
Bezout Inequality for Mixed volumes.

Artem Zvavitch
Kent State University

(based on joint works with Christos Saroglou and Ivan Soprunov)

Summer School: New Perspectives in Convex Geometry,
Castro Urdiales, September 3rd-7th, 2018.



All of the sets we will consider will be convex.

We will usually deal with convex bodies: i.e. convex, compact sets with
non-empty interior.
We will denote by Vn(K) - volume of K ⊂ Rn.
We will often use notion of Minkowski sum:
K +L = {x + y : x ∈ K and y ∈ L}.
We all know that Vn(λK) = λnVn(K) for λ≥ 0, i.e. volume is a
homogeneous measure of degree of homogeneity n. But there is much
more!!!
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Main Definitions: Mixed Volume

K1,K2, . . . ,Kr be convex bodies in Rn and λ1, . . . ,λr ≥ 0
Then Vn(λ1K1 +λ2K2 + · · ·+λrKr ) is a homogeneous polynomial (in
λ1, . . . ,λr ) of degree n and

Vn(λ1K1 +λ2K2 + · · ·+λrKr ) =
r∑

i1,i2,...,ir =1
V (Ki1 , . . . ,Kin )λi1λi2 . . .λin .

Then V (Ki1 , . . . ,Kin ) is called the mixed volume of Ki1 , . . . ,Kin .

V (K , . . . ,K) = Vn(K).
Mixed volume is symmetric in its arguments.
Mixed volume is multilinear (λ,µ≥ 0):
V (λK +µL,K2, . . . ,Kn) = λV (K ,K2, . . . ,Kn) +µV (L,K2, . . . ,Kn).
Mixed volume is translation invariant:
V (K +a,K2, . . .Kn) = V (K ,K2, . . . ,Kn), for a ∈ Rn.
If K ⊂ L, then V (K ,K2,K3, . . . ,Kn)≤ V (L,K2,K3, . . . ,Kn).
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V (Ki1 , . . . ,Kin )λi1λi2 . . .λin .

Then V (Ki1 , . . . ,Kin ) is called the mixed volume of Ki1 , . . . ,Kin .

Example:

Denote V (K1, . . . ,Km,K . . . ,K) = V (K1, . . . ,Km,K [n−m]).

Let Bn
2 the standard Euclidean ball of radius 1.

Then

Vn−1(∂K) = lim
t→0

Vn(K + tBn
2 )−Vn(K)
t

= lim
t→0

Vn(K) + tnVn(Bn
2 ,K [n−1]) + t2Polinomial(t)−Vn(K)

t
=nVn(Bn

2 ,K [n−1]).
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Brunn-Minkowski inequality: Vn(K + L)1/n ≥ Vn(K)1/n + Vn(L)1/n.

Minkowski First inequality: V (L,K [n−1])≥ Vn(L)1/nVn(K)(n−1)/n.
Using the formula for the surface area, the above gives isoperimetric inequality:

Vn−1(∂K) =nVn(Bn
2 ,K [n−1])

≥nVn(Bn
2 )1/nVn(K)(n−1)/n

=Vn−1(Sn−1)Vn(Bn
2 )(1−n)/nVn(K)(n−1)/n,

so if Vn(K) = Vn(rBn
2 ), for some r > 0, then Vn−1(∂K)≥ Vn−1(rSn−1).
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Main Topic (for those who do not care about introduction)

Question 1
Fix an integer 2≤ r ≤ n and let D ⊂ Rn be a convex body which satisfies

V (K1, . . . ,Kr ,D[n− r ])Vn(D)r−1 ≤
r∏

i=1
V (Ki ,D[n−1]),

for all convex bodies K1, . . . ,Kr ⊂Rn. Is it true that then D must be n-simplex?

Question 2
What is the best constant cn,r such that

V (K1, . . . ,Kr ,D[n− r ])Vn(D)r−1 ≤ cn,r

r∏
i=1

V (Ki ,D[n−1])

is true for all convex bodies K1, . . . ,Kr and D in Rn?

Plan
How one could come up with such inequalities & why they are (may be)
interesting?
What is known about Question 1.
What is known about Question 2.
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Motivation: Bezout’s Theorem.

Let X1, . . .Xn ⊂ Cn be hypersurfaces defined by polynomials F1, . . . ,Fn:

Xi = {x ∈ Cn | Fi (x) = 0}.

Assume that #(X1∩·· ·∩Xn) 6=∞ (note: it can be ∞, for example, if
F1, . . . ,Fn have common factors).

Artem Zvavitch Bezout Inequality for Mixed volumes.



Motivation: Bezout’s Theorem.

Let X1, . . .Xn ⊂ Cn be hypersurfaces defined by polynomials F1, . . . ,Fn:

Xi = {x ∈ Cn | Fi (x) = 0}.

Assume that #(X1∩·· ·∩Xn) 6=∞ (note: it can be ∞, for example, if
F1, . . . ,Fn have common factors).

Artem Zvavitch Bezout Inequality for Mixed volumes.



Motivation: Bezout’s Theorem.
Let X1, . . .Xn ⊂ Cn be hypersurfaces defined by polynomials F1, . . . ,Fn:

Xi = {x ∈ Cn | Fi (x) = 0}.
Assume that #(X1∩·· ·∩Xn) 6=∞. Then

#(X1∩·· ·∩Xn)≤
n∏

i=1
degFi .

Childish Example: Two quadratic polynomials.

F1(x ,y) = x2

9 + y2

60 −1 and F2 = x2

50 + y2

2 −2.

Then degF1 = degF2 = 2 and X1, X2 are ellipses which intersect in exactly 4
points.
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Bernstein-Kushnirenko-Khovanskii theorem.

Newton Polytope

NP(F ) = convex hull of exponent vectors of a polynomial F .

F (x ,y) = 4x7y3−5x5y5 +13x6−5y4 +21x2y +13xy3−71

0

1
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7

1 2 3 4 5 6 7 8
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Bernstein-Kushnirenko-Khovanskii theorem.

Newton Polytope

NP(F ) = convex hull of exponent vectors of a polynomial F .

Interesting case - affine function F (x ,y) = 3x −15y +71
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Bernstein-Kushnirenko-Khovanskii theorem.

Newton Polytope

NP(F ) = convex hull of exponent vectors of a polynomial F .

Theorem (BKK)

Let F1, . . . ,Fn be polynomials with fixed Newton Polytopes P1, . . . ,Pn ⊂ Rn and
generic coefficients. Then

#{x ∈ (C\0)n | F1(x) = · · ·= Fn(x) = 0}= n!V (P1, . . . ,Pn).

Note that we can compute the degFi via the number of intersections of
Xi = {x ∈ (C\0)n | Fi (x) = 0}, with a generic line.
But we can "create" a generic line via intersection of n−1 generic affine
hyperplanes:

deg(Fi ) = #{x ∈ (C\0)n | Fi (x) = 0 and `1(x) = · · ·= `n−1(x) = 0),

where `i (x) is a generic affine function. But the Newton Polytope of `i (x) is
the standard simplex ∆ = conv{0,e1, . . . ,en}. And BKK theorem gives us

deg(Fi ) = n!V (Pi ,∆[n−1]).
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GLUE IT ALL TOGETHER!

Bezout: #(X1∩·· ·∩Xn)≤
∏n

i=1 degFi ,

Bernstein-Kushnirenko-Khovanskii: #(X1∩·· ·∩Xn) = n!V (P1, . . . ,Pn),
Degree Formula: deg(Fi ) = n!V (Pi ,∆[n−1]).

You get

n!V (P1, . . . ,Pn)≤
n∏

i=1

n!V (Pi ,∆[n−1]).

But Vn(∆) = 1/n! so

V (P1, . . . ,Pn)Vn(∆)n−1 ≤
n∏

i=1

V (Pi ,∆[n−1]).

Moreover you may assume that some (say n− r) polytopes are ∆ (i.e. some of the
original polynomials were generic affine functions) to get

I. Soprunov & A.Z.; 2016
Fix integer 2≤ r ≤ n and let ∆ any n-dimensional simplex, then

V (K1, . . . ,Kr ,∆[n− r ])Vn(∆)r−1 ≤
r∏

i=1

V (Ki ,∆[n−1]),

for all convex bodies K1, . . . ,Kr in Rn.
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Bezout’s inequality for Mixed Volume.

I. Soprunov & A.Z.; 2016
Fix an integer 2≤ r ≤ n and let ∆ an n-dimensional simplex, then

V (K1, . . . ,Kr ,∆[n− r ])Vn(∆)r−1 ≤
r∏

i=1
V (Ki ,∆[n−1]),

for all convex bodies K1, . . . ,Kr in Rn.

Idea of a direct proof: Note that the inequality is "homogeneous" with
respect to Ki . Reminder: Mixed volume is linear and translation invariant.
Rescale & translate K1, . . . ,Kr such that each Ki is inscribed in ∆. Note that
in this case Ki must touch all facets of ∆ and thus

hKi (ν) = h∆(ν),

where ν is a normal to a facet of ∆ and hL(ν) = sup{x ·ν : x ∈ L}. Then
V (Ki ,∆[n−1]) = 1

n
∑
ν

hKi (ν)Vn−1(∆ν) = 1
n
∑
ν

h∆(ν)Vn−1(∆ν) = Vn(∆),

where ∆ν is the facet of ∆ corresponding to normal vector ν.
So we are left with V (K1, . . . ,Kr ,∆[n− r ])Vn(∆)r−1 ≤ Vn(∆)r .
V (K1, . . . ,Kr ,∆[n− r ])≤ Vn(∆) by monotonicity.
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Question 1.

Fix an integer 2≤ r ≤ n and let D ⊂ Rn be a convex body which satisfies

V (K1, . . . ,Kr ,D[n− r ])Vn(D)r−1 ≤
r∏

i=1
V (Ki ,D[n−1]),

for all convex bodies K1, . . . ,Kr ⊂Rn. Is it true that then D must be n-simplex?

Clearly, if we solve the case r = 2, then we are done with case r > 2 (i.e. question is
"harder" if you have less Ki to test the inequality).

(I. Soprunov & A.Z., 2016): D must be indecomposable, i.e. if D = D1 + D2
then D1 ∼ D2.
Idea of a proof: Assume decomposable, plug in D = D1 + D2, compare with
Alexandrov-Fenchel inequality.
Note that the above gives us that the answer is affirmative in R2 (indeed, ∆ is
the only indecomposable body in R2! But, this is not enough to make a decision
in Rn, n ≥ 3. It is well know that there "a lot" of indecomposable bodies in R3.
There are indecomposable bodies for which the inequality is not true: D = B3

1 .
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for all convex bodies K1, . . . ,Kr ⊂Rn. Is it true that then D must be n-simplex?

Clearly, if we solve the case r = 2, then we are done with case r > 2 (i.e. question is
"harder" if you have less Ki to test the inequality).

(C. Saroglou, I. Soprunov & A.Z., 2016): If D is a polytope then D = ∆.

Idea of a proof: Select a facet of D and move it a bit to create a test body K1,
get a counterexample. Note that "only" simplex would not change if you move
a facet. More precisely it should be a cone, but we can move "any" facet, so the
cone must be a simplex.
(C. Saroglou, I. Soprunov & A.Z., 2016): D has no strict points, i.e. points not
lying on a boundary segment.
Idea of a proof: An approach is similar to one that was used to study volume
product of bodies with positive curvature (A. Stancu / S. Reisner, C. Schuett and
E. Werner/ Y. Gordon and M. Meyer): play with a little cap around such a point.
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Question 1.

Fix an integer 2≤ r ≤ n and let D ⊂ Rn be a convex body which satisfies

V (K1, . . . ,Kr ,D[n− r ])Vn(D)r−1 ≤
r∏

i=1

V (Ki ,D[n−1]),

for all convex bodies K1, . . . ,Kr ⊂ Rn. Is it true that then D must be n-simplex?

C. Saroglou, I. Soprunov & A.Z.; 2017+
Let D be an n-dimensional convex body which satisfies

V (K1, . . . ,Kn−1,D)Vn(D)≤ V (K1,D[n−1])V (K2, . . . ,Kn−1,D[2]).

for all convex bodies K1, . . . ,Kn−1 ⊂ Rn. Then D is an n-simplex!

The above inequality do provide an inequality which characterize an n-simplex.
The above gives an affirmative answer to Question 1 in R3. Indeed, for n = 3 and
r = 2 we get

V (K1,K2,D)Vn(D)≤ V (K1,D[2])V (K2,D[2]).
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for all convex bodies K1, . . . ,Kn−1 ⊂ Rn. Then D is an n-simplex!

The above inequality do provide an inequality which characterize an n-simplex.
The above gives an affirmative answer to Question 1 in R3.

The idea of the proof is based on an old / new way to perturb a convex body and a
very careful study of the boundary structure of a body D.

More precisely, if in the
case of polytopes we moved a facet, here, following the ideas of Alexandrov, we work
with Wolf shape and perturb a function defying the body: Consider a function
g : Sn−1→ R+. A convex body W (g) is a Wulff shape of g if

W (g) =
⋂

u∈Sn−1

{x ∈ Rn : x ·u ≤ g(u)} .
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The idea of the proof is based on an old / new way to perturb a convex body and a
very careful study of the boundary structure of a body D. More precisely, if in the
case of polytopes we moved a facet, here, following the ideas of Alexandrov, we work
with Wolf shape and perturb a function defying the body: Consider a function
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⋂

u∈Sn−1

{x ∈ Rn : x ·u ≤ g(u)} .
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Moving towards Question 2 & connections to projections.

Question 1 (r = 2):

Let D ⊂ Rn be a convex body which satisfies

V (K1,K2,D[n−2])Vn(D)≤ V (K1,D[n−1]) ·V (K2,D[n−1])

for all convex bodies K1,K2 ⊂ Rn. Is it true that then D must be n-simplex?

Let K1 = [0, ξ] and K2 = [0,ν], where ξ,ν ∈ Sn−1. Then,

V (K1,D[n−1]) = 1
nVn−1(D|ξ⊥) and V (K2,D[n−1]) = 1

nVn−1(D|ν⊥),

where D|ξ⊥ denotes the orthogonal projection of D onto the hyperplane
orthogonal to ξ. In addition, assume ξ ·ν = 0. Then, similarly, for the
orthogonal projection we can compute the volume of D|(ξ,ν)⊥:

Vn−2(D|(ξ,ν)⊥) = n(n−1)V (K1,K2,D[n−2]).

Substituting the above calculations in inequality in Question 1, we get

n
n−1Vn−2(D|(ξ,ν)⊥)Vn(D)≤ Vn−1(D|ξ⊥)Vn−1(D|ν⊥).
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Moving towards Question 2 & connections to projections

Question 1 (r = 2): Let D ⊂ Rn be a convex body which satisfies

V (K1,K2,D[n−2])Vn(D)≤ V (K1,D[n−1]) ·V (K2,D[n−1])

for all convex bodies K1,K2 ⊂ Rn. Is it true that then D must be n-simplex?

In special case of K1 and K2 are orthogonal unit segments we get

n
n−1

Vn−2(D|(ξ,ν)⊥)Vn(D)≤ Vn−1(D|ξ⊥)Vn−1(D|ν⊥).

Giannopoulos, Hartzoulaki & Paouris; 2002.
For any convex body D

n
n−1

Vn(D)Vn−2(D|(ξ,ν)⊥)≤ 2Vn−1(D|ξ⊥)Vn−1(D|ν⊥).

Zonotope - Minkowski sum of segments & Zonoid - limit of zonotopes.
Reminder: Mixed volume is multilinear!

Assume Z1, Z2 are zonoids, then

V (Z1,Z2,D[n−2])Vn(D)≤ 2V (Z1,D[n−1]) ·V (Z2,D[n−1])

for any convex, symmetric body D.
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Question 2: the case of zonoids.

I. Soprunov & A.Z.; 2016
Suppose D is a convex body in Rn and Z1, . . .Zr are zonoids then

V (Z1, . . . ,Zr ,Dn−r )Vn(D)r−1 ≤ r r

r !

r∏
i=1

V (Zi ,Dn−1),

and the inequality is sharp.

Idea of the proof: Use ideas of Giannopoulos, Hartzoulaki; 2002 & Paouris /
Fradelizi, Giannopoulos & Meyer; 2003: apply the Berwald’s Lemma to prove
that if D ⊂ Rn is a convex body, then(n

r

)r
(
n
r

)−1
Vn−r (D|(e1,e2, . . . ,er )⊥)Vn(D)r−1 ≤

r∏
i=1

Vn−1(D|e⊥i ).

Next use multi-linearity and other properties of mixed volume to bring it back
to zonoids.
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Question 2: General Case.

I. Soprunov & A.Z.; 2016
Suppose D is a convex body in Rn and Z1, . . .Zr are zonoids then

V (Z1, . . . ,Zr ,Dn−r )Vn(D)r−1 ≤ r r

r !

r∏
i=1

V (Zi ,Dn−1),

and the inequality is sharp.

Direct application of F. John theorem gives:

I. Soprunov & A.Z.; 2016
There exists a constant cn,r ≤ nr r r/r ! such that

V (K1, . . . ,Kr ,Dn−r )Vn(D)r−1 ≤ cn,r

r∏
i=1

V (Ki ,Dn−1)

holds for all convex bodies K1, . . . ,Kr and D in Rn. Moreover cn,r ≤ nr/2r r/r !
when K1, . . . ,Kr are symmetric with respect to the origin.
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V (Ki ,Dn−1)

holds for all convex bodies K1, . . . ,Kr and D in Rn. Moreover cn,r ≤ nr/2r r/r !
when K1, . . . ,Kr are symmetric with respect to the origin.

There were a number of works on this inequality after ...and before our work!

Reminder: We proved before that for symmetric, convex sets K1,K2 ⊂ R2

(note - K1,K2 are zonoids) we have
V (K1,K2)V2(D)≤ 2V (K1,D) ·V (K2,D).

I. Soprunov, A.Z.; 2016 / S. Artstein-Avidan, D. Florentin & Y. Ostrover; 2014
/ M. Fradelizi, A. Giannopoulos & M. Meyer, (2003)

Assume K1,K2,D are convex bodies in R2 (i.e. Not necessary symmetric!)
then

V (K1,K2)V2(D)≤ 2V (K1,D) ·V (K2,D).
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holds for all convex bodies K1, . . . ,Kr and D in Rn. Moreover cn,r ≤ nr/2r r/r !
when K1, . . . ,Kr are symmetric with respect to the origin.

cn,r ≥ r r

r ! , (case of zonoids).
M. Fradelizi, A. Giannopoulos & M. Meyer, (2003): cn,2 = 2.
S. Artstein-Avidan, D. Florentin & Y. Ostrover (2014): c2,2 = 2.
S. Brazitikos, A. Giannopoulos & D-M. Liakopoulos (2017+): cn,2 = 2.

S. Brazitikos, A. Giannopoulos & D-M. Liakopoulos (2017+): cn,r ≤ 22r−1−1.

Jian Xiao (2017+): cn,r ≤ nr−1.
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