Reciprocity and Indicatrices in Convexity

Vitali Milman (joint work with E. Milman and L. Rotem) Tel-Aviv University

Spain, September 2018

1/K vs. K°

We often discussed that the polar body K° may/should be visualized ("identified") with 1/K. Let us directly construct this function "1/K". We fixed a scalar product and $0 \in K$. Then

$$\mathcal{K}^\circ = \left\{ x \in \mathbb{R}^n \mid (x, y) \leq 1 ext{ for } orall y \in \mathcal{K}
ight\}.$$

For hyperplane $H_r(\theta) = \{(x, \theta) = r\}, \theta \in S^{n-1},$ which supports the body K and has the distance r from 0, take another parallel hyperplane on the distance 1/r from 0. Consider the half-space $H_{1/r}^-(\theta)$ containing 0. Then

$$K' = \bigcap_{\theta} H^{-}_{1/r}(\theta).$$

Let us call K' a reciprocal body of K.

Then $K' \subseteq K^{\circ}$ and $K'' \supseteq K$. Also K''' = K', i.e.

Fact 1. K' is the duality on the image of this operation, i.e. on the family of reciprocal bodies.

So, \exists a different "duality" on \mathbb{R}^n but which is not surjective. Note:

$$K = K' \iff K = B_2^n.$$

(For us K' is not a familiar body for most K.) Note:

(i) $K' = K^{\circ} \Leftrightarrow B_2^n$; (ii) $K^{\circ'} \subset K \subset K'^{\circ}$;

and equality holds from either side implies $K = B_2^n$.

In the next pictures: the started "chain" body K is in blue, K° – orange, K' – green and K'' – red.

Let us introduce an alternative description for K'. Introduce first the indicatrix K^* of the family of supporting functionals $\{h_K(\theta)\}, \theta \in S^{n-1}$:

The radial function $r_{K^*}(\theta) = h_K(\theta)$. K^* is the star body, $K^* \supseteq K$ and $K^* = K \Leftrightarrow K = B_2^n$.

Fact 2.
$$\forall K$$
, $(K^*)^\circ = K'$!

Let us introduce our notation (in the style of operators):

$$\circ: K \to K^{\circ} \text{ (i.e. } \circ K \equiv K^{\circ})$$

: $K \to K^{} \text{ (i.e. } *K \equiv K^{*})$
 $\prime: K \to K' \text{ (i.e. } \prime K \equiv K')$

Theorem 1 Let A' = B'(=K) for convex A and B. Then $(\lambda A + (1 - \lambda)B)' = K, \forall \lambda : 0 \le \lambda \le 1.$

Let K' = T. Define by D(T) the family of all convex bodies $\{A\}$ s.t. A' = T.

Theorem 1a

1. \forall T, D(T) is a closed convex subset of \mathcal{K}_0 .

2. $\forall T$, s.t. $D(T) \neq \emptyset$, T' is the maximal in D(T), if K s.t. K' = T then $K \subset T'$.

(See picture of the cube.)

Fact 3. $\forall K$, convex, $0 \in K$,

$$K^* = \cup \{B_x \mid x \in \partial K\} \equiv \cup \{B_x \mid x \in K\}$$

where B_x is the euclidean ball centered at x/2 and radius |x|/2(i.e. B(x/2, |x|/2)), i.e. the interval [0, x) is the diameter of B_x . So each B_x passes through 0.

For interval I = [0, x], $I^* = B_x$.

(In the next pictures the body K is blue and K^* is orange.)

We also extend the operation * to the class of star-bodies. For A-star-body

$$*A:=A^*=\cup\{B_x\mid x\in A\}.$$

Characterization of reciprocal bodies

Theorem 2

Given convex K, $0 \in K$, $\exists A$, s.t. A' = K (i.e. K is reciprocal) iff K^* is convex.

So reciprocal bodies are "more convex" than others. I like to see it as *doubly* convex bodies. Let us provide an example of their use.

Let E be a subspace and \Pr_E means the orthogonal projection on E.

Corollary

 $(\Pr_E K)' = \Pr_E K'$ for reciprocal body K (and only such K-th). Proof. Note $(\Pr_E K)^* = K^* \cap E$. (Check)

As K^* is convex, then

$$(\operatorname{Pr}_{\boldsymbol{E}}\boldsymbol{K})' = \left((\operatorname{Pr}_{\boldsymbol{E}}\boldsymbol{K})^*\right)^\circ = (\boldsymbol{K}^* \cap \boldsymbol{E})^\circ = \operatorname{Pr}_{\boldsymbol{E}}(\boldsymbol{K}^*)^\circ = \operatorname{Pr}_{\boldsymbol{E}}\boldsymbol{K}'.$$

To present a sketch of the proof of the Theorem we need more operations.

Consider spherical inversion I

$$I(x) = x/|x|^2 \qquad x \neq 0 \in \mathbb{R}^n$$

and ϕ is a map on star-bodies in \mathbb{R}^n s.t.

$$\phi(A) = \overline{\{Ix \mid x \notin A\}} \ \text{ - the closure of the image of } A^c.$$

On star-bodies ϕ is an involution and duality: if $r_A(\theta) = \sup\{\lambda > 0 : \lambda \theta \in A\}$ -radial function of A, then $r_{\phi A} = 1/r_A$.

More operator-type notation:

$$\phi: A \to \phi(A); \quad \circ \circ : A \to \operatorname{conv} A \quad (\circ \circ A := (A^\circ)^\circ = \operatorname{conv} A).$$

Note, operation ϕ does not preserve convexity. It maps a euclidean ball to balls (may be degenerated). In particular,

 $\phi(B_x)$ is (a low) half space (affine) perpendicular to the ray $\{\lambda x \mid \lambda \ge 0\}$ at $x/|x|^2$. There follows

Fact 4. $\phi * = \circ$ (for any star body), i.e. $\phi(K^*) = K^\circ \text{ or } K^* = \phi(K^\circ).$

(Remember, ϕ is a "local" map.)

This implies that for convex bodies (put K° instead of K)

$$\phi * \circ = \mathrm{Id} \Longrightarrow * \circ = \phi.$$

Fact 4a.

$$* \circ = \phi$$
 on some $K \iff K$ is convex.

Corollary

Let $*K(=K^*)$ convex (for convex K). Then $* \circ * = \phi * = \circ$. But $\circ *K = K'$, i.e. $(K')^* = K^\circ$. Take $\circ \Rightarrow$

$$K'' = (K')^{*\circ} = K.$$

So K^* -convex implies K is reciprocal ("easy" part of the theorem).

Some relations we have till now:

$$\begin{aligned} * &= \phi \circ \\ * \circ &= \phi \\ \circ &* &= ' \\ \phi &* &= \circ \end{aligned} (on convex bodies) \\ (K^*)^\circ &= K' \\ \phi &K^*) &= K^\circ. \end{aligned}$$

Also $\circ \circ K = \text{Conv} K$ and (as an example)

 $*\operatorname{Conv} * K = * \circ \circ * K = \phi \circ * K = \phi \circ \phi \phi * K = \phi \circ \phi \circ K = K^{**}.$

Moreover, $* \operatorname{Conv} K = * K \ (\forall K - \text{starbody}).$

And a Corollary of Fact 4: For K-convex $(0 \in K) \phi K$ is also convex iff K° is reciprocal.

Lemma

Let K be any convex body $0 \in K$. Consider the subset

$$T = igcup igl\{ B(x,|x|) ext{ and } B(x,|x|) \subset K igr\}$$

(so any such ball passes through 0 and is in K). Then T is a convex subset of K.

(Surprising! But that said – easy.)

Note that $T = \phi \circ \circ \phi K := \phi \operatorname{Conv} \phi K$.

(Formal checking: $\phi \partial B(x, |x|)$ is a hyperplane outside K^* .)

Using this lemma let us prove Theorem 2.

Proof.

We want to show that $K'' = K \Rightarrow K^*$ convex. This means $K'' := \circ * \circ * K = K$.

$$(act by *) \Rightarrow * \circ * \circ * K = * K$$
$$(use * = \phi \circ) * \circ \phi \circ \phi \circ K = * K$$
$$* \circ [\phi \circ \circ \phi] \circ K = * K$$

and $*\circ=\phi$ on convex sets, but, by the lemma, $\phi\circ\circ\phi(\circ {\cal K})$ convex,

$$\phi\phi\circ\circ\phi\circ K=*K\Rightarrow\circ\circ\phi\circ K=*K$$

which means Conv(*K) = *K (recall $\phi \circ = *$).

The above proof is not intuitive.

Let us see some intuition behind on one example.

Let $A \in D(T)$, i.e. A' = T. Then T'' = T and $T' \in D(T)$. Recall T' is a maximal set in $D(T) : A \subset T'$. If $A \neq T'$, then it is not reciprocal (because otherwise A = A'' = T').

So, if K^* is not convex we would like to find another body K_1 s.t. $K \subsetneq K_1$ but Conv $K_1^* = \text{Conv } K^*$ and then $K_1' = K'$, i.e. K is not reciprocal.

Example: Our K is an ellipsoid E and $K_1 = \text{Conv}(E \cup I)$, I is a special interval (see picture).

The last needed fact is

Fact 5. $[Conv(K \cup T)]^* = K^* \cup T^*$

This fact and example demonstrate how lack of convexity of K^* is used to prove that K is not reciprocal.

Additions

Proof of the Lemma. Let $B_i = B_i(x_i, |x_i|) \subseteq K$, i = 1, 2.

Let $a_i \in B_i$. We should show that $\forall \lambda$, $0 < \lambda < 1$, \exists a ball $B \subseteq K$ from our family of balls and $\lambda a_i + (1 - \lambda)a_2 \in B$.

We will prove that $\forall z \in \text{Conv}(B_1, B_2) := A$, \exists such a ball $B \subset A(\subseteq K)$ and $z \in B$.

Set
$$A = \bigcup_{\lambda \in [0,1]} \{ (1-\lambda)B_1 + \lambda B_2 \}$$
$$= \bigcup_{\lambda} B((1-\lambda)x_1 + \lambda x_2, (1-\lambda)|x_1| + \lambda |x_2|)$$

Then $\exists \lambda$ and $z \in B((1-\lambda)x_1 + \lambda x_2, (1-\lambda)|x_1| + \lambda |x_2|) = B^1$, and $0 \in B^1$ ball. Then \exists a ball \widetilde{B} inside this ball $B^1(\subseteq K)$ s.t. $0 \in \partial \widetilde{B}, z \in \widetilde{B}$.

More additions and an application

Facts:

- 1. Let B be a euclidean ball, $0 \in B$. Then B-indicatrix (of some ellipsoid) and B° is reciprocal. If 0 is not the center B then B is not reciprocal.
- 2. If K and T are reciprocal then $(K^{\circ} + T^{\circ})^{\circ}$ is also reciprocal.
- 3. IF K and T are convex, such that $\phi(K)$ and $\phi(T)$ are convex, then $\phi(K + T)$ is also convex.