Reciprocity and Indicatrices in Convexity

Vitali Milman
(joint work with E. Milman and L. Rotem)
Tel-Aviv University

Spain, September 2018

$1 / K$ vs. K°

We often discussed that the polar body K° may/should be visualized ("identified") with $1 / K$. Let us directly construct this function " $1 / K$ ". We fixed a scalar product and $0 \in K$. Then

$$
K^{\circ}=\left\{x \in \mathbb{R}^{n} \mid(x, y) \leq 1 \text { for } \forall y \in K\right\}
$$

For hyperplane
$H_{r}(\theta)=\{(x, \theta)=r\}, \theta \in S^{n-1}$, which supports the body K and has the distance r from 0 , take another parallel hyperplane on the distance 1 / r from 0 .
Consider the half-space $H_{1 / r}^{-}(\theta)$ containing 0 .

Then

$$
K^{\prime}=\bigcap_{\theta} H_{1 / r}^{-}(\theta) .
$$

Let us call K^{\prime} a reciprocal body of K.
Then $K^{\prime} \subseteq K^{\circ}$ and $K^{\prime \prime} \supseteq K$. Also $K^{\prime \prime \prime}=K^{\prime}$, i.e.
Fact 1. K^{\prime} is the duality on the image of this operation, i.e. on the family of reciprocal bodies.
So, \exists a different "duality" on \mathbb{R}^{n} but which is not surjective.
Note:

$$
K=K^{\prime} \Longleftrightarrow K=B_{2}^{n} .
$$

(For us K^{\prime} is not a familiar body for most K.)
Note:
(i) $K^{\prime}=K^{\circ} \Leftrightarrow B_{2}^{n}$;
(ii) $K^{\circ \prime} \subset K \subset K^{\prime \circ}$;
and equality holds from either side implies $K=B_{2}^{n}$.
In the next pictures: the started "chain" body K is in blue, K° orange, $K^{\prime}-$ green and $K^{\prime \prime}-$ red.

Let us introduce an alternative description for K^{\prime}. Introduce first the indicatrix K^{*} of the family of supporting functionals $\left\{h_{K}(\theta)\right\}$, $\theta \in S^{n-1}$:

The radial function $r_{K^{*}}(\theta)=h_{K}(\theta) . K^{*}$ is the star body, $K^{*} \supseteq K$ and $K^{*}=K \Leftrightarrow K=B_{2}^{n}$.
Fact 2. $\forall K,\left(K^{*}\right)^{\circ}=K^{\prime}$
Let us introduce our notation (in the style of operators):

$$
\begin{gathered}
\circ: K \rightarrow K^{\circ}\left(\text { i.e. } \circ K \equiv K^{\circ}\right) \\
: K \rightarrow K^{}\left(\text { i.e. } * K \equiv K^{*}\right) \\
\prime: K \rightarrow K^{\prime}\left(\text { i.e. } \prime K \equiv K^{\prime}\right)
\end{gathered}
$$

Theorem 1
Let $A^{\prime}=B^{\prime}(=K)$ for convex A and B. Then
$(\lambda A+(1-\lambda) B)^{\prime}=K, \forall \lambda: 0 \leq \lambda \leq 1$.
Let $K^{\prime}=T$. Define by $D(T)$ the family of all convex bodies $\{A\}$ s.t. $A^{\prime}=T$.

Theorem 1a

1. $\forall T, D(T)$ is a closed convex subset of \mathcal{K}_{0}.
2. $\forall T$, s.t. $D(T) \neq \varnothing, T^{\prime}$ is the maximal in $D(T)$, if K s.t. $K^{\prime}=T$ then $K \subset T^{\prime}$.
(See picture of the cube.)

Fact 3. $\forall K$, convex, $0 \in K$,

$$
K^{*}=\cup\left\{B_{x} \mid x \in \partial K\right\} \equiv \cup\left\{B_{x} \mid x \in K\right\}
$$

where B_{x} is the euclidean ball centered at $x / 2$ and radius $|x| / 2$ (i.e. $B(x / 2,|x| / 2)$), i.e. the interval $[0, x)$ is the diameter of B_{x}.

So each B_{x} passes through 0 .
For interval $I=[0, x], I^{*}=B_{x}$.
(In the next pictures the body K is blue and K^{*} is orange.)
We also extend the operation $*$ to the class of star-bodies. For A-star-body

$$
* A:=A^{*}=\cup\left\{B_{x} \mid x \in A\right\} .
$$

Characterization of reciprocal bodies

Theorem 2
Given convex $K, 0 \in K, \exists A$, s.t. $A^{\prime}=K$ (i.e. K is reciprocal) iff K^{*} is convex.
So reciprocal bodies are "more convex" than others. I like to see it as doubly convex bodies. Let us provide an example of their use. Let E be a subspace and Pr_{E} means the orthogonal projection on E.

Corollary

$\left(\operatorname{Pr}_{E} K\right)^{\prime}=\operatorname{Pr}_{E} K^{\prime}$ for reciprocal body K (and only such K-th).
Proof. Note $\left(\operatorname{Pr}_{E} K\right)^{*}=K^{*} \cap E$. (Check)
As K^{*} is convex, then

$$
\left(\operatorname{Pr}_{E} K\right)^{\prime}=\left(\left(\operatorname{Pr}_{E} K\right)^{*}\right)^{\circ}=\left(K^{*} \cap E\right)^{\circ}=\operatorname{Pr}_{E}\left(K^{*}\right)^{\circ}=\operatorname{Pr}_{E} K^{\prime}
$$

To present a sketch of the proof of the Theorem we need more operations.

Consider spherical inversion I

$$
I(x)=x /|x|^{2} \quad x \neq 0 \in \mathbb{R}^{n}
$$

and ϕ is a map on star-bodies in \mathbb{R}^{n} s.t.

$$
\phi(A)=\overline{\{I x \mid x \notin A\}} \text { - the closure of the image of } A^{c} .
$$

On star-bodies ϕ is an involution and duality: if $r_{A}(\theta)=\sup \{\lambda>0: \lambda \theta \in A\}$-radial function of A, then $r_{\phi A}=1 / r_{A}$.
More operator-type notation:

$$
\phi: A \rightarrow \phi(A) ; \quad \circ \circ: A \rightarrow \operatorname{conv} A \quad\left(\circ \circ A:=\left(A^{\circ}\right)^{\circ}=\operatorname{conv} A\right)
$$

Note, operation ϕ does not preserve convexity. It maps a euclidean ball to balls (may be degenerated). In particular,

$$
\phi\left(B_{x}\right) \text { is (a low) half space (affine) }
$$

perpendicular to the ray $\{\lambda x \mid \lambda \geq 0\}$ at $x /|x|^{2}$.

There follows
Fact 4. $\phi *=\circ$ (for any star body), i.e.

$$
\phi\left(K^{*}\right)=K^{\circ} \quad \text { or } \quad K^{*}=\phi\left(K^{\circ}\right)
$$

(Remember, ϕ is a "local" map.)
This implies that for convex bodies (put K° instead of K)

$$
\phi * \circ=\mathrm{Id} \Longrightarrow * \circ=\phi
$$

Fact 4a.

$$
* \circ=\phi \text { on some } K \Longleftrightarrow K \text { is convex. }
$$

Corollary

Let $* K\left(=K^{*}\right)$ convex (for convex K). Then $* \circ *=\phi *=0$.
But $\circ * K=K^{\prime}$, i.e. $\left(K^{\prime}\right)^{*}=K^{\circ}$. Take $\circ \Rightarrow$

$$
K^{\prime \prime}=\left(K^{\prime}\right)^{* \circ}=K
$$

So K^{*}-convex implies K is reciprocal ("easy" part of the theorem).

Some relations we have till now:

$$
\begin{aligned}
* & =\phi \circ & & \\
* \circ & =\phi & & \text { (on convex bodies) } \\
\circ * & =\prime & & \left(K^{*}\right)^{\circ}=K^{\prime} \\
\phi * & =\circ & & \phi\left(K^{*}\right)=K^{\circ} .
\end{aligned}
$$

Also $\circ \circ K=$ Conv K and (as an example)
$* \operatorname{Conv} * K=* \circ \circ * K=\phi \circ * K=\phi \circ \phi \phi * K=\phi \circ \phi \circ K=K^{* *}$.
Moreover, $*$ Conv $K=* K$ ($\forall K$-starbody).
And a Corollary of Fact 4:
For K-convex $(0 \in K) \phi K$ is also convex iff K° is reciprocal.

Proof of the characterization theorem

Lemma

Let K be any convex body $0 \in K$. Consider the subset

$$
T=\bigcup\{B(x,|x|) \text { and } B(x,|x|) \subset K\}
$$

(so any such ball passes through 0 and is in K). Then T is a convex subset of K.
(Surprising! But that said - easy.)
Note that $T=\phi \circ \circ \phi K:=\phi \operatorname{Conv} \phi K$.
(Formal checking: $\phi \partial B(x,|x|)$ is a hyperplane outside K^{*}.)

Using this lemma let us prove Theorem 2.

Proof.

We want to show that $K^{\prime \prime}=K \Rightarrow K^{*}$ convex. This means $K^{\prime \prime}:=0 * 0 * K=K$.

$$
\begin{gathered}
(\text { act by } *) \Rightarrow * \circ * \circ * K=* K \\
(\text { use } *=\phi \circ) * \circ \phi \circ \circ \phi \circ K=* K \\
* \circ[\phi \circ \circ \phi] \circ K=* K
\end{gathered}
$$

and $* \circ=\phi$ on convex sets, but, by the lemma, $\phi \circ \circ \phi(\circ K)$ convex,
$\phi \phi \circ \circ \phi \circ K=* K \Rightarrow \circ \circ \phi \circ K=* K$
which means $\operatorname{Conv}(* K)=* K($ recall $\phi \circ=*)$.

The above proof is not intuitive.
Let us see some intuition behind on one example.
Let $A \in D(T)$, i.e. $A^{\prime}=T$. Then $T^{\prime \prime}=T$ and $T^{\prime} \in D(T)$.
Recall T^{\prime} is a maximal set in $D(T): A \subset T^{\prime}$. If $A \neq T^{\prime}$, then it is not reciprocal (because otherwise $A=A^{\prime \prime}=T^{\prime}$).

So, if K^{*} is not convex we would like to find another body K_{1} s.t. $K \subsetneq K_{1}$ but Conv $K_{1}^{*}=$ Conv K^{*} and then $K_{1}^{\prime}=K^{\prime}$, i.e. K is not reciprocal.

Example: Our K is an ellipsoid E and $K_{1}=\operatorname{Conv}(E \cup I), I$ is a special interval (see picture).
The last needed fact is
Fact 5. $[\operatorname{Conv}(K \cup T)]^{*}=K^{*} \cup T^{*}$
This fact and example demonstrate how lack of convexity of K^{*} is used to prove that K is not reciprocal.

Additions

Proof of the Lemma. Let $B_{i}=B_{i}\left(x_{i},\left|x_{i}\right|\right) \subseteq K, i=1,2$.
Let $a_{i} \in B_{i}$. We should show that $\forall \lambda, 0<\lambda<1, \exists$ a ball $B \subseteq K$ from our family of balls and $\lambda a_{i}+(1-\lambda) a_{2} \in B$.

We will prove that $\forall z \in \operatorname{Conv}\left(B_{1}, B_{2}\right):=A, \exists$ such a ball $B \subset A(\subseteq K)$ and $z \in B$.

Set $\quad A=\bigcup_{\lambda \in[0,1]}\left\{(1-\lambda) B_{1}+\lambda B_{2}\right\}$

$$
=\bigcup_{\lambda} B\left((1-\lambda) x_{1}+\lambda x_{2},(1-\lambda)\left|x_{1}\right|+\lambda\left|x_{2}\right|\right)
$$

Then $\exists \lambda$ and $z \in B\left((1-\lambda) x_{1}+\lambda x_{2},(1-\lambda)\left|x_{1}\right|+\lambda\left|x_{2}\right|\right)=B^{1}$, and $0 \in B^{1}$ ball. Then \exists a ball \widetilde{B} inside this ball $B^{1}(\subseteq K)$ s.t. $0 \in \partial \widetilde{B}, z \in \widetilde{B}$.

More additions and an application

Facts:

1. Let B be a euclidean ball, $0 \in B$. Then B-indicatrix (of some ellipsoid) and B° is reciprocal. If 0 is not the center B then B is not reciprocal.
2. If K and T are reciprocal then $\left(K^{\circ}+T^{\circ}\right)^{\circ}$ is also reciprocal.
3. IF K and T are convex, such that $\phi(K)$ and $\phi(T)$ are convex, then $\phi(K+T)$ is also convex.
