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Poisson line tessellation

= Poisson line process in R?, stationary and isotropic

m Stationary, isotropic line tessellation: random infinite collection of
polygonal cells

m Crofton cell or zero cell Z;: containing the origin




Kendall’s Conjecture (1940s, 1987)

“The conditional law for the shape of 2, given
the area A(Z) of Zy, converges weakly, as
A(Zy) — oo, to the degenerate law concen-
trated at the spherical shape.”

m R. Miles (1995)

m |. N. Kovalenko (1997, 1999)

m D. Hug, M. Reitzner, R. Schneider (2004)
m D. Hug, R. Schneider (2007), ...

Calka (2010, '13 (surveys), ...)

G. Bonnet (2016)
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Poisson hyperplane tessellation in R
Consider a Poisson hyperplane process
X={H:ieN}=) 6y
ieN
with H; € A(d, d — 1), which is stationary and isotropic.

The intensity measure of X is a measure on A(d, d — 1) given by
EX() = 7/ / 1"+t € -} dtoo(a).
sd-1 JR

Here o is normalized #9~', v > 0 is the intensity of X.

Let Hk := {H € A(d,d — 1) : HN K # (}. The Poisson assumption
means that X(H) is Poisson distributed with mean value EX(#x).

The hitting functional of X is
K — EX(Hk) ~ V4(K) for K € K°,
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Concentration?

Let Zy be the zero cell/Crofton cell of the tessellation induced by X.
What is the limit shape of Z; - if it exists — given V;(Z)) — c0?

Does the shape of Z; concentrate at a particular (class of ) shape(s)
given Vy(Z) — o0?
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A deviation result

based on a deviation functional

9¥(Z) = “scaling, translation, rotation invariant distance of Z, from B9”.

Theorem (Hug, Reitzner, SChnelder (2004), a special case . .« )

If X is stationary and isotropic inR?, ¢ € (0,1), and a'/?~ > 1, then
P(J(2) = ¢ | Va(Z) = a) < c exp (—01 sd“a‘/dy) ,

where ¢ = ¢(d, <) and ¢; = ¢1(d).

Extensions (with Rolf Schneider): no isotropy assumption, relaxed
stationarity assumption, typical cells, Voronoi and Delaunay tessellations,
lower-dimensional weighted typical faces, various other size functionals,
axiomatic approach, asymptotic distributions



Asymptotic distribution

Recall: V4(K) denotes the mean width of K.

Theorem (Hug, SChneIdeI’ (2007), a special case . . )

: —1/d _
all)ngoa InP(Vy(Z) > a)=—71,

where
7 ~min{V4(K) : V4(K) =1}.



Asymptotic distribution

Recall: V4(K) denotes the mean width of K.

Theorem (Hug, SChneIdeI’ (2007), a special case . . )

lim a9 InP(Vy(2) > a) = —77,

a—oo
where
7 ~min{V4(K) : V4(K) =1}.

Some ingrediens:

m Polytopal approximation with few vertices
m Separate treatment of elongated cells

m Use of homogeneity arguments

m Isoperimetric and stability problems!
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Isoperimetry and stability

Urysohn inequality:

Vi(K) > c(d) Va(K)'/4.

Equality holds if and only if K is a ball.

Quantitative stability improvement:

Vi(K) > (1 + a(d) 9(K)*") c(d) Va(K)"“.



Which cells arise?

For isotropic tessellations, the following assumptions are always satisfied:



Which cells arise?

For isotropic tessellations, the following assumptions are always satisfied:

(A): The support of the directional distribution ¢ of X is S9-1.



Which cells arise?

For isotropic tessellations, the following assumptions are always satisfied:
(A): The support of the directional distribution ¢ of X is S9-1.

(B): ¢ is zero on each great subsphere of S~ 1.



Which cells arise?

For isotropic tessellations, the following assumptions are always satisfied:
(A): The support of the directional distribution ¢ of X is S~ 1,

(B): ¢ is zero on each great subsphere of S~ 1.

Theorem (Reitzner & Schneider)

Let X be a stationary Poisson hyperplane tessellation in R? with the
property that ¢ satisfies (A) and (B). Then a.s. the set of translates of the
cells of X is dense in K.



Which cells arise how often?

The cells in a stationary Poisson hyperplane tessellation are a.s. simple
polytopes.

Under (A) and (B) no other restrictions arise. The following improves a
result by Reitzner & Schneider.



Which cells arise how often?

The cells in a stationary Poisson hyperplane tessellation are a.s. simple
polytopes.

Under (A) and (B) no other restrictions arise. The following improves a
result by Reitzner & Schneider.

Theorem (Schneider)

Let X be a stationary Poisson hyperplane tessellation in RY. Suppose %)
satisfies (A) and (B). Then, with probability one, every combinatorial type
of a simple d-polytope appears in X with positive density.
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Kendall’s problem in spherical space

wf) Yep,

The world's

(ound. Ci
L.y
y 2
:

m Spherical tessellations

m Large cells?

m Geometric inequalities

m Some spherical deviation results



Spherical tessellations by great subspheres

m Let X be an isotropic Poisson point process in S ¢ R+!
m Spherical isotropic Poisson process of great subspheres
X:={x'ns?: xeX}

m Crofton cell Z
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Intensity measure and hitting functional

= Spherically convex bodies: K¢ > K

| ]
Hi: = {LeG(d+1,d)nNS?: LNK # ()}

EX(Hk) = 7s /S A K £ 0} (o)

U(K): = (25" [ 106 K £ 0} 7(a)

m Void probability

P(X(Hk) = 0) = exp (—27sBa Ui (K))



A spherical Urysohn inequality

Theorem (Gao, Hug, Schneider (2003))

Let K € K¢ and let C C SY be a spherical cap with H9(C) = HI(K).
Then

Ui(K) = Ui (C).
Equality holds if and only if K is a spherical cap.



A spherical Urysohn inequality

Theorem (Gao, Hug, Schneider (2003))

Let K € K¢ and let C C SY be a spherical cap with H9(C) = HI(K).
Then

Ui(K) = Ui (C).
Equality holds if and only if K is a spherical cap.

We need a quantitative improvement / stability result!

Is K close to C (in a quantitative way), if U (K) is e-close to U(C)?
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A deviation functional

For K € K¢, e € KN (—K™), let ak (u) be the spherical radial function,
defined on S, := e+ NS:

OéK’e(U)
Hd(K):// sind™" t dt HO ' (du)
Se /0

NN L ::D(OéK,e(u))

\
|
\
\
\

\\\// L) = D(ag), ac € (0,7/2) const.

Bd—1

A(K) = inf{|| Doake—Doake|lzs,) : €€ KN(—K")}.



A geometric stability result

Theorem (Hug, Reichenbacher)

Let K € K2 and let C be a spherical cap with H(K) = HI(C) > 0.
Let ag € (0,7/2) be such that cg < ac. Then

Ui(K) > (1 +7 A(K)?)Ui(C)



A geometric stability result

Theorem (Hug, Reichenbacher)

Let K € K and let C be a spherical cap with 19(K) = H%(C) > 0.
Let ag € (0,7/2) be such that cg < ac. Then

Us(K) > (1+75 A(K)?) Ui (C)
with

2o { G e B (2475 (2 )]

d+d(%") (3)°tan~9(ac) "\ T




A deviation result for the spherical Crofton cell

Theorem (Hug, Reichenbacher)

Let0 < a< f4/2 and 0 < € < 1. Then there are constants ¢y, ¢, > 0
such that

P(A(Z) > e | H(Zp) > a) < C1 - exp (—52 0 GACHFIY ’ys) ,

where ¢, = ¢y(a,e,d), ¢ = ¢2(a, d).



Asymptotic distribution

Theorem (Hug, Reichenbacher)
Let0 < a < f34/2. Then

lim 75" In P(H)(Z) > a) = —2f4 - Us(Ba),
Ys—r00

where B, is a spherical cap of volume a.



Asymptotic distribution

Theorem (Hug, Reichenbacher)
Let0 < a < f34/2. Then

lim 75" In P(H%(Z) > a) = —284 - Us(Ba),

Ys—0

where B, is a spherical cap of volume a.

Similar results have been obtained for binomial processes and for the
spherical inradius as the size functional, but also for general continuous,
increasing size functionals ¥ # 0 vanishing on one-pointed sets.
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Spherical Poisson-Voronoi cells

Let X be an isotropic Poisson process on S9 with intensity s, and let
X' = {C(x, X) : x € X} be the associated Poisson—Voronoi tessellation.

The distribution of the typical cell Z then satisfies

P(Z € ) =P(C(8, X + &) € -).



Hitting and deviation functional

Hence Z is equal in distribution to the Crofton cell of a (non-isotropic)
Poisson process Y of great subspheres with hitting functional

EY(Hk) = vsU(K), ©0eKek?,

UK)=2 / / sin?™" (2ds(Sy, 1)) 1{t- N K #£ 0} H' (df) HO ' (du)

5L NS As(u)

with S, = {—0, u} and As(u) = arc(—o, u).



Hitting and deviation functional

Hence Z is equal in distribution to the Crofton cell of a (non-isotropic)
Poisson process Y of great subspheres with hitting functional

EY(Hk) = vsU(K), ©0eKek?,

U(K) =2 / / sin®™" (2ds(Su, 1)) 1{t" N K # 0} H' (dt) HO " (du)
01NS9 As(u)

with S, = {—0, u} and As(u) = arc(—o, u).

Define

rs(K) := max{r>0:Bso,r) C K}

Rs(K) := min{r>0:Byd,r) D K}
9(K) = Rs(K)— rs(K).



Geometric stability

Theorem (Hug, Reichenbacher)
Letac (0,7/2),0 € K € K with rs(K) > a and C := Bs(0, a). Then

U(K) > U(C) = HY(Bs(0,2a)).

Equality holds if and only if K = C.

More generally,

U(K) > (1 + cs(a, d) 9(K)9) U(C).



Shape deviation

Theorem (Hug, Reichenbacher)

Leta e (0,7/2) ande € (0, 1]. Let Z be the typical cell of the Voronoi
tessellation associated with an isotropic Poisson point process with
intensity vs on S%. Then

P(Rs(Z) — rs(Z) > ¢ | rs(Z) > a) < cg - exp (—c7 - €9 - 7s)

where cs = cs(a, d, ) and ¢; = ¢;(a, d).

Davies, J. https://www.jasondavies.com/maps/voronoi






Figure: lllustration of a splitting tessellation.
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A splitting process via cell-splitting
Define @ : P9 x Sg_1 x T9 — T by

@(c,8,T):=(T\{chu{ecnST,cnNS} T,

if c € T, S € Sy_1[c], and where ST are the two closed hemispheres
determined by S; otherwise ©(c, S, T) :=T.

Definition

A splitting process ( Y;):>o with initial tessellation Yy := {S%} is a
continuous time, pure jump Markov process on T¢ with generator

(AN =Y /S [7(@(c, S, T)) — (T)] vg_1(dS), T eT?,

ceT 7 Sa-1ld]

where f € F,(T9). For t > 0 we call Y; a splitting tessellation.



A splitting process via cell-splitting
Define @ : P9 x Sg_1 x T9 — T by

@(c,8,T):=(T\{chu{ecnST,cnNS} T,

if c € T, S € Sy_1[c], and where ST are the two closed hemispheres
determined by S; otherwise ©(c, S, T) :=T.

Definition

A splitting process ( Y;):>o with initial tessellation Yy := {S%} is a
continuous time, pure jump Markov process on T¢ with generator

(AN =Y /S [7(@(c, S, T)) — (T)] vg_1(dS), T eT?,

ceT VSa-1lc]
where f € F,(T9). For t > 0 we call Y; a splitting tessellation.

Note that the unbounded intensity function X of Y, Ais \(T) = |T|, T € T°.



An auxiliary martingale

Lemma

Let E be a Borel space and let (X;)>o0 be a Markov process with values in
E and with generator L whose domain is D(L). Then, for f € D(L), the
random process

F(X5) — F(X) — /0 (CH(X)ds.  t>0,

is a martingale with respect to the filtration induced by (X;)i>o. If (Xt)t>0
is a jump process with bounded intensity function, then Fp(E) = D(L).



Applications

Proposition

Let ¢ : P4 — R be bounded and measurable. Define

Yo(T) = qu(c) :/Pd¢dw, TeT?.

ceT

Then the stochastic process

t
M(9) 1= o) = Zo(¥0) — [ (AT )(¥s)ds. 10,

is a martingale with respect to Y, the filtration generated by (Y:)t>o-



Proposition

Let¢; : P9 — R fori € {1,2} be bounded and measurable. Define
Z¢>1,¢>2(T) = Z¢1(T)Z¢>2(T)7 TeT?.
Then the stochastic process

t
M1, b2) = Tor 0 Ye) — Er n(Yo) — / (ATg0)(Ya)ds, 120,

is a martingale with respect to ).



Proposition

Let¢; : P9 — R fori € {1,2} be bounded and measurable. Define
Z¢1,¢>2(T) = Z¢1(T)Z¢>2(T)7 TeT?.
Then the stochastic process

t
M1, 62) = Ty 50(Y1) — Ty o (Yo) — / (ATg0)(Ya)ds, 120,
0

is a martingale with respect to ).

By time augmentation, we can also treat functionals of the form

W g0(T: 1) 1= (X6, (T) = b1t")(T(T) — b2t?),  TeT9 t>0.



Expected spherical curvature measures

Fort>0,j€{0,...,d} and A € B(S?), define

Ti(A) =) ¢i(c,A).

ceYs



Expected spherical curvature measures

Fort>0,j€{0,...,d} and A € B(S?), define

Ti(A) =) ¢i(c,A).

ceYs

More generally, if h: S° — R is bounded, measurable and 1 is a finite
Borel measure on S, we write zu(h) := [cs hdu.



Expected spherical curvature measures
Fort>0,j€{0,...,d} and A € B(S?), define

Ti(A) =) ¢i(c,A).

ceYs

More generally, if h: S° — R is bounded, measurable and 1 is a finite
Borel measure on S7, we write yu(h) := [os hdp.

Theorem
Lett > 0andj € {0,...,d}. Then

=1 HI(h)
(d=j)! Ba

where h : S¢ — R is bounded and measurable.

EX,(t; h) =




Idea of proof
The random process

5(t; h)—/otz
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Idea of proof
The random process

£ (i) | by | G I R IPRICOES

ceYs
is a V-martingale. The valuation property of ¢; yields that

¢i(en St h) + ¢i(cNS™, h) — ¢pj(c, h) = ¢j(cn S, h).
Taking expectations and applying the local spherical Crofton formula,

t
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CcEYs
Now work recursively and use that, with probability one,
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Idea of proof
The random process

£ (i) | by | G I R IPRICOES

ceYs
is a V-martingale. The valuation property of ¢; yields that

¢i(en St h) + ¢i(cNS™, h) — ¢pj(c, h) = ¢j(cn S, h).
Taking expectations and applying the local spherical Crofton formula,

t
EX,(t; h) — E /0 3 /S CCOELPRICOEE

CcEYs

t t
:E/O Zd)j;H(C,h)dS:E/O Zj+1(5; h)ds

CcEYs
Now work recursively and use that, with probability one,

Sosih) = 3 dolen) = 3 HI(h1c)
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Idea of proof
The random process

£ (i) | by | G I R IPRICOES

ceYs
is a V-martingale. The valuation property of ¢; yields that

¢i(en St h) + ¢i(cNS™, h) — ¢pj(c, h) = ¢j(cn S, h).
Taking expectations and applying the local spherical Crofton formula,

t
EX,(t; h) — E /0 3 /S CCOELPRICOEE

CcEYs

t t
= E/ Z(l)j+1(c,h)ds: E/ Yi1(s; h)ds.
0 cev, 0
Now work recursively and use that, with probability one,

To(sin) = Y dalc.n) = 3 2 _ HOR)

CcEYs ceYs 5d 50’




Variances

Theorem

Ift > 0andh:S? — R is bounded and measurable, then

 7Buz 1—exp (— 1e(x, y)t)
Var¥y 1(t; h) ﬁdﬁd 1/Sd /Sd {(x,y sm(ﬁ(X ¥))

x h(x)h(y) H%(dx) H9(dy) < oo
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Theorem

Ift > 0andh:S? — R is bounded and measurable, then

_ mBa—2 1—exp (= 24(x,y)t)
varq-1(t; h) ﬂdﬂd ; /Sd /Sd Ux,y sm(ﬁ(x ¥))

x h(x)h(y) H%(dx) H9(dy) < oo

m Proof uses auxiliary martingales and basic spherical integral
geometry.

m Covariances and variances for different functions h and lower order
curvature measures can also be determined.



Variances

Theorem
Ift > 0andh:S? — R is bounded and measurable, then

_ mBa—2 1—exp (= 24(x,y)t)
varq-1(t; h) ﬂdﬂd ; /Sd /Sd Ux,y sm(ﬁ(x ¥))

x h(x)h(y) H%(dx) H9(dy) < oo

m Proof uses auxiliary martingales and basic spherical integral
geometry.

m Covariances and variances for different functions h and lower order
curvature measures can also be determined.

m The mean and variance of the Hausdorff measure of the boundary Z;
of Y; can be obtained as a special case.



Variances

Ift > 0andh:S? — R is bounded and measurable, then

_ mBa—2 1—exp (= 24(x,y)t)
varq-1(t; h) ﬂdﬂd ; /Sd /Sd Ux,y sm(ﬁ(x ¥))

x h(x)h(y) H%(dx) H9(dy) < oo

m Proof uses auxiliary martingales and basic spherical integral
geometry.

m Covariances and variances for different functions h and lower order
curvature measures can also be determined.

m The mean and variance of the Hausdorff measure of the boundary Z;
of Y; can be obtained as a special case.

m Euclidean analogue is due to Schreiber & Thale.



Variances

Ift > 0andh:S? — R is bounded and measurable, then

_ mBa—2 1—exp (= 24(x,y)t)
varq-1(t; h) ﬂdﬂd ; /Sd /Sd Ux,y sm(ﬁ(x ¥))

x h(x)h(y) H%(dx) H9(dy) < oo

m Proof uses auxiliary martingales and basic spherical integral
geometry.

m Covariances and variances for different functions h and lower order
curvature measures can also be determined.

m The mean and variance of the Hausdorff measure of the boundary Z;
of Y; can be obtained as a special case.

m Euclidean analogue is due to Schreiber & Thale.

Next we study an application.
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Spherical K-function and pair-correlation function

Definition

Let M be an isotropic random measure on S with intensity u € (0, c0),
determined by E[M(- )] = u3, "H9(-) on S7.

The spherical K-function of M can be defined by
1
K(r) = 5E [ 1(llxy) < W((x.9)
Iz (S9)2

where B(e,r) = {x € S? : {(e,x) < r}.

If Ki is differentiable, then

W}(ﬂ,ﬂ(r): I’G(O,’rr),

is the spherical pair-correlation function of M.

om(r) =
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K-function and g-function for specific M

Choose the random measure M = H9~'_Z,.

Theorem

Ift>0andr e (0,), then

Ba—1 (" Ba—2Ba1—exp(—Lp)\, . 4

and iy
Ba—28q4 1 —exp(52)
v - .
B2, t2rsinr

Gai(r) =1+

We compare this to Poisson hypersphere tessellations.



Poisson hypersphere tessellation

Let 7; be a Poisson process on S¢ with intensity measure tﬂ;1%d.
Denote by Y; the tessellation of S? induced by 7;, and let

?[ = U (UL N Sd)

uen:

be the associated random closed set.

\

Figure: lllustration of Poisson circle tessellation on S2.
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K-function and g-function for specific M
The random measure H?~1_Z; is isotropic and its intensity
7 :=EHI(Z;NSY) equals i = tBq4_1.

This is also the intensity of #9~'LZ,.

Theorem

Fort > 0, the K-function and g-function of the random measure H%~'.Z;
are given by

— L r 1 Bq—

,
[ e 2as, re ).
0

and

Bd—284

2 o
Bg_y tsinr

Gaulr) =1+ re(0,m).
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0



The K-function of Y; equals

H(B(e.r) | 12
Bd t Ba—1
and the K-function of Y; equals

HI(B(er))  1Ba—2 " T
Bd T t Ba—1 /o te

,
Koa(r) = / (sinp)?2dp, re(0,7),
0

Ka(r) = (1—e %) (sinp)? 2 dp.



The K-function of Y; equals

H(B(e,r)) n 1842
Bd t Bo—1

and the K-function of Y; equals

HI(B(er))  1Ba—2 " T
Bd T t Ba—1 /o te

Since 1 —e ! <t t eR, it follows that

,
Koa(r) = / (sinp)?2dp, re(0,7),
0

Ka(r) = (1—e %) (sinp)? 2 dp.

Kot < Kat.

In the same way, we get 9ot < gy ;-



lHlustration

INERS

Figure: The spherical pair-correlation functions gz »(r) (solid curve) and g, »(r)
(dashed curve).
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Dynamic description of Poisson tessellation process

Splitting tessellations and Poisson hypersphere tessellations are linked to
each other: for T € T? and S € Sy_1, we define

®(S,T):=(T\{ce T:int(e)nS#PHU | {ensS*,ens }eT?

ceT
int(c)NS#D

Define a continuous-time Markov process (Vr)tzo with initial tessellation
Yo = {S%} in T via its generator A, where

(A7) = /S [((S.T)) — () vg_s(dS),  TeT?,

where f € Fp(T9).

For t > 0, the random tessellation Y; has the same distribution as a
Poisson hypersphere tessellation with intensity t.



Relationships for intensity measures

Consider the random measure M; and its intensity measure M on P9,
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Relationships for intensity measures

Consider the random measure M; and its intensity measure M; on P?,

Mi:=> 6 and M;:=EM; t>0.

cEY;

Similarly, for a Poisson hypersphere tessellation Y; with intensity ¢ > 0,

m[ = Z 50 and M{ = Eﬂt

Ift > 0, then Mt = M{.



Sketch of proof

Let ¢ : P — R be bounded and measurable. Then

T 5(Y) — To(Yo)— /Z/ [6(en18") +o(onS)

cEYs

— ¢(c)]va—1(dS)ds

is a )V-martingale. Take expectations, we get

/qb M;(dc) = #(S?) + ///Sd1[c] p(cNST)+¢(cnS7)

— ¢(c)]vg-1(dS) Ms(dc) ds.
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P9 with the total variation norm || - ||Tv. Then the linear operator
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is bounded with operator norm ||| < 3.
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Sketch of proof

Denote by MbV(Pd) the Banach space of real-valued Borel measures on
P9 with the total variation norm || - ||Tv. Then the linear operator

[+ My (P%) — My, (P), 1 / /S [Bons: +0ans —86] va_1(dS) u(de),
d—1

is bounded with operator norm ||| < 3.

It follows that .
M[:5Sd+/r(Ms)dS, t>0,
0

in My, (P9) and |[M; — M, ||y < 3cg|t —rlfor0 < r <t < a

By similar arguments it can be shown that M;, t > 0, satisfies the same
initial value problem.

Since the solution is unique, the result follows.
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