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P C R” convex polytope, U C R™ Borel set

®;(P,U) =) _~(F,P)voy(FNU), i=0,...,n
F

Here

Y(F, P) = voly_k_1(NePNS™™ ) Jwp_k_1

is the external angle

sets of positive reach (Federer ’59)

unions of sets of positive reach (Zahle '87)
subanalytic sets (Fu '94)

wdc sets (Pokorny-Rataj ’13, Fu-Pokorny-Rataj '17)
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» Val(R™) continuous translation-invariant valuations on /C(R"™)
» u € Val(R™) smooth valuation <>

u(K)z/N(K)w/Kn

» N(K)C SR™=R" x S~ normal cycle of K
= manifold of outward unit normals to X
= Qn—l(SRn)tr, n c Qn(Rn)tr

» N (K ) exists for sets of positive reach, subanalytic sets, wdc sets,. . .

» smooth valuations are dense in Val(R"™) (Alesker '01)
» ® smooth curvature measure <—=-

(A U) = / w+ n
N(A)Nz=1(U) ANU
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Question. For which f does

o(PU) = Zf(?)’}/(F,P)VOIi(FﬂU),
F

extend to a smooth curvature measure on R™?

Every such curvature measure is called angular.

Remark.

» ;=n— 1: any smooth f defines an angular curvature measure
» 0 <17 < n— 1: constant coefficient curvature measures are angular
(Bernig-Fu-Solanes ’'15)
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Ni(A) C TR™ =R"™ x R™ normal disc current

= manifold of outward normals to A of length at most 1

N (A) exists for sets of positive reach, subanalytic sets, wdc sets. ..
we A" (R"®R")* C Q" (R"HR")

every constant coefficient curvature measure is a smooth curvature
measure
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Remark.
» Federer’s curvature measures are constant coefficient
» Hermitian integral geometry provides further geometrically interesting
examples
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Grassmannians and the Plicker embedding

Gr;(R™) Grassmannian of oriented i-dim linear subspaces

v

A function f on @Z(R”) is even if f is invariant under change of
orientation

v

Even functions on (Tri(R") correspond bijectively to functions on
Gr;(R™) Grassmannian of i-dim linear subspaces

v

the Pliicker embedding E — e1 A - -+ A e; embeds Gr; (R™) into A'R™.

v
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Classification of angular curvature measures

Theorem A. Let 0 <i <n—1and f be a function on Gr;(R™). Then

Zf y(F, P)vol;(FNU)

extends to a smooth curvature measure on R <= f is the restriction of a
2-homogeneous polynomial to the image of the Pliicker embedding.
Consequently, the space of angular curvature measures of degree 7 has

1 n\[(n+1
n—it+1\2 1+ 1

and coincides with the space of constant coefficient curvature measures.

dimension
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Steps in the proof of Theorem A

Proposition. Let 1 <i <n—1and f be an even continuous function on
Gr;(IR™). Suppose that for every nonzero v € R™ there exists a
2-homogeneous polynomial ¢ on A‘v' such f = g on Gr;(vt) € Alwt.
Then there exists a 2-homogeneous polynomial p on A'R" such that f=pon
Gr;(R™) ¢ A'R™

v

Strategy to prove the Proposition.The subspace W spanned by all such f is
an SO(n)-submodule. Check the claim for the highest weight vectors of irred.
SO(n)-submodules in TV. O

v

Proof of Theorem A. If

®(P,U)=>_ f(F)v(F,P)voly(FNU)
F

defines an angular curvature measure, then f satisfies the hypothesis of the
Proposition. OJ

v
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M Riem. mfd.
» & smooth curvature on M <> selecting smoothly a translation-invariant
smooth curvature measure 7,® on each T, M
» & is angular <= 7, is angular for each p € M
» A(M) angular curvature measures on M
» LIC(M) algebra of intrinsic volumes on M

Angularity conjecture (Bernig-Fu-Solanes '15).

LK(M)- A(M) C AM).

Known to be true for
» M =R" and translation-invariant angular curvature measures
» M = CP"™ and isometry-invariant angular curvature measures

Theorem B. The angularity conjecture is true.
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M oriented, n-dimensional, Riem. mfd.

BeQHSM), v Q¥ (M)

A C M compact submanifold with corners, U C M Borel set
N(A) C SM normal cycle

The functional

Ay~ | g+ [ 4
N(A)NT—1(U) ANU

is a smooth curvature measure,

A 6+/’y
N(A) A

is a smooth valuation.

V(M), C(M) smooth valuations and curvature measures
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f: M — M’ smooth embedding of smooth mfds.
[ V(M) = V(M), f*: C(M'") — C(M) are defined by

(f*@)(P,U) = 2(f(P), f(U)),  (f*w)(P)=pu(f(P))

f: M — R isometric embedding of Riem. mfd.
V; ith intrinsic volume on RY
VM=
does not depend on the choice of embedding f (Weyl '39, Alesker '07)

V.M is the ith Lipschitz-Killing valuation or intrinsic volume on M.

LIC(M) C V(M) span of the Lipschitz-Killing valuations
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Alesker product

Theorem (Alesker 04, Alesker 10, Alesker-Fu 08’, Alesker-Bernig ’12,
Bernig-Fu-Solanes ’15).

» V(M) is naturally a commutative algebra with the Euler characteristic x
as multiplicative identity

» V(M) acts on C(M) in a natural way compatible with the product of
valuations

» if f: M — M’ is a smooth immersion and u,v € V(M'), ¥ € C(M')
then

(fw)-(fv)=f(u-v), (Fp)-(F9) = (p-9).
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Theorem B. The angularity conjecture is true.




Angular curvature measures

Angularity conjecture (Bernig-Fu-Solanes '15).

LK(M)- A(M) C AM).

Theorem B. The angularity conjecture is true.

Theorem C. If f: M — M’ is an isometric immersion of Riem. mfds, then

FRAM'Y C AM).




Alesker product

Theorem (Fu '16). Suppose X C M is a compact submanifold with corners,
and T'x M — M is a smooth proper family of diffeomorphisms

wr: M — M, t €T, equipped with a smooth measure dt. Suppose further
that the map 7" x S*M — S*M, induced by the derivative maps
Y 2 S*M — S* M, is a submersion. Then

w(P) = [ x(e(X)NP)dt
defines a smooth valuation on M. Given v € V(M ),V € C(M) we have

(u0)(P) = [ vex)n Pyt

(- )(P.E) = [ W(@(X)NP.B)t.




