Angular Curvature Measures arXiv:1808.03048

Thomas Wannerer
Friedrich Schiller University Jena

CIEM Castro Urdiales, September 4, 2018

Federer's curvature measures

$P \subset \mathbb{R}^{n}$ convex polytope, $U \subset \mathbb{R}^{n}$ Borel set

$$
\Phi_{i}(P, U)=\sum_{F} \gamma(F, P) \operatorname{vol}_{i}(F \cap U), \quad i=0, \ldots, n
$$

Here

$$
\gamma(F, P)=\operatorname{vol}_{n-k-1}\left(N_{F} P \cap S^{n-1}\right) / \omega_{n-k-1}
$$

is the external angle

Federer's curvature measures

$P \subset \mathbb{R}^{n}$ convex polytope, $U \subset \mathbb{R}^{n}$ Borel set

$$
\Phi_{i}(P, U)=\sum_{F} \gamma(F, P) \operatorname{vol}_{i}(F \cap U), \quad i=0, \ldots, n
$$

Here

$$
\gamma(F, P)=\operatorname{vol}_{n-k-1}\left(N_{F} P \cap S^{n-1}\right) / \omega_{n-k-1}
$$

is the external angle

Federer's curvature measures

$P \subset \mathbb{R}^{n}$ convex polytope, $U \subset \mathbb{R}^{n}$ Borel set

$$
\Phi_{i}(P, U)=\sum_{F} \gamma(F, P) \operatorname{vol}_{i}(F \cap U), \quad i=0, \ldots, n
$$

Here

$$
\gamma(F, P)=\operatorname{vol}_{n-k-1}\left(N_{F} P \cap S^{n-1}\right) / \omega_{n-k-1}
$$

is the external angle

- sets of positive reach (Federer '59)

Federer's curvature measures

$P \subset \mathbb{R}^{n}$ convex polytope, $U \subset \mathbb{R}^{n}$ Borel set

$$
\Phi_{i}(P, U)=\sum_{F} \gamma(F, P) \operatorname{vol}_{i}(F \cap U), \quad i=0, \ldots, n
$$

Here

$$
\gamma(F, P)=\operatorname{vol}_{n-k-1}\left(N_{F} P \cap S^{n-1}\right) / \omega_{n-k-1}
$$

is the external angle

- sets of positive reach (Federer '59)
- unions of sets of positive reach (Zähle '87)

Federer's curvature measures

$P \subset \mathbb{R}^{n}$ convex polytope, $U \subset \mathbb{R}^{n}$ Borel set

$$
\Phi_{i}(P, U)=\sum_{F} \gamma(F, P) \operatorname{vol}_{i}(F \cap U), \quad i=0, \ldots, n
$$

Here

$$
\gamma(F, P)=\operatorname{vol}_{n-k-1}\left(N_{F} P \cap S^{n-1}\right) / \omega_{n-k-1}
$$

is the external angle

- sets of positive reach (Federer '59)
- unions of sets of positive reach (Zähle '87)
- subanalytic sets (Fu '94)

Federer's curvature measures

$P \subset \mathbb{R}^{n}$ convex polytope, $U \subset \mathbb{R}^{n}$ Borel set

$$
\Phi_{i}(P, U)=\sum_{F} \gamma(F, P) \operatorname{vol}_{i}(F \cap U), \quad i=0, \ldots, n
$$

Here

$$
\gamma(F, P)=\operatorname{vol}_{n-k-1}\left(N_{F} P \cap S^{n-1}\right) / \omega_{n-k-1}
$$

is the external angle

- sets of positive reach (Federer '59)
- unions of sets of positive reach (Zähle '87)
- subanalytic sets (Fu '94)
- wdc sets (Pokorny-Rataj '13, Fu-Pokorny-Rataj '17)

Consider

$$
\Phi(P, U)=\sum_{F} f(\bar{F}) \gamma(F, P) \operatorname{vol}_{i}(F \cap U)
$$

- $f: \operatorname{Gr}_{i}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}$
- \bar{F} translate of the affine hull of F containing o

Consider

$$
\Phi(P, U)=\sum_{F} f(\bar{F}) \gamma(F, P) \operatorname{vol}_{i}(F \cap U)
$$

- $f: \operatorname{Gr}_{i}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}$
- \bar{F} translate of the affine hull of F containing o

Question. For which f does Φ extend to a curvature measure on \mathbb{R}^{n} ?

Consider

$$
\Phi(P, U)=\sum_{F} f(\bar{F}) \gamma(F, P) \operatorname{vol}_{i}(F \cap U)
$$

- $f: \operatorname{Gr}_{i}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}$
- \bar{F} translate of the affine hull of F containing o

Question. For which f does Φ extend to a curvature measure on \mathbb{R}^{n} ?

Every such curvature measure is called angular.

Valuations

Observation. For every f

$$
\Phi(P, U)=\sum_{F} f(\bar{F}) \gamma(F, P) \operatorname{vol}_{i}(F \cap U)
$$

is a valuation on polytopes.

Valuations

Observation. For every f

$$
\Phi(P, U)=\sum_{F} f(\bar{F}) \gamma(F, P) \operatorname{vol}_{i}(F \cap U)
$$

is a valuation on polytopes.

Characterization as valuations

Valuations

Observation. For every f

$$
\Phi(P, U)=\sum_{F} f(\bar{F}) \gamma(F, P) \operatorname{vol}_{i}(F \cap U)
$$

is a valuation on polytopes.

Characterization as valuations

- intrinsic volumes (Hadwiger '57, Klain '95)

Valuations

Observation. For every f

$$
\Phi(P, U)=\sum_{F} f(\bar{F}) \gamma(F, P) \operatorname{vol}_{i}(F \cap U)
$$

is a valuation on polytopes.

Characterization as valuations

- intrinsic volumes (Hadwiger '57, Klain '95)
- area measures (Schneider '76)

Valuations

Observation. For every f

$$
\Phi(P, U)=\sum_{F} f(\bar{F}) \gamma(F, P) \operatorname{vol}_{i}(F \cap U)
$$

is a valuation on polytopes.

Characterization as valuations

- intrinsic volumes (Hadwiger '57, Klain '95)
- area measures (Schneider '76)
- Federer's curvature measures (Schneider '78)

Valuations

Observation. For every f

$$
\Phi(P, U)=\sum_{F} f(\bar{F}) \gamma(F, P) \operatorname{vol}_{i}(F \cap U)
$$

is a valuation on polytopes.

Characterization as valuations

- intrinsic volumes (Hadwiger '57, Klain '95)
- area measures (Schneider '76)
- Federer's curvature measures (Schneider '78)
- affine surface area (Ludwig-Reitzner '99)

Valuations

Observation. For every f

$$
\Phi(P, U)=\sum_{F} f(\bar{F}) \gamma(F, P) \operatorname{vol}_{i}(F \cap U)
$$

is a valuation on polytopes.

Characterization as valuations

- intrinsic volumes (Hadwiger '57, Klain '95)
- area measures (Schneider '76)
- Federer's curvature measures (Schneider '78)
- affine surface area (Ludwig-Reitzner '99)
- projection body, centroid body, intersection body (Ludwig '06, '10)

Valuations

Observation. For every f

$$
\Phi(P, U)=\sum_{F} f(\bar{F}) \gamma(F, P) \operatorname{vol}_{i}(F \cap U)
$$

is a valuation on polytopes.

Characterization as valuations

- intrinsic volumes (Hadwiger '57, Klain '95)
- area measures (Schneider '76)
- Federer's curvature measures (Schneider '78)
- affine surface area (Ludwig-Reitzner '99)
- projection body, centroid body, intersection body (Ludwig '06, '10)

Alesker, Abardia, Bernig, Böröczky, Colesanti, Faifman, Haberl, Li, Ma, Parapatits, Saorin Gomez, Schuster, Wannerer,...

Smooth valuations and curvature measures

- $\operatorname{Val}\left(\mathbb{R}^{n}\right)$ continuous translation-invariant valuations on $\mathcal{K}\left(\mathbb{R}^{n}\right)$

Smooth valuations and curvature measures

- $\operatorname{Val}\left(\mathbb{R}^{n}\right)$ continuous translation-invariant valuations on $\mathcal{K}\left(\mathbb{R}^{n}\right)$
- $\mu \in \operatorname{Val}\left(\mathbb{R}^{n}\right)$ smooth valuation \Longleftrightarrow

$$
\mu(K)=\int_{N(K)} \omega+\int_{K} \eta
$$

Smooth valuations and curvature measures

- $\operatorname{Val}\left(\mathbb{R}^{n}\right)$ continuous translation-invariant valuations on $\mathcal{K}\left(\mathbb{R}^{n}\right)$
- $\mu \in \operatorname{Val}\left(\mathbb{R}^{n}\right)$ smooth valuation \Longleftrightarrow

$$
\mu(K)=\int_{N(K)} \omega+\int_{K} \eta
$$

- $N(K) \subset S \mathbb{R}^{n}=\mathbb{R}^{n} \times S^{n-1}$ normal cycle of K = manifold of outward unit normals to K

Smooth valuations and curvature measures

- $\operatorname{Val}\left(\mathbb{R}^{n}\right)$ continuous translation-invariant valuations on $\mathcal{K}\left(\mathbb{R}^{n}\right)$
- $\mu \in \operatorname{Val}\left(\mathbb{R}^{n}\right)$ smooth valuation \Longleftrightarrow

$$
\mu(K)=\int_{N(K)} \omega+\int_{K} \eta
$$

- $N(K) \subset S \mathbb{R}^{n}=\mathbb{R}^{n} \times S^{n-1}$ normal cycle of K = manifold of outward unit normals to K
- $\omega \in \Omega^{n-1}\left(S \mathbb{R}^{n}\right)^{t r}, \eta \in \Omega^{n}\left(\mathbb{R}^{n}\right)^{t r}$

Smooth valuations and curvature measures

- $\operatorname{Val}\left(\mathbb{R}^{n}\right)$ continuous translation-invariant valuations on $\mathcal{K}\left(\mathbb{R}^{n}\right)$
- $\mu \in \operatorname{Val}\left(\mathbb{R}^{n}\right)$ smooth valuation \Longleftrightarrow

$$
\mu(K)=\int_{N(K)} \omega+\int_{K} \eta
$$

- $N(K) \subset S \mathbb{R}^{n}=\mathbb{R}^{n} \times S^{n-1}$ normal cycle of K = manifold of outward unit normals to K
- $\omega \in \Omega^{n-1}\left(S \mathbb{R}^{n}\right)^{t r}, \eta \in \Omega^{n}\left(\mathbb{R}^{n}\right)^{t r}$
- $N(K)$ exists for sets of positive reach, subanalytic sets, wdc sets,...

Smooth valuations and curvature measures

- $\operatorname{Val}\left(\mathbb{R}^{n}\right)$ continuous translation-invariant valuations on $\mathcal{K}\left(\mathbb{R}^{n}\right)$
- $\mu \in \operatorname{Val}\left(\mathbb{R}^{n}\right)$ smooth valuation \Longleftrightarrow

$$
\mu(K)=\int_{N(K)} \omega+\int_{K} \eta
$$

- $N(K) \subset S \mathbb{R}^{n}=\mathbb{R}^{n} \times S^{n-1}$ normal cycle of K = manifold of outward unit normals to K
- $\omega \in \Omega^{n-1}\left(S \mathbb{R}^{n}\right)^{t r}, \eta \in \Omega^{n}\left(\mathbb{R}^{n}\right)^{t r}$
- $N(K)$ exists for sets of positive reach, subanalytic sets, wdc sets,...
- smooth valuations are dense in $\operatorname{Val}\left(\mathbb{R}^{n}\right)$ (Alesker '01)

Smooth valuations and curvature measures

- $\operatorname{Val}\left(\mathbb{R}^{n}\right)$ continuous translation-invariant valuations on $\mathcal{K}\left(\mathbb{R}^{n}\right)$
- $\mu \in \operatorname{Val}\left(\mathbb{R}^{n}\right)$ smooth valuation \Longleftrightarrow

$$
\mu(K)=\int_{N(K)} \omega+\int_{K} \eta
$$

- $N(K) \subset S \mathbb{R}^{n}=\mathbb{R}^{n} \times S^{n-1}$ normal cycle of K = manifold of outward unit normals to K
- $\omega \in \Omega^{n-1}\left(S \mathbb{R}^{n}\right)^{t r}, \eta \in \Omega^{n}\left(\mathbb{R}^{n}\right)^{t r}$
- $N(K)$ exists for sets of positive reach, subanalytic sets, wdc sets,...
- smooth valuations are dense in $\operatorname{Val}\left(\mathbb{R}^{n}\right)$ (Alesker '01)
- Φ smooth curvature measure \qquad

$$
\Phi(A, U)=\int_{N(A) \cap \pi^{-1}(U)} \omega+\int_{A \cap U} \eta
$$

Angular curvature measures

Question. For which f does

$$
\Phi(P, U)=\sum_{F} f(\bar{F}) \gamma(F, P) \operatorname{vol}_{i}(F \cap U),
$$

extend to a smooth curvature measure on \mathbb{R}^{n} ?

Angular curvature measures

Question. For which f does

$$
\Phi(P, U)=\sum_{F} f(\bar{F}) \gamma(F, P) \operatorname{vol}_{i}(F \cap U)
$$

extend to a smooth curvature measure on \mathbb{R}^{n} ?

Every such curvature measure is called angular.

Angular curvature measures

Question. For which f does

$$
\Phi(P, U)=\sum_{F} f(\bar{F}) \gamma(F, P) \operatorname{vol}_{i}(F \cap U)
$$

extend to a smooth curvature measure on \mathbb{R}^{n} ?

Every such curvature measure is called angular.
Remark.

Angular curvature measures

Question. For which f does

$$
\Phi(P, U)=\sum_{F} f(\bar{F}) \gamma(F, P) \operatorname{vol}_{i}(F \cap U),
$$

extend to a smooth curvature measure on \mathbb{R}^{n} ?

Every such curvature measure is called angular.

Remark.

- $i=n-1$: any smooth f defines an angular curvature measure

Angular curvature measures

Question. For which f does

$$
\Phi(P, U)=\sum_{F} f(\bar{F}) \gamma(F, P) \operatorname{vol}_{i}(F \cap U),
$$

extend to a smooth curvature measure on \mathbb{R}^{n} ?

Every such curvature measure is called angular.
Remark.

- $i=n-1$: any smooth f defines an angular curvature measure
- $0 \leq i<n-1$: constant coefficient curvature measures are angular (Bernig-Fu-Solanes '15)
Φ constant coefficient curvature measure
Φ constant coefficient curvature measure \Longleftrightarrow

$$
\Phi(A, U)=\int_{N_{1}(A) \cap \pi^{-1}(U)} \omega
$$

Φ constant coefficient curvature measure \Longleftrightarrow

$$
\Phi(A, U)=\int_{N_{1}(A) \cap \pi^{-1}(U)} \omega
$$

- $N_{1}(A) \subset T \mathbb{R}^{n}=\mathbb{R}^{n} \times \mathbb{R}^{n}$ normal disc current $=$ manifold of outward normals to A of length at most 1
Φ constant coefficient curvature measure \Longleftrightarrow

$$
\Phi(A, U)=\int_{N_{1}(A) \cap \pi^{-1}(U)} \omega
$$

- $N_{1}(A) \subset T \mathbb{R}^{n}=\mathbb{R}^{n} \times \mathbb{R}^{n}$ normal disc current $=$ manifold of outward normals to A of length at most 1
- $N_{1}(A)$ exists for sets of positive reach, subanalytic sets, wdc sets...
Φ constant coefficient curvature measure \Longleftrightarrow

$$
\Phi(A, U)=\int_{N_{1}(A) \cap \pi^{-1}(U)} \omega
$$

- $N_{1}(A) \subset T \mathbb{R}^{n}=\mathbb{R}^{n} \times \mathbb{R}^{n}$ normal disc current $=$ manifold of outward normals to A of length at most 1
- $N_{1}(A)$ exists for sets of positive reach, subanalytic sets, wdc sets...
- $\omega \in \wedge^{n}\left(\mathbb{R}^{n} \oplus \mathbb{R}^{n}\right)^{*} \subset \Omega^{n}\left(\mathbb{R}^{n} \oplus \mathbb{R}^{n}\right)$
Φ constant coefficient curvature measure \Longleftrightarrow

$$
\Phi(A, U)=\int_{N_{1}(A) \cap \pi^{-1}(U)} \omega
$$

- $N_{1}(A) \subset T \mathbb{R}^{n}=\mathbb{R}^{n} \times \mathbb{R}^{n}$ normal disc current $=$ manifold of outward normals to A of length at most 1
- $N_{1}(A)$ exists for sets of positive reach, subanalytic sets, wdc sets...
- $\omega \in \wedge^{n}\left(\mathbb{R}^{n} \oplus \mathbb{R}^{n}\right)^{*} \subset \Omega^{n}\left(\mathbb{R}^{n} \oplus \mathbb{R}^{n}\right)$
- every constant coefficient curvature measure is a smooth curvature measure
Φ constant coefficient curvature measure \Longleftrightarrow

$$
\Phi(A, U)=\int_{N_{1}(A) \cap \pi^{-1}(U)} \omega
$$

- $N_{1}(A) \subset T \mathbb{R}^{n}=\mathbb{R}^{n} \times \mathbb{R}^{n}$ normal disc current
$=$ manifold of outward normals to A of length at most 1
- $N_{1}(A)$ exists for sets of positive reach, subanalytic sets, wdc sets...
- $\omega \in \wedge^{n}\left(\mathbb{R}^{n} \oplus \mathbb{R}^{n}\right)^{*} \subset \Omega^{n}\left(\mathbb{R}^{n} \oplus \mathbb{R}^{n}\right)$
- every constant coefficient curvature measure is a smooth curvature measure

Remark.
Φ constant coefficient curvature measure \Longleftrightarrow

$$
\Phi(A, U)=\int_{N_{1}(A) \cap \pi^{-1}(U)} \omega
$$

- $N_{1}(A) \subset T \mathbb{R}^{n}=\mathbb{R}^{n} \times \mathbb{R}^{n}$ normal disc current
$=$ manifold of outward normals to A of length at most 1
- $N_{1}(A)$ exists for sets of positive reach, subanalytic sets, wdc sets...
- $\omega \in \wedge^{n}\left(\mathbb{R}^{n} \oplus \mathbb{R}^{n}\right)^{*} \subset \Omega^{n}\left(\mathbb{R}^{n} \oplus \mathbb{R}^{n}\right)$
- every constant coefficient curvature measure is a smooth curvature measure

Remark.

- Federer's curvature measures are constant coefficient
Φ constant coefficient curvature measure \Longleftrightarrow

$$
\Phi(A, U)=\int_{N_{1}(A) \cap \pi^{-1}(U)} \omega
$$

- $N_{1}(A) \subset T \mathbb{R}^{n}=\mathbb{R}^{n} \times \mathbb{R}^{n}$ normal disc current
$=$ manifold of outward normals to A of length at most 1
- $N_{1}(A)$ exists for sets of positive reach, subanalytic sets, wdc sets...
- $\omega \in \wedge^{n}\left(\mathbb{R}^{n} \oplus \mathbb{R}^{n}\right)^{*} \subset \Omega^{n}\left(\mathbb{R}^{n} \oplus \mathbb{R}^{n}\right)$
- every constant coefficient curvature measure is a smooth curvature measure

Remark.

- Federer's curvature measures are constant coefficient
- Hermitian integral geometry provides further geometrically interesting examples

Grassmannians and the Plücker embedding

- $\widetilde{\operatorname{Gr}}_{i}\left(\mathbb{R}^{n}\right)$ Grassmannian of oriented i-dim linear subspaces

Grassmannians and the Plücker embedding

- $\widetilde{\mathrm{Gr}}_{i}\left(\mathbb{R}^{n}\right)$ Grassmannian of oriented i-dim linear subspaces
- A function f on $\widetilde{\operatorname{Gr}}_{i}\left(\mathbb{R}^{n}\right)$ is even if f is invariant under change of orientation

Grassmannians and the Plücker embedding

- $\widetilde{\mathrm{Gr}}_{i}\left(\mathbb{R}^{n}\right)$ Grassmannian of oriented i-dim linear subspaces
- A function f on $\widetilde{\mathrm{Gr}}_{i}\left(\mathbb{R}^{n}\right)$ is even if f is invariant under change of orientation
- Even functions on $\widetilde{\mathrm{Gr}}_{i}\left(\mathbb{R}^{n}\right)$ correspond bijectively to functions on $\mathrm{Gr}_{i}\left(\mathbb{R}^{n}\right)$ Grassmannian of i-dim linear subspaces

Grassmannians and the Plücker embedding

- $\widetilde{\mathrm{Gr}}_{i}\left(\mathbb{R}^{n}\right)$ Grassmannian of oriented i-dim linear subspaces
- A function f on $\widetilde{\mathrm{Gr}}_{i}\left(\mathbb{R}^{n}\right)$ is even if f is invariant under change of orientation
- Even functions on $\widetilde{\operatorname{Gr}}_{i}\left(\mathbb{R}^{n}\right)$ correspond bijectively to functions on $\mathrm{Gr}_{i}\left(\mathbb{R}^{n}\right)$ Grassmannian of i-dim linear subspaces
- the Plücker embedding $E \mapsto e_{1} \wedge \cdots \wedge e_{i}$ embeds $\widetilde{\mathrm{Gr}}_{i}\left(\mathbb{R}^{n}\right)$ into $\wedge^{i} \mathbb{R}^{n}$.

Classification of angular curvature measures

Classification of angular curvature measures

Theorem A. Let $0 \leq i<n-1$ and f be a function on $\operatorname{Gr}_{i}\left(\mathbb{R}^{n}\right)$.

Classification of angular curvature measures

Theorem A. Let $0 \leq i<n-1$ and f be a function on $\operatorname{Gr}_{i}\left(\mathbb{R}^{n}\right)$. Then

$$
\Phi(P, U)=\sum_{F} f(\bar{F}) \gamma(F, P) \operatorname{vol}_{i}(F \cap U)
$$

extends to a smooth curvature measure on $\mathbb{R}^{n} \Longleftrightarrow$

Classification of angular curvature measures

Theorem A. Let $0 \leq i<n-1$ and f be a function on $\operatorname{Gr}_{i}\left(\mathbb{R}^{n}\right)$. Then

$$
\Phi(P, U)=\sum_{F} f(\bar{F}) \gamma(F, P) \operatorname{vol}_{i}(F \cap U)
$$

extends to a smooth curvature measure on $\mathbb{R}^{n} \Longleftrightarrow f$ is the restriction of a 2 -homogeneous polynomial to the image of the Plücker embedding.

Classification of angular curvature measures

Theorem A. Let $0 \leq i<n-1$ and f be a function on $\operatorname{Gr}_{i}\left(\mathbb{R}^{n}\right)$. Then

$$
\Phi(P, U)=\sum_{F} f(\bar{F}) \gamma(F, P) \operatorname{vol}_{i}(F \cap U)
$$

extends to a smooth curvature measure on $\mathbb{R}^{n} \Longleftrightarrow f$ is the restriction of a 2 -homogeneous polynomial to the image of the Plücker embedding.
Consequently, the space of angular curvature measures of degree i has dimension

$$
\frac{1}{n-i+1}\binom{n}{i}\binom{n+1}{i+1}
$$

Classification of angular curvature measures

Theorem A. Let $0 \leq i<n-1$ and f be a function on $\operatorname{Gr}_{i}\left(\mathbb{R}^{n}\right)$. Then

$$
\Phi(P, U)=\sum_{F} f(\bar{F}) \gamma(F, P) \operatorname{vol}_{i}(F \cap U)
$$

extends to a smooth curvature measure on $\mathbb{R}^{n} \Longleftrightarrow f$ is the restriction of a 2 -homogeneous polynomial to the image of the Plücker embedding.
Consequently, the space of angular curvature measures of degree i has dimension

$$
\frac{1}{n-i+1}\binom{n}{i}\binom{n+1}{i+1}
$$

and coincides with the space of constant coefficient curvature measures.

Steps in the proof of Theorem A

Proposition. Let $1 \leq i<n-1$ and f be an even continuous function on $\widetilde{\operatorname{Gr}}_{i}\left(\mathbb{R}^{n}\right)$.

Steps in the proof of Theorem A

Proposition. Let $1 \leq i<n-1$ and f be an even continuous function on $\widetilde{\operatorname{Gr}}_{i}\left(\mathbb{R}^{n}\right)$. Suppose that for every nonzero $v \in \mathbb{R}^{n}$ there exists a 2-homogeneous polynomial q on $\bigwedge^{i} v^{\perp}$ such $f=q$ on $\widetilde{\operatorname{Gr}}_{i}\left(v^{\perp}\right) \subset \bigwedge^{i} v^{\perp}$.

Steps in the proof of Theorem A

Proposition. Let $1 \leq i<n-1$ and f be an even continuous function on $\widetilde{\operatorname{Gr}}_{i}\left(\mathbb{R}^{n}\right)$. Suppose that for every nonzero $v \in \mathbb{R}^{n}$ there exists a 2 -homogeneous polynomial q on $\bigwedge^{i} v^{\perp}$ such $f=q$ on $\widetilde{\operatorname{Gr}}_{i}\left(v^{\perp}\right) \subset \bigwedge^{i} v^{\perp}$. Then there exists a 2 -homogeneous polynomial p on $\wedge^{i} \mathbb{R}^{n}$ such that $f=p$ on $\widetilde{\mathrm{Gr}}_{i}\left(\mathbb{R}^{n}\right) \subset \bigwedge^{i} \mathbb{R}^{n}$.

Steps in the proof of Theorem A

Proposition. Let $1 \leq i<n-1$ and f be an even continuous function on $\widetilde{\operatorname{Gr}}_{i}\left(\mathbb{R}^{n}\right)$. Suppose that for every nonzero $v \in \mathbb{R}^{n}$ there exists a 2 -homogeneous polynomial q on $\bigwedge^{i} v^{\perp}$ such $f=q$ on $\widetilde{\operatorname{Gr}}_{i}\left(v^{\perp}\right) \subset \bigwedge^{i} v^{\perp}$.
Then there exists a 2 -homogeneous polynomial p on $\wedge^{i} \mathbb{R}^{n}$ such that $f=p$ on $\widetilde{\operatorname{Gr}}_{i}\left(\mathbb{R}^{n}\right) \subset \bigwedge^{i} \mathbb{R}^{n}$.

Strategy to prove the Proposition.

Steps in the proof of Theorem A

Proposition. Let $1 \leq i<n-1$ and f be an even continuous function on $\widetilde{\operatorname{Gr}}_{i}\left(\mathbb{R}^{n}\right)$. Suppose that for every nonzero $v \in \mathbb{R}^{n}$ there exists a 2 -homogeneous polynomial q on $\bigwedge^{i} v^{\perp}$ such $f=q$ on $\widetilde{\operatorname{Gr}}_{i}\left(v^{\perp}\right) \subset \bigwedge^{i} v^{\perp}$. Then there exists a 2 -homogeneous polynomial p on $\wedge^{i} \mathbb{R}^{n}$ such that $f=p$ on $\widetilde{\mathrm{Gr}}_{i}\left(\mathbb{R}^{n}\right) \subset \bigwedge^{i} \mathbb{R}^{n}$.

Strategy to prove the Proposition. The subspace W spanned by all such f is an $S O(n)$-submodule.

Steps in the proof of Theorem A

Proposition. Let $1 \leq i<n-1$ and f be an even continuous function on $\widetilde{\operatorname{Gr}}_{i}\left(\mathbb{R}^{n}\right)$. Suppose that for every nonzero $v \in \mathbb{R}^{n}$ there exists a 2 -homogeneous polynomial q on $\bigwedge^{i} v^{\perp}$ such $f=q$ on $\widetilde{\operatorname{Gr}}_{i}\left(v^{\perp}\right) \subset \bigwedge^{i} v^{\perp}$. Then there exists a 2 -homogeneous polynomial p on $\wedge^{i} \mathbb{R}^{n}$ such that $f=p$ on $\widetilde{\operatorname{Gr}}_{i}\left(\mathbb{R}^{n}\right) \subset \bigwedge^{i} \mathbb{R}^{n}$.

Strategy to prove the Proposition. The subspace W spanned by all such f is an $S O(n)$-submodule. Check the claim for the highest weight vectors of irred. $S O(n)$-submodules in W.

Steps in the proof of Theorem A

Proposition. Let $1 \leq i<n-1$ and f be an even continuous function on $\widetilde{\operatorname{Gr}}_{i}\left(\mathbb{R}^{n}\right)$. Suppose that for every nonzero $v \in \mathbb{R}^{n}$ there exists a 2 -homogeneous polynomial q on $\bigwedge^{i} v^{\perp}$ such $f=q$ on $\widetilde{\operatorname{Gr}}_{i}\left(v^{\perp}\right) \subset \bigwedge^{i} v^{\perp}$. Then there exists a 2 -homogeneous polynomial p on $\wedge^{i} \mathbb{R}^{n}$ such that $f=p$ on $\widetilde{\mathrm{Gr}}_{i}\left(\mathbb{R}^{n}\right) \subset \bigwedge^{i} \mathbb{R}^{n}$.

Strategy to prove the Proposition. The subspace W spanned by all such f is an $S O(n)$-submodule. Check the claim for the highest weight vectors of irred. $S O(n)$-submodules in W.

Proof of Theorem A. If

$$
\Phi(P, U)=\sum_{F} f(\bar{F}) \gamma(F, P) \operatorname{vol}_{i}(F \cap U)
$$

defines an angular curvature measure, then f satisfies the hypothesis of the Proposition.

Angular curvature measures on Riemannian manifolds

M Riem. mfd.

Angular curvature measures on Riemannian manifolds

M Riem. mfd.

- Φ smooth curvature on $M \Longleftrightarrow$ selecting smoothly a translation-invariant smooth curvature measure $\tau_{p} \Phi$ on each $T_{p} M$

Angular curvature measures on Riemannian manifolds

M Riem. mfd.

- Φ smooth curvature on $M \Longleftrightarrow$ selecting smoothly a translation-invariant smooth curvature measure $\tau_{p} \Phi$ on each $T_{p} M$
- Φ is angular $\Longleftrightarrow \tau_{p} \Phi$ is angular for each $p \in M$

Angular curvature measures on Riemannian manifolds

M Riem. mfd.

- Φ smooth curvature on $M \Longleftrightarrow$ selecting smoothly a translation-invariant smooth curvature measure $\tau_{p} \Phi$ on each $T_{p} M$
- Φ is angular $\Longleftrightarrow \tau_{p} \Phi$ is angular for each $p \in M$
- $\mathcal{A}(M)$ angular curvature measures on M

Angular curvature measures on Riemannian manifolds

M Riem. mfd.

- Φ smooth curvature on $M \Longleftrightarrow$ selecting smoothly a translation-invariant smooth curvature measure $\tau_{p} \Phi$ on each $T_{p} M$
- Φ is angular $\Longleftrightarrow \tau_{p} \Phi$ is angular for each $p \in M$
- $\mathcal{A}(M)$ angular curvature measures on M
- $\mathcal{L K}(M)$ algebra of intrinsic volumes on M

Angular curvature measures on Riemannian manifolds

M Riem. mfd.

- Φ smooth curvature on $M \Longleftrightarrow$ selecting smoothly a translation-invariant smooth curvature measure $\tau_{p} \Phi$ on each $T_{p} M$
- Φ is angular $\Longleftrightarrow \tau_{p} \Phi$ is angular for each $p \in M$
- $\mathcal{A}(M)$ angular curvature measures on M
- $\mathcal{L K}(M)$ algebra of intrinsic volumes on M

Angularity conjecture (Bernig-Fu-Solanes '15).

$$
\mathcal{L K}(M) \cdot \mathcal{A}(M) \subset \mathcal{A}(M) .
$$

Angular curvature measures on Riemannian manifolds

M Riem. mfd.

- Φ smooth curvature on $M \Longleftrightarrow$ selecting smoothly a translation-invariant smooth curvature measure $\tau_{p} \Phi$ on each $T_{p} M$
- Φ is angular $\Longleftrightarrow \tau_{p} \Phi$ is angular for each $p \in M$
- $\mathcal{A}(M)$ angular curvature measures on M
- $\mathcal{L K}(M)$ algebra of intrinsic volumes on M

Angularity conjecture (Bernig-Fu-Solanes '15).

$$
\mathcal{L K}(M) \cdot \mathcal{A}(M) \subset \mathcal{A}(M) .
$$

Known to be true for

Angular curvature measures on Riemannian manifolds

M Riem. mfd.

- Φ smooth curvature on $M \Longleftrightarrow$ selecting smoothly a translation-invariant smooth curvature measure $\tau_{p} \Phi$ on each $T_{p} M$
- Φ is angular $\Longleftrightarrow \tau_{p} \Phi$ is angular for each $p \in M$
- $\mathcal{A}(M)$ angular curvature measures on M
- $\mathcal{L K}(M)$ algebra of intrinsic volumes on M

Angularity conjecture (Bernig-Fu-Solanes '15).

$$
\mathcal{L K}(M) \cdot \mathcal{A}(M) \subset \mathcal{A}(M) .
$$

Known to be true for

- $M=\mathbb{R}^{n}$ and translation-invariant angular curvature measures

Angular curvature measures on Riemannian manifolds

M Riem. mfd.

- Φ smooth curvature on $M \Longleftrightarrow$ selecting smoothly a translation-invariant smooth curvature measure $\tau_{p} \Phi$ on each $T_{p} M$
- Φ is angular $\Longleftrightarrow \tau_{p} \Phi$ is angular for each $p \in M$
- $\mathcal{A}(M)$ angular curvature measures on M
- $\mathcal{L K}(M)$ algebra of intrinsic volumes on M

Angularity conjecture (Bernig-Fu-Solanes '15).

$$
\mathcal{L K}(M) \cdot \mathcal{A}(M) \subset \mathcal{A}(M) .
$$

Known to be true for

- $M=\mathbb{R}^{n}$ and translation-invariant angular curvature measures
- $M=\mathbb{C} P^{n}$ and isometry-invariant angular curvature measures

Angular curvature measures on Riemannian manifolds

M Riem. mfd.

- Φ smooth curvature on $M \Longleftrightarrow$ selecting smoothly a translation-invariant smooth curvature measure $\tau_{p} \Phi$ on each $T_{p} M$
- Φ is angular $\Longleftrightarrow \tau_{p} \Phi$ is angular for each $p \in M$
- $\mathcal{A}(M)$ angular curvature measures on M
- $\mathcal{L K}(M)$ algebra of intrinsic volumes on M

Angularity conjecture (Bernig-Fu-Solanes '15).

$$
\mathcal{L K}(M) \cdot \mathcal{A}(M) \subset \mathcal{A}(M) .
$$

Known to be true for

- $M=\mathbb{R}^{n}$ and translation-invariant angular curvature measures
- $M=\mathbb{C} P^{n}$ and isometry-invariant angular curvature measures

Theorem B. The angularity conjecture is true.

Valuations and curvature measures on manifolds

M oriented, n-dimensional, Riem. mfd.

Valuations and curvature measures on manifolds

M oriented, n-dimensional, Riem. mfd.
$\beta \in \Omega^{n-1}(S M), \gamma \in \Omega^{n}(M)$

Valuations and curvature measures on manifolds

M oriented, n-dimensional, Riem. mfd.
$\beta \in \Omega^{n-1}(S M), \gamma \in \Omega^{n}(M)$
$A \subset M$ compact submanifold with corners, $U \subset M$ Borel set

Valuations and curvature measures on manifolds

M oriented, n-dimensional, Riem. mfd.
$\beta \in \Omega^{n-1}(S M), \gamma \in \Omega^{n}(M)$
$A \subset M$ compact submanifold with corners, $U \subset M$ Borel set
$N(A) \subset S M$ normal cycle

Valuations and curvature measures on manifolds

M oriented, n-dimensional, Riem. mfd.
$\beta \in \Omega^{n-1}(S M), \gamma \in \Omega^{n}(M)$
$A \subset M$ compact submanifold with corners, $U \subset M$ Borel set $N(A) \subset S M$ normal cycle

The functional

$$
(A, U) \mapsto \int_{N(A) \cap \pi^{-1}(U)} \beta+\int_{A \cap U} \gamma
$$

is a smooth curvature measure,

Valuations and curvature measures on manifolds

M oriented, n-dimensional, Riem. mfd.
$\beta \in \Omega^{n-1}(S M), \gamma \in \Omega^{n}(M)$
$A \subset M$ compact submanifold with corners, $U \subset M$ Borel set
$N(A) \subset S M$ normal cycle
The functional

$$
(A, U) \mapsto \int_{N(A) \cap \pi^{-1}(U)} \beta+\int_{A \cap U} \gamma
$$

is a smooth curvature measure,

$$
A \mapsto \int_{N(A)} \beta+\int_{A} \gamma
$$

is a smooth valuation.
$\mathcal{V}(M), \mathcal{C}(M)$ smooth valuations and curvature measures

Intrinsic volumes on a Riemannian manifold

$f: M \rightarrow M^{\prime}$ smooth embedding of smooth mfds.

Intrinsic volumes on a Riemannian manifold

$f: M \rightarrow M^{\prime}$ smooth embedding of smooth mfds.
$f^{*}: \mathcal{V}\left(M^{\prime}\right) \rightarrow \mathcal{V}(M), f^{*}: \mathcal{C}\left(M^{\prime}\right) \rightarrow \mathcal{C}(M)$ are defined by

$$
\left(f^{*} \Phi\right)(P, U)=\Phi(f(P), f(U)), \quad\left(f^{*} \mu\right)(P)=\mu(f(P))
$$

Intrinsic volumes on a Riemannian manifold

$f: M \rightarrow M^{\prime}$ smooth embedding of smooth mfds.
$f^{*}: \mathcal{V}\left(M^{\prime}\right) \rightarrow \mathcal{V}(M), f^{*}: \mathcal{C}\left(M^{\prime}\right) \rightarrow \mathcal{C}(M)$ are defined by

$$
\left(f^{*} \Phi\right)(P, U)=\Phi(f(P), f(U)), \quad\left(f^{*} \mu\right)(P)=\mu(f(P))
$$

$f: M \rightarrow \mathbb{R}^{N}$ isometric embedding of Riem. mfd.

Intrinsic volumes on a Riemannian manifold

$f: M \rightarrow M^{\prime}$ smooth embedding of smooth mfds.
$f^{*}: \mathcal{V}\left(M^{\prime}\right) \rightarrow \mathcal{V}(M), f^{*}: \mathcal{C}\left(M^{\prime}\right) \rightarrow \mathcal{C}(M)$ are defined by

$$
\left(f^{*} \Phi\right)(P, U)=\Phi(f(P), f(U)), \quad\left(f^{*} \mu\right)(P)=\mu(f(P))
$$

$f: M \rightarrow \mathbb{R}^{N}$ isometric embedding of Riem. mfd.
$V_{i} i$ th intrinsic volume on \mathbb{R}^{N}

Intrinsic volumes on a Riemannian manifold

$f: M \rightarrow M^{\prime}$ smooth embedding of smooth mfds.
$f^{*}: \mathcal{V}\left(M^{\prime}\right) \rightarrow \mathcal{V}(M), f^{*}: \mathcal{C}\left(M^{\prime}\right) \rightarrow \mathcal{C}(M)$ are defined by

$$
\left(f^{*} \Phi\right)(P, U)=\Phi(f(P), f(U)), \quad\left(f^{*} \mu\right)(P)=\mu(f(P))
$$

$f: M \rightarrow \mathbb{R}^{N}$ isometric embedding of Riem. mfd.
$V_{i} i$ th intrinsic volume on \mathbb{R}^{N}

$$
V_{i}^{M}:=f^{*} V_{i}
$$

does not depend on the choice of embedding f (Weyl '39, Alesker '07)

Intrinsic volumes on a Riemannian manifold

$f: M \rightarrow M^{\prime}$ smooth embedding of smooth mfds.
$f^{*}: \mathcal{V}\left(M^{\prime}\right) \rightarrow \mathcal{V}(M), f^{*}: \mathcal{C}\left(M^{\prime}\right) \rightarrow \mathcal{C}(M)$ are defined by

$$
\left(f^{*} \Phi\right)(P, U)=\Phi(f(P), f(U)), \quad\left(f^{*} \mu\right)(P)=\mu(f(P))
$$

$f: M \rightarrow \mathbb{R}^{N}$ isometric embedding of Riem. mfd.
$V_{i} i$ th intrinsic volume on \mathbb{R}^{N}

$$
V_{i}^{M}:=f^{*} V_{i}
$$

does not depend on the choice of embedding f (Weyl '39, Alesker '07) $V_{i}{ }^{M}$ is the i th Lipschitz-Killing valuation or intrinsic volume on M.

Intrinsic volumes on a Riemannian manifold

$f: M \rightarrow M^{\prime}$ smooth embedding of smooth mfds.
$f^{*}: \mathcal{V}\left(M^{\prime}\right) \rightarrow \mathcal{V}(M), f^{*}: \mathcal{C}\left(M^{\prime}\right) \rightarrow \mathcal{C}(M)$ are defined by

$$
\left(f^{*} \Phi\right)(P, U)=\Phi(f(P), f(U)), \quad\left(f^{*} \mu\right)(P)=\mu(f(P))
$$

$f: M \rightarrow \mathbb{R}^{N}$ isometric embedding of Riem. mfd.
$V_{i} i$ th intrinsic volume on \mathbb{R}^{N}

$$
V_{i}^{M}:=f^{*} V_{i}
$$

does not depend on the choice of embedding f (Weyl '39, Alesker '07) $V_{i}{ }^{M}$ is the i th Lipschitz-Killing valuation or intrinsic volume on M. $\mathcal{L} \mathcal{K}(M) \subset \mathcal{V}(M)$ span of the Lipschitz-Killing valuations

Alesker product

Theorem (Alesker '04, Alesker '10, Alesker-Fu 08', Alesker-Bernig '12, Bernig-Fu-Solanes '15).

Alesker product

Theorem (Alesker '04, Alesker '10, Alesker-Fu 08', Alesker-Bernig '12, Bernig-Fu-Solanes '15).

- $\mathcal{V}(M)$ is naturally a commutative algebra with the Euler characteristic χ as multiplicative identity

Alesker product

Theorem (Alesker '04, Alesker '10, Alesker-Fu 08', Alesker-Bernig '12, Bernig-Fu-Solanes '15).

- $\mathcal{V}(M)$ is naturally a commutative algebra with the Euler characteristic χ as multiplicative identity
- $\mathcal{V}(M)$ acts on $\mathcal{C}(M)$ in a natural way compatible with the product of valuations

Alesker product

Theorem (Alesker '04, Alesker '10, Alesker-Fu 08', Alesker-Bernig '12, Bernig-Fu-Solanes '15).

- $\mathcal{V}(M)$ is naturally a commutative algebra with the Euler characteristic χ as multiplicative identity
- $\mathcal{V}(M)$ acts on $\mathcal{C}(M)$ in a natural way compatible with the product of valuations
- if $f: M \rightarrow M^{\prime}$ is a smooth immersion and $\mu, \nu \in \mathcal{V}\left(M^{\prime}\right), \Psi \in \mathcal{C}\left(M^{\prime}\right)$ then

$$
\left(f^{*} \mu\right) \cdot\left(f^{*} \nu\right)=f^{*}(\mu \cdot \nu), \quad\left(f^{*} \mu\right) \cdot\left(f^{*} \Psi\right)=f^{*}(\mu \cdot \Psi)
$$

Angular curvature measures

Angularity conjecture (Bernig-Fu-Solanes '15).

$$
\mathcal{L K}(M) \cdot \mathcal{A}(M) \subset \mathcal{A}(M)
$$

Angular curvature measures

Angularity conjecture (Bernig-Fu-Solanes '15).

$$
\mathcal{L K}(M) \cdot \mathcal{A}(M) \subset \mathcal{A}(M) .
$$

Theorem B. The angularity conjecture is true.

Angular curvature measures

Angularity conjecture (Bernig-Fu-Solanes '15).

$$
\mathcal{L K}(M) \cdot \mathcal{A}(M) \subset \mathcal{A}(M)
$$

Theorem B. The angularity conjecture is true.

Theorem C. If $f: M \rightarrow M^{\prime}$ is an isometric immersion of Riem. mfds, then

$$
f^{*} \mathcal{A}\left(M^{\prime}\right) \subset \mathcal{A}(M)
$$

Alesker product

Theorem (Fu '16). Suppose $X \subset M$ is a compact submanifold with corners, and $T \times M \rightarrow M$ is a smooth proper family of diffeomorphisms $\varphi_{t}: M \rightarrow M, t \in T$, equipped with a smooth measure $d t$. Suppose further that the map $T \times S^{*} M \rightarrow S^{*} M$, induced by the derivative maps $\varphi_{t *}: S^{*} M \rightarrow S^{*} M$, is a submersion. Then

$$
\mu(P)=\int_{T} \chi\left(\varphi_{t}(X) \cap P\right) d t
$$

defines a smooth valuation on M. Given $\nu \in \mathcal{V}(M), \Psi \in \mathcal{C}(M)$ we have

$$
\begin{aligned}
(\mu \cdot \nu)(P) & =\int_{T} \nu\left(\varphi_{t}(X) \cap P\right) d t \\
(\mu \cdot \Psi)(P, E) & =\int_{T} \Psi\left(\varphi_{t}(X) \cap P, E\right) d t
\end{aligned}
$$

