On Brunn-Minkowski inequalities in product Metric Measure Spaces

J. Yepes Nicolás

Universidad de Murcia
(joint work with M. Ritoré)

Summer School 2018:
New perspectives on Convex Geometry
Castro Urdiales

September 3rd, 2018

The Brunn-Minkowski inequality

The Brunn-Minkowski inequality

Let $K, L \subset \mathbb{R}^{n}$ be (nonempty) compact sets. Then, for all $\lambda \in[0,1]$,

$$
\operatorname{vol}((1-\lambda) K+\lambda L)^{1 / n} \geq(1-\lambda) \operatorname{vol}(K)^{1 / n}+\lambda \operatorname{vol}(L)^{1 / n} .
$$

The Brunn-Minkowski inequality

The Brunn-Minkowski inequality

Let $K, L \subset \mathbb{R}^{n}$ be (nonempty) compact sets. Then, for all $\lambda \in[0,1]$,

$$
\operatorname{vol}((1-\lambda) K+\lambda L)^{1 / n} \geq(1-\lambda) \operatorname{vol}(K)^{1 / n}+\lambda \operatorname{vol}(L)^{1 / n} .
$$

Here $\operatorname{vol}(\cdot)$ is the Lebesgue Measure and $A+B=\{a+b: a \in A, b \in B\}$ denotes the Minkowski sum of A and B.

The Brunn-Minkowski inequality

The Brunn-Minkowski inequality

Let $K, L \subset \mathbb{R}^{n}$ be (nonempty) compact sets. Then, for all $\lambda \in[0,1]$,

$$
\operatorname{vol}((1-\lambda) K+\lambda L)^{1 / n} \geq(1-\lambda) \operatorname{vol}(K)^{1 / n}+\lambda \operatorname{vol}(L)^{1 / n} .
$$

Here $\operatorname{vol}(\cdot)$ is the Lebesgue Measure and $A+B=\{a+b: a \in A, b \in B\}$ denotes the Minkowski sum of A and B.

\rightarrow It yields the isoperimetric inequality in a few lines: Among all sets with a fixed surface area measure, Euclidean balls maximize the volume.

The Gaussian Brunn-Minkowski inequality
The standard Gaussian measure in \mathbb{R}^{n}

$$
\mathrm{d} \gamma_{n}(x)=\frac{1}{(2 \pi)^{n / 2}} e^{\frac{-|x|^{2}}{2}} \mathrm{~d} x, \quad x \in \mathbb{R}^{n} .
$$

Gaussian density

The Gaussian Brunn-Minkowski inequality
The standard Gaussian measure in \mathbb{R}^{n}

$$
\mathrm{d} \gamma_{n}(x)=\frac{1}{(2 \pi)^{n / 2}} e^{\frac{-|x|^{2}}{2}} \mathrm{~d} x, \quad x \in \mathbb{R}^{n} .
$$

Let $K, L \in \mathcal{K}^{n}$ be convex bodies and let $\lambda \in[0,1]$.

The Gaussian Brunn-Minkowski inequality
The standard Gaussian measure in \mathbb{R}^{n}

$$
\mathrm{d} \gamma_{n}(x)=\frac{1}{(2 \pi)^{n / 2}} e^{\frac{-|x|^{2}}{2}} \mathrm{~d} x, \quad x \in \mathbb{R}^{n} .
$$

Let $K, L \in \mathcal{K}^{n}$ be convex bodies and let $\lambda \in[0,1]$.
(1) Multiplicative version:

$$
\gamma_{n}((1-\lambda) K+\lambda L) \geq \gamma_{n}(K)^{1-\lambda} \gamma_{n}(L)^{\lambda} .
$$

The Gaussian Brunn-Minkowski inequality

The standard Gaussian measure in \mathbb{R}^{n}

$$
\mathrm{d} \gamma_{n}(x)=\frac{1}{(2 \pi)^{n / 2}} e^{\frac{-|x|^{2}}{2}} \mathrm{~d} x, \quad x \in \mathbb{R}^{n} .
$$

Let $K, L \in \mathcal{K}^{n}$ be convex bodies and let $\lambda \in[0,1]$.
(1) Multiplicative version:

$$
\gamma_{n}((1-\lambda) K+\lambda L) \geq \gamma_{n}(K)^{1-\lambda} \gamma_{n}(L)^{\lambda} .
$$

- True! (because of the Prékopa-Leindler inequality and the fact that the density function of γ_{n} is log-concave).
- It can be also obtained from a result by Ehrhard.

The Gaussian Brunn-Minkowski inequality

The standard Gaussian measure in \mathbb{R}^{n}

$$
\mathrm{d} \gamma_{n}(x)=\frac{1}{(2 \pi)^{n / 2}} e^{\frac{-|x|^{2}}{2}} \mathrm{~d} x, \quad x \in \mathbb{R}^{n} .
$$

Let $K, L \in \mathcal{K}^{n}$ be convex bodies and let $\lambda \in[0,1]$.
(1) Multiplicative version:

$$
\gamma_{n}((1-\lambda) K+\lambda L) \geq \gamma_{n}(K)^{1-\lambda} \gamma_{n}(L)^{\lambda} .
$$

- True! (because of the Prékopa-Leindler inequality and the fact that the density function of γ_{n} is log-concave).
- It can be also obtained from a result by Ehrhard.
(2) $(1 / n)$-concave version:

$$
\gamma_{n}((1-\lambda) K+\lambda L)^{1 / n} \geq(1-\lambda) \gamma_{n}(K)^{1 / n}+\lambda \gamma_{n}(L)^{1 / n} ?
$$

Not true (in general)! \rightsquigarrow Special classes of sets must be considered.

The Gaussian Brunn-Minkowski inequality

Conjecture (Gardner, Zvavitch (2010))

The Gaussian Brunn-Minkowski inequality

$$
\gamma_{n}((1-\lambda) A+\lambda B)^{1 / n} \geq(1-\lambda) \gamma_{n}(A)^{1 / n}+\lambda \gamma_{n}(B)^{1 / n}
$$

holds true for any closed convex sets A, B such that $0 \in A \cap B$.

The Gaussian Brunn-Minkowski inequality

Conjecture (Gardner, Zvavitch (2010))

The Gaussian Brunn-Minkowski inequality

$$
\gamma_{n}((1-\lambda) A+\lambda B)^{1 / n} \geq(1-\lambda) \gamma_{n}(A)^{1 / n}+\lambda \gamma_{n}(B)^{1 / n}
$$

holds true for any closed convex sets A, B such that $0 \in A \cap B$.
The condition $0 \in A \cap B$ is necessary: the above inequality does not hold in general ($\rightsquigarrow A=B_{n}, B=x+B_{n}, x$ large enough).

The Gaussian Brunn-Minkowski inequality

Conjecture (Gardner, Zvavitch (2010))

The Gaussian Brunn-Minkowski inequality

$$
\gamma_{n}((1-\lambda) A+\lambda B)^{1 / n} \geq(1-\lambda) \gamma_{n}(A)^{1 / n}+\lambda \gamma_{n}(B)^{1 / n}
$$

holds true for any closed convex sets A, B such that $0 \in A \cap B$.
The condition $0 \in A \cap B$ is necessary: the above inequality does not hold in general ($\rightsquigarrow A=B_{n}, B=x+B_{n}, x$ large enough).

Theorem (Gardner, Zvavitch (2010))

It is true when:

- the dimension $n=1$.

The Gaussian Brunn-Minkowski inequality

Conjecture (Gardner, Zvavitch (2010))

The Gaussian Brunn-Minkowski inequality

$$
\gamma_{n}((1-\lambda) A+\lambda B)^{1 / n} \geq(1-\lambda) \gamma_{n}(A)^{1 / n}+\lambda \gamma_{n}(B)^{1 / n}
$$

holds true for any closed convex sets A, B such that $0 \in A \cap B$.
The condition $0 \in A \cap B$ is necessary: the above inequality does not hold in general ($\rightsquigarrow A=B_{n}, B=x+B_{n}, x$ large enough).

Theorem (Gardner, Zvavitch (2010))

It is true when:

- the dimension $n=1$.
- A and B are coordinate boxes containing the origin.

The Gaussian Brunn-Minkowski inequality

Conjecture (Gardner, Zvavitch (2010))

The Gaussian Brunn-Minkowski inequality

$$
\gamma_{n}((1-\lambda) A+\lambda B)^{1 / n} \geq(1-\lambda) \gamma_{n}(A)^{1 / n}+\lambda \gamma_{n}(B)^{1 / n}
$$

holds true for any closed convex sets A, B such that $0 \in A \cap B$.
The condition $0 \in A \cap B$ is necessary: the above inequality does not hold in general ($\rightsquigarrow A=B_{n}, B=x+B_{n}, x$ large enough).

Theorem (Gardner, Zvavitch (2010))

It is true when:

- the dimension $n=1$.
- A and B are coordinate boxes containing the origin.
- Either A or B is a slab containing the origin.

The Gaussian Brunn-Minkowski inequality

Counterexample (Nayar, Tkocz (2013))

The above conjecture is in general not true: it is enough to consider

$$
A=\left\{(x, y) \in \mathbb{R}^{2}: y \geq|x| \tan \alpha\right\}, \quad B=A+(0,-\varepsilon),
$$

for $\varepsilon>0$ small enough and $\alpha<\pi / 2$ sufficiently close to $\pi / 2$.

B-M ineqs for product of measures with certain concavity

Theorem (Livshyts, Marsiglietti, Nayar, Zvavitch (2017))

Let $\mu=\mu_{1} \times \cdots \times \mu_{n}$ be a product measure on \mathbb{R}^{n} such that μ_{i} is the measure given by $\mathrm{d} \mu_{i}(x)=\phi_{i}(x) \mathrm{d} x$, where $\phi_{i}: \mathbb{R} \longrightarrow \mathbb{R}_{\geq 0}$ is a positively decreasing even function, $i=1, \ldots, n$.
Let $\lambda \in(0,1)$ and let $\emptyset \neq A, B \subset \mathbb{R}^{n}$ be unconditional measurable sets so that $(1-\lambda) A+\lambda B$ is also measurable. Then

$$
\mu((1-\lambda) A+\lambda B)^{1 / n} \geq(1-\lambda) \mu(A)^{1 / n}+\lambda \mu(B)^{1 / n}
$$

B-M ineqs for product of measures with certain concavity

Theorem (Livshyts, Marsiglietti, Nayar, Zvavitch (2017))

Let $\mu=\mu_{1} \times \cdots \times \mu_{n}$ be a product measure on \mathbb{R}^{n} such that μ_{i} is the measure given by $\mathrm{d} \mu_{i}(x)=\phi_{i}(x) \mathrm{d} x$, where $\phi_{i}: \mathbb{R} \longrightarrow \mathbb{R}_{\geq 0}$ is a positively decreasing even function, $i=1, \ldots, n$.
Let $\lambda \in(0,1)$ and let $\emptyset \neq A, B \subset \mathbb{R}^{n}$ be unconditional measurable sets so that $(1-\lambda) A+\lambda B$ is also measurable. Then

$$
\mu((1-\lambda) A+\lambda B)^{1 / n} \geq(1-\lambda) \mu(A)^{1 / n}+\lambda \mu(B)^{1 / n} .
$$

Unconditional sets

$A \subset \mathbb{R}^{n}$ is unconditional if for every $\left(x_{1}, \ldots, x_{n}\right) \in A$ and every $\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) \in[-1,1]^{n}$ one has

$$
\left(\epsilon_{1} x_{1}, \ldots, \epsilon_{n} x_{n}\right) \in A .
$$

B-M ineqs for product of measures with certain concavity

Theorem (Livshyts, Marsiglietti, Nayar, Zvavitch (2017))

Let $\mu=\mu_{1} \times \cdots \times \mu_{n}$ be a product measure on \mathbb{R}^{n} such that μ_{i} is the measure given by $\mathrm{d} \mu_{i}(x)=\phi_{i}(x) \mathrm{d} x$, where $\phi_{i}: \mathbb{R} \longrightarrow \mathbb{R}_{\geq 0}$ is a positively decreasing even function, $i=1, \ldots, n$.
Let $\lambda \in(0,1)$ and let $\emptyset \neq A, B \subset \mathbb{R}^{n}$ be unconditional measurable sets so that $(1-\lambda) A+\lambda B$ is also measurable. Then

$$
\mu((1-\lambda) A+\lambda B)^{1 / n} \geq(1-\lambda) \mu(A)^{1 / n}+\lambda \mu(B)^{1 / n} .
$$

Unconditional sets

$A \subset \mathbb{R}^{n}$ is unconditional if for every $\left(x_{1}, \ldots, x_{n}\right) \in A$ and every $\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) \in[-1,1]^{n}$ one has

$$
\left(\epsilon_{1} x_{1}, \ldots, \epsilon_{n} x_{n}\right) \in A .
$$

\rightarrow In the same paper the authors pose the following question: 'can one remove the assumption of unconditionality in the Gaussian B-M inequality?'

The 1-dimensional Gaussian BM inequality

Regarding the original question by Gardner and Zvavitch for the Gaussian B-M inequality, we would like to better understand which assumptions (in the spirit of $0 \in A \cap B$) should be impose...

The 1-dimensional Gaussian BM inequality

Regarding the original question by Gardner and Zvavitch for the Gaussian $B-M$ inequality, we would like to better understand which assumptions (in the spirit of $0 \in A \cap B$) should be impose...

Fact (the 1-dimensional case)

Let μ be the measure on \mathbb{R} given by $\mathrm{d} \mu(x)=\phi(x) \mathrm{d} x$, where $\phi: \mathbb{R} \longrightarrow \mathbb{R}_{\geq 0}$ is positively decreasing. Let $\lambda \in(0,1)$ and let $A, B \subset \mathbb{R}$ be measurable sets with $0 \in A \cap B$ and such that $(1-\lambda) A+\lambda B$ is also measurable. Then

$$
\mu((1-\lambda) A+\lambda B) \geq(1-\lambda) \mu(A)+\lambda \mu(B) .
$$

The 1-dimensional Gaussian BM inequality

Regarding the original question by Gardner and Zvavitch for the Gaussian $B-M$ inequality, we would like to better understand which assumptions (in the spirit of $0 \in A \cap B$) should be impose...

Fact (the 1-dimensional case)

Let μ be the measure on \mathbb{R} given by $\mathrm{d} \mu(x)=\phi(x) \mathrm{d} x$, where $\phi: \mathbb{R} \longrightarrow \mathbb{R}_{\geq 0}$ is positively decreasing. Let $\lambda \in(0,1)$ and let $A, B \subset \mathbb{R}$ be measurable sets with $0 \in A \cap B$ and such that $(1-\lambda) A+\lambda B$ is also measurable. Then

$$
\mu((1-\lambda) A+\lambda B) \geq(1-\lambda) \mu(A)+\lambda \mu(B) .
$$

\rightarrow Can one exploit this one-dimensional inequality to get a 'positive' answer to the above-mentioned question?

Brunn-Minkowski inequalities in a more general setting

The Brunn-Minkowski inequality

Let $K, L \subset \mathbb{R}^{n}$ be (nonempty) compact sets. Then, for all $\lambda \in[0,1]$,

$$
\operatorname{vol}((1-\lambda) K+\lambda L)^{1 / n} \geq(1-\lambda) \operatorname{vol}(K)^{1 / n}+\lambda \operatorname{vol}(L)^{1 / n}
$$

The result of combining two notions:

Brunn-Minkowski inequalities in a more general setting

The Brunn-Minkowski inequality

Let $K, L \subset \mathbb{R}^{n}$ be (nonempty) compact sets. Then, for all $\lambda \in[0,1]$,

$$
\operatorname{vol}((1-\lambda) K+\lambda L)^{1 / n} \geq(1-\lambda) \operatorname{vol}(K)^{1 / n}+\lambda \operatorname{vol}(L)^{1 / n}
$$

The result of combining two notions:

- The volume

Brunn-Minkowski inequalities in a more general setting

The Brunn-Minkowski inequality

Let $K, L \subset \mathbb{R}^{n}$ be (nonempty) compact sets. Then, for all $\lambda \in[0,1]$,

$$
\operatorname{vol}((1-\lambda) K+\lambda L)^{1 / n} \geq(1-\lambda) \operatorname{vol}(K)^{1 / n}+\lambda \operatorname{vol}(L)^{1 / n}
$$

The result of combining two notions:

- The volume
- The Minkowski addition +

Brunn-Minkowski inequalities in a more general setting

The Brunn-Minkowski inequality

Let $K, L \subset \mathbb{R}^{n}$ be (nonempty) compact sets. Then, for all $\lambda \in[0,1]$,

$$
\operatorname{vol}((1-\lambda) K+\lambda L)^{1 / n} \geq(1-\lambda) \operatorname{vol}(K)^{1 / n}+\lambda \operatorname{vol}(L)^{1 / n}
$$

The result of combining two notions:

- The volume \rightsquigarrow A measure μ
- The Minkowski addition +

Brunn-Minkowski inequalities in a more general setting

The Brunn-Minkowski inequality

Let $K, L \subset \mathbb{R}^{n}$ be (nonempty) compact sets. Then, for all $\lambda \in[0,1]$,

$$
\operatorname{vol}((1-\lambda) K+\lambda L)^{1 / n} \geq(1-\lambda) \operatorname{vol}(K)^{1 / n}+\lambda \operatorname{vol}(L)^{1 / n}
$$

The result of combining two notions:

- The volume \rightsquigarrow A measure μ
- The Minkowski addition $+\rightsquigarrow$???

Brunn-Minkowski inequalities in a more general setting

The Brunn-Minkowski inequality

Let $K, L \subset \mathbb{R}^{n}$ be (nonempty) compact sets. Then, for all $\lambda \in[0,1]$,

$$
\operatorname{vol}((1-\lambda) K+\lambda L)^{1 / n} \geq(1-\lambda) \operatorname{vol}(K)^{1 / n}+\lambda \operatorname{vol}(L)^{1 / n} .
$$

The result of combining two notions:

- The volume \rightsquigarrow A measure μ
- The Minkowski addition $+\rightsquigarrow$???

In other words, which is the "appropriate" structure of the space X ?

Brunn-Minkowski inequalities in a more general setting

The Brunn-Minkowski inequality

Let $K, L \subset \mathbb{R}^{n}$ be (nonempty) compact sets. Then, for all $\lambda \in[0,1]$,

$$
\operatorname{vol}((1-\lambda) K+\lambda L)^{1 / n} \geq(1-\lambda) \operatorname{vol}(K)^{1 / n}+\lambda \operatorname{vol}(L)^{1 / n} .
$$

The result of combining two notions:

- The volume \rightsquigarrow A measure μ
- The Minkowski addition $+\rightsquigarrow$???

In other words, which is the "appropriate" structure of the space X ?

We notice that, given $x, y, z \in \mathbb{R}^{n}$ and $\lambda \in(0,1)$, the relation $z=(1-\lambda) x+\lambda y$ holds if and only if

$$
|z-x|=\lambda|x-y|,|z-y|=(1-\lambda)|x-y| .
$$

Brunn-Minkowski inequalities in a more general setting

Thus, we may extend

$$
(1-\lambda) A+\lambda B=\{(1-\lambda) a+\lambda b: a \in A, b \in B\}
$$

to the context of a metric space in the following way:

Definition

Let (X, d) be a metric space. If $\lambda \in(0,1)$ and given A, B two nonempty subsets of X, the " d-convex combination" $(1-\lambda) A \star_{d} \lambda B$ of A and B will be the nonempty set given by

$$
\begin{aligned}
(1-\lambda) A \star_{d} \lambda B=\{z \in X: d(z, a)=\lambda d(a, b), d(z, b)= & (1-\lambda) d(a, b), \\
& a \in A, b \in B\} .
\end{aligned}
$$

Brunn-Minkowski inequalities in a more general setting

Thus, we may extend

$$
(1-\lambda) A+\lambda B=\{(1-\lambda) a+\lambda b: a \in A, b \in B\}
$$

to the context of a metric space in the following way:

Definition

Let (X, d) be a metric space. If $\lambda \in(0,1)$ and given A, B two nonempty subsets of X, the " d-convex combination" $(1-\lambda) A \star_{d} \lambda B$ of A and B will be the nonempty set given by

$$
\begin{aligned}
(1-\lambda) A \star_{d} \lambda B=\{z \in X: d(z, a)=\lambda d(a, b), d(z, b)= & (1-\lambda) d(a, b) \\
& a \in A, b \in B\}
\end{aligned}
$$

From now on (X, d) will denote a metric space where d is a strictly intrinsic distance, i.e., such that for any $x, y \in X$ the closed balls $\bar{B}_{d}\left(x, r_{1}\right), \bar{B}_{d}\left(y, r_{2}\right)$ have a nonempty intersection provided that $r_{1}+r_{2}=d(x, y)$.

B-M inequalities in Metric Measure Spaces

Main idea: exploiting some B-M inequalities in "simple spaces" in order to obtain new further B-M inequalities on "more involved" ones.

Definition: Let (X, d, μ) be a metric measure space. Then

B-M inequalities in Metric Measure Spaces

Main idea: exploiting some B-M inequalities in "simple spaces" in order to obtain new further B-M inequalities on "more involved" ones.

Definition: Let (X, d, μ) be a metric measure space. Then

- we will say that it satisfies the Brunn-Minkowski inequality with respect to $p \in \mathbb{R} \cup\{ \pm \infty\}$ (" $\operatorname{BM}(p)$ " for short) if

$$
\mu(C) \geq\left((1-\lambda) \mu(A)^{p}+\lambda \mu(B)^{p}\right)^{1 / p}
$$

holds for all $\lambda \in(0,1)$ and any measurable sets A, B, C with $\mu(A) \mu(B)>0$ such that $C \supset(1-\lambda) A \star_{d} \lambda B$.

B-M inequalities in Metric Measure Spaces

Main idea: exploiting some B-M inequalities in "simple spaces" in order to obtain new further B-M inequalities on "more involved" ones.

Definition: Let (X, d, μ) be a metric measure space. Then

- we will say that it satisfies the Brunn-Minkowski inequality with respect to $p \in \mathbb{R} \cup\{ \pm \infty\}$ (" $\operatorname{BM}(p)$ " for short) if

$$
\mu(C) \geq\left((1-\lambda) \mu(A)^{p}+\lambda \mu(B)^{p}\right)^{1 / p}
$$

holds for all $\lambda \in(0,1)$ and any measurable sets A, B, C with $\mu(A) \mu(B)>0$ such that $C \supset(1-\lambda) A \star_{d} \lambda B$.

- If, further, in the above definition one may consider measurable sets A, B with $\mu(A) \mu(B)=0$, we will say that (X, d, μ) satisfies the general Brunn-Minkowski inequality with respect to $p \in \mathbb{R} \cup\{ \pm \infty\}$ (" $\overline{\operatorname{BM}}(p)$ " for short).

B-M inequalities in Metric Measure Spaces

Main idea: exploiting some B-M inequalities in "simple spaces" in order to obtain new further B-M inequalities on "more involved" ones.

Definition: Let (X, d, μ) be a metric measure space. Then

- we will say that it satisfies the Brunn-Minkowski inequality with respect to $p \in \mathbb{R} \cup\{ \pm \infty\}$ (" $\operatorname{BM}(p)$ " for short) if

$$
\mu(C) \geq\left((1-\lambda) \mu(A)^{p}+\lambda \mu(B)^{p}\right)^{1 / p}
$$

holds for all $\lambda \in(0,1)$ and any measurable sets A, B, C with $\mu(A) \mu(B)>0$ such that $C \supset(1-\lambda) A \star_{d} \lambda B$.

- If, further, in the above definition one may consider measurable sets A, B with $\mu(A) \mu(B)=0$, we will say that (X, d, μ) satisfies the general Brunn-Minkowski inequality with respect to $p \in \mathbb{R} \cup\{ \pm \infty\}$ (" $\overline{\operatorname{BM}}(p)$ " for short).
- In the same way, we will say that a certain family $\mathcal{F} \subset \mathcal{P}(X)$ satisfies $\operatorname{BM}(p)$ (resp. $\overline{\operatorname{BM}}(p)$) if the above definition is true when dealing with measurable sets $A, B, C \in \mathcal{F}$.

One can define a distance $d_{X \times Y}$ on $X \times Y$ (whose induced topology agrees with the product topology) as follows:

$$
\rho\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\left\|\left(d_{X}\left(x_{1}, y_{1}\right), d_{Y}\left(x_{2}, y_{2}\right)\right)\right\|,
$$

where $\|\cdot\|$ is a norm in \mathbb{R}^{2}.
When taking the Euclidean norm $|\cdot|$, this distance is the so-called product metric, which will be denoted from now on as $d_{X \times Y}$.

The product metric

One can define a distance $d_{X \times Y}$ on $X \times Y$ (whose induced topology agrees with the product topology) as follows:

$$
\rho\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\left\|\left(d_{X}\left(x_{1}, y_{1}\right), d_{Y}\left(x_{2}, y_{2}\right)\right)\right\|,
$$

where $\|\cdot\|$ is a norm in \mathbb{R}^{2}.
When taking the Euclidean norm $|\cdot|$, this distance is the so-called product metric, which will be denoted from now on as $d_{X \times Y}$.

Proposition

Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces and let ρ be the product metric on $X \times Y$. If A, B are non-empty subsets of $X \times Y$ and $\lambda \in(0,1)$ then $(1-\lambda) A \star_{d_{x \times r}} \lambda B \subset(1-\lambda) A \star_{\rho} \lambda B$.

B-M inequalities in Product Metric Measure Spaces

With all this notation, our main result reads as follows:

Theorem (Ritoré, Y. N. (2018))

Let $\left(X, d_{X}, \mu_{X}\right),\left(Y, d_{Y}, \mu_{Y}\right)$ be metric measure spaces where μ_{X} is σ-finite, μ_{Y} is locally finite and σ-finite, and $\mu_{X \times Y}$ is Radon. If $\left(X, d_{X}, \mu_{X}\right),\left(Y, d_{Y}, \mu_{Y}\right)$ satisfy $\overline{\operatorname{BM}}(1)$ and $\operatorname{BM}(p)$, respectively, for some $p \geq-1$, then $\left(X \times Y, d_{X \times Y}, \mu_{X \times Y}\right)$ satisfies $\operatorname{BM}(1 /(1 / p+1))$.

B-M inequalities in Product Metric Measure Spaces

With all this notation, our main result reads as follows:

Theorem (Ritoré, Y. N. (2018))

Let $\left(X, d_{X}, \mu_{X}\right),\left(Y, d_{Y}, \mu_{Y}\right)$ be metric measure spaces where μ_{X} is σ-finite, μ_{Y} is locally finite and σ-finite, and $\mu_{X \times Y}$ is Radon.
If $\left(X, d_{X}, \mu_{X}\right),\left(Y, d_{Y}, \mu_{Y}\right)$ satisfy $\overline{\operatorname{BM}}(1)$ and $\operatorname{BM}(p)$, respectively, for some $p \geq-1$, then $\left(X \times Y, d_{X \times Y}, \mu_{X \times Y}\right)$ satisfies $\operatorname{BM}(1 /(1 / p+1))$.

Key message: the linear Brunn-Minkowski inequality, $\overline{\mathrm{BM}}(1)$, allows us to obtain further inequalities in other spaces. Moreover, it plays a relevant role along our approach in the sense that it cannot be replaced (in general) by another Brunn-Minkowski type inequality.

B-M inequalities in Product Metric Measure Spaces

Corollary (Ritoré, Y. N. (2018))

Let $\left(X, d_{X}, \mu_{X}\right),\left(Y, d_{Y}, \mu_{Y}\right)$ be metric measure spaces for which there exist certain families $\mathcal{F}_{X} \subset \mathcal{P}(X), \mathcal{F}_{Y} \subset \mathcal{P}(Y)$ that satisfy $\overline{\mathrm{BM}}(1)$ and $\operatorname{BM}(p)$, respectively, where $p \geq-1$ and μ_{X}, μ_{Y} are σ-finite. Let $A, B \subset X \times Y$ be measurable sets such that $(1-\lambda) A \star \lambda B$ is so for $\lambda \in(0,1)$. If moreover A, B satisfy:

B-M inequalities in Product Metric Measure Spaces

Corollary (Ritoré, Y. N. (2018))

Let $\left(X, d_{X}, \mu_{X}\right),\left(Y, d_{Y}, \mu_{Y}\right)$ be metric measure spaces for which there exist certain families $\mathcal{F}_{X} \subset \mathcal{P}(X), \mathcal{F}_{Y} \subset \mathcal{P}(Y)$ that satisfy $\overline{\mathrm{BM}}(1)$ and $\operatorname{BM}(p)$, respectively, where $p \geq-1$ and μ_{X}, μ_{Y} are σ-finite. Let $A, B \subset X \times Y$ be measurable sets such that $(1-\lambda) A \star \lambda B$ is so for $\lambda \in(0,1)$. If moreover A, B satisfy:
(1) $0<\left|\mu_{Y}(A(\cdot))\right|_{\infty},\left|\mu_{Y}(B(\cdot))\right|_{\infty}<+\infty$,

B-M inequalities in Product Metric Measure Spaces

Corollary (Ritoré, Y. N. (2018))

Let $\left(X, d_{X}, \mu_{X}\right),\left(Y, d_{Y}, \mu_{Y}\right)$ be metric measure spaces for which there exist certain families $\mathcal{F}_{X} \subset \mathcal{P}(X), \mathcal{F}_{Y} \subset \mathcal{P}(Y)$ that satisfy $\overline{\mathrm{BM}}(1)$ and $\operatorname{BM}(p)$, respectively, where $p \geq-1$ and μ_{X}, μ_{Y} are σ-finite. Let $A, B \subset X \times Y$ be measurable sets such that $(1-\lambda) A \star \lambda B$ is so for $\lambda \in(0,1)$. If moreover A, B satisfy:
(1) $0<\left|\mu_{Y}(A(\cdot))\right|_{\infty},\left|\mu_{Y}(B(\cdot))\right|_{\infty}<+\infty$,
(2) $A(t), B(t) \in \mathcal{F}_{Y}$ for all $t \in X$,

B-M inequalities in Product Metric Measure Spaces

Corollary (Ritoré, Y. N. (2018))

Let $\left(X, d_{X}, \mu_{X}\right),\left(Y, d_{Y}, \mu_{Y}\right)$ be metric measure spaces for which there exist certain families $\mathcal{F}_{X} \subset \mathcal{P}(X), \mathcal{F}_{Y} \subset \mathcal{P}(Y)$ that satisfy $\overline{\mathrm{BM}}(1)$ and $\operatorname{BM}(p)$, respectively, where $p \geq-1$ and μ_{X}, μ_{Y} are σ-finite. Let $A, B \subset X \times Y$ be measurable sets such that $(1-\lambda) A \star \lambda B$ is so for $\lambda \in(0,1)$. If moreover A, B satisfy:
(1) $0<\left|\mu_{Y}(A(\cdot))\right|_{\infty},\left|\mu_{Y}(B(\cdot))\right|_{\infty}<+\infty$,
(2) $A(t), B(t) \in \mathcal{F}_{Y}$ for all $t \in X$,
(3) $\left\{x \in X: \mu_{Y}(A(x)) \geq t\right\},\left\{x \in X: \mu_{Y}(B(x)) \geq t\right\} \in \mathcal{F}_{X}$ for any $0<t<1$ (or a.e.),

B-M inequalities in Product Metric Measure Spaces

Corollary (Ritoré, Y. N. (2018))

Let $\left(X, d_{X}, \mu_{X}\right),\left(Y, d_{Y}, \mu_{Y}\right)$ be metric measure spaces for which there exist certain families $\mathcal{F}_{X} \subset \mathcal{P}(X), \mathcal{F}_{Y} \subset \mathcal{P}(Y)$ that satisfy $\overline{\mathrm{BM}}(1)$ and $\operatorname{BM}(p)$, respectively, where $p \geq-1$ and μ_{X}, μ_{Y} are σ-finite. Let $A, B \subset X \times Y$ be measurable sets such that $(1-\lambda) A \star \lambda B$ is so for $\lambda \in(0,1)$. If moreover A, B satisfy:
(1) $0<\left|\mu_{Y}(A(\cdot))\right|_{\infty},\left|\mu_{Y}(B(\cdot))\right|_{\infty}<+\infty$,
(2) $A(t), B(t) \in \mathcal{F}_{Y}$ for all $t \in X$,
(0) $\left\{x \in X: \mu_{Y}(A(x)) \geq t\right\},\left\{x \in X: \mu_{Y}(B(x)) \geq t\right\} \in \mathcal{F}_{X}$ for any $0<t<1$ (or a.e.),
then

$$
\mu_{X \times Y}((1-\lambda) A \star \lambda B) \geq M_{1 /\left(1+p^{-1}\right)}\left(\mu_{X \times Y}(A), \mu_{X \times Y}(B), \lambda\right) .
$$

B-M ineqs for product of measures with certain concavity

Definition

$A \subset \mathbb{R}^{n}$ is weakly unconditional if for every $\left(x_{1}, \ldots, x_{n}\right) \in A$ and every $\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) \in\{0,1\}^{n}$ one has

$$
\left(\epsilon_{1} x_{1}, \ldots, \epsilon_{n} x_{n}\right) \in A .
$$

B-M ineqs for product of measures with certain concavity

Definition

$A \subset \mathbb{R}^{n}$ is weakly unconditional if for every $\left(x_{1}, \ldots, x_{n}\right) \in A$ and every $\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) \in\{0,1\}^{n}$ one has

$$
\left(\epsilon_{1} x_{1}, \ldots, \epsilon_{n} x_{n}\right) \in A .
$$

B-M ineqs for product of measures with certain concavity

Definition

$A \subset \mathbb{R}^{n}$ is weakly unconditional if for every $\left(x_{1}, \ldots, x_{n}\right) \in A$ and every $\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) \in\{0,1\}^{n}$ one has

$$
\left(\epsilon_{1} x_{1}, \ldots, \epsilon_{n} x_{n}\right) \in A .
$$

B-M ineqs for product of measures with certain concavity

Definition

$A \subset \mathbb{R}^{n}$ is weakly unconditional if for every $\left(x_{1}, \ldots, x_{n}\right) \in A$ and every $\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) \in\{0,1\}^{n}$ one has

$$
\left(\epsilon_{1} x_{1}, \ldots, \epsilon_{n} x_{n}\right) \in A
$$

In other words, a set A will be weakly unconditional if and only if every projection onto any coordinate plane is contained therein.

Given an arbitrary nonempty set $A \subset \mathbb{R}^{n}, A$ will denote its weakly unconditional hull, i.e., the smallest weakly unconditional set containing A.

B-M ineqs for product of measures with certain concavity

Theorem (Ritoré, Y. N. (2018))

Let $\mu=\mu_{1} \times \cdots \times \mu_{n}$ be a product measure on \mathbb{R}^{n} such that μ_{i} is the measure given by $\mathrm{d} \mu_{i}(x)=\phi_{i}(x) \mathrm{d} x$, where $\phi_{i}: \mathbb{R} \longrightarrow \mathbb{R}_{\geq 0}$ is a positively decreasing function, $i=1, \ldots, n$.
Let $\lambda \in(0,1)$ and let $\emptyset \neq A, B \subset \mathbb{R}^{n}$ be weakly unconditional measurable sets such that $(1-\lambda) A+\lambda B$ is also measurable. Then

$$
\mu((1-\lambda) A+\lambda B)^{1 / n} \geq(1-\lambda) \mu(A)^{1 / n}+\lambda \mu(B)^{1 / n} .
$$

B-M ineqs for product of measures with certain concavity

Theorem (Ritoré, Y. N. (2018))

Let $\mu=\mu_{1} \times \cdots \times \mu_{n}$ be a product measure on \mathbb{R}^{n} such that μ_{i} is the measure given by $\mathrm{d} \mu_{i}(x)=\phi_{i}(x) \mathrm{d} x$, where $\phi_{i}: \mathbb{R} \longrightarrow \mathbb{R}_{\geq 0}$ is a positively decreasing function, $i=1, \ldots, n$.
Let $\lambda \in(0,1)$ and let $\emptyset \neq A, B \subset \mathbb{R}^{n}$ be weakly unconditional measurable sets such that $(1-\lambda) A+\lambda B$ is also measurable. Then

$$
\mu((1-\lambda) A+\lambda B)^{1 / n} \geq(1-\lambda) \mu(A)^{1 / n}+\lambda \mu(B)^{1 / n} .
$$

Corollary (Gaussian B-M inequality)

Let $\lambda \in(0,1)$ and let $\emptyset \neq A, B \subset \mathbb{R}^{n}$ be measurable sets such that $(1-\lambda) \bar{A}+\lambda \bar{B}$ is also measurable. Then

$$
\gamma_{n}((1-\lambda) \bar{A}+\lambda \bar{B})^{1 / n} \geq(1-\lambda) \gamma_{n}(A)^{1 / n}+\lambda \gamma_{n}(B)^{1 / n}
$$

B-M ineqs for product of measures with certain concavity

Theorem (Ritoré, Y. N. (2018))

Let $\mu=\mu_{1} \times \cdots \times \mu_{n}$ be a product measure on \mathbb{R}^{n} such that μ_{i} is the measure given by $\mathrm{d} \mu_{i}(x)=\phi_{i}(x) \mathrm{d} x$, where $\phi_{i}: \mathbb{R} \longrightarrow \mathbb{R}_{\geq 0}$ is a positively decreasing function, $i=1, \ldots, n$.
Let $\lambda \in(0,1)$ and let $\emptyset \neq A, B \subset \mathbb{R}^{n}$ be weakly unconditional measurable sets such that $(1-\lambda) A+\lambda B$ is also measurable. Then

$$
\mu((1-\lambda) A+\lambda B)^{1 / n} \geq(1-\lambda) \mu(A)^{1 / n}+\lambda \mu(B)^{1 / n} .
$$

Corollary (Gaussian B-M inequality)

Let $\lambda \in(0,1)$ and let $\emptyset \neq A, B \subset \mathbb{R}^{n}$ be measurable sets such that $(1-\lambda) \bar{A}+\lambda \bar{B}$ is also measurable. Then

$$
\gamma_{n}((1-\lambda) \bar{A}+\lambda \bar{B})^{1 / n} \geq(1-\lambda) \gamma_{n}(A)^{1 / n}+\lambda \gamma_{n}(B)^{1 / n} .
$$

\rightarrow Notice that the sets in the counterexample by Nayar and Tkocz contain the origin and furthermore their projection onto the y-axis, and thus the sole "missing points" are those belonging to the x-axis.

B-M ineqs for product of measures with certain concavity

Theorem (Ritoré, Y. N. (2018))

Let $\mu=\mu_{1} \times \cdots \times \mu_{n}$ be a product measure on \mathbb{R}^{n} such that μ_{i} is the measure given by $\mathrm{d} \mu_{i}(x)=\phi_{i}(x) \mathrm{d} x$, where $\phi_{i}: \mathbb{R} \longrightarrow \mathbb{R}_{\geq 0}$ is a positively decreasing function, $i=1, \ldots, n$.
Let $\lambda \in(0,1)$ and let $\emptyset \neq A, B \subset \mathbb{R}^{n}$ be weakly unconditional measurable sets such that $(1-\lambda) A+\lambda B$ is also measurable. Then

$$
\mu((1-\lambda) A+\lambda B)^{1 / n} \geq(1-\lambda) \mu(A)^{1 / n}+\lambda \mu(B)^{1 / n} .
$$

Corollary (Gaussian B-M inequality)

Let $\lambda \in(0,1)$ and let $\emptyset \neq A, B \subset \mathbb{R}^{n}$ be measurable sets such that $(1-\lambda) \bar{A}+\lambda \bar{B}$ is also measurable. Then

$$
\gamma_{n}((1-\lambda) \bar{A}+\lambda \bar{B})^{1 / n} \geq(1-\lambda) \gamma_{n}(A)^{1 / n}+\lambda \gamma_{n}(B)^{1 / n} .
$$

\rightarrow Notice that weakly unconditional sets are those which contain the origin in each of the n-linearly independent directions given by the coordinate axes.

Another application

We consider:

Another application

We consider:
(1) $X=\mathbb{R}_{>0}$.
(2) d the distance on X given by $d(x, y)=|\log (x)-\log (y)|$.

Another application

We consider:
(1) $X=\mathbb{R}_{>0}$.
(2) d the distance on X given by $d(x, y)=|\log (x)-\log (y)|$.
(3) $\left(\mathbb{R}_{>0}, d\right)$ satisfies the Prékopa-Leindler inequality, i.e., for any non-negative measurable functions $f, g, h: \mathbb{R}_{>0} \longrightarrow \mathbb{R}_{\geq 0}$ such that

$$
h\left((1-\lambda) x+_{d} \lambda y\right) \geq f(x)^{1-\lambda} g(y)^{\lambda},
$$

then

$$
\int_{\mathbb{R}_{>0}} h \mathrm{~d} x \geq\left(\int_{\mathbb{R}_{>0}} f \mathrm{~d} x\right)^{1-\lambda}\left(\int_{\mathbb{R}_{>0}} g \mathrm{~d} x\right)^{\lambda}
$$

Another application

Since $A^{1-\lambda} B^{\lambda}=(1-\lambda) A \star_{d_{x^{n}}} \lambda B$, for $A, B \subset \mathbb{R}_{>0}^{n}$ (as a product space of (\mathbb{R}, d)), we get

Corollary

Let $\lambda \in(0,1)$ and let $A, B \subset \mathbb{R}_{>0}^{n}$ be measurable sets such that $A^{1-\lambda} B^{\lambda}$ is also measurable. Then

$$
\operatorname{vol}\left(A^{1-\lambda} B^{\lambda}\right) \geq \operatorname{vol}(A)^{1-\lambda} \operatorname{vol}(B)^{\lambda}
$$

Another application

Since $A^{1-\lambda} B^{\lambda}=(1-\lambda) A \star_{d_{x^{n}}} \lambda B$, for $A, B \subset \mathbb{R}_{>0}^{n}$ (as a product space of (\mathbb{R}, d)), we get

Corollary

Let $\lambda \in(0,1)$ and let $A, B \subset \mathbb{R}_{>0}^{n}$ be measurable sets such that $A^{1-\lambda} B^{\lambda}$ is also measurable. Then

$$
\operatorname{vol}\left(A^{1-\lambda} B^{\lambda}\right) \geq \operatorname{vol}(A)^{1-\lambda} \operatorname{vol}(B)^{\lambda}
$$

$A^{1-\lambda} B^{\lambda}=\left\{a^{1-\lambda} b^{\lambda}: a \in A, b \in B\right\}$ where, for $x=\left(x_{1}, \ldots, x_{n}\right)$, $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}_{>0}^{n}$ and $r, s>0$, we set $x^{r} y^{s}=\left(x_{1}^{r} y_{1}^{s}, \ldots, x_{n}^{r} y_{n}^{s}\right)$.

Another application

Since $A^{1-\lambda} B^{\lambda}=(1-\lambda) A \star_{d_{x^{n}}} \lambda B$, for $A, B \subset \mathbb{R}_{>0}^{n}$ (as a product space of (\mathbb{R}, d)), we get

Corollary

Let $\lambda \in(0,1)$ and let $A, B \subset \mathbb{R}_{>0}^{n}$ be measurable sets such that $A^{1-\lambda} B^{\lambda}$ is also measurable. Then

$$
\operatorname{vol}\left(A^{1-\lambda} B^{\lambda}\right) \geq \operatorname{vol}(A)^{1-\lambda} \operatorname{vol}(B)^{\lambda}
$$

$A^{1-\lambda} B^{\lambda}=\left\{a^{1-\lambda} b^{\lambda}: a \in A, b \in B\right\}$ where, for $x=\left(x_{1}, \ldots, x_{n}\right)$, $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}_{>0}^{n}$ and $r, s>0$, we set $x^{r} y^{s}=\left(x_{1}^{r} y_{1}^{s}, \ldots, x_{n}^{r} y_{n}^{s}\right)$.
As a consequence, the log-Brunn-Minkowski inequality holds for unconditional convex bodies (Saroglou 2015):

$$
\operatorname{vol}\left((1-\lambda) K++_{0} \lambda L\right) \geq \operatorname{vol}(K)^{1-\lambda} \operatorname{vol}(L)^{\lambda} .
$$

On Brunn-Minkowski inequalities in product Metric Measure Spaces

J. Yepes Nicolás

Universidad de Murcia
(joint work with M. Ritoré)

Summer School 2018:
New perspectives on Convex Geometry
Castro Urdiales

September 3rd, 2018

