Spherical random tessellations and analytic convexity

Daniel Hug | September 2018
CASTRO URDIALES

KIT - University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association

Poisson line tessellation

- Poisson line process in \mathbb{R}^{2}, stationary and isotropic

■ Stationary, isotropic line tessellation: random infinite collection of polygonal cells
■ Crofton cell or zero cell Z_{0} : containing the origin

Kendall's Conjecture (1940s, 1987)

"The conditional law for the shape of Z_{0}, given the area $A\left(Z_{0}\right)$ of Z_{0}, converges weakly, as $A\left(Z_{0}\right) \rightarrow \infty$, to the degenerate law concentrated at the spherical shape."

- R. Miles (1995)

■ I. N. Kovalenko (1997, 1999)
■ D. Hug, M. Reitzner, R. Schneider (2004)
■ D. Hug, R. Schneider (2007), ...
■ Calka (2010, '13 (surveys), ...)
■ G. Bonnet (2016)

Poisson hyperplane tessellation in \mathbb{R}^{d}

Consider a Poisson hyperplane process

$$
X=\left\{H_{i}: i \in \mathbb{N}\right\}=\sum_{i \in \mathbb{N}} \delta_{H_{i}}
$$

with $H_{i} \in \mathbf{A}(d, d-1)$, which is stationary and isotropic.
The intensity measure of X is a measure on $\mathbf{A}(d, d-1)$ given by

Here σ_{0} is normalized $\mathcal{H}^{d-1}, \gamma>0$ is the intensity of X.
Let $\mathcal{H}_{K}:=\{H \in \mathbf{A}(d, d-1): H \cap K \neq \emptyset\}$. The Poisson assumption
means that $X\left(\mathcal{H}_{K}\right)$ is Poisson distributed with mean value $\mathbb{E} X\left(\mathcal{H}_{K}\right)$.
The hitting functional of X is

Poisson hyperplane tessellation in \mathbb{R}^{d}

Consider a Poisson hyperplane process

$$
X=\left\{H_{i}: i \in \mathbb{N}\right\}=\sum_{i \in \mathbb{N}} \delta_{H_{i}}
$$

with $H_{i} \in \mathbf{A}(d, d-1)$, which is stationary and isotropic.
The intensity measure of X is a measure on $\mathbf{A}(d, d-1)$ given by

Here σ_{0} is normalized $\mathcal{H}^{d-1}, \gamma>0$ is the intensity of X.
Let $\mathcal{H}_{K}:=\{H \in \mathbf{A}(d, d-1): H \cap K \neq \emptyset\}$. The Poisson assumption means that $X\left(\mathcal{H}_{K}\right)$ is Poisson distributed with mean value $\mathbb{E} X\left(\mathcal{H}_{K}\right)$.

The hitting functional of X is

Poisson hyperplane tessellation in \mathbb{R}^{d}

Consider a Poisson hyperplane process

$$
X=\left\{H_{i}: i \in \mathbb{N}\right\}=\sum_{i \in \mathbb{N}} \delta_{H_{i}}
$$

with $H_{i} \in \mathbf{A}(d, d-1)$, which is stationary and isotropic.
The intensity measure of X is a measure on $\mathbf{A}(d, d-1)$ given by

$$
\mathbb{E} X(\cdot)=\gamma \int_{\mathbb{S}^{d-1}} \int_{\mathbb{R}} 1\left\{u^{\perp}+t u \in \cdot\right\} d t \sigma_{0}(d u)
$$

Here σ_{0} is normalized $\mathcal{H}^{d-1}, \gamma>0$ is the intensity of X.
Let $\mathcal{H}_{K}:=\{H \in \mathbf{A}(d, d-1): H \cap K \neq \emptyset\}$. The Poisson assumption
means that $X\left(\mathcal{H}_{K}\right)$ is Poisson distributed with mean value $\mathbb{E} X\left(\mathcal{H}_{K}\right)$.
The hitting functional of X is

Poisson hyperplane tessellation in \mathbb{R}^{d}

Consider a Poisson hyperplane process

$$
X=\left\{H_{i}: i \in \mathbb{N}\right\}=\sum_{i \in \mathbb{N}} \delta_{H_{i}}
$$

with $H_{i} \in \mathbf{A}(d, d-1)$, which is stationary and isotropic.
The intensity measure of X is a measure on $\mathbf{A}(d, d-1)$ given by

$$
\mathbb{E} X(\cdot)=\gamma \int_{\mathbb{S}^{d-1}} \int_{\mathbb{R}} 1\left\{u^{\perp}+t u \in \cdot\right\} d t \sigma_{0}(d u)
$$

Here σ_{0} is normalized $\mathcal{H}^{d-1}, \gamma>0$ is the intensity of X.
Let $\mathcal{H}_{K}:=\{H \in \mathbf{A}(d, d-1): H \cap K \neq \emptyset\}$. The Poisson assumption
means that $X\left(\mathcal{H}_{K}\right)$ is Poisson distributed with mean value $\mathbb{E} X\left(\mathcal{H}_{K}\right)$.
The hitting functional of X is

Poisson hyperplane tessellation in \mathbb{R}^{d}

Consider a Poisson hyperplane process

$$
X=\left\{H_{i}: i \in \mathbb{N}\right\}=\sum_{i \in \mathbb{N}} \delta_{H_{i}}
$$

with $H_{i} \in \mathbf{A}(d, d-1)$, which is stationary and isotropic.
The intensity measure of X is a measure on $\mathbf{A}(d, d-1)$ given by

$$
\mathbb{E} X(\cdot)=\gamma \int_{\mathbb{S}^{d-1}} \int_{\mathbb{R}} 1\left\{u^{\perp}+t u \in \cdot\right\} d t \sigma_{0}(d u)
$$

Here σ_{0} is normalized $\mathcal{H}^{d-1}, \gamma>0$ is the intensity of X.
Let $\mathcal{H}_{K}:=\{H \in \mathbf{A}(d, d-1): H \cap K \neq \emptyset\}$. The Poisson assumption means that $X\left(\mathcal{H}_{K}\right)$ is Poisson distributed with mean value $\mathbb{E} X\left(\mathcal{H}_{K}\right)$.

The hitting functional of X is

$V_{1}(K)$

Poisson hyperplane tessellation in \mathbb{R}^{d}

Consider a Poisson hyperplane process

$$
X=\left\{H_{i}: i \in \mathbb{N}\right\}=\sum_{i \in \mathbb{N}} \delta_{H_{i}}
$$

with $H_{i} \in \mathbf{A}(d, d-1)$, which is stationary and isotropic.
The intensity measure of X is a measure on $\mathbf{A}(d, d-1)$ given by

$$
\mathbb{E} X(\cdot)=\gamma \int_{\mathbb{S}^{d-1}} \int_{\mathbb{R}} 1\left\{u^{\perp}+t u \in \cdot\right\} d t \sigma_{0}(d u)
$$

Here σ_{0} is normalized $\mathcal{H}^{d-1}, \gamma>0$ is the intensity of X.
Let $\mathcal{H}_{K}:=\{H \in \mathbf{A}(d, d-1): H \cap K \neq \emptyset\}$. The Poisson assumption means that $X\left(\mathcal{H}_{K}\right)$ is Poisson distributed with mean value $\mathbb{E} X\left(\mathcal{H}_{K}\right)$.
The hitting functional of X is

$$
K \mapsto \mathbb{E} X\left(\mathcal{H}_{K}\right) \sim V_{1}(K) \quad \text { for } K \in \mathcal{K}^{d}
$$

Concentration?

Let Z_{0} be the zero cell/Crofton cell of the tessellation induced by X.
What is the limit shape of Z_{0} - if it exists - given $V_{d}\left(Z_{0}\right) \rightarrow \infty$?
Does the shape of Z_{0} concentrate at a particular (class of) shape(s) given $V_{d}\left(Z_{0}\right) \rightarrow \infty$?

Concentration?

Let Z_{0} be the zero cell/Crofton cell of the tessellation induced by X.
What is the limit shape of Z_{0} - if it exists - given $V_{d}\left(Z_{0}\right) \rightarrow \infty$?

Does the shape of Z_{0} concentrate at a particular (class of) shape(s)
given $V_{d}\left(Z_{0}\right) \rightarrow \infty$?

Concentration?

Let Z_{0} be the zero cell/Crofton cell of the tessellation induced by X.
What is the limit shape of Z_{0} - if it exists - given $V_{d}\left(Z_{0}\right) \rightarrow \infty$?
Does the shape of Z_{0} concentrate at a particular (class of) shape(s) given $V_{d}\left(Z_{0}\right) \rightarrow \infty$?

A deviation result

based on a deviation functional
$\vartheta\left(Z_{0}\right)=$ "scaling, translation, rotation invariant distance of Z_{0} from B^{d} ".

```
Theorem (Hug, Reitzner, Schneider (2004
If X is stationary and isotronic in }\mp@subsup{\mathbb{R}}{}{d},\varepsilon\in(0,1)\mathrm{ , and a (/d }\gamma\geq1\mathrm{ , then
```

where $c=c(d, \varepsilon)$ and $c_{1}=c_{1}(d)$.

Extensions (with Rolf Schneider): no isotropy assumption, relaxed stationarity assumption, typical cells, Voronoi and Delaunay tessellations, lower-dimensional weighted typical faces, various other size functionals, axiomatic approach, asymptotic distributions

A deviation result

based on a deviation functional
$\vartheta\left(Z_{0}\right)=$ "scaling, translation, rotation invariant distance of Z_{0} from $B^{d "}$.

Theorem (Hug, Reitzner, Schneider (2004), a special case . . .)

If X is stationary and isotropic in $\mathbb{R}^{d}, \varepsilon \in(0,1)$, and $a^{1 / d} \gamma \geq 1$, then

$$
\mathbb{P}\left(\vartheta\left(Z_{0}\right) \geq \varepsilon \mid V_{d}\left(Z_{0}\right) \geq a\right) \leq c \exp \left(-c_{1} \varepsilon^{d+1} a^{1 / d} \gamma\right)
$$

where $c=c(d, \varepsilon)$ and $c_{1}=c_{1}(d)$.

Extensions (with Rolf Schneider): no isotropy assumption, relaxed stationarity assumption, typical cells, Voronoi and Delaunay tessellations,
lower-dimensional weighted typical faces, various other size functionals, axiomatic approach, asymptotic distributions

A deviation result

based on a deviation functional
$\vartheta\left(Z_{0}\right)=$ "scaling, translation, rotation invariant distance of Z_{0} from $B^{d "}$.

Theorem (Hug, Reitzner, Schneider (2004), a special case . . .)

If X is stationary and isotropic in $\mathbb{R}^{d}, \varepsilon \in(0,1)$, and $\mathrm{a}^{1 / d} \gamma \geq 1$, then

$$
\mathbb{P}\left(\vartheta\left(Z_{0}\right) \geq \varepsilon \mid V_{d}\left(Z_{0}\right) \geq a\right) \leq c \exp \left(-c_{1} \varepsilon^{d+1} a^{1 / d} \gamma\right)
$$

where $c=c(d, \varepsilon)$ and $c_{1}=c_{1}(d)$.

Extensions (with Rolf Schneider): no isotropy assumption, relaxed stationarity assumption, typical cells, Voronoi and Delaunay tessellations, lower-dimensional weighted typical faces, various other size functionals, axiomatic approach, asymptotic distributions

Asymptotic distribution

Recall: $V_{1}(K)$ denotes the mean width of K.

Theorem (Hug, Schneider (2007), a special case . . .)

$$
\lim _{a \rightarrow \infty} a^{-1 / d} \ln \mathbb{P}\left(V_{d}\left(Z_{0}\right) \geq a\right)=-\tau \gamma
$$

where

$$
\tau \sim \min \left\{V_{1}(K): V_{d}(K)=1\right\} .
$$

Some ingrediens:

- Polytopal approximation with few vertices
- Separate treatment of elongated cells
- Use of homogeneity arguments
- Isoperimetric and stability problems!

Asymptotic distribution

Recall: $V_{1}(K)$ denotes the mean width of K.

Theorem (Hug, Schneider (2007), a special case . . .)

$$
\lim _{a \rightarrow \infty} a^{-1 / d} \ln \mathbb{P}\left(V_{d}\left(Z_{0}\right) \geq a\right)=-\tau \gamma
$$

where

$$
\tau \sim \min \left\{V_{1}(K): V_{d}(K)=1\right\} .
$$

Some ingrediens:

- Polytopal approximation with few vertices
- Separate treatment of elongated cells

■ Use of homogeneity arguments
■ Isoperimetric and stability problems!

Isoperimetry and stability

Urysohn inequality:

$$
V_{1}(K) \geq c(d) V_{d}(K)^{1 / d}
$$

Equality holds if and only if K is a ball.

Quantitative stability improvement:

Isoperimetry and stability

Urysohn inequality:

$$
V_{1}(K) \geq c(d) V_{d}(K)^{1 / d}
$$

Equality holds if and only if K is a ball.

Quantitative stability improvement:

$$
V_{1}(K) \geq\left(1+a(d) \vartheta(K)^{d+1}\right) c(d) V_{d}(K)^{1 / d}
$$

Which cells arise?

For isotropic tessellations, the following assumptions are always satisfied:
(A): The support of the directional distribution φ of X is \mathbb{S}^{d-1}
(B): φ is zero on each great subsphere of \mathbb{S}^{d-1}
\square
Let X be a stationary Poisson hyperplane tessellation in \mathbb{R}^{d} with the property that φ satisfies (A) and (B). Then a.s. the set of translates of the cells of X is dense in \mathcal{K}.

Which cells arise?

For isotropic tessellations, the following assumptions are always satisfied:
(A): The support of the directional distribution φ of X is \mathbb{S}^{d-1}.
$(B): \varphi$ is zero on each great subsphere of \mathbb{S}^{d-1}

Which cells arise?

For isotropic tessellations, the following assumptions are always satisfied:
(A): The support of the directional distribution φ of X is \mathbb{S}^{d-1}.
(B): φ is zero on each great subsphere of \mathbb{S}^{d-1}.

Which cells arise?

For isotropic tessellations, the following assumptions are always satisfied:
(A): The support of the directional distribution φ of X is \mathbb{S}^{d-1}.
(B): φ is zero on each great subsphere of \mathbb{S}^{d-1}.

Theorem (Reitzner \& Schneider)

Let X be a stationary Poisson hyperplane tessellation in \mathbb{R}^{d} with the property that φ satisfies (A) and (B). Then a.s. the set of translates of the cells of X is dense in \mathcal{K}.

Which cells arise how often?

The cells in a stationary Poisson hyperplane tessellation are a.s. simple polytopes.

Under (A) and (B) no other restrictions arise. The following improves a result by Reitzner \& Schneider.

Which cells arise how often?

The cells in a stationary Poisson hyperplane tessellation are a.s. simple polytopes.

Under (A) and (B) no other restrictions arise. The following improves a result by Reitzner \& Schneider.

Theorem (Schneider)

Let X be a stationary Poisson hyperplane tessellation in \mathbb{R}^{d}. Suppose φ satisfies (A) and (B). Then, with probability one, every combinatorial type of a simple d-polytope appears in X with positive density.

Kendall's problem in spherical space

- Spherical tessellations
- Large cells?
- Geometric inequalities
- Some spherical deviation results

Kendall's problem in spherical space

- Spherical tessellations

■ Large cells?

- Geometric inequalities

■ Some spherical deviation results

Spherical tessellations by great subspheres

■ Let X be an isotropic Poisson point process in $\mathbb{S}^{d} \subset \mathbb{R}^{d+1}$

- Spherical isotropic Poisson process of great subspheres

$$
\widetilde{X}:=\left\{x^{\perp} \cap \mathbb{S}^{d}: x \in X\right\}
$$

■ Crofton cell Z_{0}

Intensity measure and hitting functional

■ Spherically convex bodies: $\mathcal{K}_{s}^{d} \ni K$

- Void probability

$$
\mathbb{P}(\tilde{X}(\mathcal{H} K)=0)=\exp \left(-2 \gamma_{S} \beta_{d} U_{1}(K)\right)
$$

Intensity measure and hitting functional

■ Spherically convex bodies: $\mathcal{K}_{s}^{d} \ni K$

$$
\mathcal{H}_{K}:=\left\{L \in G(d+1, d) \cap \mathbb{S}^{d}: L \cap K \neq \emptyset\right\}
$$

- Void probability
$\mathbb{P}\left(\tilde{X}\left(\mathcal{H} \mathcal{K}_{K}\right)=0\right)=\exp \left(-2 \gamma s \beta_{d} U_{1}(K)\right)$

Intensity measure and hitting functional

■ Spherically convex bodies: $\mathcal{K}_{s}^{d} \ni K$

$$
\begin{aligned}
\mathcal{H}_{K}: & =\left\{L \in G(d+1, d) \cap \mathbb{S}^{d}: L \cap K \neq \emptyset\right\} \\
\mathbb{E} \widetilde{X}\left(\mathcal{H}_{K}\right) & =\gamma_{S} \int_{\mathbb{S}^{d}} 1\left\{x^{\perp} \cap K \neq \emptyset\right\} \mathcal{H}^{d}(d x)
\end{aligned}
$$

- Void probability
$\mathbb{P}\left(\tilde{X}\left(\mathcal{H} \mathcal{H}_{K}\right)=0\right)=\exp \left(-2 \gamma s \beta_{d} U_{1}(K)\right)$

Intensity measure and hitting functional

■ Spherically convex bodies: $\mathcal{K}_{s}^{d} \ni K$

$$
\begin{aligned}
\mathcal{H}_{K}: & =\left\{L \in G(d+1, d) \cap \mathbb{S}^{d}: L \cap K \neq \emptyset\right\} \\
\mathbb{E} \widetilde{X}\left(\mathcal{H}_{K}\right) & =\gamma_{S} \int_{\mathbb{S}^{d}} 1\left\{x^{\perp} \cap K \neq \emptyset\right\} \mathcal{H}^{d}(d x) \\
U_{1}(K): & =\left(2 \beta_{d}\right)^{-1} \int_{\mathbb{S}^{d}} 1\left\{x^{\perp} \cap K \neq \emptyset\right\} \mathcal{H}^{d}(d x)
\end{aligned}
$$

- Void probability
$\mathbb{P}\left(\hat{X}\left(\mathcal{H} \mathcal{H}_{K}\right)=0\right)=\exp \left(-2 \gamma \gamma_{d} \mathcal{B}_{1}(K)\right)$

Intensity measure and hitting functional

■ Spherically convex bodies: $\mathcal{K}_{s}^{d} \ni K$

$$
\begin{aligned}
\mathcal{H}_{K}: & =\left\{L \in G(d+1, d) \cap \mathbb{S}^{d}: L \cap K \neq \emptyset\right\} \\
\mathbb{E} \widetilde{X}\left(\mathcal{H}_{K}\right) & =\gamma_{S} \int_{\mathbb{S}^{d}} 1\left\{x^{\perp} \cap K \neq \emptyset\right\} \mathcal{H}^{d}(d x) \\
U_{1}(K): & =\left(2 \beta_{d}\right)^{-1} \int_{\mathbb{S}^{d}} 1\left\{x^{\perp} \cap K \neq \emptyset\right\} \mathcal{H}^{d}(d x)
\end{aligned}
$$

- Void probability

$$
\mathbb{P}\left(\widetilde{X}\left(\mathcal{H}_{K}\right)=0\right)=\exp \left(-2 \gamma_{S} \beta_{d} U_{1}(K)\right)
$$

A spherical Urysohn inequality

Theorem (Gao, Hug, Schneider (2003))

Let $K \in \mathcal{K}_{s}^{d}$ and let $C \subset \mathbb{S}^{d}$ be a spherical cap with $\mathcal{H}^{d}(C)=\mathcal{H}^{d}(K)$. Then

$$
U_{1}(K) \geq U_{1}(C)
$$

Equality holds if and only if K is a spherical cap.

We need a quantitative improvement / stability result!

Is K close to C (in a quantitative way), if $U_{1}(K)$ is ε-close to $U(C)$?

A spherical Urysohn inequality

Theorem (Gao, Hug, Schneider (2003))

Let $K \in \mathcal{K}_{s}^{d}$ and let $C \subset \mathbb{S}^{d}$ be a spherical cap with $\mathcal{H}^{d}(C)=\mathcal{H}^{d}(K)$. Then

$$
U_{1}(K) \geq U_{1}(C)
$$

Equality holds if and only if K is a spherical cap.

We need a quantitative improvement / stability result!

Is K close to C (in a quantitative way), if $U_{1}(K)$ is ε-close to $U(C)$?

A deviation functional

For $K \in \mathcal{K}_{s}^{d}, e \in K \cap\left(-K^{*}\right)$, let $\alpha_{K, e}(u)$ be the spherical radial function, defined on $S_{e}:=e^{\perp} \cap \mathbb{S}^{d}$:

A deviation functional

For $K \in \mathcal{K}_{s}^{d}, e \in K \cap\left(-K^{*}\right)$, let $\alpha_{K, e}(u)$ be the spherical radial function, defined on $S_{e}:=e^{\perp} \cap \mathbb{S}^{d}$:

$$
\begin{aligned}
& \mathcal{H}^{d}(K)=\int_{S_{e}} \underbrace{\int_{0}^{\alpha_{K, e}(u)} \sin ^{d-1} t d t}_{=: D\left(\alpha_{K, e}(u)\right)} \mathcal{H}^{d-1}(d u) \\
& \frac{\mathcal{H}^{d}(C)}{\beta_{d-1}}=D\left(\alpha_{C}\right), \quad \alpha_{C} \in(0, \pi / 2) \text { const. }
\end{aligned}
$$

A deviation functional

For $K \in \mathcal{K}_{s}^{d}, e \in K \cap\left(-K^{*}\right)$, let $\alpha_{K, e}(u)$ be the spherical radial function, defined on $S_{e}:=e^{\perp} \cap \mathbb{S}^{d}$:

$$
\begin{aligned}
& \mathcal{H}^{d}(K)=\int_{S_{e}} \underbrace{\int_{0}^{\alpha_{K, e}(u)} \sin ^{d-1} t d t}_{=: D\left(\alpha_{K, e}(u)\right)} \mathcal{H}^{d-1}(d u) \\
& \frac{\mathcal{H}^{d}(C)}{\beta_{d-1}}=D\left(\alpha_{C}\right), \quad \alpha_{C} \in(0, \pi / 2) \text { const. }
\end{aligned}
$$

A deviation functional

For $K \in \mathcal{K}_{s}^{d}, e \in K \cap\left(-K^{*}\right)$, let $\alpha_{K, e}(u)$ be the spherical radial function, defined on $S_{e}:=e^{\perp} \cap \mathbb{S}^{d}$:

$$
\Delta(K):=\inf \left\{\left\|D \circ \alpha_{K, e}-\overline{D \circ \alpha_{K, e}}\right\|_{L^{2}\left(S_{e}\right)}: e \in K \cap\left(-K^{*}\right)\right\} .
$$

A geometric stability result

Theorem (Hug, Reichenbacher)
Let $K \in \overline{\mathcal{K}}_{s}^{d}$ and let C be a spherical cap with $\mathcal{H}^{d}(K)=\mathcal{H}^{d}(C)>0$.
Let $\alpha_{0} \in(0, \pi / 2)$ be such that $\alpha_{0} \leq \alpha_{C}$. Then

$$
U_{1}(K) \geq\left(1+\widetilde{\gamma} \Delta(K)^{2}\right) U_{1}(C)
$$

with

A geometric stability result

Theorem (Hug, Reichenbacher)

Let $K \in \overline{\mathcal{K}}_{s}^{d}$ and let C be a spherical cap with $\mathcal{H}^{d}(K)=\mathcal{H}^{d}(C)>0$. Let $\alpha_{0} \in(0, \pi / 2)$ be such that $\alpha_{0} \leq \alpha_{C}$. Then

$$
U_{1}(K) \geq\left(1+\widetilde{\gamma} \Delta(K)^{2}\right) U_{1}(C)
$$

with

$$
\widetilde{\gamma}=2 \cdot \min \left\{\frac{\binom{d+1}{2} \sin ^{d+1}\left(\alpha_{0}\right) \tan ^{-2 d}\left(\alpha_{C}\right)}{d+d\binom{d+1}{2}\left(\frac{\pi}{2}\right)^{2} \tan ^{-d}\left(\alpha_{C}\right)},\left(\frac{2}{\pi}\right)^{2} D\left(\frac{\pi}{2}-\alpha_{C}\right)\right\} .
$$

A deviation result for the spherical Crofton cell

Theorem (Hug, Reichenbacher)

Let $0<a<\beta_{d} / 2$ and $0<\varepsilon<1$. Then there are constants $\widetilde{c}_{1}, \widetilde{c_{2}}>0$ such that

$$
\mathbb{P}\left(\Delta\left(Z_{0}\right) \geq \varepsilon \mid \mathcal{H}^{d}\left(Z_{0}\right) \geq a\right) \leq \widetilde{c}_{1} \cdot \exp \left(-\widetilde{c}_{2} \cdot \varepsilon^{2(d+1)} \cdot \gamma_{s}\right)
$$

where $\widetilde{c}_{1}=\widetilde{c}_{1}(a, \varepsilon, d), \widetilde{c}_{2}=\widetilde{c}_{2}(a, d)$.

Asymptotic distribution

Theorem (Hug, Reichenbacher)
Let $0<a<\beta_{d} / 2$. Then

$$
\lim _{\gamma_{S} \rightarrow \infty} \gamma_{S}^{-1} \cdot \ln \mathbb{P}\left(\mathcal{H}^{d}\left(Z_{0}\right) \geq a\right)=-2 \beta_{d} \cdot U_{1}\left(B_{a}\right)
$$

where B_{a} is a spherical cap of volume a.

Similar results have been obtained for binomial processes and for the spherical inradius as the size functional, but also for general continuous, increasing size functionals $\Sigma \not \equiv 0$ vanishing on one-pointed sets.

Asymptotic distribution

Theorem (Hug, Reichenbacher)

Let $0<a<\beta_{d} / 2$. Then

$$
\lim _{\gamma_{S} \rightarrow \infty} \gamma_{S}^{-1} \cdot \ln \mathbb{P}\left(\mathcal{H}^{d}\left(Z_{0}\right) \geq a\right)=-2 \beta_{d} \cdot U_{1}\left(B_{a}\right)
$$

where B_{a} is a spherical cap of volume a.

Similar results have been obtained for binomial processes and for the spherical inradius as the size functional, but also for general continuous, increasing size functionals $\Sigma \not \equiv 0$ vanishing on one-pointed sets.

Illustration

$\gamma_{S}=1$ (17 great subspheres)

Illustration

Spherical Poisson-Voronoi cells

Let X be an isotropic Poisson process on \mathbb{S}^{d} with intensity γ_{s}, and let $X^{\prime}=\{C(x, X): x \in X\}$ be the associated Poisson-Voronoi tessellation.

The distribution of the typical cell Z then satisfies

$$
\mathbb{P}(Z \in \cdot)=\mathbb{P}\left(C\left(\bar{o}, X+\delta_{\bar{o}}\right) \in \cdot\right)
$$

Hitting and deviation functional

Hence Z is equal in distribution to the Crofton cell of a (non-isotropic) Poisson process Y of great subspheres with hitting functional

$$
\mathbb{E} Y\left(\mathcal{H}_{K}\right)=\gamma_{s} \widetilde{U}(K), \quad \bar{o} \in K \in \mathcal{K}_{s}^{d},
$$

where
$\widetilde{U}(K)=2 \int_{\bar{o}^{\perp} \cap \mathbb{S}^{d}} \int_{A_{s}(u)} \sin ^{d-1}\left(2 d_{s}\left(\tilde{S}_{u}, t\right)\right) \mathbf{1}\left\{t^{\perp} \cap K \neq \emptyset\right\} \mathcal{H}^{1}(d t) \mathcal{H}^{d-1}(d u)$
with $\tilde{S}_{u}=\{-\bar{o}, u\}$ and $A_{s}(u)=\operatorname{arc}(-\bar{o}, u)$.
Define

Hitting and deviation functional

Hence Z is equal in distribution to the Crofton cell of a (non-isotropic) Poisson process Y of great subspheres with hitting functional

$$
\mathbb{E} Y\left(\mathcal{H}_{K}\right)=\gamma_{s} \widetilde{U}(K), \quad \bar{o} \in K \in \mathcal{K}_{s}^{d},
$$

where
$\widetilde{U}(K)=2 \int_{\bar{o}^{\perp} \cap \mathbb{S}^{d}} \int_{A_{s}(u)} \sin ^{d-1}\left(2 d_{s}\left(\tilde{S}_{u}, t\right)\right) \mathbf{1}\left\{t^{\perp} \cap K \neq \emptyset\right\} \mathcal{H}^{1}(d t) \mathcal{H}^{d-1}(d u)$
with $\tilde{S}_{u}=\{-\bar{o}, u\}$ and $A_{s}(u)=\operatorname{arc}(-\bar{o}, u)$.
Define

$$
\begin{aligned}
r_{s}(K) & :=\max \left\{r \geq 0: B_{s}(\bar{o}, r) \subset K\right\} \\
R_{s}(K) & :=\min \left\{r \geq 0: B_{s}(\bar{o}, r) \supset K\right\} \\
\vartheta(K) & :=R_{s}(K)-r_{s}(K) .
\end{aligned}
$$

Geometric stability

Theorem (Hug, Reichenbacher)

Let $a \in(0, \pi / 2), \bar{o} \in K \in \mathcal{K}_{s}^{d}$ with $r_{s}(K) \geq a$ and $C:=B_{s}(\bar{o}, a)$. Then

$$
\widetilde{U}(K) \geq \widetilde{U}(C)=\mathcal{H}^{d}\left(B_{s}(\bar{o}, 2 a)\right)
$$

Equality holds if and only if $K=C$.
More generally,

$$
\widetilde{U}(K) \geq\left(1+c_{5}(a, d) \vartheta(K)^{d}\right) \widetilde{U}(C) .
$$

Shape deviation

Theorem (Hug, Reichenbacher)

Let $a \in(0, \pi / 2)$ and $\varepsilon \in(0,1]$. Let Z be the typical cell of the Voronoi tessellation associated with an isotropic Poisson point process with intensity γ_{s} on \mathbb{S}^{d}. Then

$$
\mathbb{P}\left(R_{s}(Z)-r_{s}(Z) \geq \varepsilon \mid r_{s}(Z) \geq a\right) \leq c_{6} \cdot \exp \left(-c_{7} \cdot \varepsilon^{d} \cdot \gamma_{s}\right),
$$

where $c_{6}=c_{6}(a, d, \varepsilon)$ and $c_{7}=c_{7}(a, d)$.

Splitting tessellations in spherical space

Joint work with Christoph Thäle

A recursive cell splitting scheme:

Figure: Illustration of a splitting tessellation.

A splitting process via cell-splitting
Define $\oslash: \mathbb{P}^{d} \times \mathbb{S}_{d-1} \times \mathbb{T}^{d} \rightarrow \mathbb{T}^{d}$ by

$$
\partial(c, S, T):=(T \backslash\{c\}) \cup\left\{c \cap S^{+}, c \cap S^{-}\right\} \in \mathbb{T}^{d},
$$

if $c \in T, S \in \mathbb{S}_{d-1}[c]$, and where $S^{ \pm}$are the two closed hemispheres determined by S; otherwise $\oslash(c, S, T):=T$.

Definition

A spilitting process $\left(Y_{t}\right)_{t>0}$ with initial tessellation $Y_{0}:=\left\{S^{d}\right\}$ is a continuous time, pure jump Markov process on \mathbb{T}^{d} with generator

where $f \in \mathcal{F}_{b}\left(\mathbb{T}^{d}\right)$. For $t>0$ we call Y_{t} a splitting tessellation.
Note that the unbounded intensity function λ of Y, \mathcal{A} is $\lambda(T)=|T|, T \in \mathbb{T}^{d}$.

A splitting process via cell-splitting
Define $\oslash: \mathbb{P}^{d} \times \mathbb{S}_{d-1} \times \mathbb{T}^{d} \rightarrow \mathbb{T}^{d}$
if $c \in T, S \in \mathbb{S}_{d-1}[c]$, and where $S^{ \pm}$are the two closed hemispheres determined by S; otherwise $\oslash(c, S, T):=T$.

Definition

A splitting process $\left(Y_{t}\right)_{t>0}$ with initial tessellation $Y_{0}:=\left\{S^{d}\right\}$ is a continuous time, pure jump Markov process on \mathbb{T}^{d} with generator

where $f \in \mathcal{F}_{b}\left(\mathbb{T}^{d}\right)$. For $t>0$ we call Y_{t} a splitting tessellation.
Note that the unbounded intensity function λ of γ, \mathcal{A} is $\lambda(T)=|T|, T \in \mathbb{T}^{d}$

A splitting process via cell-splitting

Define $\oslash: \mathbb{P}^{d} \times \mathbb{S}_{d-1} \times \mathbb{T}^{d} \rightarrow \mathbb{T}^{d}$ by

$$
\oslash(c, S, T):=(T \backslash\{c\}) \cup\left\{c \cap S^{+}, c \cap S^{-}\right\} \in \mathbb{T}^{d}
$$

if $c \in T, S \in \mathbb{S}_{d-1}[c]$, and where $S^{ \pm}$are the two closed hemispheres determined by S;

where $f \in \mathcal{F}_{b}\left(\mathbb{T}^{d}\right)$. For $t>0$ we call Y_{t} a splitting tessellation.

A splitting process via cell-splitting

Define $\oslash: \mathbb{P}^{d} \times \mathbb{S}_{d-1} \times \mathbb{T}^{d} \rightarrow \mathbb{T}^{d}$ by

$$
\oslash(c, S, T):=(T \backslash\{c\}) \cup\left\{c \cap S^{+}, c \cap S^{-}\right\} \in \mathbb{T}^{d}
$$

if $c \in T, S \in \mathbb{S}_{d-1}[c]$, and where $S^{ \pm}$are the two closed hemispheres determined by S; otherwise $\oslash(c, S, T):=T$.

where $f \in \mathcal{F}_{b}\left(\mathbb{T}^{d}\right)$. For $t>0$ we call Y_{t} a splitting tessellation.

A splitting process via cell-splitting

Define $\oslash: \mathbb{P}^{d} \times \mathbb{S}_{d-1} \times \mathbb{T}^{d} \rightarrow \mathbb{T}^{d}$ by

$$
\oslash(c, S, T):=(T \backslash\{c\}) \cup\left\{c \cap S^{+}, c \cap S^{-}\right\} \in \mathbb{T}^{d}
$$

if $c \in T, S \in \mathbb{S}_{d-1}[c]$, and where $S^{ \pm}$are the two closed hemispheres determined by S; otherwise $\oslash(c, S, T):=T$.

Definition

A splitting process $\left(Y_{t}\right)_{t \geq 0}$ with initial tessellation $Y_{0}:=\left\{\mathbb{S}^{d}\right\}$ is a continuous time, pure jump Markov process on \mathbb{T}^{d} with generator

$$
(\mathcal{A} f)(T):=\sum_{c \in T} \int_{\mathbb{S}_{d-1}[c]}[f(\oslash(c, S, T))-f(T)] \nu_{d-1}(\mathrm{~d} S), \quad T \in \mathbb{T}^{d}
$$

where $f \in \mathcal{F}_{b}\left(\mathbb{T}^{d}\right)$. For $t>0$ we call Y_{t} a splitting tessellation.

A splitting process via cell-splitting

Define $\oslash: \mathbb{P}^{d} \times \mathbb{S}_{d-1} \times \mathbb{T}^{d} \rightarrow \mathbb{T}^{d}$ by

$$
\oslash(c, S, T):=(T \backslash\{c\}) \cup\left\{c \cap S^{+}, c \cap S^{-}\right\} \in \mathbb{T}^{d}
$$

if $c \in T, S \in \mathbb{S}_{d-1}[c]$, and where $S^{ \pm}$are the two closed hemispheres determined by S; otherwise $\oslash(c, S, T):=T$.

Definition

A splitting process $\left(Y_{t}\right)_{t \geq 0}$ with initial tessellation $Y_{0}:=\left\{\mathbb{S}^{d}\right\}$ is a continuous time, pure jump Markov process on \mathbb{T}^{d} with generator

$$
(\mathcal{A} f)(T):=\sum_{c \in T} \int_{\mathbb{S}_{d-1}[c]}[f(\oslash(c, S, T))-f(T)] \nu_{d-1}(\mathrm{~d} S), \quad T \in \mathbb{T}^{d}
$$

where $f \in \mathcal{F}_{b}\left(\mathbb{T}^{d}\right)$. For $t>0$ we call Y_{t} a splitting tessellation.
Note that the unbounded intensity function λ of Y, \mathcal{A} is $\lambda(T)=|T|, T \in \mathbb{T}^{d}$.

An auxiliary martingale

Lemma

Let E be a Borel space and let $\left(X_{t}\right)_{t \geq 0}$ be a Markov process with values in E and with generator \mathcal{L} whose domain is $D(\mathcal{L})$. Then, for $f \in D(\mathcal{L})$, the random process

$$
f\left(X_{t}\right)-f\left(X_{0}\right)-\int_{0}^{t}(\mathcal{L} f)\left(X_{s}\right) d s, \quad t \geq 0
$$

is a martingale with respect to the filtration induced by $\left(X_{t}\right)_{t \geq 0}$. If $\left(X_{t}\right)_{t \geq 0}$ is a jump process with bounded intensity function, then $\mathcal{F}_{b}(E)=D(\mathcal{L})$.

Applications

Proposition

Let $\phi: \mathbb{P}^{d} \rightarrow \mathbb{R}$ be bounded and measurable. Define

$$
\Sigma_{\phi}(T):=\sum_{c \in T} \phi(c)=\int_{\mathbb{P}^{d}} \phi \mathrm{~d} \mu_{T}, \quad T \in \mathbb{T}^{d}
$$

Then the stochastic process

$$
M_{t}(\phi):=\Sigma_{\phi}\left(Y_{t}\right)-\Sigma_{\phi}\left(Y_{0}\right)-\int_{0}^{t}\left(\mathcal{A} \Sigma_{\phi}\right)\left(Y_{s}\right) \mathrm{d} s, \quad t \geq 0
$$

is a martingale with respect to \mathcal{Y}, the filtration generated by $\left(Y_{t}\right)_{t \geq 0}$.

Proposition

Let $\phi_{i}: \mathbb{P}^{d} \rightarrow \mathbb{R}$ for $i \in\{1,2\}$ be bounded and measurable. Define

$$
\Sigma_{\phi_{1}, \phi_{2}}(T):=\Sigma_{\phi_{1}}(T) \Sigma_{\phi_{2}}(T), \quad T \in \mathbb{T}^{d}
$$

Then the stochastic process
$M_{t}\left(\phi_{1}, \phi_{2}\right):=\Sigma_{\phi_{1}, \phi_{2}}\left(Y_{t}\right)-\Sigma_{\phi_{1}, \phi_{2}}\left(Y_{0}\right)-\int_{0}^{t}\left(\mathcal{A} \Sigma_{\phi_{1}, \phi_{2}}\right)\left(Y_{s}\right) \mathrm{d} s, \quad t \geq 0$, is a martingale with respect to \mathcal{Y}.

By time augmentation, we can also treat functionals of the form

Proposition

Let $\phi_{i}: \mathbb{P}^{d} \rightarrow \mathbb{R}$ for $i \in\{1,2\}$ be bounded and measurable. Define

$$
\Sigma_{\phi_{1}, \phi_{2}}(T):=\Sigma_{\phi_{1}}(T) \Sigma_{\phi_{2}}(T), \quad T \in \mathbb{T}^{d}
$$

Then the stochastic process
$M_{t}\left(\phi_{1}, \phi_{2}\right):=\Sigma_{\phi_{1}, \phi_{2}}\left(Y_{t}\right)-\Sigma_{\phi_{1}, \phi_{2}}\left(Y_{0}\right)-\int_{0}^{t}\left(\mathcal{A} \Sigma_{\phi_{1}, \phi_{2}}\right)\left(Y_{s}\right) \mathrm{d} s, \quad t \geq 0$,
is a martingale with respect to \mathcal{Y}.

By time augmentation, we can also treat functionals of the form

$$
\Psi_{\phi_{1}, \phi_{2}}(T, t):=\left(\Sigma_{\phi_{1}}(T)-b_{1} t^{v_{1}}\right)\left(\Sigma_{\phi_{2}}(T)-b_{2} t^{v_{2}}\right), \quad T \in \mathbb{T}^{d}, t \geq 0
$$

Expected spherical curvature measures

For $t \geq 0, j \in\{0, \ldots, d\}$ and $A \in \mathcal{B}\left(\mathbb{S}^{d}\right)$, define

$$
\Sigma_{j}(t ; A):=\sum_{c \in Y_{t}} \phi_{j}(c, A) .
$$

More generally, if $h: \mathbb{S}^{d} \rightarrow \mathbb{R}$ is bounded, measurable and μ is a finite Borel measure on \mathbb{S}^{d}, we write $\mu(h):=\int_{\mathbb{S}^{d}} h \mathrm{~d} \mu$

where $h: \mathbb{S}^{d} \rightarrow \mathbb{R}$ is bounded and measurable.

Expected spherical curvature measures

For $t \geq 0, j \in\{0, \ldots, d\}$ and $A \in \mathcal{B}\left(\mathbb{S}^{d}\right)$, define

$$
\Sigma_{j}(t ; A):=\sum_{c \in Y_{t}} \phi_{j}(c, A) .
$$

More generally, if $h: \mathbb{S}^{d} \rightarrow \mathbb{R}$ is bounded, measurable and μ is a finite Borel measure on \mathbb{S}^{d}, we write $\mu(h):=\int_{\mathbb{S}^{d}} h \mathrm{~d} \mu$.

where $h: \mathbb{S}^{d} \rightarrow \mathbb{R}$ is bounded and measurable.

Expected spherical curvature measures

For $t \geq 0, j \in\{0, \ldots, d\}$ and $A \in \mathcal{B}\left(\mathbb{S}^{d}\right)$, define

$$
\Sigma_{j}(t ; A):=\sum_{c \in Y_{t}} \phi_{j}(c, A)
$$

More generally, if $h: \mathbb{S}^{d} \rightarrow \mathbb{R}$ is bounded, measurable and μ is a finite Borel measure on \mathbb{S}^{d}, we write $\mu(h):=\int_{\mathbb{S}^{d}} h \mathrm{~d} \mu$.

Theorem

Let $t \geq 0$ and $j \in\{0, \ldots, d\}$. Then

$$
\mathbf{E} \Sigma_{j}(t ; h)=\frac{t^{d-j}}{(d-j)!} \frac{\mathcal{H}^{d}(h)}{\beta_{d}},
$$

where $h: \mathbb{S}^{d} \rightarrow \mathbb{R}$ is bounded and measurable.

Idea of proof

The random process
$\Sigma_{j}(t ; h)-\int_{0}^{t} \sum_{c \in Y_{s}} \int_{\mathbb{S}_{d-1}[c]}\left[\phi_{j}\left(c \cap S^{+}, h\right)+\phi_{j}\left(c \cap S^{-}, h\right)-\phi_{j}(c, h)\right] \nu_{d-1}(\mathrm{~d} S) \mathrm{d} s$ is a \mathcal{Y}-martingale. The valuation property of ϕ_{j} yields that $\phi_{j}\left(c \cap S^{+}, h\right)+\phi_{j}\left(c \cap S^{-}, h\right)-\phi_{j}(c, h)=\phi_{j}(c \cap S, h)$.

Taking expectations and applying the local spherical Crofton formula,

$$
\begin{aligned}
\mathrm{E} \Sigma_{j}(t ; h) & =\mathrm{E} \int_{0}^{t} \sum_{c \in Y_{S}} \int_{S_{d-1}[c]} \phi_{j}(c \cap S, h) \nu_{d-1}(\mathrm{~d} S) \mathrm{d} s \\
& =\mathrm{E} \int_{0}^{t} \sum_{c \in Y_{S}} \phi_{j+1}(c, h) \mathrm{d} s=\mathrm{E} \int_{0}^{t} \Sigma_{j+1}(s ; h) \mathrm{d} s .
\end{aligned}
$$

Now work recursively and use that, with probability one,

Idea of proof

The random process
$\Sigma_{j}(t ; h)-\int_{0}^{t} \sum_{c \in Y_{s}} \int_{\mathbb{S}_{d-1}[c]}\left[\phi_{j}\left(c \cap S^{+}, h\right)+\phi_{j}\left(c \cap S^{-}, h\right)-\phi_{j}(c, h)\right] \nu_{d-1}(\mathrm{~d} S) \mathrm{d} s$
is a \mathcal{Y}-martingale. The valuation property of ϕ_{j} yields that

$$
\phi_{j}\left(c \cap S^{+}, h\right)+\phi_{j}\left(c \cap S^{-}, h\right)-\phi_{j}(c, h)=\phi_{j}(c \cap S, h) .
$$

Taking expectations and applying the local spherical Crofton formula,

$$
\begin{aligned}
\mathbf{E} \Sigma_{j}(t ; h) & =\mathbf{E} \int_{0}^{t} \sum_{c \in Y_{s}} \int_{\mathbb{S}_{d-1}[c]} \phi_{j}(c \cap S, h) \nu_{d-1}(\mathrm{~d} S) \mathrm{d} s \\
& =\mathbf{E} \int_{0}^{t} \sum_{c \in Y_{s}} \phi_{j+1}(c, h) \mathrm{d} s=\mathbf{E} \int_{0}^{t} \Sigma_{j+1}(s ; h) \mathrm{d} s .
\end{aligned}
$$

Now work recursively and use that, with probability one,

Idea of proof

The random process
$\Sigma_{j}(t ; h)-\int_{0}^{t} \sum_{c \in Y_{s}} \int_{\mathbb{S}_{d-1}[c]}\left[\phi_{j}\left(c \cap S^{+}, h\right)+\phi_{j}\left(c \cap S^{-}, h\right)-\phi_{j}(c, h)\right] \nu_{d-1}(\mathrm{~d} S) \mathrm{d} s$
is a \mathcal{Y}-martingale. The valuation property of ϕ_{j} yields that

$$
\phi_{j}\left(c \cap S^{+}, h\right)+\phi_{j}\left(c \cap S^{-}, h\right)-\phi_{j}(c, h)=\phi_{j}(c \cap S, h) .
$$

Taking expectations and applying the local spherical Crofton formula,

$$
\begin{aligned}
\mathbf{E} \Sigma_{j}(t ; h) & =\mathrm{E} \int_{0}^{t} \sum_{c \in Y_{S}} \int_{S_{d-1}[c]} \phi_{j}(c \cap S, h) v_{d-1}(\mathrm{~d} S) \mathrm{d} s \\
& =\mathrm{E} \int_{0}^{t} \sum_{c \in Y_{s}} \phi_{j+1}(c, h) \mathrm{d} s=\mathrm{E} \int_{0}^{t} \Sigma_{j+1}(s ; h) \mathrm{ds} .
\end{aligned}
$$

Now work recursively and use that, with probability one,

Idea of proof

The random process
$\Sigma_{j}(t ; h)-\int_{0}^{t} \sum_{c \in Y_{s}} \int_{\mathbb{S}_{d-1}[c]}\left[\phi_{j}\left(c \cap S^{+}, h\right)+\phi_{j}\left(c \cap S^{-}, h\right)-\phi_{j}(c, h)\right] \nu_{d-1}(\mathrm{~d} S) \mathrm{d} s$
is a \mathcal{Y}-martingale. The valuation property of ϕ_{j} yields that

$$
\phi_{j}\left(c \cap S^{+}, h\right)+\phi_{j}\left(c \cap S^{-}, h\right)-\phi_{j}(c, h)=\phi_{j}(c \cap S, h) .
$$

Taking expectations and applying the local spherical Crofton formula,

$$
\begin{aligned}
\mathbf{E} \Sigma_{j}(t ; h) & =\mathbf{E} \int_{0}^{t} \sum_{c \in Y_{s}} \int_{\mathbb{S}_{d-1}[c]} \phi_{j}(c \cap s, h) \nu_{d-1}(\mathrm{~d} S) \mathrm{d} s \\
& =\mathrm{E} \int_{0}^{t} \sum_{c \in Y_{s}} \phi_{j+1}(c, h) \mathrm{d} s=\mathrm{E} \int_{0}^{t} \Sigma_{j+1}(s ; h) \mathrm{d} s .
\end{aligned}
$$

Now work recursively and use that, with probability one,

Idea of proof

The random process
$\Sigma_{j}(t ; h)-\int_{0}^{t} \sum_{c \in Y_{s}} \int_{\mathbb{S}_{d-1}[c]}\left[\phi_{j}\left(c \cap S^{+}, h\right)+\phi_{j}\left(c \cap S^{-}, h\right)-\phi_{j}(c, h)\right] \nu_{d-1}(\mathrm{~d} S) \mathrm{d} s$
is a \mathcal{Y}-martingale. The valuation property of ϕ_{j} yields that

$$
\phi_{j}\left(c \cap S^{+}, h\right)+\phi_{j}\left(c \cap S^{-}, h\right)-\phi_{j}(c, h)=\phi_{j}(c \cap S, h) .
$$

Taking expectations and applying the local spherical Crofton formula,

$$
\begin{aligned}
\mathbf{E} \Sigma_{j}(t ; h) & =\mathbf{E} \int_{0}^{t} \sum_{c \in Y_{s}} \int_{\mathbb{S}_{d-1}[c]} \phi_{j}(c \cap S, h) \nu_{d-1}(\mathrm{~d} S) \mathrm{d} s \\
& =\mathbf{E} \int_{0}^{t} \sum_{c \in Y_{s}} \phi_{j+1}(c, h) \mathrm{d} s=\mathbf{E} \int_{0}^{t} \Sigma_{j+1}(s ; h) \mathrm{d} s .
\end{aligned}
$$

Now work recursively and use that, with probability one,

Idea of proof

The random process
$\Sigma_{j}(t ; h)-\int_{0}^{t} \sum_{c \in Y_{s}} \int_{\mathbb{S}_{d-1}[c]}\left[\phi_{j}\left(c \cap S^{+}, h\right)+\phi_{j}\left(c \cap S^{-}, h\right)-\phi_{j}(c, h)\right] \nu_{d-1}(\mathrm{~d} S) \mathrm{d} s$
is a \mathcal{Y}-martingale. The valuation property of ϕ_{j} yields that

$$
\phi_{j}\left(c \cap S^{+}, h\right)+\phi_{j}\left(c \cap S^{-}, h\right)-\phi_{j}(c, h)=\phi_{j}(c \cap S, h) .
$$

Taking expectations and applying the local spherical Crofton formula,

$$
\begin{aligned}
\mathbf{E} \Sigma_{j}(t ; h) & =\mathbf{E} \int_{0}^{t} \sum_{c \in Y_{s}} \int_{\mathbb{S}_{d-1}[c]} \phi_{j}(c \cap S, h) \nu_{d-1}(\mathrm{~d} S) \mathrm{d} s \\
& =\mathbf{E} \int_{0}^{t} \sum_{c \in Y_{s}} \phi_{j+1}(c, h) \mathrm{d} s=\mathbf{E} \int_{0}^{t} \Sigma_{j+1}(s ; h) \mathrm{d} s .
\end{aligned}
$$

Now work recursively and use that, with probability one,

$$
\Sigma_{d}(s ; h)
$$

Idea of proof

The random process
$\Sigma_{j}(t ; h)-\int_{0}^{t} \sum_{c \in Y_{s}} \int_{\mathbb{S}_{d-1}[c]}\left[\phi_{j}\left(c \cap S^{+}, h\right)+\phi_{j}\left(c \cap S^{-}, h\right)-\phi_{j}(c, h)\right] \nu_{d-1}(\mathrm{~d} S) \mathrm{d} s$
is a \mathcal{Y}-martingale. The valuation property of ϕ_{j} yields that

$$
\phi_{j}\left(c \cap S^{+}, h\right)+\phi_{j}\left(c \cap S^{-}, h\right)-\phi_{j}(c, h)=\phi_{j}(c \cap S, h) .
$$

Taking expectations and applying the local spherical Crofton formula,

$$
\begin{aligned}
\mathbf{E} \Sigma_{j}(t ; h) & =\mathbf{E} \int_{0}^{t} \sum_{c \in Y_{s}} \int_{\mathbb{S}_{d-1}[c]} \phi_{j}(c \cap S, h) \nu_{d-1}(\mathrm{~d} S) \mathrm{d} s \\
& =\mathbf{E} \int_{0}^{t} \sum_{c \in Y_{s}} \phi_{j+1}(c, h) \mathrm{d} s=\mathbf{E} \int_{0}^{t} \Sigma_{j+1}(s ; h) \mathrm{d} s .
\end{aligned}
$$

Now work recursively and use that, with probability one,

$$
\Sigma_{d}(s ; h)=\sum_{c \in Y_{s}} \phi_{d}(c, h)
$$

Idea of proof

The random process
$\Sigma_{j}(t ; h)-\int_{0}^{t} \sum_{c \in Y_{s}} \int_{\mathbb{S}_{d-1}[c]}\left[\phi_{j}\left(c \cap S^{+}, h\right)+\phi_{j}\left(c \cap S^{-}, h\right)-\phi_{j}(c, h)\right] \nu_{d-1}(\mathrm{~d} S) \mathrm{d} s$
is a \mathcal{Y}-martingale. The valuation property of ϕ_{j} yields that

$$
\phi_{j}\left(c \cap S^{+}, h\right)+\phi_{j}\left(c \cap S^{-}, h\right)-\phi_{j}(c, h)=\phi_{j}(c \cap S, h) .
$$

Taking expectations and applying the local spherical Crofton formula,

$$
\begin{aligned}
\mathbf{E} \Sigma_{j}(t ; h) & =\mathbf{E} \int_{0}^{t} \sum_{c \in Y_{s}} \int_{\mathbb{S}_{d-1}[c]} \phi_{j}(c \cap S, h) \nu_{d-1}(\mathrm{~d} S) \mathrm{d} s \\
& =\mathbf{E} \int_{0}^{t} \sum_{c \in Y_{s}} \phi_{j+1}(c, h) \mathrm{d} s=\mathbf{E} \int_{0}^{t} \Sigma_{j+1}(s ; h) \mathrm{d} s .
\end{aligned}
$$

Now work recursively and use that, with probability one,

$$
\Sigma_{d}(s ; h)=\sum_{c \in Y_{s}} \phi_{d}(c, h)=\sum_{c \in Y_{s}} \frac{\mathcal{H}^{d}\left(h \mathbf{1}_{c}\right)}{\beta_{d}}
$$

Idea of proof

The random process
$\Sigma_{j}(t ; h)-\int_{0}^{t} \sum_{c \in Y_{s}} \int_{\mathbb{S}_{d-1}[c]}\left[\phi_{j}\left(c \cap S^{+}, h\right)+\phi_{j}\left(c \cap S^{-}, h\right)-\phi_{j}(c, h)\right] \nu_{d-1}(\mathrm{~d} S) \mathrm{d} s$
is a \mathcal{Y}-martingale. The valuation property of ϕ_{j} yields that

$$
\phi_{j}\left(c \cap S^{+}, h\right)+\phi_{j}\left(c \cap S^{-}, h\right)-\phi_{j}(c, h)=\phi_{j}(c \cap S, h) .
$$

Taking expectations and applying the local spherical Crofton formula,

$$
\begin{aligned}
\mathbf{E} \Sigma_{j}(t ; h) & =\mathbf{E} \int_{0}^{t} \sum_{c \in Y_{s}} \int_{\mathbb{S}_{d-1}[c]} \phi_{j}(c \cap S, h) \nu_{d-1}(\mathrm{~d} S) \mathrm{d} s \\
& =\mathbf{E} \int_{0}^{t} \sum_{c \in Y_{s}} \phi_{j+1}(c, h) \mathrm{d} s=\mathbf{E} \int_{0}^{t} \Sigma_{j+1}(s ; h) \mathrm{d} s .
\end{aligned}
$$

Now work recursively and use that, with probability one,

$$
\Sigma_{d}(s ; h)=\sum_{c \in Y_{s}} \phi_{d}(c, h)=\sum_{c \in Y_{s}} \frac{\mathcal{H}^{d}\left(h \mathbf{1}_{c}\right)}{\beta_{d}}=\frac{\mathcal{H}^{d}(h)}{\beta_{d}}
$$

Variances

Theorem
If $t \geq 0$ and $h: \mathbb{S}^{d} \rightarrow \mathbb{R}$ is bounded and measurable, then

$$
\begin{aligned}
& \operatorname{Var} \Sigma_{d-1}(t ; h)=\frac{\pi \beta_{d-2}}{\beta_{d} \beta_{d-1}^{2}} \int_{\mathbb{S}^{d}} \int_{\mathbb{S}^{d}} \frac{1-\exp \left(-\frac{1}{\pi} \ell(x, y) t\right)}{\ell(x, y) \sin (\ell(x, y))} \\
& \quad \times h(x) h(y) \mathcal{H}^{d}(\mathrm{~d} x) \mathcal{H}^{d}(\mathrm{~d} y)<\infty .
\end{aligned}
$$

- Proof uses auxiliary martingales and basic spherical integral geometry.
- Covariances and variances for different functions h and lower order curvature measures can also be determined.
- The mean and variance of the Hausdorff measure of the boundary Z_{t} of Y_{t} can be obtained as a special case.
- Euclidean analogue is due to Schreiber \& Thäle.

Variances

Theorem

If $t \geq 0$ and $h: \mathbb{S}^{d} \rightarrow \mathbb{R}$ is bounded and measurable, then

$$
\begin{aligned}
& \operatorname{Var} \Sigma_{d-1}(t ; h)=\frac{\pi \beta_{d-2}}{\beta_{d} \beta_{d-1}^{2}} \int_{\mathbb{S}^{d}} \int_{\mathbb{S}^{d}} \frac{1-\exp \left(-\frac{1}{\pi} \ell(x, y) t\right)}{\ell(x, y) \sin (\ell(x, y))} \\
& \quad \times h(x) h(y) \mathcal{H}^{d}(\mathrm{~d} x) \mathcal{H}^{d}(\mathrm{~d} y)<\infty .
\end{aligned}
$$

■ Proof uses auxiliary martingales and basic spherical integral geometry.

- Covariances and variances for different functions h and lower order curvature measures can also be determined.
- The mean and variance of the Hausdorff measure of the boundary Z_{t} of Y_{t} can be obtained as a special case.
- Euclidean analogue is due to Schreiber \& Thäle.

Variances

Theorem

If $t \geq 0$ and $h: \mathbb{S}^{d} \rightarrow \mathbb{R}$ is bounded and measurable, then

$$
\begin{aligned}
& \operatorname{Var} \Sigma_{d-1}(t ; h)=\frac{\pi \beta_{d-2}}{\beta_{d} \beta_{d-1}^{2}} \int_{\mathbb{S}^{d}} \int_{\mathbb{S}^{d}} \frac{1-\exp \left(-\frac{1}{\pi} \ell(x, y) t\right)}{\ell(x, y) \sin (\ell(x, y))} \\
& \times h(x) h(y) \mathcal{H}^{d}(\mathrm{~d} x) \mathcal{H}^{d}(\mathrm{~d} y)<\infty .
\end{aligned}
$$

■ Proof uses auxiliary martingales and basic spherical integral geometry.

- Covariances and variances for different functions h and lower order curvature measures can also be determined.
- The mean and variance of the Hausdorff measure of the boundary Z_{t}
of Y_{t} can be obtained as a special case.
- Euclidean analogue is due to Schreiber \& Thäle.

Variances

Theorem

If $t \geq 0$ and $h: \mathbb{S}^{d} \rightarrow \mathbb{R}$ is bounded and measurable, then

$$
\begin{aligned}
& \operatorname{Var} \Sigma_{d-1}(t ; h)=\frac{\pi \beta_{d-2}}{\beta_{d} \beta_{d-1}^{2}} \int_{\mathbb{S}^{d}} \int_{\mathbb{S}^{d}} \frac{1-\exp \left(-\frac{1}{\pi} \ell(x, y) t\right)}{\ell(x, y) \sin (\ell(x, y))} \\
& \quad \times h(x) h(y) \mathcal{H}^{d}(\mathrm{~d} x) \mathcal{H}^{d}(\mathrm{~d} y)<\infty .
\end{aligned}
$$

■ Proof uses auxiliary martingales and basic spherical integral geometry.

- Covariances and variances for different functions h and lower order curvature measures can also be determined.
- The mean and variance of the Hausdorff measure of the boundary Z_{t} of Y_{t} can be obtained as a special case.
- Euclidean analogue is due to Schreiber \& Thäle.

Next we study an application.

Variances

Theorem

If $t \geq 0$ and $h: \mathbb{S}^{d} \rightarrow \mathbb{R}$ is bounded and measurable, then

$$
\begin{aligned}
& \operatorname{Var} \Sigma_{d-1}(t ; h)=\frac{\pi \beta_{d-2}}{\beta_{d} \beta_{d-1}^{2}} \int_{\mathbb{S}^{d}} \int_{\mathbb{S}^{d}} \frac{1-\exp \left(-\frac{1}{\pi} \ell(x, y) t\right)}{\ell(x, y) \sin (\ell(x, y))} \\
& \quad \times h(x) h(y) \mathcal{H}^{d}(\mathrm{~d} x) \mathcal{H}^{d}(\mathrm{~d} y)<\infty .
\end{aligned}
$$

■ Proof uses auxiliary martingales and basic spherical integral geometry.

- Covariances and variances for different functions h and lower order curvature measures can also be determined.
- The mean and variance of the Hausdorff measure of the boundary Z_{t} of Y_{t} can be obtained as a special case.
- Euclidean analogue is due to Schreiber \& Thäle.

Next we study an application.

Variances

Theorem

If $t \geq 0$ and $h: \mathbb{S}^{d} \rightarrow \mathbb{R}$ is bounded and measurable, then

$$
\begin{aligned}
& \operatorname{Var} \Sigma_{d-1}(t ; h)=\frac{\pi \beta_{d-2}}{\beta_{d} \beta_{d-1}^{2}} \int_{\mathbb{S}^{d}} \int_{\mathbb{S}^{d}} \frac{1-\exp \left(-\frac{1}{\pi} \ell(x, y) t\right)}{\ell(x, y) \sin (\ell(x, y))} \\
& \quad \times h(x) h(y) \mathcal{H}^{d}(\mathrm{~d} x) \mathcal{H}^{d}(\mathrm{~d} y)<\infty .
\end{aligned}
$$

- Proof uses auxiliary martingales and basic spherical integral geometry.
- Covariances and variances for different functions h and lower order curvature measures can also be determined.
- The mean and variance of the Hausdorff measure of the boundary Z_{t} of Y_{t} can be obtained as a special case.
- Euclidean analogue is due to Schreiber \& Thäle.

Next we study an application.

Spherical K-function and pair-correlation function

Definition

Let \mathbf{M} be an isotropic random measure on \mathbb{S}^{d} with intensity $\mu \in(0, \infty)$, determined by $\mathbf{E}[\mathbf{M}(\cdot)]=\mu \beta_{d}^{-1} \mathcal{H}^{d}(\cdot)$ on \mathbb{S}^{d}.

The spherical K-function of \mathbf{M} can be defined by

where $B(e, r)=\left\{x \in \mathbb{S}^{d}: \ell(e, x) \leq r\right\}$.
If $K_{n n}$ is differentiable then

$r \in(0, \pi)$
is the spherical pair-correlation function of \mathbf{M}.

Spherical K-function and pair-correlation function

Definition

Let \mathbf{M} be an isotropic random measure on \mathbb{S}^{d} with intensity $\mu \in(0, \infty)$, determined by $\mathbf{E}[\mathbf{M}(\cdot)]=\mu \beta_{d}^{-1} \mathcal{H}^{d}(\cdot)$ on \mathbb{S}^{d}.

The spherical K-function of \mathbf{M} can be defined by

$$
K_{\mathbf{M}}(r):=\frac{1}{\mu^{2}} \mathbf{E} \int_{\left(\mathbb{S}^{d}\right)^{2}} \mathbf{1}(\ell(x, y) \leq r) \mathbf{M}^{2}(\mathrm{~d}(x, y))
$$

where $B(e, r)=\left\{x \in \mathbb{S}^{d}: \ell(e, x) \leq r\right\}$.
If K_{M} is differentiable, then

is the spherical pair-correlation function of \mathbf{M}.

Spherical K-function and pair-correlation function

Definition

Let \mathbf{M} be an isotropic random measure on \mathbb{S}^{d} with intensity $\mu \in(0, \infty)$, determined by $\mathbf{E}[\mathbf{M}(\cdot)]=\mu \beta_{d}^{-1} \mathcal{H}^{d}(\cdot)$ on \mathbb{S}^{d}.

The spherical K-function of \mathbf{M} can be defined by

$$
K_{\mathbf{M}}(r):=\frac{1}{\mu^{2}} \mathbf{E} \int_{\left(\mathbb{S}^{d}\right)^{2}} \mathbf{I}(\ell(x, y) \leq r) \mathbf{M}^{2}(\mathrm{~d}(x, y))
$$

where $B(e, r)=\left\{x \in \mathbb{S}^{d}: \ell(e, x) \leq r\right\}$.
If K_{M} is differentiable, then

$$
g_{\mathbf{M}}(r):=\frac{\beta_{d}}{\beta_{d-1}(\sin r)^{d-1}} K_{\mathbf{M}}^{\prime}(r), \quad r \in(0, \pi),
$$

is the spherical pair-correlation function of \mathbf{M}.

K-function and g-function for specific M

Choose the random measure $\mathbf{M}=\mathcal{H}^{d-1}\left\llcorner Z_{t}\right.$.

Theorem
If $t>0$ and $r \in(0, \pi)$, then
and

We compare this to Poisson hypersphere tessellations.

K-function and g-function for specific M

Choose the random measure $\mathbf{M}=\mathcal{H}^{d-1}\left\llcorner Z_{t}\right.$.

Theorem

If $t>0$ and $r \in(0, \pi)$, then

$$
K_{d, t}(r)=\frac{\beta_{d-1}}{\beta_{d}} \int_{0}^{r}\left(1+\pi \frac{\beta_{d-2} \beta_{d}}{\beta_{d-1}^{2}} \frac{1-\exp \left(-\frac{t}{\pi} \varphi\right)}{t^{2} \varphi \sin \varphi}\right)(\sin \varphi)^{d-1} \mathrm{~d} \varphi
$$

and

$$
g_{d, t}(r)=1+\pi \frac{\beta_{d-2} \beta_{d}}{\beta_{d-1}^{2}} \frac{1-\exp \left(\frac{-r t}{\pi}\right)}{t^{2} r \sin r} .
$$

We compare this to Poisson hypersphere tessellations.

K-function and g-function for specific M

Choose the random measure $\mathbf{M}=\mathcal{H}^{d-1}\left\llcorner Z_{t}\right.$.

Theorem

If $t>0$ and $r \in(0, \pi)$, then

$$
K_{d, t}(r)=\frac{\beta_{d-1}}{\beta_{d}} \int_{0}^{r}\left(1+\pi \frac{\beta_{d-2} \beta_{d}}{\beta_{d-1}^{2}} \frac{1-\exp \left(-\frac{t}{\pi} \varphi\right)}{t^{2} \varphi \sin \varphi}\right)(\sin \varphi)^{d-1} \mathrm{~d} \varphi
$$

and

$$
g_{d, t}(r)=1+\pi \frac{\beta_{d-2} \beta_{d}}{\beta_{d-1}^{2}} \frac{1-\exp \left(\frac{-r t}{\pi}\right)}{t^{2} r \sin r} .
$$

We compare this to Poisson hypersphere tessellations.

Poisson hypersphere tessellation

Let η_{t} be a Poisson process on \mathbb{S}^{d} with intensity measure $t \beta_{d}^{-1} \mathcal{H}^{d}$. Denote by \bar{Y}_{t} the tessellation of \mathbb{S}^{d} induced by η_{t}, and let

$$
\bar{Z}_{t}:=\bigcup_{u \in \eta_{t}}\left(u^{\perp} \cap \mathbb{S}^{d}\right)
$$

be the associated random closed set.

Figure: Illustration of Poisson circle tessellation on \mathbb{S}^{2}.

K-function and g-function for specific M

The random measure $\mathcal{H}^{d-1}\left\llcorner\bar{Z}_{t}\right.$ is isotropic and its intensity $\bar{\mu}:=\mathbf{E} \mathcal{H}^{d-1}\left(\bar{Z}_{t} \cap \mathbb{S}^{d}\right)$ equals $\bar{\mu}=t \beta_{d-1}$.
This is also the intensity of $\mathcal{H}^{d-1}\left\llcorner Z_{t}\right.$.

K-function and g-function for specific M

The random measure $\mathcal{H}^{d-1}\left\llcorner\bar{Z}_{t}\right.$ is isotropic and its intensity $\bar{\mu}:=\mathbf{E} \mathcal{H}^{d-1}\left(\bar{Z}_{t} \cap \mathbb{S}^{d}\right)$ equals $\bar{\mu}=t \beta_{d-1}$.
This is also the intensity of $\mathcal{H}^{d-1}\left\llcorner Z_{t}\right.$.

Theorem

For $t>0$, the K-function and g-function of the random measure $\mathcal{H}^{d-1}\left\llcorner\bar{Z}_{t}\right.$ are given by
$\bar{K}_{d, t}(r)=\frac{\beta_{d-1}}{\beta_{d}} \int_{0}^{r}(\sin \varphi)^{d-1} \mathrm{~d} \varphi+\frac{1}{t} \frac{\beta_{d-2}}{\beta_{d-1}} \int_{0}^{r}(\sin \varphi)^{d-2} \mathrm{~d} \varphi, \quad r \in(0, \pi)$,
and

$$
\bar{g}_{d, t}(r)=1+\frac{\beta_{d-2} \beta_{d}}{\beta_{d-1}^{2}} \frac{1}{t \sin r}, \quad r \in(0, \pi)
$$

The K-function of \bar{Y}_{t} equals

$$
\bar{K}_{d, t}(r)=\frac{\mathcal{H}^{d}(B(e, r))}{\beta_{d}}+\frac{1}{t} \frac{\beta_{d-2}}{\beta_{d-1}} \int_{0}^{r}(\sin \varphi)^{d-2} \mathrm{~d} \varphi, \quad r \in(0, \pi),
$$

and the K-function of Y_{t} equals

Since $1-e^{-t} \leq t, t \in \mathbb{R}$, it follows that

In the same way, we get $g_{d, t} \leq \bar{g}_{d, t}$.

The K-function of \bar{Y}_{t} equals

$$
\bar{K}_{d, t}(r)=\frac{\mathcal{H}^{d}(B(e, r))}{\beta_{d}}+\frac{1}{t} \frac{\beta_{d-2}}{\beta_{d-1}} \int_{0}^{r}(\sin \varphi)^{d-2} \mathrm{~d} \varphi, \quad r \in(0, \pi),
$$

and the K-function of Y_{t} equals

$$
K_{d, t}(r)=\frac{\mathcal{H}^{d}(B(e, r))}{\beta_{d}}+\frac{1}{t} \frac{\beta_{d-2}}{\beta_{d-1}} \int_{0}^{r} \frac{\pi}{t \varphi}\left(1-e^{-\frac{t \varphi}{\pi}}\right)(\sin \varphi)^{d-2} \mathrm{~d} \varphi
$$

Since $1-e^{-t} \leq t, t \in \mathbb{R}$, it follows that

In the same way, we get $g_{d, t} \leq \bar{g}_{d, t}$.

The K-function of \bar{Y}_{t} equals

$$
\bar{K}_{d, t}(r)=\frac{\mathcal{H}^{d}(B(e, r))}{\beta_{d}}+\frac{1}{t} \frac{\beta_{d-2}}{\beta_{d-1}} \int_{0}^{r}(\sin \varphi)^{d-2} \mathrm{~d} \varphi, \quad r \in(0, \pi),
$$

and the K-function of Y_{t} equals

$$
K_{d, t}(r)=\frac{\mathcal{H}^{d}(B(e, r))}{\beta_{d}}+\frac{1}{t} \frac{\beta_{d-2}}{\beta_{d-1}} \int_{0}^{r} \frac{\pi}{t \varphi}\left(1-e^{-\frac{t \varphi}{\pi}}\right)(\sin \varphi)^{d-2} \mathrm{~d} \varphi
$$

Since $1-e^{-t} \leq t, t \in \mathbb{R}$, it follows that

$$
K_{d, t} \leq \bar{K}_{d, t}
$$

In the same way, we get $g_{d, t} \leq \bar{g}_{d, t}$.

Illustration

Figure: The spherical pair-correlation functions $g_{2,2}(r)$ (solid curve) and $\bar{g}_{2,2}(r)$ (dashed curve).

Dynamic description of Poisson tessellation process

Splitting tessellations and Poisson hypersphere tessellations are linked to each other:

and $S \in \mathbb{S}_{d-1}$, we define

Define a continuous-time Markov process $\left(\bar{Y}_{t}\right)_{t \geq 0}$ with initial tessellation $\bar{Y}_{0}=\left\{\mathbb{S}^{d}\right\}$ in \mathbb{T}^{d} via its generator $\overline{\mathcal{A}}$, where

where $f \in \mathcal{F}_{b}\left(\mathbb{T}^{d}\right)$.
For $t>0$, the random tessellation \bar{Y}_{t} has the same distribution as a
Poisson hypersphere tessellation with intensity t.

Dynamic description of Poisson tessellation process

Splitting tessellations and Poisson hypersphere tessellations are linked to each other: for $T \in \mathbb{T}^{d}$ and $S \in \mathbb{S}_{d-1}$, we define
$\otimes(S, T):=(T \backslash\{c \in T: \operatorname{int}(c) \cap S \neq \emptyset\}) \cup \bigcup_{\substack{c \in T \\ \operatorname{int}(c) \cap S \neq \emptyset}}\left\{c \cap S^{+}, c \cap S^{-}\right\} \in \mathbb{T}^{d}$.

Define a continuous-time Markov process $\left(\bar{Y}_{t}\right)_{t \geq 0}$ with initial tessellation $\bar{Y}_{0}=\left\{\mathbb{S}^{d}\right\}$ in \mathbb{T}^{d} via its generator $\overline{\mathcal{A}}$, where

where $f \in \mathcal{F}_{b}\left(\mathbb{T}^{d}\right)$.
For $t>0$, the random tessellation \bar{Y}_{t} has the same distribution as a
Poisson hypersphere tessellation with intensity t.

Dynamic description of Poisson tessellation process

Splitting tessellations and Poisson hypersphere tessellations are linked to each other: for $T \in \mathbb{T}^{d}$ and $S \in \mathbb{S}_{d-1}$, we define
$\otimes(S, T):=(T \backslash\{c \in T: \operatorname{int}(c) \cap S \neq \emptyset\}) \cup \bigcup_{\substack{c \in T \\ \operatorname{int}(c) \cap S \neq \emptyset}}\left\{c \cap S^{+}, c \cap S^{-}\right\} \in \mathbb{T}^{d}$.

Define a continuous-time Markov process $\left(\bar{Y}_{t}\right)_{t \geq 0}$ with initial tessellation $\bar{Y}_{0}=\left\{\mathbb{S}^{d}\right\}$ in \mathbb{T}^{d} via its generator $\overline{\mathcal{A}}$, where

$$
(\overline{\mathcal{A}} f)(T)=\int_{\mathbb{S}_{d-1}}[f(\otimes(S, T))-f(T)] \nu_{d-1}(\mathrm{~d} S), \quad T \in \mathbb{T}^{d}
$$

where $f \in \mathcal{F}_{b}\left(\mathbb{T}^{d}\right)$.

Dynamic description of Poisson tessellation process

Splitting tessellations and Poisson hypersphere tessellations are linked to each other: for $T \in \mathbb{T}^{d}$ and $S \in \mathbb{S}_{d-1}$, we define
$\otimes(S, T):=(T \backslash\{c \in T: \operatorname{int}(c) \cap S \neq \emptyset\}) \cup \bigcup_{\substack{c \in T \\ \operatorname{int}(c) \cap S \neq \emptyset}}\left\{c \cap S^{+}, c \cap S^{-}\right\} \in \mathbb{T}^{d}$.

Define a continuous-time Markov process $\left(\bar{Y}_{t}\right)_{t \geq 0}$ with initial tessellation $\bar{Y}_{0}=\left\{\mathbb{S}^{d}\right\}$ in \mathbb{T}^{d} via its generator $\overline{\mathcal{A}}$, where

$$
(\overline{\mathcal{A}} f)(T)=\int_{\mathbb{S}_{d-1}}[f(\otimes(S, T))-f(T)] \nu_{d-1}(\mathrm{~d} S), \quad T \in \mathbb{T}^{d}
$$

where $f \in \mathcal{F}_{b}\left(\mathbb{T}^{d}\right)$.
For $t>0$, the random tessellation \bar{Y}_{t} has the same distribution as a Poisson hypersphere tessellation with intensity t.

Relationships for intensity measures

Consider the random measure \mathcal{M}_{t} and its intensity measure \mathbb{M}_{t} on \mathbb{P}^{d},

$$
\mathcal{M}_{t}:=\sum_{c \in Y_{t}} \delta_{c} \quad \text { and } \quad \mathbb{M}_{t}:=\mathbf{E} \mathcal{M}_{t}, \quad t \geq 0
$$

Similarly, for a Poisson hypersphere tessellation \bar{Y}_{t} with intensity $t \geq 0$,

$$
\overline{\mathcal{M}}_{t}:=\sum_{c \in \bar{Y}_{t}} \delta_{c} \quad \text { and } \quad \overline{\mathbb{M}}_{t}:=\mathbf{E} \overline{\mathcal{M}}_{t}
$$

Theorem
If $t \geq 0$, then $\mathbb{M}_{t}=\mathbb{M}_{t}$.

Relationships for intensity measures

Consider the random measure \mathcal{M}_{t} and its intensity measure \mathbb{M}_{t} on \mathbb{P}^{d},

$$
\mathcal{M}_{t}:=\sum_{c \in Y_{t}} \delta_{c} \quad \text { and } \quad \mathbb{M}_{t}:=\mathbf{E} \mathcal{M}_{t}, \quad t \geq 0
$$

Similarly, for a Poisson hypersphere tessellation \bar{Y}_{t} with intensity $t \geq 0$,

$$
\overline{\mathcal{M}}_{t}:=\sum_{c \in \bar{Y}_{t}} \delta_{c} \quad \text { and } \quad \overline{\mathbb{M}}_{t}:=\mathbf{E} \overline{\mathcal{M}}_{t}
$$

Theorem

$$
\text { If } t \geq 0, \text { then } \mathbb{M}_{t}=\overline{\mathbb{M}}_{t} .
$$

Sketch of proof

Let $\phi: \mathbb{P}^{d} \rightarrow \mathbb{R}$ be bounded and measurable. Then

$$
\begin{aligned}
\Sigma_{\phi}\left(Y_{t}\right)-\Sigma_{\phi}\left(Y_{0}\right)-\int_{0}^{t} \sum_{c \in Y_{s}} \int_{\mathbb{S}_{d-1}[c]}[& \phi\left(c \cap S^{+}\right)+\phi\left(c \cap S^{-}\right) \\
& -\phi(c)] \nu_{d-1}(\mathrm{~d} S) \mathrm{d} s
\end{aligned}
$$

is a \mathcal{Y}-martingale. Take expectations, we get

$$
\begin{aligned}
\int \phi(c) \mathbb{M}_{t}(\mathrm{~d} c)=\phi\left(\mathbb{S}^{d}\right)+\int_{0}^{t} \int & \int_{\mathbb{S}_{d-1}[c]}\left[\phi\left(c \cap S^{+}\right)+\phi\left(c \cap S^{-}\right)\right. \\
& -\phi(c)] \nu_{d-1}(\mathrm{~d} S) \mathbb{M}_{s}(\mathrm{~d} c) \mathrm{d} s
\end{aligned}
$$

Sketch of proof

Denote by $\mathbb{M}_{\mathrm{bv}}\left(\mathbb{P}^{d}\right)$ the Banach space of real-valued Borel measures on \mathbb{P}^{d} with the total variation norm $\|\cdot\|_{\mathrm{TV}}$. Then the linear operator
$\Gamma: \mathbb{M}_{\mathrm{bv}}\left(\mathbb{P}^{d}\right) \rightarrow \mathbb{M}_{\mathrm{bv}}\left(\mathbb{P}^{d}\right), \mu \mapsto \iint_{\mathbb{S}_{d-1}}\left[\delta_{c \cap S^{+}}+\delta_{c \cap S^{-}}-\delta_{c}\right] \nu_{d-1}(\mathrm{~d} S) \mu(\mathrm{dc})$,
is bounded with operator norm $\|\Gamma\| \leq 3$.
It follows that

in $\mathbb{M}_{\mathrm{bv}}\left(\mathbb{P}^{d}\right)$ and $\left\|\mathbb{M}_{t}-\mathbb{M}_{r}\right\|_{\mathrm{TV}} \leq 3 c_{\mathrm{a}}|t-r|$ for $0 \leq r \leq t \leq a$.
By similar arguments it can be shown that $\overline{\bar{M}}_{t}, t \geq 0$, satisfies the same initial value problem.

Since the solution is unique, the result follows.

Sketch of proof

Denote by $\mathbb{M}_{\mathrm{bv}}\left(\mathbb{P}^{d}\right)$ the Banach space of real-valued Borel measures on \mathbb{P}^{d} with the total variation norm $\|\cdot\|_{\mathrm{TV}}$. Then the linear operator
$\Gamma: \mathbb{M}_{\mathrm{bv}}\left(\mathbb{P}^{d}\right) \rightarrow \mathbb{M}_{\mathrm{bv}}\left(\mathbb{P}^{d}\right), \mu \mapsto \iint_{\mathbb{S}_{d-1}}\left[\delta_{c \cap S^{+}}+\delta_{c \cap S^{-}}-\delta_{c}\right] \nu_{d-1}(\mathrm{~d} S) \mu(\mathrm{dc})$,
is bounded with operator norm $\|\Gamma\| \leq 3$.
It follows that

$$
\mathbb{M}_{t}=\delta_{\mathbb{S}^{d}}+\int_{0}^{t} \Gamma\left(\mathbb{M}_{s}\right) \mathrm{d} s, \quad t \geq 0
$$

in $\mathbb{M}_{\mathrm{bv}}\left(\mathbb{P}^{d}\right)$ and $\left\|\mathbb{M}_{t}-\mathbb{M}_{\mathrm{r}}\right\|_{\mathrm{TV}} \leq 3 c_{a}|t-r|$ for $0 \leq r \leq t \leq a$.
By similar arguments it can be shown that $\overline{\mathbb{M}}_{t}, t \geq 0$, satisfies the same initial value problem.

Sketch of proof

Denote by $\mathbb{M}_{\mathrm{bv}}\left(\mathbb{P}^{d}\right)$ the Banach space of real-valued Borel measures on \mathbb{P}^{d} with the total variation norm $\|\cdot\|_{\mathrm{TV}}$. Then the linear operator
$\Gamma: \mathbb{M}_{\mathrm{bv}}\left(\mathbb{P}^{d}\right) \rightarrow \mathbb{M}_{\mathrm{bv}}\left(\mathbb{P}^{d}\right), \mu \mapsto \iint_{\mathbb{S}_{d-1}}\left[\delta_{c \cap S^{+}}+\delta_{c \cap S^{-}}-\delta_{c}\right] \nu_{d-1}(\mathrm{~d} S) \mu(\mathrm{dc})$,
is bounded with operator norm $\|\Gamma\| \leq 3$.
It follows that

$$
\mathbb{M}_{t}=\delta_{\mathbb{S}^{d}}+\int_{0}^{t} \Gamma\left(\mathbb{M}_{s}\right) \mathrm{d} s, \quad t \geq 0
$$

in $\mathbb{M}_{\mathrm{bv}}\left(\mathbb{P}^{d}\right)$ and $\left\|\mathbb{M}_{t}-\mathbb{M}_{r}\right\|_{\mathrm{TV}} \leq 3 c_{\mathrm{a}}|t-r|$ for $0 \leq r \leq t \leq a$.
By similar arguments it can be shown that $\overline{\mathbb{M}}_{t}, t \geq 0$, satisfies the same initial value problem.

Since the solution is unique, the result follows.

Sketch of proof

Denote by $\mathbb{M}_{\mathrm{bv}}\left(\mathbb{P}^{d}\right)$ the Banach space of real-valued Borel measures on \mathbb{P}^{d} with the total variation norm $\|\cdot\|_{\mathrm{TV}}$. Then the linear operator
$\Gamma: \mathbb{M}_{\mathrm{bv}}\left(\mathbb{P}^{d}\right) \rightarrow \mathbb{M}_{\mathrm{bv}}\left(\mathbb{P}^{d}\right), \mu \mapsto \iint_{\mathbb{S}_{d-1}}\left[\delta_{c \cap S^{+}}+\delta_{c \cap S^{-}}-\delta_{c}\right] \nu_{d-1}(\mathrm{~d} S) \mu(\mathrm{dc})$,
is bounded with operator norm $\|\Gamma\| \leq 3$.
It follows that

$$
\mathbb{M}_{t}=\delta_{\mathbb{S}^{d}}+\int_{0}^{t} \Gamma\left(\mathbb{M}_{s}\right) \mathrm{d} s, \quad t \geq 0
$$

in $\mathbb{M}_{\mathrm{bv}}\left(\mathbb{P}^{d}\right)$ and $\left\|\mathbb{M}_{t}-\mathbb{M}_{r}\right\|_{\mathrm{TV}} \leq 3 c_{\mathrm{a}}|t-r|$ for $0 \leq r \leq t \leq a$.
By similar arguments it can be shown that $\overline{\mathbb{M}}_{t}, t \geq 0$, satisfies the same initial value problem.

Since the solution is unique, the result follows.

Conference on Geometry and Probability

Subject: Convex, Discrete and Stochastic Geometry
Date: September 6-11, 2020
Venue: Bad Herrenalb (near Karlsruhe) in the Black Forest
Note: \quad Rolf Schneider (March 1940) and Wolfgang Weil (April 1945)

