Bezout Inequality for Mixed volumes.

Artem Zvavitch
Kent State University

(based on joint works with Christos Saroglou and Ivan Soprunov)

Summer School: New Perspectives in Convex Geometry, Castro Urdiales, September 3rd-7th, 2018.

- All of the sets we will consider will be convex.
- All of the sets we will consider will be convex.
- We will usually deal with convex bodies: i.e. convex, compact sets with non-empty interior.
- All of the sets we will consider will be convex.
- We will usually deal with convex bodies: i.e. convex, compact sets with non-empty interior.
- We will denote by $V_{n}(K)$ - volume of $K \subset \mathbb{R}^{n}$.
- All of the sets we will consider will be convex.
- We will usually deal with convex bodies: i.e. convex, compact sets with non-empty interior.
- We will denote by $V_{n}(K)$ - volume of $K \subset \mathbb{R}^{n}$.
- We will often use notion of Minkowski sum: $K+L=\{x+y: x \in K$ and $y \in L\}$.
- All of the sets we will consider will be convex.
- We will usually deal with convex bodies: i.e. convex, compact sets with non-empty interior.
- We will denote by $V_{n}(K)$ - volume of $K \subset \mathbb{R}^{n}$.
- We will often use notion of Minkowski sum: $K+L=\{x+y: x \in K$ and $y \in L\}$.
- We all know that $V_{n}(\lambda K)=\lambda^{n} V_{n}(K)$ for $\lambda \geq 0$, i.e. volume is a homogeneous measure of degree of homogeneity n. But there is much more!!!

$K_{1}, K_{2}, \ldots, K_{r}$ be convex bodies in \mathbb{R}^{n} and $\lambda_{1}, \ldots, \lambda_{r} \geq 0$

Then $V_{n}\left(\lambda_{1} K_{1}+\lambda_{2} K_{2}+\cdots+\lambda_{r} K_{r}\right)$ is a homogeneous polynomial (in $\lambda_{1}, \ldots, \lambda_{r}$) of degree n and

$$
V_{n}\left(\lambda_{1} K_{1}+\lambda_{2} K_{2}+\cdots+\lambda_{r} K_{r}\right)=\sum_{i_{1}, i_{2}, \ldots, i_{r}=1}^{r} V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right) \lambda_{i_{1}} \lambda_{i_{2}} \ldots \lambda_{i_{n}}
$$

Then $V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right)$ is called the mixed volume of $K_{i_{1}}, \ldots, K_{i_{n}}$.

$K_{1}, K_{2}, \ldots, K_{r}$ be convex bodies in \mathbb{R}^{n} and $\lambda_{1}, \ldots, \lambda_{r} \geq 0$

Then $V_{n}\left(\lambda_{1} K_{1}+\lambda_{2} K_{2}+\cdots+\lambda_{r} K_{r}\right)$ is a homogeneous polynomial (in $\lambda_{1}, \ldots, \lambda_{r}$) of degree n and

$$
V_{n}\left(\lambda_{1} K_{1}+\lambda_{2} K_{2}+\cdots+\lambda_{r} K_{r}\right)=\sum_{i_{1}, i_{2}, \ldots, i_{r}=1}^{r} V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right) \lambda_{i_{1}} \lambda_{i_{2}} \ldots \lambda_{i_{n}}
$$

Then $V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right)$ is called the mixed volume of $K_{i_{1}}, \ldots, K_{i_{n}}$.

- $V(K, \ldots, K)=V_{n}(K)$.

$K_{1}, K_{2}, \ldots, K_{r}$ be convex bodies in \mathbb{R}^{n} and $\lambda_{1}, \ldots, \lambda_{r} \geq 0$

Then $V_{n}\left(\lambda_{1} K_{1}+\lambda_{2} K_{2}+\cdots+\lambda_{r} K_{r}\right)$ is a homogeneous polynomial (in $\lambda_{1}, \ldots, \lambda_{r}$) of degree n and

$$
V_{n}\left(\lambda_{1} K_{1}+\lambda_{2} K_{2}+\cdots+\lambda_{r} K_{r}\right)=\sum_{i_{1}, i_{2}, \ldots, i_{r}=1}^{r} V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right) \lambda_{i_{1}} \lambda_{i_{2}} \ldots \lambda_{i_{n}}
$$

Then $V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right)$ is called the mixed volume of $K_{i_{1}}, \ldots, K_{i_{n}}$.

- $V(K, \ldots, K)=V_{n}(K)$.
- Mixed volume is symmetric in its arguments.

$K_{1}, K_{2}, \ldots, K_{r}$ be convex bodies in \mathbb{R}^{n} and $\lambda_{1}, \ldots, \lambda_{r} \geq 0$

Then $V_{n}\left(\lambda_{1} K_{1}+\lambda_{2} K_{2}+\cdots+\lambda_{r} K_{r}\right)$ is a homogeneous polynomial (in $\lambda_{1}, \ldots, \lambda_{r}$) of degree n and

$$
V_{n}\left(\lambda_{1} K_{1}+\lambda_{2} K_{2}+\cdots+\lambda_{r} K_{r}\right)=\sum_{i_{1}, i_{2}, \ldots, i_{r}=1}^{r} V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right) \lambda_{i_{1}} \lambda_{i_{2}} \ldots \lambda_{i_{n}}
$$

Then $V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right)$ is called the mixed volume of $K_{i_{1}}, \ldots, K_{i_{n}}$.

- $V(K, \ldots, K)=V_{n}(K)$.
- Mixed volume is symmetric in its arguments.
- Mixed volume is multilinear $(\lambda, \mu \geq 0)$:

$$
V\left(\lambda K+\mu L, K_{2}, \ldots, K_{n}\right)=\lambda V\left(K, \bar{K}_{2}, \ldots, K_{n}\right)+\mu V\left(L, K_{2}, \ldots, K_{n}\right)
$$

$K_{1}, K_{2}, \ldots, K_{r}$ be convex bodies in \mathbb{R}^{n} and $\lambda_{1}, \ldots, \lambda_{r} \geq 0$

Then $V_{n}\left(\lambda_{1} K_{1}+\lambda_{2} K_{2}+\cdots+\lambda_{r} K_{r}\right)$ is a homogeneous polynomial (in $\lambda_{1}, \ldots, \lambda_{r}$) of degree n and

$$
V_{n}\left(\lambda_{1} K_{1}+\lambda_{2} K_{2}+\cdots+\lambda_{r} K_{r}\right)=\sum_{i_{1}, i_{2}, \ldots, i_{r}=1}^{r} V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right) \lambda_{i_{1}} \lambda_{i_{2}} \ldots \lambda_{i_{n}}
$$

Then $V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right)$ is called the mixed volume of $K_{i_{1}}, \ldots, K_{i_{n}}$.

- $V(K, \ldots, K)=V_{n}(K)$.
- Mixed volume is symmetric in its arguments.
- Mixed volume is multilinear $(\lambda, \mu \geq 0)$:

$$
V\left(\lambda K+\mu L, K_{2}, \ldots, K_{n}\right)=\lambda V\left(K, \bar{K}_{2}, \ldots, K_{n}\right)+\mu V\left(L, K_{2}, \ldots, K_{n}\right)
$$

- Mixed volume is translation invariant: $V\left(K+a, K_{2}, \ldots K_{n}\right)=V\left(K, K_{2}, \ldots, K_{n}\right)$, for $a \in \mathbb{R}^{n}$.

$K_{1}, K_{2}, \ldots, K_{r}$ be convex bodies in \mathbb{R}^{n} and $\lambda_{1}, \ldots, \lambda_{r} \geq 0$

Then $V_{n}\left(\lambda_{1} K_{1}+\lambda_{2} K_{2}+\cdots+\lambda_{r} K_{r}\right)$ is a homogeneous polynomial (in $\lambda_{1}, \ldots, \lambda_{r}$) of degree n and

$$
V_{n}\left(\lambda_{1} K_{1}+\lambda_{2} K_{2}+\cdots+\lambda_{r} K_{r}\right)=\sum_{i_{1}, i_{2}, \ldots, i_{r}=1}^{r} V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right) \lambda_{i_{1}} \lambda_{i_{2}} \ldots \lambda_{i_{n}}
$$

Then $V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right)$ is called the mixed volume of $K_{i_{1}}, \ldots, K_{i_{n}}$.

- $V(K, \ldots, K)=V_{n}(K)$.
- Mixed volume is symmetric in its arguments.
- Mixed volume is multilinear $(\lambda, \mu \geq 0)$:

$$
V\left(\lambda K+\mu L, K_{2}, \ldots, K_{n}\right)=\lambda V\left(K, \bar{K}_{2}, \ldots, K_{n}\right)+\mu V\left(L, K_{2}, \ldots, K_{n}\right)
$$

- Mixed volume is translation invariant: $V\left(K+a, K_{2}, \ldots K_{n}\right)=V\left(K, K_{2}, \ldots, K_{n}\right)$, for $a \in \mathbb{R}^{n}$.
- If $K \subset L$, then $V\left(K, K_{2}, K_{3}, \ldots, K_{n}\right) \leq V\left(L, K_{2}, K_{3}, \ldots, K_{n}\right)$.

$K_{1}, K_{2}, \ldots, K_{r}$ be convex bodies in \mathbb{R}^{n} and $\lambda_{1}, \ldots, \lambda_{r} \geq 0$

Then $V_{n}\left(\lambda_{1} K_{1}+\lambda_{2} K_{2}+\cdots+\lambda_{r} K_{r}\right)$ is a homogeneous polynomial (in $\lambda_{1}, \ldots, \lambda_{r}$) of degree n and

$$
V_{n}\left(\lambda_{1} K_{1}+\lambda_{2} K_{2}+\cdots+\lambda_{r} K_{r}\right)=\sum_{i_{1}, i_{2}, \ldots, i_{r}=1}^{r} V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right) \lambda_{i_{1}} \lambda_{i_{2}} \ldots \lambda_{i_{n}}
$$

Then $V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right)$ is called the mixed volume of $K_{i_{1}}, \ldots, K_{i_{n}}$.

Example:

- Denote $V\left(K_{1}, \ldots, K_{m}, K \ldots, K\right)=V\left(K_{1}, \ldots, K_{m}, K[n-m]\right)$.

$K_{1}, K_{2}, \ldots, K_{r}$ be convex bodies in \mathbb{R}^{n} and $\lambda_{1}, \ldots, \lambda_{r} \geq 0$

Then $V_{n}\left(\lambda_{1} K_{1}+\lambda_{2} K_{2}+\cdots+\lambda_{r} K_{r}\right)$ is a homogeneous polynomial (in $\lambda_{1}, \ldots, \lambda_{r}$) of degree n and

$$
V_{n}\left(\lambda_{1} K_{1}+\lambda_{2} K_{2}+\cdots+\lambda_{r} K_{r}\right)=\sum_{i_{1}, i_{2}, \ldots, i_{r}=1}^{r} V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right) \lambda_{i_{1}} \lambda_{i_{2}} \ldots \lambda_{i_{n}}
$$

Then $V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right)$ is called the mixed volume of $K_{i_{1}}, \ldots, K_{i_{n}}$.

Example:

- Denote $V\left(K_{1}, \ldots, K_{m}, K \ldots, K\right)=V\left(K_{1}, \ldots, K_{m}, K[n-m]\right)$.
- Let B_{2}^{n} the standard Euclidean ball of radius 1.

$K_{1}, K_{2}, \ldots, K_{r}$ be convex bodies in \mathbb{R}^{n} and $\lambda_{1}, \ldots, \lambda_{r} \geq 0$

Then $V_{n}\left(\lambda_{1} K_{1}+\lambda_{2} K_{2}+\cdots+\lambda_{r} K_{r}\right)$ is a homogeneous polynomial (in $\lambda_{1}, \ldots, \lambda_{r}$) of degree n and

$$
V_{n}\left(\lambda_{1} K_{1}+\lambda_{2} K_{2}+\cdots+\lambda_{r} K_{r}\right)=\sum_{i_{1}, i_{2}, \ldots, i_{r}=1}^{r} V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right) \lambda_{i_{1}} \lambda_{i_{2}} \ldots \lambda_{i_{n}}
$$

Then $V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right)$ is called the mixed volume of $K_{i_{1}}, \ldots, K_{i_{n}}$.

Example:

- Denote $V\left(K_{1}, \ldots, K_{m}, K \ldots, K\right)=V\left(K_{1}, \ldots, K_{m}, K[n-m]\right)$.
- Let B_{2}^{n} the standard Euclidean ball of radius 1.

Then

$$
V_{n-1}(\partial K)=\lim _{t \rightarrow 0} \frac{V_{n}\left(K+t B_{2}^{n}\right)-V_{n}(K)}{t}
$$

$K_{1}, K_{2}, \ldots, K_{r}$ be convex bodies in \mathbb{R}^{n} and $\lambda_{1}, \ldots, \lambda_{r} \geq 0$

Then $V_{n}\left(\lambda_{1} K_{1}+\lambda_{2} K_{2}+\cdots+\lambda_{r} K_{r}\right)$ is a homogeneous polynomial (in $\lambda_{1}, \ldots, \lambda_{r}$) of degree n and

$$
V_{n}\left(\lambda_{1} K_{1}+\lambda_{2} K_{2}+\cdots+\lambda_{r} K_{r}\right)=\sum_{i_{1}, i_{2}, \ldots, i_{r}=1}^{r} V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right) \lambda_{i_{1}} \lambda_{i_{2}} \ldots \lambda_{i_{n}}
$$

Then $V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right)$ is called the mixed volume of $K_{i_{1}}, \ldots, K_{i_{n}}$.

Example:

- Denote $V\left(K_{1}, \ldots, K_{m}, K \ldots, K\right)=V\left(K_{1}, \ldots, K_{m}, K[n-m]\right)$.
- Let B_{2}^{n} the standard Euclidean ball of radius 1.

Then

$$
\begin{aligned}
V_{n-1}(\partial K) & =\lim _{t \rightarrow 0} \frac{V_{n}\left(K+t B_{2}^{n}\right)-V_{n}(K)}{t} \\
& =\lim _{t \rightarrow 0} \frac{V_{n}(K)+t n V_{n}\left(B_{2}^{n}, K[n-1]\right)+t^{2} \operatorname{Polinomial}(t)-V_{n}(K)}{t}
\end{aligned}
$$

$K_{1}, K_{2}, \ldots, K_{r}$ be convex bodies in \mathbb{R}^{n} and $\lambda_{1}, \ldots, \lambda_{r} \geq 0$

Then $V_{n}\left(\lambda_{1} K_{1}+\lambda_{2} K_{2}+\cdots+\lambda_{r} K_{r}\right)$ is a homogeneous polynomial (in $\lambda_{1}, \ldots, \lambda_{r}$) of degree n and

$$
V_{n}\left(\lambda_{1} K_{1}+\lambda_{2} K_{2}+\cdots+\lambda_{r} K_{r}\right)=\sum_{i_{1}, i_{2}, \ldots, i_{r}=1}^{r} V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right) \lambda_{i_{1}} \lambda_{i_{2}} \ldots \lambda_{i_{n}}
$$

Then $V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right)$ is called the mixed volume of $K_{i_{1}}, \ldots, K_{i_{n}}$.

Example:

- Denote $V\left(K_{1}, \ldots, K_{m}, K \ldots, K\right)=V\left(K_{1}, \ldots, K_{m}, K[n-m]\right)$.
- Let B_{2}^{n} the standard Euclidean ball of radius 1.

Then

$$
\begin{aligned}
V_{n-1}(\partial K) & =\lim _{t \rightarrow 0} \frac{V_{n}\left(K+t B_{2}^{n}\right)-V_{n}(K)}{t} \\
& =\lim _{t \rightarrow 0} \frac{V_{n}(K)+t n V_{n}\left(B_{2}^{n}, K[n-1]\right)+t^{2} \text { Polinomial }(t)-V_{n}(K)}{t} \\
& =n V_{n}\left(B_{2}^{n}, K[n-1]\right) .
\end{aligned}
$$

$K_{1}, K_{2}, \ldots, K_{r}$ be convex bodies in \mathbb{R}^{n} and $\lambda_{1}, \ldots, \lambda_{r} \geq 0$

Then $V_{n}\left(\lambda_{1} K_{1}+\lambda_{2} K_{2}+\cdots+\lambda_{r} K_{r}\right)$ is a homogeneous polynomial (in $\lambda_{1}, \ldots, \lambda_{r}$) of degree n and

$$
V_{n}\left(\lambda_{1} K_{1}+\lambda_{2} K_{2}+\cdots+\lambda_{r} K_{r}\right)=\sum_{i_{1}, i_{2}, \ldots, i_{r}=1}^{r} V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right) \lambda_{i_{1}} \lambda_{i_{2}} \ldots \lambda_{i_{n}} .
$$

Then $V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right)$ is called the mixed volume of $K_{i_{1}}, \ldots, K_{i_{n}}$.

- Brunn-Minkowski inequality: $V_{n}(K+L)^{1 / n} \geq V_{n}(K)^{1 / n}+V_{n}(L)^{1 / n}$.

$K_{1}, K_{2}, \ldots, K_{r}$ be convex bodies in \mathbb{R}^{n} and $\lambda_{1}, \ldots, \lambda_{r} \geq 0$

Then $V_{n}\left(\lambda_{1} K_{1}+\lambda_{2} K_{2}+\cdots+\lambda_{r} K_{r}\right)$ is a homogeneous polynomial (in $\lambda_{1}, \ldots, \lambda_{r}$) of degree n and

$$
V_{n}\left(\lambda_{1} K_{1}+\lambda_{2} K_{2}+\cdots+\lambda_{r} K_{r}\right)=\sum_{i_{1}, i_{2}, \ldots, i_{r}=1}^{r} V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right) \lambda_{i_{1}} \lambda_{i_{2}} \ldots \lambda_{i_{n}} .
$$

Then $V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right)$ is called the mixed volume of $K_{i_{1}}, \ldots, K_{i_{n}}$.

- Brunn-Minkowski inequality: $V_{n}(K+L)^{1 / n} \geq V_{n}(K)^{1 / n}+V_{n}(L)^{1 / n}$.
- Minkowski First inequality: $V(L, K[n-1]) \geq V_{n}(L)^{1 / n} V_{n}(K)^{(n-1) / n}$.

$K_{1}, K_{2}, \ldots, K_{r}$ be convex bodies in \mathbb{R}^{n} and $\lambda_{1}, \ldots, \lambda_{r} \geq 0$

Then $V_{n}\left(\lambda_{1} K_{1}+\lambda_{2} K_{2}+\cdots+\lambda_{r} K_{r}\right)$ is a homogeneous polynomial (in $\lambda_{1}, \ldots, \lambda_{r}$) of degree n and

$$
V_{n}\left(\lambda_{1} K_{1}+\lambda_{2} K_{2}+\cdots+\lambda_{r} K_{r}\right)=\sum_{i_{1}, i_{2}, \ldots, i_{r}=1}^{r} V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right) \lambda_{i_{1}} \lambda_{i_{2}} \ldots \lambda_{i_{n}} .
$$

Then $V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right)$ is called the mixed volume of $K_{i_{1}}, \ldots, K_{i_{n}}$.

- Brunn-Minkowski inequality: $V_{n}(K+L)^{1 / n} \geq V_{n}(K)^{1 / n}+V_{n}(L)^{1 / n}$.
- Minkowski First inequality: $V(L, K[n-1]) \geq V_{n}(L)^{1 / n} V_{n}(K)^{(n-1) / n}$.
- Using the formula for the surface area, the above gives isoperimetric inequality:

$K_{1}, K_{2}, \ldots, K_{r}$ be convex bodies in \mathbb{R}^{n} and $\lambda_{1}, \ldots, \lambda_{r} \geq 0$

Then $V_{n}\left(\lambda_{1} K_{1}+\lambda_{2} K_{2}+\cdots+\lambda_{r} K_{r}\right)$ is a homogeneous polynomial (in $\lambda_{1}, \ldots, \lambda_{r}$) of degree n and

$$
V_{n}\left(\lambda_{1} K_{1}+\lambda_{2} K_{2}+\cdots+\lambda_{r} K_{r}\right)=\sum_{i_{1}, i_{2}, \ldots, i_{r}=1}^{r} V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right) \lambda_{i_{1}} \lambda_{i_{2}} \ldots \lambda_{i_{n}} .
$$

Then $V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right)$ is called the mixed volume of $K_{i_{1}}, \ldots, K_{i_{n}}$.

- Brunn-Minkowski inequality: $V_{n}(K+L)^{1 / n} \geq V_{n}(K)^{1 / n}+V_{n}(L)^{1 / n}$.
- Minkowski First inequality: $V(L, K[n-1]) \geq V_{n}(L)^{1 / n} V_{n}(K)^{(n-1) / n}$.
- Using the formula for the surface area, the above gives isoperimetric inequality:

$$
V_{n-1}(\partial K)=n V_{n}\left(B_{2}^{n}, K[n-1]\right)
$$

$K_{1}, K_{2}, \ldots, K_{r}$ be convex bodies in \mathbb{R}^{n} and $\lambda_{1}, \ldots, \lambda_{r} \geq 0$

Then $V_{n}\left(\lambda_{1} K_{1}+\lambda_{2} K_{2}+\cdots+\lambda_{r} K_{r}\right)$ is a homogeneous polynomial (in $\lambda_{1}, \ldots, \lambda_{r}$) of degree n and

$$
V_{n}\left(\lambda_{1} K_{1}+\lambda_{2} K_{2}+\cdots+\lambda_{r} K_{r}\right)=\sum_{i_{1}, i_{2}, \ldots, i_{r}=1}^{r} V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right) \lambda_{i_{1}} \lambda_{i_{2}} \ldots \lambda_{i_{n}} .
$$

Then $V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right)$ is called the mixed volume of $K_{i_{1}}, \ldots, K_{i_{n}}$.

- Brunn-Minkowski inequality: $V_{n}(K+L)^{1 / n} \geq V_{n}(K)^{1 / n}+V_{n}(L)^{1 / n}$.
- Minkowski First inequality: $V(L, K[n-1]) \geq V_{n}(L)^{1 / n} V_{n}(K)^{(n-1) / n}$.
- Using the formula for the surface area, the above gives isoperimetric inequality:

$$
\begin{aligned}
V_{n-1}(\partial K) & =n V_{n}\left(B_{2}^{n}, K[n-1]\right) \\
& \geq n V_{n}\left(B_{2}^{n}\right)^{1 / n} V_{n}(K)^{(n-1) / n}
\end{aligned}
$$

$K_{1}, K_{2}, \ldots, K_{r}$ be convex bodies in \mathbb{R}^{n} and $\lambda_{1}, \ldots, \lambda_{r} \geq 0$

Then $V_{n}\left(\lambda_{1} K_{1}+\lambda_{2} K_{2}+\cdots+\lambda_{r} K_{r}\right)$ is a homogeneous polynomial (in $\lambda_{1}, \ldots, \lambda_{r}$) of degree n and

$$
V_{n}\left(\lambda_{1} K_{1}+\lambda_{2} K_{2}+\cdots+\lambda_{r} K_{r}\right)=\sum_{i_{1}, i_{2}, \ldots, i_{r}=1}^{r} V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right) \lambda_{i_{1}} \lambda_{i_{2}} \ldots \lambda_{i_{n}}
$$

Then $V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right)$ is called the mixed volume of $K_{i_{1}}, \ldots, K_{i_{n}}$.

- Brunn-Minkowski inequality: $V_{n}(K+L)^{1 / n} \geq V_{n}(K)^{1 / n}+V_{n}(L)^{1 / n}$.
- Minkowski First inequality: $V(L, K[n-1]) \geq V_{n}(L)^{1 / n} V_{n}(K)^{(n-1) / n}$.
- Using the formula for the surface area, the above gives isoperimetric inequality:

$$
\begin{aligned}
V_{n-1}(\partial K) & =n V_{n}\left(B_{2}^{n}, K[n-1]\right) \\
& \geq n V_{n}\left(B_{2}^{n}\right)^{1 / n} V_{n}(K)^{(n-1) / n} \\
& =V_{n-1}\left(\mathbb{S}^{n-1}\right) V_{n}\left(B_{2}^{n}\right)^{(1-n) / n} V_{n}(K)^{(n-1) / n},
\end{aligned}
$$

$K_{1}, K_{2}, \ldots, K_{r}$ be convex bodies in \mathbb{R}^{n} and $\lambda_{1}, \ldots, \lambda_{r} \geq 0$

Then $V_{n}\left(\lambda_{1} K_{1}+\lambda_{2} K_{2}+\cdots+\lambda_{r} K_{r}\right)$ is a homogeneous polynomial (in $\lambda_{1}, \ldots, \lambda_{r}$) of degree n and

$$
V_{n}\left(\lambda_{1} K_{1}+\lambda_{2} K_{2}+\cdots+\lambda_{r} K_{r}\right)=\sum_{i_{1}, i_{2}, \ldots, i_{r}=1}^{r} V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right) \lambda_{i_{1}} \lambda_{i_{2}} \ldots \lambda_{i_{n}}
$$

Then $V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right)$ is called the mixed volume of $K_{i_{1}}, \ldots, K_{i_{n}}$.

- Brunn-Minkowski inequality: $V_{n}(K+L)^{1 / n} \geq V_{n}(K)^{1 / n}+V_{n}(L)^{1 / n}$.
- Minkowski First inequality: $V(L, K[n-1]) \geq V_{n}(L)^{1 / n} V_{n}(K)^{(n-1) / n}$.
- Using the formula for the surface area, the above gives isoperimetric inequality:

$$
\begin{aligned}
V_{n-1}(\partial K) & =n V_{n}\left(B_{2}^{n}, K[n-1]\right) \\
& \geq n V_{n}\left(B_{2}^{n}\right)^{1 / n} V_{n}(K)^{(n-1) / n} \\
& =V_{n-1}\left(\mathbb{S}^{n-1}\right) V_{n}\left(B_{2}^{n}\right)^{(1-n) / n} V_{n}(K)^{(n-1) / n},
\end{aligned}
$$

so if $V_{n}(K)=V_{n}\left(r B_{2}^{n}\right)$, for some $r>0$, then $V_{n-1}(\partial K) \geq V_{n-1}\left(r \mathbb{S}^{n-1}\right)$.

$K_{1}, K_{2}, \ldots, K_{r}$ be convex bodies in \mathbb{R}^{n} and $\lambda_{1}, \ldots, \lambda_{r} \geq 0$

Then $V_{n}\left(\lambda_{1} K_{1}+\lambda_{2} K_{2}+\cdots+\lambda_{r} K_{r}\right)$ is a homogeneous polynomial (in $\lambda_{1}, \ldots, \lambda_{r}$) of degree n and

$$
V_{n}\left(\lambda_{1} K_{1}+\lambda_{2} K_{2}+\cdots+\lambda_{r} K_{r}\right)=\sum_{i_{1}, i_{2}, \ldots, i_{r}=1}^{r} V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right) \lambda_{i_{1}} \lambda_{i_{2}} \ldots \lambda_{i_{n}} .
$$

Then $V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right)$ is called the mixed volume of $K_{i_{1}}, \ldots, K_{i_{n}}$.

- Brunn-Minkowski inequality: $V_{n}(K+L)^{1 / n} \geq V_{n}(K)^{1 / n}+V_{n}(L)^{1 / n}$.
- Minkowski First inequality: $V(L, K[n-1]) \geq V_{n}(L)^{1 / n} V_{n}(K)^{(n-1) / n}$.
- Alexandrov-Fenchel inequality:

$$
V\left(K_{1}, K_{2}, K_{3}, \ldots, K_{n}\right) \geq \sqrt{V\left(K_{1}, K_{1}, K_{3}, \ldots, K_{n}\right) V\left(K_{2}, K_{2}, K_{3}, \ldots, K_{n}\right)}
$$

Main Topic (for those who do not care about introduction)

Question 1

Fix an integer $2 \leq r \leq n$ and let $D \subset \mathbb{R}^{n}$ be a convex body which satisfies

$$
V\left(K_{1}, \ldots, K_{r}, D[n-r]\right) V_{n}(D)^{r-1} \leq \prod_{i=1}^{r} V\left(K_{i}, D[n-1]\right)
$$

for all convex bodies $K_{1}, \ldots, K_{r} \subset \mathbb{R}^{n}$. Is it true that then D must be n-simplex?

Question 1

Fix an integer $2 \leq r \leq n$ and let $D \subset \mathbb{R}^{n}$ be a convex body which satisfies

$$
V\left(K_{1}, \ldots, K_{r}, D[n-r]\right) V_{n}(D)^{r-1} \leq \prod_{i=1}^{r} V\left(K_{i}, D[n-1]\right)
$$

for all convex bodies $K_{1}, \ldots, K_{r} \subset \mathbb{R}^{n}$. Is it true that then D must be n-simplex?

Question 2

What is the best constant $c_{n, r}$ such that

$$
V\left(K_{1}, \ldots, K_{r}, D[n-r]\right) V_{n}(D)^{r-1} \leq c_{n, r} \prod_{i=1}^{r} V\left(K_{i}, D[n-1]\right)
$$

is true for all convex bodies K_{1}, \ldots, K_{r} and D in \mathbb{R}^{n} ?

Question 1

Fix an integer $2 \leq r \leq n$ and let $D \subset \mathbb{R}^{n}$ be a convex body which satisfies

$$
V\left(K_{1}, \ldots, K_{r}, D[n-r]\right) V_{n}(D)^{r-1} \leq \prod_{i=1}^{r} V\left(K_{i}, D[n-1]\right)
$$

for all convex bodies $K_{1}, \ldots, K_{r} \subset \mathbb{R}^{n}$. Is it true that then D must be n-simplex?

Question 2

What is the best constant $c_{n, r}$ such that

$$
V\left(K_{1}, \ldots, K_{r}, D[n-r]\right) V_{n}(D)^{r-1} \leq c_{n, r} \prod_{i=1}^{r} V\left(K_{i}, D[n-1]\right)
$$

is true for all convex bodies K_{1}, \ldots, K_{r} and D in \mathbb{R}^{n} ?

Plan

- How one could come up with such inequalities \& why they are (may be) interesting?

Main Topic (for those who do not care about introduction)

Question 1

Fix an integer $2 \leq r \leq n$ and let $D \subset \mathbb{R}^{n}$ be a convex body which satisfies

$$
V\left(K_{1}, \ldots, K_{r}, D[n-r]\right) V_{n}(D)^{r-1} \leq \prod_{i=1}^{r} V\left(K_{i}, D[n-1]\right)
$$

for all convex bodies $K_{1}, \ldots, K_{r} \subset \mathbb{R}^{n}$. Is it true that then D must be n-simplex?

Question 2

What is the best constant $c_{n, r}$ such that

$$
V\left(K_{1}, \ldots, K_{r}, D[n-r]\right) V_{n}(D)^{r-1} \leq c_{n, r} \prod_{i=1}^{r} V\left(K_{i}, D[n-1]\right)
$$

is true for all convex bodies K_{1}, \ldots, K_{r} and D in \mathbb{R}^{n} ?

Plan

- How one could come up with such inequalities \& why they are (may be) interesting?
- What is known about Question 1.

Main Topic (for those who do not care about introduction)

Question 1

Fix an integer $2 \leq r \leq n$ and let $D \subset \mathbb{R}^{n}$ be a convex body which satisfies

$$
V\left(K_{1}, \ldots, K_{r}, D[n-r]\right) V_{n}(D)^{r-1} \leq \prod_{i=1}^{r} V\left(K_{i}, D[n-1]\right)
$$

for all convex bodies $K_{1}, \ldots, K_{r} \subset \mathbb{R}^{n}$. Is it true that then D must be n-simplex?

Question 2

What is the best constant $c_{n, r}$ such that

$$
V\left(K_{1}, \ldots, K_{r}, D[n-r]\right) V_{n}(D)^{r-1} \leq c_{n, r} \prod_{i=1}^{r} V\left(K_{i}, D[n-1]\right)
$$

is true for all convex bodies K_{1}, \ldots, K_{r} and D in \mathbb{R}^{n} ?

Plan

- How one could come up with such inequalities \& why they are (may be) interesting?
- What is known about Question 1.
- What is known about Question 2.

Motivation: Bezout's Theorem.

Let $X_{1}, \ldots X_{n} \subset \mathbb{C}^{n}$ be hypersurfaces defined by polynomials F_{1}, \ldots, F_{n} :

$$
X_{i}=\left\{x \in \mathbb{C}^{n} \mid F_{i}(x)=0\right\} .
$$

Motivation: Bezout's Theorem.

Let $X_{1}, \ldots X_{n} \subset \mathbb{C}^{n}$ be hypersurfaces defined by polynomials F_{1}, \ldots, F_{n} :

$$
X_{i}=\left\{x \in \mathbb{C}^{n} \mid F_{i}(x)=0\right\} .
$$

Assume that $\#\left(X_{1} \cap \cdots \cap X_{n}\right) \neq \infty$ (note: it can be ∞, for example, if F_{1}, \ldots, F_{n} have common factors).

Motivation: Bezout's Theorem.

Let $X_{1}, \ldots X_{n} \subset \mathbb{C}^{n}$ be hypersurfaces defined by polynomials F_{1}, \ldots, F_{n} :

$$
X_{i}=\left\{x \in \mathbb{C}^{n} \mid F_{i}(x)=0\right\}
$$

Assume that $\#\left(X_{1} \cap \cdots \cap X_{n}\right) \neq \infty$. Then

$$
\#\left(X_{1} \cap \cdots \cap X_{n}\right) \leq \prod_{i=1}^{n} \operatorname{deg} F_{i}
$$

Motivation: Bezout's Theorem.

Let $X_{1}, \ldots X_{n} \subset \mathbb{C}^{n}$ be hypersurfaces defined by polynomials F_{1}, \ldots, F_{n} :

$$
X_{i}=\left\{x \in \mathbb{C}^{n} \mid F_{i}(x)=0\right\}
$$

Assume that $\#\left(X_{1} \cap \cdots \cap X_{n}\right) \neq \infty$. Then

$$
\#\left(X_{1} \cap \cdots \cap X_{n}\right) \leq \prod_{i=1}^{n} \operatorname{deg} F_{i}
$$

Childish Example: Two quadratic polynomials.

$$
F_{1}(x, y)=\frac{x^{2}}{9}+\frac{y^{2}}{60}-1 \quad \text { and } \quad F_{2}=\frac{x^{2}}{50}+\frac{y^{2}}{2}-2
$$

Then $\operatorname{deg} F_{1}=\operatorname{deg} F_{2}=2$ and X_{1}, X_{2} are ellipses which intersect in exactly 4 points.

Bernstein-Kushnirenko-Khovanskii theorem.

Newton Polytope
$N P(F)=$ convex hull of exponent vectors of a polynomial F.

Newton Polytope

$N P(F)=$ convex hull of exponent vectors of a polynomial F.

$$
F(x, y)=4 x^{7} y^{3}-5 x^{5} y^{5}+13 x^{6}-5 y^{4}+21 x^{2} y+13 x y^{3}-71
$$

Newton Polytope

$N P(F)=$ convex hull of exponent vectors of a polynomial F.

Interesting case - affine function $F(x, y)=3 x-15 y+71$

Newton Polytope

$N P(F)=$ convex hull of exponent vectors of a polynomial F.

Theorem (BKK)

Let F_{1}, \ldots, F_{n} be polynomials with fixed Newton Polytopes $P_{1}, \ldots, P_{n} \subset \mathbb{R}^{n}$ and generic coefficients. Then

$$
\#\left\{x \in(\mathbb{C} \backslash 0)^{n} \mid F_{1}(x)=\cdots=F_{n}(x)=0\right\}=n!V\left(P_{1}, \ldots, P_{n}\right)
$$

Newton Polytope

$N P(F)=$ convex hull of exponent vectors of a polynomial F.

Theorem (BKK)

Let F_{1}, \ldots, F_{n} be polynomials with fixed Newton Polytopes $P_{1}, \ldots, P_{n} \subset \mathbb{R}^{n}$ and generic coefficients. Then

$$
\#\left\{x \in(\mathbb{C} \backslash 0)^{n} \mid F_{1}(x)=\cdots=F_{n}(x)=0\right\}=n!V\left(P_{1}, \ldots, P_{n}\right)
$$

Note that we can compute the $\operatorname{deg} F_{i}$ via the number of intersections of $X_{i}=\left\{x \in(\mathbb{C} \backslash 0)^{n} \mid F_{i}(x)=0\right\}$, with a generic line.

Newton Polytope

$N P(F)=$ convex hull of exponent vectors of a polynomial F.

Theorem (BKK)

Let F_{1}, \ldots, F_{n} be polynomials with fixed Newton Polytopes $P_{1}, \ldots, P_{n} \subset \mathbb{R}^{n}$ and generic coefficients. Then

$$
\#\left\{x \in(\mathbb{C} \backslash 0)^{n} \mid F_{1}(x)=\cdots=F_{n}(x)=0\right\}=n!V\left(P_{1}, \ldots, P_{n}\right)
$$

Note that we can compute the $\operatorname{deg} F_{i}$ via the number of intersections of $X_{i}=\left\{x \in(\mathbb{C} \backslash 0)^{n} \mid F_{i}(x)=0\right\}$, with a generic line.
But we can "create" a generic line via intersection of $n-1$ generic affine hyperplanes:

$$
\operatorname{deg}\left(F_{i}\right)=\#\left\{x \in(\mathbb{C} \backslash 0)^{n} \mid F_{i}(x)=0 \text { and } \ell_{1}(x)=\cdots=\ell_{n-1}(x)=0\right)
$$

where $\ell_{i}(x)$ is a generic affine function.

Newton Polytope

$N P(F)=$ convex hull of exponent vectors of a polynomial F.

Theorem (BKK)

Let F_{1}, \ldots, F_{n} be polynomials with fixed Newton Polytopes $P_{1}, \ldots, P_{n} \subset \mathbb{R}^{n}$ and generic coefficients. Then

$$
\#\left\{x \in(\mathbb{C} \backslash 0)^{n} \mid F_{1}(x)=\cdots=F_{n}(x)=0\right\}=n!V\left(P_{1}, \ldots, P_{n}\right)
$$

Note that we can compute the $\operatorname{deg} F_{i}$ via the number of intersections of $X_{i}=\left\{x \in(\mathbb{C} \backslash 0)^{n} \mid F_{i}(x)=0\right\}$, with a generic line.
But we can "create" a generic line via intersection of $n-1$ generic affine hyperplanes:

$$
\operatorname{deg}\left(F_{i}\right)=\#\left\{x \in(\mathbb{C} \backslash 0)^{n} \mid F_{i}(x)=0 \text { and } \ell_{1}(x)=\cdots=\ell_{n-1}(x)=0\right)
$$

where $\ell_{i}(x)$ is a generic affine function. But the Newton Polytope of $\ell_{i}(x)$ is the standard simplex $\Delta=\operatorname{conv}\left\{0, e_{1}, \ldots, e_{n}\right\}$. And $B K K$ theorem gives us

$$
\operatorname{deg}\left(F_{i}\right)=n!V\left(P_{i}, \Delta[n-1]\right)
$$

GLUE IT ALL TOGETHER!

Bezout:
Bernstein-Kushnirenko-Khovanskii: Degree Formula:

$$
\begin{gathered}
\#\left(X_{1} \cap \cdots \cap X_{n}\right) \leq \prod_{i=1}^{n} \operatorname{deg} F_{i}, \\
\#\left(X_{1} \cap \cdots \cap X_{n}\right)=n!V\left(P_{1}, \ldots, P_{n}\right), \\
\operatorname{deg}\left(F_{i}\right)=n!V\left(P_{i}, \Delta[n-1]\right) .
\end{gathered}
$$

GLUE IT ALL TOGETHER!

$$
\begin{array}{ll}
\text { Bezout: } & \#\left(X_{1} \cap \cdots \cap X_{n}\right) \leq \prod_{i=1}^{n} \operatorname{deg} F_{i}, \\
\text { Bernstein-Kushnirenko-Khovanskii: } & \#\left(X_{1} \cap \cdots \cap X_{n}\right)=n!V\left(P_{1}, \ldots, P_{n}\right), \\
\text { Degree Formula: } & \operatorname{deg}\left(F_{i}\right)=n!V\left(P_{i}, \Delta[n-1]\right) .
\end{array}
$$

You get

$$
n!V\left(P_{1}, \ldots, P_{n}\right) \leq \prod_{i=1}^{n} n!V\left(P_{i}, \Delta[n-1]\right)
$$

GLUE IT ALL TOGETHER!

$$
\begin{array}{ll}
\text { Bezout: } & \#\left(X_{1} \cap \cdots \cap X_{n}\right) \leq \prod_{i=1}^{n} \operatorname{deg} F_{i}, \\
\text { Bernstein-Kushnirenko-Khovanskii: } & \#\left(X_{1} \cap \cdots \cap X_{n}\right)=n!V\left(P_{1}, \ldots, P_{n}\right), \\
\text { Degree Formula: } & \operatorname{deg}\left(F_{i}\right)=n!V\left(P_{i}, \Delta[n-1]\right) .
\end{array}
$$

You get

$$
n!V\left(P_{1}, \ldots, P_{n}\right) \leq \prod_{i=1}^{n} n!V\left(P_{i}, \Delta[n-1]\right)
$$

But $V_{n}(\Delta)=1 / n!$ so

$$
V\left(P_{1}, \ldots, P_{n}\right) V_{n}(\Delta)^{n-1} \leq \prod_{i=1}^{n} V\left(P_{i}, \Delta[n-1]\right)
$$

```
Bezout: }#(\mp@subsup{X}{1}{}\cap\cdots\cap\mp@subsup{X}{n}{})\leq\mp@subsup{\prod}{i=1}{n}\operatorname{deg}\mp@subsup{F}{i}{}\mathrm{ ,
Bernstein-Kushnirenko-Khovanskii: }\quad#(\mp@subsup{X}{1}{}\cap\cdots\cap\mp@subsup{X}{n}{})=n!V(\mp@subsup{P}{1}{},\ldots,\mp@subsup{P}{n}{})\mathrm{ ,
Degree Formula:
    deg(Fi)=n!V(P
```

You get

$$
n!V\left(P_{1}, \ldots, P_{n}\right) \leq \prod_{i=1}^{n} n!V\left(P_{i}, \Delta[n-1]\right)
$$

But $V_{n}(\Delta)=1 / n!$ so

$$
V\left(P_{1}, \ldots, P_{n}\right) V_{n}(\Delta)^{n-1} \leq \prod_{i=1}^{n} V\left(P_{i}, \Delta[n-1]\right)
$$

Moreover you may assume that some (say $n-r$) polytopes are Δ (i.e. some of the original polynomials were generic affine functions) to get

Bezout:

$$
\begin{aligned}
& \#\left(X_{1} \cap \cdots \cap X_{n}\right) \leq \prod_{i=1}^{n} \operatorname{deg} F_{i}, \\
& \#\left(X_{1} \cap \cdots \cap X_{n}\right)=n!V\left(P_{1}, \ldots, P_{n}\right), \\
& \quad \operatorname{deg}\left(F_{i}\right)=n!V\left(P_{i}, \Delta[n-1]\right) .
\end{aligned}
$$

Bernstein-Kushnirenko-Khovanskii: Degree Formula:

You get

$$
n!V\left(P_{1}, \ldots, P_{n}\right) \leq \prod_{i=1}^{n} n!V\left(P_{i}, \Delta[n-1]\right)
$$

But $V_{n}(\Delta)=1 / n!$ so

$$
V\left(P_{1}, \ldots, P_{n}\right) V_{n}(\Delta)^{n-1} \leq \prod_{i=1}^{n} V\left(P_{i}, \Delta[n-1]\right)
$$

Moreover you may assume that some (say $n-r$) polytopes are Δ (i.e. some of the original polynomials were generic affine functions) to get

I. Soprunov \& A.Z.; 2016

Fix integer $2 \leq r \leq n$ and let Δ any n-dimensional simplex, then

$$
V\left(K_{1}, \ldots, K_{r}, \Delta[n-r]\right) V_{n}(\Delta)^{r-1} \leq \prod_{i=1}^{r} V\left(K_{i}, \Delta[n-1]\right),
$$

for all convex bodies K_{1}, \ldots, K_{r} in \mathbb{R}^{n}.

Bezout's inequality for Mixed Volume.

I. Soprunov \& A.Z.; 2016

Fix an integer $2 \leq r \leq n$ and let Δ an n-dimensional simplex, then

$$
V\left(K_{1}, \ldots, K_{r}, \Delta[n-r]\right) V_{n}(\Delta)^{r-1} \leq \prod_{i=1}^{r} V\left(K_{i}, \Delta[n-1]\right)
$$

for all convex bodies K_{1}, \ldots, K_{r} in \mathbb{R}^{n}.

Bezout's inequality for Mixed Volume.

I. Soprunov \& A.Z.; 2016

Fix an integer $2 \leq r \leq n$ and let Δ an n-dimensional simplex, then

$$
V\left(K_{1}, \ldots, K_{r}, \Delta[n-r]\right) V_{n}(\Delta)^{r-1} \leq \prod_{i=1}^{r} V\left(K_{i}, \Delta[n-1]\right)
$$

for all convex bodies K_{1}, \ldots, K_{r} in \mathbb{R}^{n}.
Idea of a direct proof: Note that the inequality is "homogeneous" with respect to K_{i}.

I. Soprunov \& A.Z.; 2016

Fix an integer $2 \leq r \leq n$ and let Δ an n-dimensional simplex, then

$$
V\left(K_{1}, \ldots, K_{r}, \Delta[n-r]\right) V_{n}(\Delta)^{r-1} \leq \prod_{i=1}^{r} V\left(K_{i}, \Delta[n-1]\right)
$$

for all convex bodies K_{1}, \ldots, K_{r} in \mathbb{R}^{n}.
Idea of a direct proof: Note that the inequality is "homogeneous" with respect to K_{i}. Reminder: Mixed volume is linear and translation invariant. Rescale \& translate K_{1}, \ldots, K_{r} such that each K_{i} is inscribed in Δ.

Bezout's inequality for Mixed Volume.

I. Soprunov \& A.Z.; 2016

Fix an integer $2 \leq r \leq n$ and let Δ an n-dimensional simplex, then

$$
V\left(K_{1}, \ldots, K_{r}, \Delta[n-r]\right) V_{n}(\Delta)^{r-1} \leq \prod_{i=1}^{r} V\left(K_{i}, \Delta[n-1]\right)
$$

for all convex bodies K_{1}, \ldots, K_{r} in \mathbb{R}^{n}.
Idea of a direct proof: Note that the inequality is "homogeneous" with respect to K_{i}. Reminder: Mixed volume is linear and translation invariant. Rescale \& translate K_{1}, \ldots, K_{r} such that each K_{i} is inscribed in Δ. Note that in this case K_{i} must touch all facets of Δ

Bezout's inequality for Mixed Volume.

I. Soprunov \& A.Z.; 2016

Fix an integer $2 \leq r \leq n$ and let Δ an n-dimensional simplex, then

$$
V\left(K_{1}, \ldots, K_{r}, \Delta[n-r]\right) V_{n}(\Delta)^{r-1} \leq \prod_{i=1}^{r} V\left(K_{i}, \Delta[n-1]\right)
$$

for all convex bodies K_{1}, \ldots, K_{r} in \mathbb{R}^{n}.
Idea of a direct proof: Note that the inequality is "homogeneous" with respect to K_{i}. Reminder: Mixed volume is linear and translation invariant. Rescale \& translate K_{1}, \ldots, K_{r} such that each K_{i} is inscribed in Δ. Note that in this case K_{i} must touch all facets of Δ and thus

$$
h_{K_{i}}(\nu)=h_{\Delta}(\nu)
$$

where ν is a normal to a facet of Δ and $h_{L}(\nu)=\sup \{x \cdot \nu: x \in L\}$.

Bezout's inequality for Mixed Volume.

I. Soprunov \& A.Z.; 2016

Fix an integer $2 \leq r \leq n$ and let Δ an n-dimensional simplex, then

$$
V\left(K_{1}, \ldots, K_{r}, \Delta[n-r]\right) V_{n}(\Delta)^{r-1} \leq \prod_{i=1}^{r} V\left(K_{i}, \Delta[n-1]\right)
$$

for all convex bodies K_{1}, \ldots, K_{r} in \mathbb{R}^{n}.
Idea of a direct proof: Note that the inequality is "homogeneous" with respect to K_{i}. Reminder: Mixed volume is linear and translation invariant. Rescale \& translate K_{1}, \ldots, K_{r} such that each K_{i} is inscribed in Δ. Note that in this case K_{i} must touch all facets of Δ and thus

$$
h_{K_{i}}(\nu)=h_{\Delta}(\nu)
$$

where ν is a normal to a facet of Δ and $h_{L}(\nu)=\sup \{x \cdot \nu: x \in L\}$. Then

- $V\left(K_{i}, \Delta[n-1]\right)=\frac{1}{n} \sum_{\nu} h_{K_{i}}(\nu) V_{n-1}\left(\Delta^{\nu}\right)=\frac{1}{n} \sum_{\nu} h_{\Delta}(\nu) V_{n-1}\left(\Delta^{\nu}\right)=V_{n}(\Delta)$, where Δ^{ν} is the facet of Δ corresponding to normal vector ν.

I. Soprunov \& A.Z.; 2016

Fix an integer $2 \leq r \leq n$ and let Δ an n-dimensional simplex, then

$$
V\left(K_{1}, \ldots, K_{r}, \Delta[n-r]\right) V_{n}(\Delta)^{r-1} \leq \prod_{i=1}^{r} V\left(K_{i}, \Delta[n-1]\right),
$$

for all convex bodies K_{1}, \ldots, K_{r} in \mathbb{R}^{n}.
Idea of a direct proof: Note that the inequality is "homogeneous" with respect to K_{i}. Reminder: Mixed volume is linear and translation invariant. Rescale \& translate K_{1}, \ldots, K_{r} such that each K_{i} is inscribed in Δ. Note that in this case K_{i} must touch all facets of Δ and thus

$$
h_{K_{i}}(\nu)=h_{\Delta}(\nu),
$$

where ν is a normal to a facet of Δ and $h_{L}(\nu)=\sup \{x \cdot \nu: x \in L\}$. Then

- $V\left(K_{i}, \Delta[n-1]\right)=\frac{1}{n} \sum_{\nu} h_{K_{i}}(\nu) V_{n-1}\left(\Delta^{\nu}\right)=\frac{1}{n} \sum_{\nu} h_{\Delta}(\nu) V_{n-1}\left(\Delta^{\nu}\right)=V_{n}(\Delta)$, where Δ^{ν} is the facet of Δ corresponding to normal vector ν.
- So we are left with $V\left(K_{1}, \ldots, K_{r}, \Delta[n-r]\right) V_{n}(\Delta)^{r-1} \leq V_{n}(\Delta)^{r}$.

I. Soprunov \& A.Z.; 2016

Fix an integer $2 \leq r \leq n$ and let Δ an n-dimensional simplex, then

$$
V\left(K_{1}, \ldots, K_{r}, \Delta[n-r]\right) V_{n}(\Delta)^{r-1} \leq \prod_{i=1}^{r} V\left(K_{i}, \Delta[n-1]\right),
$$

for all convex bodies K_{1}, \ldots, K_{r} in \mathbb{R}^{n}.
Idea of a direct proof: Note that the inequality is "homogeneous" with respect to K_{i}. Reminder: Mixed volume is linear and translation invariant. Rescale \& translate K_{1}, \ldots, K_{r} such that each K_{i} is inscribed in Δ. Note that in this case K_{i} must touch all facets of Δ and thus

$$
h_{K_{i}}(\nu)=h_{\Delta}(\nu),
$$

where ν is a normal to a facet of Δ and $h_{L}(\nu)=\sup \{x \cdot \nu: x \in L\}$. Then

- $V\left(K_{i}, \Delta[n-1]\right)=\frac{1}{n} \sum_{\nu} h_{K_{i}}(\nu) V_{n-1}\left(\Delta^{\nu}\right)=\frac{1}{n} \sum_{\nu} h_{\Delta}(\nu) V_{n-1}\left(\Delta^{\nu}\right)=V_{n}(\Delta)$, where Δ^{ν} is the facet of Δ corresponding to normal vector ν.
- So we are left with $V\left(K_{1}, \ldots, K_{r}, \Delta[n-r]\right) V_{n}(\Delta)^{r-1} \leq V_{n}(\Delta)^{r}$.
- $V\left(K_{1}, \ldots, K_{r}, \Delta[n-r]\right) \leq V_{n}(\Delta)$ by monotonicity.

Fix an integer $2 \leq r \leq n$ and let $D \subset \mathbb{R}^{n}$ be a convex body which satisfies

$$
V\left(K_{1}, \ldots, K_{r}, D[n-r]\right) V_{n}(D)^{r-1} \leq \prod_{i=1}^{r} V\left(K_{i}, D[n-1]\right),
$$

for all convex bodies $K_{1}, \ldots, K_{r} \subset \mathbb{R}^{n}$. Is it true that then D must be n-simplex?

Fix an integer $2 \leq r \leq n$ and let $D \subset \mathbb{R}^{n}$ be a convex body which satisfies

$$
V\left(K_{1}, \ldots, K_{r}, D[n-r]\right) V_{n}(D)^{r-1} \leq \prod_{i=1}^{r} V\left(K_{i}, D[n-1]\right)
$$

for all convex bodies $K_{1}, \ldots, K_{r} \subset \mathbb{R}^{n}$. Is it true that then D must be n-simplex?
Clearly, if we solve the case $r=2$, then we are done with case $r>2$ (i.e. question is "harder" if you have less K_{i} to test the inequality).

Fix an integer $2 \leq r \leq n$ and let $D \subset \mathbb{R}^{n}$ be a convex body which satisfies

$$
V\left(K_{1}, \ldots, K_{r}, D[n-r]\right) V_{n}(D)^{r-1} \leq \prod_{i=1}^{r} V\left(K_{i}, D[n-1]\right)
$$

for all convex bodies $K_{1}, \ldots, K_{r} \subset \mathbb{R}^{n}$. Is it true that then D must be n-simplex?
Clearly, if we solve the case $r=2$, then we are done with case $r>2$ (i.e. question is "harder" if you have less K_{i} to test the inequality).

- (I. Soprunov \& A.Z., 2016): D must be indecomposable, i.e. if $D=D_{1}+D_{2}$ then $D_{1} \sim D_{2}$.

Fix an integer $2 \leq r \leq n$ and let $D \subset \mathbb{R}^{n}$ be a convex body which satisfies

$$
V\left(K_{1}, \ldots, K_{r}, D[n-r]\right) V_{n}(D)^{r-1} \leq \prod_{i=1}^{r} V\left(K_{i}, D[n-1]\right)
$$

for all convex bodies $K_{1}, \ldots, K_{r} \subset \mathbb{R}^{n}$. Is it true that then D must be n-simplex?
Clearly, if we solve the case $r=2$, then we are done with case $r>2$ (i.e. question is "harder" if you have less K_{i} to test the inequality).

- (I. Soprunov \& A.Z., 2016): D must be indecomposable, i.e. if $D=D_{1}+D_{2}$ then $D_{1} \sim D_{2}$.
Idea of a proof: Assume decomposable, plug in $D=D_{1}+D_{2}$, compare with Alexandrov-Fenchel inequality.

Fix an integer $2 \leq r \leq n$ and let $D \subset \mathbb{R}^{n}$ be a convex body which satisfies

$$
V\left(K_{1}, \ldots, K_{r}, D[n-r]\right) V_{n}(D)^{r-1} \leq \prod_{i=1}^{r} V\left(K_{i}, D[n-1]\right)
$$

for all convex bodies $K_{1}, \ldots, K_{r} \subset \mathbb{R}^{n}$. Is it true that then D must be n-simplex?
Clearly, if we solve the case $r=2$, then we are done with case $r>2$ (i.e. question is "harder" if you have less K_{i} to test the inequality).

- (I. Soprunov \& A.Z., 2016): D must be indecomposable, i.e. if $D=D_{1}+D_{2}$ then $D_{1} \sim D_{2}$.
Idea of a proof: Assume decomposable, plug in $D=D_{1}+D_{2}$, compare with Alexandrov-Fenchel inequality.
- Note that the above gives us that the answer is affirmative in \mathbb{R}^{2} (indeed, Δ is the only indecomposable body in \mathbb{R}^{2} !

Fix an integer $2 \leq r \leq n$ and let $D \subset \mathbb{R}^{n}$ be a convex body which satisfies

$$
V\left(K_{1}, \ldots, K_{r}, D[n-r]\right) V_{n}(D)^{r-1} \leq \prod_{i=1}^{r} V\left(K_{i}, D[n-1]\right)
$$

for all convex bodies $K_{1}, \ldots, K_{r} \subset \mathbb{R}^{n}$. Is it true that then D must be n-simplex?
Clearly, if we solve the case $r=2$, then we are done with case $r>2$ (i.e. question is "harder" if you have less K_{i} to test the inequality).

- (I. Soprunov \& A.Z., 2016): D must be indecomposable, i.e. if $D=D_{1}+D_{2}$ then $D_{1} \sim D_{2}$.
Idea of a proof: Assume decomposable, plug in $D=D_{1}+D_{2}$, compare with Alexandrov-Fenchel inequality.
- Note that the above gives us that the answer is affirmative in \mathbb{R}^{2} (indeed, Δ is the only indecomposable body in \mathbb{R}^{2} ! But, this is not enough to make a decision in $\mathbb{R}^{n}, n \geq 3$. It is well know that there "a lot" of indecomposable bodies in \mathbb{R}^{3}.

Fix an integer $2 \leq r \leq n$ and let $D \subset \mathbb{R}^{n}$ be a convex body which satisfies

$$
V\left(K_{1}, \ldots, K_{r}, D[n-r]\right) V_{n}(D)^{r-1} \leq \prod_{i=1}^{r} V\left(K_{i}, D[n-1]\right)
$$

for all convex bodies $K_{1}, \ldots, K_{r} \subset \mathbb{R}^{n}$. Is it true that then D must be n-simplex?
Clearly, if we solve the case $r=2$, then we are done with case $r>2$ (i.e. question is "harder" if you have less K_{i} to test the inequality).

- (I. Soprunov \& A.Z., 2016): D must be indecomposable, i.e. if $D=D_{1}+D_{2}$ then $D_{1} \sim D_{2}$.
Idea of a proof: Assume decomposable, plug in $D=D_{1}+D_{2}$, compare with Alexandrov-Fenchel inequality.
- Note that the above gives us that the answer is affirmative in \mathbb{R}^{2} (indeed, Δ is the only indecomposable body in \mathbb{R}^{2} ! But, this is not enough to make a decision in $\mathbb{R}^{n}, n \geq 3$. It is well know that there "a lot" of indecomposable bodies in \mathbb{R}^{3}.
- There are indecomposable bodies for which the inequality is not true: $D=B_{1}^{3}$.

Fix an integer $2 \leq r \leq n$ and let $D \subset \mathbb{R}^{n}$ be a convex body which satisfies

$$
V\left(K_{1}, \ldots, K_{r}, D[n-r]\right) V_{n}(D)^{r-1} \leq \prod_{i=1}^{r} V\left(K_{i}, D[n-1]\right),
$$

for all convex bodies $K_{1}, \ldots, K_{r} \subset \mathbb{R}^{n}$. Is it true that then D must be n-simplex?
Clearly, if we solve the case $r=2$, then we are done with case $r>2$ (i.e. question is "harder" if you have less K_{i} to test the inequality).

- (C. Saroglou, I. Soprunov \& A.Z., 2016): If D is a polytope then $D=\Delta$.

Fix an integer $2 \leq r \leq n$ and let $D \subset \mathbb{R}^{n}$ be a convex body which satisfies

$$
V\left(K_{1}, \ldots, K_{r}, D[n-r]\right) V_{n}(D)^{r-1} \leq \prod_{i=1}^{r} V\left(K_{i}, D[n-1]\right),
$$

for all convex bodies $K_{1}, \ldots, K_{r} \subset \mathbb{R}^{n}$. Is it true that then D must be n-simplex?
Clearly, if we solve the case $r=2$, then we are done with case $r>2$ (i.e. question is "harder" if you have less K_{i} to test the inequality).

- (C. Saroglou, I. Soprunov \& A.Z., 2016): If D is a polytope then $D=\Delta$. Idea of a proof: Select a facet of D and move it a bit to create a test body K_{1}, get a counterexample.

Fix an integer $2 \leq r \leq n$ and let $D \subset \mathbb{R}^{n}$ be a convex body which satisfies

$$
V\left(K_{1}, \ldots, K_{r}, D[n-r]\right) V_{n}(D)^{r-1} \leq \prod_{i=1}^{r} V\left(K_{i}, D[n-1]\right),
$$

for all convex bodies $K_{1}, \ldots, K_{r} \subset \mathbb{R}^{n}$. Is it true that then D must be n-simplex?
Clearly, if we solve the case $r=2$, then we are done with case $r>2$ (i.e. question is "harder" if you have less K_{i} to test the inequality).

- (C. Saroglou, I. Soprunov \& A.Z., 2016): If D is a polytope then $D=\Delta$. Idea of a proof: Select a facet of D and move it a bit to create a test body K_{1}, get a counterexample. Note that "only" simplex would not change if you move a facet. More precisely it should be a cone, but we can move "any" facet, so the cone must be a simplex.

Fix an integer $2 \leq r \leq n$ and let $D \subset \mathbb{R}^{n}$ be a convex body which satisfies

$$
V\left(K_{1}, \ldots, K_{r}, D[n-r]\right) V_{n}(D)^{r-1} \leq \prod_{i=1}^{r} V\left(K_{i}, D[n-1]\right)
$$

for all convex bodies $K_{1}, \ldots, K_{r} \subset \mathbb{R}^{n}$. Is it true that then D must be n-simplex?
Clearly, if we solve the case $r=2$, then we are done with case $r>2$ (i.e. question is "harder" if you have less K_{i} to test the inequality).

- (C. Saroglou, I. Soprunov \& A.Z., 2016): If D is a polytope then $D=\Delta$. Idea of a proof: Select a facet of D and move it a bit to create a test body K_{1}, get a counterexample. Note that "only" simplex would not change if you move a facet. More precisely it should be a cone, but we can move "any" facet, so the cone must be a simplex.
- (C. Saroglou, I. Soprunov \& A.Z., 2016): D has no strict points, i.e. points not lying on a boundary segment.

Fix an integer $2 \leq r \leq n$ and let $D \subset \mathbb{R}^{n}$ be a convex body which satisfies

$$
V\left(K_{1}, \ldots, K_{r}, D[n-r]\right) V_{n}(D)^{r-1} \leq \prod_{i=1}^{r} V\left(K_{i}, D[n-1]\right),
$$

for all convex bodies $K_{1}, \ldots, K_{r} \subset \mathbb{R}^{n}$. Is it true that then D must be n-simplex?
Clearly, if we solve the case $r=2$, then we are done with case $r>2$ (i.e. question is "harder" if you have less K_{i} to test the inequality).

- (C. Saroglou, I. Soprunov \& A.Z., 2016): If D is a polytope then $D=\Delta$. Idea of a proof: Select a facet of D and move it a bit to create a test body K_{1}, get a counterexample. Note that "only" simplex would not change if you move a facet. More precisely it should be a cone, but we can move "any" facet, so the cone must be a simplex.
- (C. Saroglou, I. Soprunov \& A.Z., 2016): D has no strict points, i.e. points not lying on a boundary segment.
Idea of a proof: An approach is similar to one that was used to study volume product of bodies with positive curvature (A. Stancu / S. Reisner, C. Schuett and E. Werner/ Y. Gordon and M. Meyer): play with a little cap around such a point.

Fix an integer $2 \leq r \leq n$ and let $D \subset \mathbb{R}^{n}$ be a convex body which satisfies

$$
V\left(K_{1}, \ldots, K_{r}, D[n-r]\right) V_{n}(D)^{r-1} \leq \prod_{i=1}^{r} V\left(K_{i}, D[n-1]\right)
$$

for all convex bodies $K_{1}, \ldots, K_{r} \subset \mathbb{R}^{n}$. Is it true that then D must be n-simplex?

C. Saroglou, I. Soprunov \& A.Z.; 2017+

Let D be an n-dimensional convex body which satisfies

$$
V\left(K_{1}, \ldots, K_{n-1}, D\right) V_{n}(D) \leq V\left(K_{1}, D[n-1]\right) V\left(K_{2}, \ldots, K_{n-1}, D[2]\right)
$$

for all convex bodies $K_{1}, \ldots, K_{n-1} \subset \mathbb{R}^{n}$. Then D is an n-simplex!

Fix an integer $2 \leq r \leq n$ and let $D \subset \mathbb{R}^{n}$ be a convex body which satisfies

$$
V\left(K_{1}, \ldots, K_{r}, D[n-r]\right) V_{n}(D)^{r-1} \leq \prod_{i=1}^{r} V\left(K_{i}, D[n-1]\right)
$$

for all convex bodies $K_{1}, \ldots, K_{r} \subset \mathbb{R}^{n}$. Is it true that then D must be n-simplex?

C. Saroglou, I. Soprunov \& A.Z.; 2017+

Let D be an n-dimensional convex body which satisfies

$$
V\left(K_{1}, \ldots, K_{n-1}, D\right) V_{n}(D) \leq V\left(K_{1}, D[n-1]\right) V\left(K_{2}, \ldots, K_{n-1}, D[2]\right)
$$

for all convex bodies $K_{1}, \ldots, K_{n-1} \subset \mathbb{R}^{n}$. Then D is an n-simplex!

- The above inequality do provide an inequality which characterize an n-simplex.

Fix an integer $2 \leq r \leq n$ and let $D \subset \mathbb{R}^{n}$ be a convex body which satisfies

$$
V\left(K_{1}, \ldots, K_{r}, D[n-r]\right) V_{n}(D)^{r-1} \leq \prod_{i=1}^{r} V\left(K_{i}, D[n-1]\right)
$$

for all convex bodies $K_{1}, \ldots, K_{r} \subset \mathbb{R}^{n}$. Is it true that then D must be n-simplex?

C. Saroglou, I. Soprunov \& A.Z.; 2017+

Let D be an n-dimensional convex body which satisfies

$$
V\left(K_{1}, \ldots, K_{n-1}, D\right) V_{n}(D) \leq V\left(K_{1}, D[n-1]\right) V\left(K_{2}, \ldots, K_{n-1}, D[2]\right)
$$

for all convex bodies $K_{1}, \ldots, K_{n-1} \subset \mathbb{R}^{n}$. Then D is an n-simplex!

- The above inequality do provide an inequality which characterize an n-simplex.
- The above gives an affirmative answer to Question 1 in \mathbb{R}^{3}.

Fix an integer $2 \leq r \leq n$ and let $D \subset \mathbb{R}^{n}$ be a convex body which satisfies

$$
V\left(K_{1}, \ldots, K_{r}, D[n-r]\right) V_{n}(D)^{r-1} \leq \prod_{i=1}^{r} V\left(K_{i}, D[n-1]\right)
$$

for all convex bodies $K_{1}, \ldots, K_{r} \subset \mathbb{R}^{n}$. Is it true that then D must be n-simplex?

C. Saroglou, I. Soprunov \& A.Z.; 2017+

Let D be an n-dimensional convex body which satisfies

$$
V\left(K_{1}, \ldots, K_{n-1}, D\right) V_{n}(D) \leq V\left(K_{1}, D[n-1]\right) V\left(K_{2}, \ldots, K_{n-1}, D[2]\right)
$$

for all convex bodies $K_{1}, \ldots, K_{n-1} \subset \mathbb{R}^{n}$. Then D is an n-simplex!

- The above inequality do provide an inequality which characterize an n-simplex.
- The above gives an affirmative answer to Question 1 in \mathbb{R}^{3}. Indeed, for $n=3$ and $r=2$ we get

$$
V\left(K_{1}, K_{2}, D\right) V_{n}(D) \leq V\left(K_{1}, D[2]\right) V\left(K_{2}, D[2]\right)
$$

Fix an integer $2 \leq r \leq n$ and let $D \subset \mathbb{R}^{n}$ be a convex body which satisfies

$$
V\left(K_{1}, \ldots, K_{r}, D[n-r]\right) V_{n}(D)^{r-1} \leq \prod_{i=1}^{r} V\left(K_{i}, D[n-1]\right)
$$

for all convex bodies $K_{1}, \ldots, K_{r} \subset \mathbb{R}^{n}$. Is it true that then D must be n-simplex?
C. Saroglou, I. Soprunov \& A.Z.; 2017+

Let D be an n-dimensional convex body which satisfies

$$
V\left(K_{1}, \ldots, K_{n-1}, D\right) V_{n}(D) \leq V\left(K_{1}, D[n-1]\right) V\left(K_{2}, \ldots, K_{n-1}, D[2]\right)
$$

for all convex bodies $K_{1}, \ldots, K_{n-1} \subset \mathbb{R}^{n}$. Then D is an n-simplex!

- The above inequality do provide an inequality which characterize an n-simplex.
- The above gives an affirmative answer to Question 1 in \mathbb{R}^{3}.

The idea of the proof is based on an old / new way to perturb a convex body and a very careful study of the boundary structure of a body D.

Fix an integer $2 \leq r \leq n$ and let $D \subset \mathbb{R}^{n}$ be a convex body which satisfies

$$
V\left(K_{1}, \ldots, K_{r}, D[n-r]\right) V_{n}(D)^{r-1} \leq \prod_{i=1}^{r} V\left(K_{i}, D[n-1]\right)
$$

for all convex bodies $K_{1}, \ldots, K_{r} \subset \mathbb{R}^{n}$. Is it true that then D must be n-simplex?
C. Saroglou, I. Soprunov \& A.Z.; 2017+

Let D be an n-dimensional convex body which satisfies

$$
V\left(K_{1}, \ldots, K_{n-1}, D\right) V_{n}(D) \leq V\left(K_{1}, D[n-1]\right) V\left(K_{2}, \ldots, K_{n-1}, D[2]\right)
$$

for all convex bodies $K_{1}, \ldots, K_{n-1} \subset \mathbb{R}^{n}$. Then D is an n-simplex!

- The above inequality do provide an inequality which characterize an n-simplex.
- The above gives an affirmative answer to Question 1 in \mathbb{R}^{3}.

The idea of the proof is based on an old / new way to perturb a convex body and a very careful study of the boundary structure of a body D. More precisely, if in the case of polytopes we moved a facet, here, following the ideas of Alexandrov, we work with Wolf shape and perturb a function defying the body:

Fix an integer $2 \leq r \leq n$ and let $D \subset \mathbb{R}^{n}$ be a convex body which satisfies

$$
V\left(K_{1}, \ldots, K_{r}, D[n-r]\right) V_{n}(D)^{r-1} \leq \prod_{i=1}^{r} V\left(K_{i}, D[n-1]\right)
$$

for all convex bodies $K_{1}, \ldots, K_{r} \subset \mathbb{R}^{n}$. Is it true that then D must be n-simplex?
C. Saroglou, I. Soprunov \& A.Z.; 2017+

Let D be an n-dimensional convex body which satisfies

$$
V\left(K_{1}, \ldots, K_{n-1}, D\right) V_{n}(D) \leq V\left(K_{1}, D[n-1]\right) V\left(K_{2}, \ldots, K_{n-1}, D[2]\right)
$$

for all convex bodies $K_{1}, \ldots, K_{n-1} \subset \mathbb{R}^{n}$. Then D is an n-simplex!

- The above inequality do provide an inequality which characterize an n-simplex.
- The above gives an affirmative answer to Question 1 in \mathbb{R}^{3}.

The idea of the proof is based on an old / new way to perturb a convex body and a very careful study of the boundary structure of a body D. More precisely, if in the case of polytopes we moved a facet, here, following the ideas of Alexandrov, we work with Wolf shape and perturb a function defying the body: Consider a function $g: \mathbb{S}^{n-1} \rightarrow \mathbb{R}^{+}$. A convex body $W(g)$ is a Wulff shape of g if

$$
W(g)=\bigcap_{u \in \mathbb{S}^{n}-1}\left\{x \in \mathbb{R}^{n}: x \cdot u \leq g(u)\right\}
$$

Question 1 ($r=2$):

Let $D \subset \mathbb{R}^{n}$ be a convex body which satisfies

$$
V\left(K_{1}, K_{2}, D[n-2]\right) V_{n}(D) \leq V\left(K_{1}, D[n-1]\right) \cdot V\left(K_{2}, D[n-1]\right)
$$

for all convex bodies $K_{1}, K_{2} \subset \mathbb{R}^{n}$. Is it true that then D must be n-simplex?

Question 1 ($r=2$):

Let $D \subset \mathbb{R}^{n}$ be a convex body which satisfies

$$
V\left(K_{1}, K_{2}, D[n-2]\right) V_{n}(D) \leq V\left(K_{1}, D[n-1]\right) \cdot V\left(K_{2}, D[n-1]\right)
$$

for all convex bodies $K_{1}, K_{2} \subset \mathbb{R}^{n}$. Is it true that then D must be n-simplex?
Let $K_{1}=[0, \xi]$ and $K_{2}=[0, \nu]$, where $\xi, \nu \in \mathbb{S}^{n-1}$.

Question 1 ($r=2$):

Let $D \subset \mathbb{R}^{n}$ be a convex body which satisfies

$$
V\left(K_{1}, K_{2}, D[n-2]\right) V_{n}(D) \leq V\left(K_{1}, D[n-1]\right) \cdot V\left(K_{2}, D[n-1]\right)
$$

for all convex bodies $K_{1}, K_{2} \subset \mathbb{R}^{n}$. Is it true that then D must be n-simplex?
Let $K_{1}=[0, \xi]$ and $K_{2}=[0, \nu]$, where $\xi, \nu \in \mathbb{S}^{n-1}$. Then,

$$
V\left(K_{1}, D[n-1]\right)=\frac{1}{n} V_{n-1}\left(D \mid \xi^{\perp}\right) \text { and } V\left(K_{2}, D[n-1]\right)=\frac{1}{n} V_{n-1}\left(D \mid \nu^{\perp}\right)
$$

where $D \mid \xi^{\perp}$ denotes the orthogonal projection of D onto the hyperplane orthogonal to ξ.

Question 1 ($r=2$):

Let $D \subset \mathbb{R}^{n}$ be a convex body which satisfies

$$
V\left(K_{1}, K_{2}, D[n-2]\right) V_{n}(D) \leq V\left(K_{1}, D[n-1]\right) \cdot V\left(K_{2}, D[n-1]\right)
$$

for all convex bodies $K_{1}, K_{2} \subset \mathbb{R}^{n}$. Is it true that then D must be n-simplex?
Let $K_{1}=[0, \xi]$ and $K_{2}=[0, \nu]$, where $\xi, \nu \in \mathbb{S}^{n-1}$. Then,

$$
V\left(K_{1}, D[n-1]\right)=\frac{1}{n} V_{n-1}\left(D \mid \xi^{\perp}\right) \text { and } V\left(K_{2}, D[n-1]\right)=\frac{1}{n} V_{n-1}\left(D \mid \nu^{\perp}\right)
$$

where $D \mid \xi^{\perp}$ denotes the orthogonal projection of D onto the hyperplane orthogonal to ξ. In addition, assume $\xi \cdot \nu=0$. Then, similarly, for the orthogonal projection we can compute the volume of $D \mid(\xi, \nu)^{\perp}$:

$$
V_{n-2}\left(D \mid(\xi, \nu)^{\perp}\right)=n(n-1) V\left(K_{1}, K_{2}, D[n-2]\right)
$$

Moving towards Question 2 \& connections to projections.

Question 1 ($r=2$):

Let $D \subset \mathbb{R}^{n}$ be a convex body which satisfies

$$
V\left(K_{1}, K_{2}, D[n-2]\right) V_{n}(D) \leq V\left(K_{1}, D[n-1]\right) \cdot V\left(K_{2}, D[n-1]\right)
$$

for all convex bodies $K_{1}, K_{2} \subset \mathbb{R}^{n}$. Is it true that then D must be n-simplex?
Let $K_{1}=[0, \xi]$ and $K_{2}=[0, \nu]$, where $\xi, \nu \in \mathbb{S}^{n-1}$. Then,

$$
V\left(K_{1}, D[n-1]\right)=\frac{1}{n} V_{n-1}\left(D \mid \xi^{\perp}\right) \text { and } V\left(K_{2}, D[n-1]\right)=\frac{1}{n} V_{n-1}\left(D \mid \nu^{\perp}\right)
$$

where $D \mid \xi^{\perp}$ denotes the orthogonal projection of D onto the hyperplane orthogonal to ξ. In addition, assume $\xi \cdot \nu=0$. Then, similarly, for the orthogonal projection we can compute the volume of $D \mid(\xi, \nu)^{\perp}$:

$$
V_{n-2}\left(D \mid(\xi, \nu)^{\perp}\right)=n(n-1) V\left(K_{1}, K_{2}, D[n-2]\right)
$$

Substituting the above calculations in inequality in Question 1, we get

$$
\frac{n}{n-1} V_{n-2}\left(D \mid(\xi, \nu)^{\perp}\right) V_{n}(D) \leq V_{n-1}\left(D \mid \xi^{\perp}\right) V_{n-1}\left(D \mid \nu^{\perp}\right)
$$

Moving towards Question 2 \& connections to projections

Question $1(r=2)$: Let $D \subset \mathbb{R}^{n}$ be a convex body which satisfies

$$
V\left(K_{1}, K_{2}, D[n-2]\right) V_{n}(D) \leq V\left(K_{1}, D[n-1]\right) \cdot V\left(K_{2}, D[n-1]\right)
$$

for all convex bodies $K_{1}, K_{2} \subset \mathbb{R}^{n}$. Is it true that then D must be n-simplex?
In special case of K_{1} and K_{2} are orthogonal unit segments we get

Question $1(r=2)$: Let $D \subset \mathbb{R}^{n}$ be a convex body which satisfies

$$
V\left(K_{1}, K_{2}, D[n-2]\right) V_{n}(D) \leq V\left(K_{1}, D[n-1]\right) \cdot V\left(K_{2}, D[n-1]\right)
$$

for all convex bodies $K_{1}, K_{2} \subset \mathbb{R}^{n}$. Is it true that then D must be n-simplex?
In special case of K_{1} and K_{2} are orthogonal unit segments we get

$$
\frac{n}{n-1} V_{n-2}\left(D \mid(\xi, \nu)^{\perp}\right) V_{n}(D) \leq V_{n-1}\left(D \mid \xi^{\perp}\right) V_{n-1}\left(D \mid \nu^{\perp}\right)
$$

Giannopoulos, Hartzoulaki \& Paouris; 2002.
For any convex body D

$$
\frac{n}{n-1} V_{n}(D) V_{n-2}\left(D \mid(\xi, \nu)^{\perp}\right) \leq 2 V_{n-1}\left(D \mid \xi^{\perp}\right) V_{n-1}\left(D \mid \nu^{\perp}\right)
$$

Question $1(r=2)$: Let $D \subset \mathbb{R}^{n}$ be a convex body which satisfies

$$
V\left(K_{1}, K_{2}, D[n-2]\right) V_{n}(D) \leq V\left(K_{1}, D[n-1]\right) \cdot V\left(K_{2}, D[n-1]\right)
$$

for all convex bodies $K_{1}, K_{2} \subset \mathbb{R}^{n}$. Is it true that then D must be n-simplex?
In special case of K_{1} and K_{2} are orthogonal unit segments we get

$$
\frac{n}{n-1} V_{n-2}\left(D \mid(\xi, \nu)^{\perp}\right) V_{n}(D) \leq V_{n-1}\left(D \mid \xi^{\perp}\right) V_{n-1}\left(D \mid \nu^{\perp}\right)
$$

Giannopoulos, Hartzoulaki \& Paouris; 2002.

For any convex body D

$$
\frac{n}{n-1} V_{n}(D) V_{n-2}\left(D \mid(\xi, \nu)^{\perp}\right) \leq 2 V_{n-1}\left(D \mid \xi^{\perp}\right) V_{n-1}\left(D \mid \nu^{\perp}\right)
$$

Zonotope - Minkowski sum of segments \& Zonoid - limit of zonotopes.

Question $1(r=2)$: Let $D \subset \mathbb{R}^{n}$ be a convex body which satisfies

$$
V\left(K_{1}, K_{2}, D[n-2]\right) V_{n}(D) \leq V\left(K_{1}, D[n-1]\right) \cdot V\left(K_{2}, D[n-1]\right)
$$

for all convex bodies $K_{1}, K_{2} \subset \mathbb{R}^{n}$. Is it true that then D must be n-simplex?
In special case of K_{1} and K_{2} are orthogonal unit segments we get

$$
\frac{n}{n-1} V_{n-2}\left(D \mid(\xi, \nu)^{\perp}\right) V_{n}(D) \leq V_{n-1}\left(D \mid \xi^{\perp}\right) V_{n-1}\left(D \mid \nu^{\perp}\right)
$$

Giannopoulos, Hartzoulaki \& Paouris; 2002.

For any convex body D

$$
\frac{n}{n-1} V_{n}(D) V_{n-2}\left(D \mid(\xi, \nu)^{\perp}\right) \leq 2 V_{n-1}\left(D \mid \xi^{\perp}\right) V_{n-1}\left(D \mid \nu^{\perp}\right)
$$

Zonotope - Minkowski sum of segments \& Zonoid - limit of zonotopes.
Reminder: Mixed volume is multilinear!

Moving towards Question 2 \& connections to projections

Question $1(r=2)$: Let $D \subset \mathbb{R}^{n}$ be a convex body which satisfies

$$
V\left(K_{1}, K_{2}, D[n-2]\right) V_{n}(D) \leq V\left(K_{1}, D[n-1]\right) \cdot V\left(K_{2}, D[n-1]\right)
$$

for all convex bodies $K_{1}, K_{2} \subset \mathbb{R}^{n}$. Is it true that then D must be n-simplex?
In special case of K_{1} and K_{2} are orthogonal unit segments we get

$$
\frac{n}{n-1} V_{n-2}\left(D \mid(\xi, \nu)^{\perp}\right) V_{n}(D) \leq V_{n-1}\left(D \mid \xi^{\perp}\right) V_{n-1}\left(D \mid \nu^{\perp}\right)
$$

Giannopoulos, Hartzoulaki \& Paouris; 2002.

For any convex body D

$$
\frac{n}{n-1} V_{n}(D) V_{n-2}\left(D \mid(\xi, \nu)^{\perp}\right) \leq 2 V_{n-1}\left(D \mid \xi^{\perp}\right) V_{n-1}\left(D \mid \nu^{\perp}\right)
$$

Zonotope - Minkowski sum of segments \& Zonoid - limit of zonotopes.
Reminder: Mixed volume is multilinear!
Assume Z_{1}, Z_{2} are zonoids, then

$$
V\left(Z_{1}, Z_{2}, D[n-2]\right) V_{n}(D) \leq 2 V\left(Z_{1}, D[n-1]\right) \cdot V\left(Z_{2}, D[n-1]\right)
$$

for any convex, symmetric body D.
I. Soprunov \& A.Z.; 2016

Suppose D is a convex body in \mathbb{R}^{n} and $Z_{1}, \ldots Z_{r}$ are zonoids then

$$
V\left(Z_{1}, \ldots, Z_{r}, D^{n-r}\right) V_{n}(D)^{r-1} \leq \frac{r^{r}}{r!} \prod_{i=1}^{r} V\left(Z_{i}, D^{n-1}\right),
$$

and the inequality is sharp.

I. Soprunov \& A.Z.; 2016

Suppose D is a convex body in \mathbb{R}^{n} and $Z_{1}, \ldots Z_{r}$ are zonoids then

$$
V\left(Z_{1}, \ldots, Z_{r}, D^{n-r}\right) V_{n}(D)^{r-1} \leq \frac{r^{r}}{r!} \prod_{i=1}^{r} V\left(Z_{i}, D^{n-1}\right),
$$

and the inequality is sharp.
Idea of the proof: Use ideas of Giannopoulos, Hartzoulaki; 2002 \& Paouris / Fradelizi, Giannopoulos \& Meyer; 2003: apply the Berwald's Lemma to prove that if $D \subset \mathbb{R}^{n}$ is a convex body, then

$$
\left(\frac{n}{r}\right)^{r}\binom{n}{r}^{-1} V_{n-r}\left(D \mid\left(e_{1}, e_{2}, \ldots, e_{r}\right)^{\perp}\right) V_{n}(D)^{r-1} \leq \prod_{i=1}^{r} V_{n-1}\left(D \mid e_{i}^{\perp}\right) .
$$

I. Soprunov \& A.Z.; 2016

Suppose D is a convex body in \mathbb{R}^{n} and $Z_{1}, \ldots Z_{r}$ are zonoids then

$$
V\left(Z_{1}, \ldots, Z_{r}, D^{n-r}\right) V_{n}(D)^{r-1} \leq \frac{r^{r}}{r!} \prod_{i=1}^{r} V\left(Z_{i}, D^{n-1}\right),
$$

and the inequality is sharp.
Idea of the proof: Use ideas of Giannopoulos, Hartzoulaki; 2002 \& Paouris / Fradelizi, Giannopoulos \& Meyer; 2003: apply the Berwald's Lemma to prove that if $D \subset \mathbb{R}^{n}$ is a convex body, then

$$
\left(\frac{n}{r}\right)^{r}\binom{n}{r}^{-1} V_{n-r}\left(D \mid\left(e_{1}, e_{2}, \ldots, e_{r}\right)^{\perp}\right) V_{n}(D)^{r-1} \leq \prod_{i=1}^{r} V_{n-1}\left(D \mid e_{i}^{\perp}\right) .
$$

Next use multi-linearity and other properties of mixed volume to bring it back to zonoids.

I. Soprunov \& A.Z.; 2016

Suppose D is a convex body in \mathbb{R}^{n} and $Z_{1}, \ldots Z_{r}$ are zonoids then

$$
V\left(Z_{1}, \ldots, Z_{r}, D^{n-r}\right) V_{n}(D)^{r-1} \leq \frac{r^{r}}{r!} \prod_{i=1}^{r} V\left(Z_{i}, D^{n-1}\right)
$$

and the inequality is sharp.
Direct application of F. John theorem gives:

I. Soprunov \& A.Z.; 2016

Suppose D is a convex body in \mathbb{R}^{n} and $Z_{1}, \ldots Z_{r}$ are zonoids then

$$
V\left(Z_{1}, \ldots, Z_{r}, D^{n-r}\right) V_{n}(D)^{r-1} \leq \frac{r^{r}}{r!} \prod_{i=1}^{r} V\left(Z_{i}, D^{n-1}\right)
$$

and the inequality is sharp.
Direct application of F. John theorem gives:

I. Soprunov \& A.Z.; 2016

There exists a constant $c_{n, r} \leq n^{r} r^{r} / r$! such that

$$
V\left(K_{1}, \ldots, K_{r}, D^{n-r}\right) V_{n}(D)^{r-1} \leq c_{n, r} \prod_{i=1}^{r} V\left(K_{i}, D^{n-1}\right)
$$

holds for all convex bodies K_{1}, \ldots, K_{r} and D in \mathbb{R}^{n}. Moreover $c_{n, r} \leq n^{r / 2} r^{r} / r$! when K_{1}, \ldots, K_{r} are symmetric with respect to the origin.

I. Soprunov \& A.Z.; 2016

There exists a constant $c_{n, r} \leq n^{r} r^{r} / r$! such that

$$
V\left(K_{1}, \ldots, K_{r}, D^{n-r}\right) V_{n}(D)^{r-1} \leq c_{n, r} \prod_{i=1}^{r} V\left(K_{i}, D^{n-1}\right)
$$

holds for all convex bodies K_{1}, \ldots, K_{r} and D in \mathbb{R}^{n}. Moreover $c_{n, r} \leq n^{r / 2} r^{r} / r$! when K_{1}, \ldots, K_{r} are symmetric with respect to the origin.

There were a number of works on this inequality after ... and before our work!

I. Soprunov \& A.Z.; 2016

There exists a constant $c_{n, r} \leq n^{r} r^{r} / r!$ such that

$$
V\left(K_{1}, \ldots, K_{r}, D^{n-r}\right) V_{n}(D)^{r-1} \leq c_{n, r} \prod_{i=1}^{r} V\left(K_{i}, D^{n-1}\right)
$$

holds for all convex bodies K_{1}, \ldots, K_{r} and D in \mathbb{R}^{n}. Moreover $c_{n, r} \leq n^{r / 2} r^{r} / r$! when K_{1}, \ldots, K_{r} are symmetric with respect to the origin.

There were a number of works on this inequality afterand before our work! Reminder: We proved before that for symmetric, convex sets $K_{1}, K_{2} \subset \mathbb{R}^{2}$ (note - K_{1}, K_{2} are zonoids) we have

$$
V\left(K_{1}, K_{2}\right) V_{2}(D) \leq \mathbf{2} V\left(K_{1}, D\right) \cdot V\left(K_{2}, D\right) .
$$

I. Soprunov \& A.Z.; 2016

There exists a constant $c_{n, r} \leq n^{r} r^{r} / r$! such that

$$
V\left(K_{1}, \ldots, K_{r}, D^{n-r}\right) V_{n}(D)^{r-1} \leq c_{n, r} \prod_{i=1}^{r} V\left(K_{i}, D^{n-1}\right)
$$

holds for all convex bodies K_{1}, \ldots, K_{r} and D in \mathbb{R}^{n}. Moreover $c_{n, r} \leq n^{r / 2} r^{r} / r$! when K_{1}, \ldots, K_{r} are symmetric with respect to the origin.

There were a number of works on this inequality after ... and before our work! Reminder: We proved before that for symmetric, convex sets $K_{1}, K_{2} \subset \mathbb{R}^{2}$ (note - K_{1}, K_{2} are zonoids) we have

$$
V\left(K_{1}, K_{2}\right) V_{2}(D) \leq 2 V\left(K_{1}, D\right) \cdot V\left(K_{2}, D\right)
$$

I. Soprunov, A.Z.; 2016 / S. Artstein-Avidan, D. Florentin \& Y. Ostrover; 2014 / M. Fradelizi, A. Giannopoulos \& M. Meyer, (2003)

Assume K_{1}, K_{2}, D are convex bodies in \mathbb{R}^{2} (i.e. Not necessary symmetric!) then

$$
V\left(K_{1}, K_{2}\right) V_{2}(D) \leq \mathbf{2} V\left(K_{1}, D\right) \cdot V\left(K_{2}, D\right)
$$

I. Soprunov \& A.Z.; 2016

There exists a constant $c_{n, r} \leq n^{r} r^{r} / r!$ such that

$$
V\left(K_{1}, \ldots, K_{r}, D^{n-r}\right) V_{n}(D)^{r-1} \leq c_{n, r} \prod_{i=1}^{r} V\left(K_{i}, D^{n-1}\right)
$$

holds for all convex bodies K_{1}, \ldots, K_{r} and D in \mathbb{R}^{n}. Moreover $c_{n, r} \leq n^{r / 2} r^{r} / r$! when K_{1}, \ldots, K_{r} are symmetric with respect to the origin.

I. Soprunov \& A.Z.; 2016

There exists a constant $c_{n, r} \leq n^{r} r^{r} / r!$ such that

$$
V\left(K_{1}, \ldots, K_{r}, D^{n-r}\right) V_{n}(D)^{r-1} \leq c_{n, r} \prod_{i=1}^{r} V\left(K_{i}, D^{n-1}\right)
$$

holds for all convex bodies K_{1}, \ldots, K_{r} and D in \mathbb{R}^{n}. Moreover $c_{n, r} \leq n^{r / 2} r^{r} / r$! when K_{1}, \ldots, K_{r} are symmetric with respect to the origin.

- $c_{n, r} \geq \frac{r^{r}}{r!}$, (case of zonoids).

I. Soprunov \& A.Z.; 2016

There exists a constant $c_{n, r} \leq n^{r} r^{r} / r!$ such that

$$
V\left(K_{1}, \ldots, K_{r}, D^{n-r}\right) V_{n}(D)^{r-1} \leq c_{n, r} \prod_{i=1}^{r} V\left(K_{i}, D^{n-1}\right)
$$

holds for all convex bodies K_{1}, \ldots, K_{r} and D in \mathbb{R}^{n}. Moreover $c_{n, r} \leq n^{r / 2} r^{r} / r$! when K_{1}, \ldots, K_{r} are symmetric with respect to the origin.

- $c_{n, r} \geq \frac{r^{r}}{r!}$, (case of zonoids).
- M. Fradelizi, A. Giannopoulos \& M. Meyer, (2003): $c_{n, 2}=2$.

I. Soprunov \& A.Z.; 2016

There exists a constant $c_{n, r} \leq n^{r} r^{r} / r!$ such that

$$
V\left(K_{1}, \ldots, K_{r}, D^{n-r}\right) V_{n}(D)^{r-1} \leq c_{n, r} \prod_{i=1}^{r} V\left(K_{i}, D^{n-1}\right)
$$

holds for all convex bodies K_{1}, \ldots, K_{r} and D in \mathbb{R}^{n}. Moreover $c_{n, r} \leq n^{r / 2} r^{r} / r$! when K_{1}, \ldots, K_{r} are symmetric with respect to the origin.

- $c_{n, r} \geq \frac{r^{r}}{r!}$, (case of zonoids).
- M. Fradelizi, A. Giannopoulos \& M. Meyer, (2003): $c_{n, 2}=2$.
- S. Artstein-Avidan, D. Florentin \& Y. Ostrover (2014): $c_{2,2}=2$.

I. Soprunov \& A.Z.; 2016

There exists a constant $c_{n, r} \leq n^{r} r^{r} / r!$ such that

$$
V\left(K_{1}, \ldots, K_{r}, D^{n-r}\right) V_{n}(D)^{r-1} \leq c_{n, r} \prod_{i=1}^{r} V\left(K_{i}, D^{n-1}\right)
$$

holds for all convex bodies K_{1}, \ldots, K_{r} and D in \mathbb{R}^{n}. Moreover $c_{n, r} \leq n^{r / 2} r^{r} / r$! when K_{1}, \ldots, K_{r} are symmetric with respect to the origin.

- $c_{n, r} \geq \frac{r^{r}}{r!}$, (case of zonoids).
- M. Fradelizi, A. Giannopoulos \& M. Meyer, (2003): $c_{n, 2}=2$.
- S. Artstein-Avidan, D. Florentin \& Y. Ostrover (2014): $c_{2,2}=2$.
- S. Brazitikos, A. Giannopoulos \& D-M. Liakopoulos (2017+): $c_{n, 2}=2$.

I. Soprunov \& A.Z.; 2016

There exists a constant $c_{n, r} \leq n^{r} r^{r} / r!$ such that

$$
V\left(K_{1}, \ldots, K_{r}, D^{n-r}\right) V_{n}(D)^{r-1} \leq c_{n, r} \prod_{i=1}^{r} V\left(K_{i}, D^{n-1}\right)
$$

holds for all convex bodies K_{1}, \ldots, K_{r} and D in \mathbb{R}^{n}. Moreover $c_{n, r} \leq n^{r / 2} r^{r} / r$! when K_{1}, \ldots, K_{r} are symmetric with respect to the origin.

- $c_{n, r} \geq \frac{r^{r}}{r!}$, (case of zonoids).
- M. Fradelizi, A. Giannopoulos \& M. Meyer, (2003): $c_{n, 2}=2$.
- S. Artstein-Avidan, D. Florentin \& Y. Ostrover (2014): $c_{2,2}=2$.
- S. Brazitikos, A. Giannopoulos \& D-M. Liakopoulos (2017+): $c_{n, 2}=2$.
- S. Brazitikos, A. Giannopoulos \& D-M. Liakopoulos (2017+): $c_{n, r} \leq 2^{2^{r-1}-1}$.

I. Soprunov \& A.Z.; 2016

There exists a constant $c_{n, r} \leq n^{r} r^{r} / r!$ such that

$$
V\left(K_{1}, \ldots, K_{r}, D^{n-r}\right) V_{n}(D)^{r-1} \leq c_{n, r} \prod_{i=1}^{r} V\left(K_{i}, D^{n-1}\right)
$$

holds for all convex bodies K_{1}, \ldots, K_{r} and D in \mathbb{R}^{n}. Moreover $c_{n, r} \leq n^{r / 2} r^{r} / r$! when K_{1}, \ldots, K_{r} are symmetric with respect to the origin.

- $c_{n, r} \geq \frac{r^{r}}{r!}$, (case of zonoids).
- M. Fradelizi, A. Giannopoulos \& M. Meyer, (2003): $c_{n, 2}=2$.
- S. Artstein-Avidan, D. Florentin \& Y. Ostrover (2014): $c_{2,2}=2$.
- S. Brazitikos, A. Giannopoulos \& D-M. Liakopoulos (2017+): $c_{n, 2}=2$.
- S. Brazitikos, A. Giannopoulos \& D-M. Liakopoulos (2017+): $c_{n, r} \leq 2^{2^{r-1}-1}$.
- Jian Xiao (2017+): $c_{n, r} \leq n^{r-1}$.

