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Federer’s curvature measures

P ⊂ Rn convex polytope, U ⊂ Rn Borel set

Φi(P,U) =
∑
F

γ(F,P )voli(F ∩U), i= 0, . . . ,n

Here

γ(F,P ) = voln−k−1(NFP ∩Sn−1)/ωn−k−1

is the external angle

I sets of positive reach (Federer ’59)
I unions of sets of positive reach (Zähle ’87)
I subanalytic sets (Fu ’94)
I wdc sets (Pokorny-Rataj ’13, Fu-Pokorny-Rataj ’17)
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Consider
Φ(P,U) =

∑
F

f(F )γ(F,P )voli(F ∩U),

I f : Gri(Rn)→ R
I F translate of the affine hull of F containing o

Question. For which f does Φ extend to a curvature measure on Rn?

Every such curvature measure is called angular.
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Valuations

Observation. For every f

Φ(P,U) =
∑
F

f(F )γ(F,P )voli(F ∩U)

is a valuation on polytopes.

Characterization as valuations

I intrinsic volumes (Hadwiger ’57, Klain ’95)
I area measures (Schneider ’76)
I Federer’s curvature measures (Schneider ’78)
I affine surface area (Ludwig-Reitzner ’99)
I projection body, centroid body, intersection body (Ludwig ’06, ’10)

Alesker, Abardia, Bernig, Böröczky, Colesanti, Faifman, Haberl, Li, Ma,
Parapatits, Saorin Gomez, Schuster, Wannerer,. . .
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Alesker, Abardia, Bernig, Böröczky, Colesanti, Faifman, Haberl, Li, Ma,
Parapatits, Saorin Gomez, Schuster, Wannerer,. . .



Valuations

Observation. For every f

Φ(P,U) =
∑
F

f(F )γ(F,P )voli(F ∩U)

is a valuation on polytopes.

Characterization as valuations

I intrinsic volumes (Hadwiger ’57, Klain ’95)
I area measures (Schneider ’76)

I Federer’s curvature measures (Schneider ’78)
I affine surface area (Ludwig-Reitzner ’99)
I projection body, centroid body, intersection body (Ludwig ’06, ’10)
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Smooth valuations and curvature measures

I Val(Rn) continuous translation-invariant valuations on K(Rn)

I µ ∈Val(Rn) smooth valuation⇐⇒

µ(K) =
∫
N(K)

ω+
∫
K
η

I N(K)⊂ SRn = Rn×Sn−1 normal cycle of K
= manifold of outward unit normals to K

I ω ∈ Ωn−1(SRn)tr, η ∈ Ωn(Rn)tr

I N(K) exists for sets of positive reach, subanalytic sets, wdc sets,. . .

I smooth valuations are dense in Val(Rn) (Alesker ’01)
I Φ smooth curvature measure⇐⇒

Φ(A,U) =
∫
N(A)∩π−1(U)

ω+
∫
A∩U

η
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Question. For which f does

Φ(P,U) =
∑
F

f(F )γ(F,P )voli(F ∩U),

extend to a smooth curvature measure on Rn?

Every such curvature measure is called angular.

Remark.

I i= n−1: any smooth f defines an angular curvature measure
I 0≤ i < n−1: constant coefficient curvature measures are angular

(Bernig-Fu-Solanes ’15)
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Φ constant coefficient curvature measure

⇐⇒

Φ(A,U) =
∫
N1(A)∩π−1(U)

ω

I N1(A)⊂ TRn = Rn×Rn normal disc current
= manifold of outward normals to A of length at most 1

I N1(A) exists for sets of positive reach, subanalytic sets, wdc sets. . .
I ω ∈∧n(Rn⊕Rn)∗ ⊂ Ωn(Rn⊕Rn)
I every constant coefficient curvature measure is a smooth curvature

measure

Remark.

I Federer’s curvature measures are constant coefficient
I Hermitian integral geometry provides further geometrically interesting

examples
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Grassmannians and the Plücker embedding

I G̃ri(Rn) Grassmannian of oriented i-dim linear subspaces

I A function f on G̃ri(Rn) is even if f is invariant under change of
orientation

I Even functions on G̃ri(Rn) correspond bijectively to functions on
Gri(Rn) Grassmannian of i-dim linear subspaces

I the Plücker embedding E 7→ e1∧·· ·∧ei embeds G̃ri(Rn) into∧iRn.
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Classification of angular curvature measures

Theorem A. Let 0≤ i < n−1 and f be a function on Gri(Rn).

Then

Φ(P,U) =
∑
F

f(F )γ(F,P )voli(F ∩U)

extends to a smooth curvature measure on Rn⇐⇒ f is the restriction of a
2-homogeneous polynomial to the image of the Plücker embedding.
Consequently, the space of angular curvature measures of degree i has

dimension
1

n− i+ 1

(
n

i

)(
n+ 1
i+ 1

)
and coincides with the space of constant coefficient curvature measures.
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Steps in the proof of Theorem A

Proposition. Let 1≤ i < n−1 and f be an even continuous function on
G̃ri(Rn).

Suppose that for every nonzero v ∈ Rn there exists a
2-homogeneous polynomial q on∧iv⊥ such f = q on G̃ri(v⊥)⊂∧iv⊥.
Then there exists a 2-homogeneous polynomial p on∧iRn such that f = p on
G̃ri(Rn)⊂∧iRn.

Strategy to prove the Proposition.The subspace W spanned by all such f is
an SO(n)-submodule. Check the claim for the highest weight vectors of irred.
SO(n)-submodules in W .

Proof of Theorem A. If

Φ(P,U) =
∑
F

f(F )γ(F,P )voli(F ∩U)

defines an angular curvature measure, then f satisfies the hypothesis of the
Proposition.
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Angular curvature measures on Riemannian manifolds

M Riem. mfd.

I Φ smooth curvature on M ⇐⇒ selecting smoothly a translation-invariant
smooth curvature measure τpΦ on each TpM

I Φ is angular⇐⇒ τpΦ is angular for each p ∈M
I A(M) angular curvature measures on M
I LK(M) algebra of intrinsic volumes on M

Angularity conjecture (Bernig-Fu-Solanes ’15).

LK(M) ·A(M)⊂A(M).

Known to be true for

I M = Rn and translation-invariant angular curvature measures
I M = CPn and isometry-invariant angular curvature measures

Theorem B. The angularity conjecture is true.
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Valuations and curvature measures on manifolds

M oriented, n-dimensional, Riem. mfd.

β ∈ Ωn−1(SM), γ ∈ Ωn(M)
A⊂M compact submanifold with corners, U ⊂M Borel set
N(A)⊂ SM normal cycle

The functional
(A,U) 7→

∫
N(A)∩π−1(U)

β+
∫
A∩U

γ

is a smooth curvature measure,

A 7→
∫
N(A)

β+
∫
A
γ

is a smooth valuation.

V(M), C(M) smooth valuations and curvature measures
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Intrinsic volumes on a Riemannian manifold

f : M →M ′ smooth embedding of smooth mfds.

f∗ : V(M ′)→V(M), f∗ : C(M ′)→C(M) are defined by

(f∗Φ)(P,U) = Φ(f(P ),f(U)), (f∗µ)(P ) = µ(f(P ))

f : M → RN isometric embedding of Riem. mfd.

Vi ith intrinsic volume on RN

VM
i := f∗Vi

does not depend on the choice of embedding f (Weyl ’39, Alesker ’07)

VM
i is the ith Lipschitz-Killing valuation or intrinsic volume on M .

LK(M)⊂ V(M) span of the Lipschitz-Killing valuations
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Alesker product

Theorem (Alesker ’04, Alesker ’10, Alesker-Fu 08’, Alesker-Bernig ’12,
Bernig-Fu-Solanes ’15).

I V(M) is naturally a commutative algebra with the Euler characteristic χ
as multiplicative identity

I V(M) acts on C(M) in a natural way compatible with the product of
valuations

I if f : M →M ′ is a smooth immersion and µ,ν ∈ V(M ′),Ψ ∈ C(M ′)
then

(f∗µ) · (f∗ν) = f∗(µ ·ν), (f∗µ) · (f∗Ψ) = f∗(µ ·Ψ).
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Angular curvature measures

Angularity conjecture (Bernig-Fu-Solanes ’15).

LK(M) ·A(M)⊂A(M).

Theorem B. The angularity conjecture is true.

Theorem C. If f : M →M ′ is an isometric immersion of Riem. mfds, then

f∗A(M ′)⊂A(M).
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Alesker product

Theorem (Fu ’16). Suppose X ⊂M is a compact submanifold with corners,
and T ×M →M is a smooth proper family of diffeomorphisms
ϕt :M →M, t ∈ T , equipped with a smooth measure dt. Suppose further
that the map T ×S∗M → S∗M , induced by the derivative maps
ϕt∗ : S∗M → S∗M , is a submersion. Then

µ(P ) =
∫
T
χ(ϕt(X)∩P )dt

defines a smooth valuation on M . Given ν ∈ V(M),Ψ ∈ C(M) we have

(µ ·ν)(P ) =
∫
T
ν(ϕt(X)∩P )dt,

(µ ·Ψ)(P,E) =
∫
T

Ψ(ϕt(X)∩P,E)dt.


