberts (Ed.), Advances in motivation
in sport and exercise (pp.129-182). Champaign, IL: Human Kinetics.

and future directions. In R. N. Singer, H. A. Hausenblas, and C. Janelle (Eds.),
Sons.

TABLE 1.

DESCRIPTIVE STATISTICS, CRONBACH ALPHAS AND CORRELATIONS OF ALL VARIABLES

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>SD</th>
<th>α</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ego Orientation</td>
<td>6.72</td>
<td>2.72</td>
<td>.91</td>
<td>-.32*</td>
<td>.00</td>
<td>.34*</td>
<td>.26*</td>
<td></td>
</tr>
<tr>
<td>2. Task Orientation</td>
<td>8.67</td>
<td>1.48</td>
<td>.84</td>
<td>-</td>
<td>-</td>
<td>.35*</td>
<td>-.11*</td>
<td>.38*</td>
</tr>
<tr>
<td>3. Learning Climate</td>
<td>7.78</td>
<td>1.34</td>
<td>.85</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-.05</td>
<td>.43*</td>
</tr>
<tr>
<td>4. Performance climate</td>
<td>4.32</td>
<td>2.32</td>
<td>.91</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>.15*</td>
</tr>
<tr>
<td>5. Dispositional Flow</td>
<td>7.19</td>
<td>1.28</td>
<td>.91</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* *p < .01*