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Poisson line tessellation

Poisson line process in R2, stationary and isotropic

Stationary, isotropic line tessellation: random infinite collection of
polygonal cells

Crofton cell or zero cell Z0: containing the origin



Kendall’s Conjecture (1940s, 1987)

“The conditional law for the shape of Z0, given
the area A(Z0) of Z0, converges weakly, as
A(Z0) → ∞, to the degenerate law concen-
trated at the spherical shape.”

R. Miles (1995)

I. N. Kovalenko (1997, 1999)

D. Hug, M. Reitzner, R. Schneider (2004)

D. Hug, R. Schneider (2007), . . .

Calka (2010, ’13 (surveys), . . . )

G. Bonnet (2016)

. . .



Poisson hyperplane tessellation in Rd

Consider a Poisson hyperplane process

X = {Hi : i ∈ N} =
∑
i∈N

δHi

with Hi ∈ A(d , d − 1), which is stationary and isotropic.

The intensity measure of X is a measure on A(d , d − 1) given by

EX(·) = γ

∫
Sd−1

∫
R

1{u⊥ + tu ∈ ·} dt σ0(du).

Here σ0 is normalized Hd−1, γ > 0 is the intensity of X .

Let HK := {H ∈ A(d , d − 1) : H ∩ K 6= ∅}. The Poisson assumption
means that X(HK ) is Poisson distributed with mean value EX(HK ).

The hitting functional of X is

K 7→ EX(HK ) ∼ V1(K ) for K ∈ Kd ,



Poisson hyperplane tessellation in Rd

Consider a Poisson hyperplane process

X = {Hi : i ∈ N} =
∑
i∈N

δHi

with Hi ∈ A(d , d − 1), which is stationary and isotropic.

The intensity measure of X is a measure on A(d , d − 1) given by

EX(·) = γ

∫
Sd−1

∫
R

1{u⊥ + tu ∈ ·} dt σ0(du).

Here σ0 is normalized Hd−1, γ > 0 is the intensity of X .

Let HK := {H ∈ A(d , d − 1) : H ∩ K 6= ∅}. The Poisson assumption
means that X(HK ) is Poisson distributed with mean value EX(HK ).

The hitting functional of X is

K 7→ EX(HK ) ∼ V1(K ) for K ∈ Kd ,



Poisson hyperplane tessellation in Rd

Consider a Poisson hyperplane process

X = {Hi : i ∈ N} =
∑
i∈N

δHi

with Hi ∈ A(d , d − 1), which is stationary and isotropic.

The intensity measure of X is a measure on A(d , d − 1) given by

EX(·) = γ

∫
Sd−1

∫
R

1{u⊥ + tu ∈ ·} dt σ0(du).

Here σ0 is normalized Hd−1, γ > 0 is the intensity of X .

Let HK := {H ∈ A(d , d − 1) : H ∩ K 6= ∅}. The Poisson assumption
means that X(HK ) is Poisson distributed with mean value EX(HK ).

The hitting functional of X is

K 7→ EX(HK ) ∼ V1(K ) for K ∈ Kd ,



Poisson hyperplane tessellation in Rd

Consider a Poisson hyperplane process

X = {Hi : i ∈ N} =
∑
i∈N

δHi

with Hi ∈ A(d , d − 1), which is stationary and isotropic.

The intensity measure of X is a measure on A(d , d − 1) given by

EX(·) = γ

∫
Sd−1

∫
R

1{u⊥ + tu ∈ ·} dt σ0(du).

Here σ0 is normalized Hd−1, γ > 0 is the intensity of X .

Let HK := {H ∈ A(d , d − 1) : H ∩ K 6= ∅}. The Poisson assumption
means that X(HK ) is Poisson distributed with mean value EX(HK ).

The hitting functional of X is

K 7→ EX(HK ) ∼ V1(K ) for K ∈ Kd ,



Poisson hyperplane tessellation in Rd

Consider a Poisson hyperplane process

X = {Hi : i ∈ N} =
∑
i∈N

δHi

with Hi ∈ A(d , d − 1), which is stationary and isotropic.

The intensity measure of X is a measure on A(d , d − 1) given by

EX(·) = γ

∫
Sd−1

∫
R

1{u⊥ + tu ∈ ·} dt σ0(du).

Here σ0 is normalized Hd−1, γ > 0 is the intensity of X .

Let HK := {H ∈ A(d , d − 1) : H ∩ K 6= ∅}. The Poisson assumption
means that X(HK ) is Poisson distributed with mean value EX(HK ).

The hitting functional of X is

K 7→ EX(HK ) ∼ V1(K ) for K ∈ Kd ,



Poisson hyperplane tessellation in Rd

Consider a Poisson hyperplane process

X = {Hi : i ∈ N} =
∑
i∈N

δHi

with Hi ∈ A(d , d − 1), which is stationary and isotropic.

The intensity measure of X is a measure on A(d , d − 1) given by

EX(·) = γ

∫
Sd−1

∫
R

1{u⊥ + tu ∈ ·} dt σ0(du).

Here σ0 is normalized Hd−1, γ > 0 is the intensity of X .

Let HK := {H ∈ A(d , d − 1) : H ∩ K 6= ∅}. The Poisson assumption
means that X(HK ) is Poisson distributed with mean value EX(HK ).

The hitting functional of X is

K 7→ EX(HK ) ∼ V1(K ) for K ∈ Kd ,



Concentration?

Let Z0 be the zero cell/Crofton cell of the tessellation induced by X .

What is the limit shape of Z0 – if it exists – given Vd (Z0)→∞?

Does the shape of Z0 concentrate at a particular (class of ) shape(s)
given Vd (Z0)→∞?
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A deviation result

based on a deviation functional

ϑ(Z0) = “scaling, translation, rotation invariant distance of Z0 from Bd ”.

Theorem (Hug, Reitzner, Schneider (2004), a special case . . . )

If X is stationary and isotropic in Rd , ε ∈ (0, 1), and a1/d γ ≥ 1, then

P (ϑ(Z0) ≥ ε | Vd (Z0) ≥ a) ≤ c exp
(
−c1 ε

d+1a1/dγ
)
,

where c = c(d , ε) and c1 = c1(d).

Extensions (with Rolf Schneider): no isotropy assumption, relaxed
stationarity assumption, typical cells, Voronoi and Delaunay tessellations,
lower-dimensional weighted typical faces, various other size functionals,
axiomatic approach, asymptotic distributions
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Asymptotic distribution

Recall: V1(K ) denotes the mean width of K .

Theorem (Hug, Schneider (2007), a special case . . . )

lim
a→∞

a−1/d lnP (Vd (Z0) ≥ a) = −τ γ,

where
τ ∼ min{V1(K ) : Vd (K ) = 1}.

Some ingrediens:

Polytopal approximation with few vertices

Separate treatment of elongated cells

Use of homogeneity arguments

Isoperimetric and stability problems!
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Isoperimetry and stability

Urysohn inequality:

V1(K ) ≥ c(d) Vd (K )1/d .

Equality holds if and only if K is a ball.

Quantitative stability improvement:

V1(K ) ≥
(
1 + a(d)ϑ(K )d+1) c(d) Vd (K )1/d .
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Which cells arise?

For isotropic tessellations, the following assumptions are always satisfied:

(A): The support of the directional distribution ϕ of X is Sd−1.

(B): ϕ is zero on each great subsphere of Sd−1.

Theorem (Reitzner & Schneider)

Let X be a stationary Poisson hyperplane tessellation in Rd with the
property that ϕ satisfies (A) and (B). Then a.s. the set of translates of the
cells of X is dense in K.
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Which cells arise how often?

The cells in a stationary Poisson hyperplane tessellation are a.s. simple
polytopes.

Under (A) and (B) no other restrictions arise. The following improves a
result by Reitzner & Schneider.

Theorem (Schneider)

Let X be a stationary Poisson hyperplane tessellation in Rd . Suppose ϕ
satisfies (A) and (B). Then, with probability one, every combinatorial type
of a simple d-polytope appears in X with positive density.
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Some spherical deviation results
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Spherical tessellations by great subspheres

Let X be an isotropic Poisson point process in Sd ⊂ Rd+1

Spherical isotropic Poisson process of great subspheres

X̃ := {x⊥ ∩ Sd : x ∈ X}

Crofton cell Z0



Intensity measure and hitting functional

Spherically convex bodies: Kd
s 3 K

HK : = {L ∈ G(d + 1, d) ∩ Sd : L ∩ K 6= ∅}

EX̃(HK ) = γS

∫
Sd

1{x⊥ ∩ K 6= ∅}Hd (dx)

U1(K ) : = (2βd )−1
∫
Sd

1{x⊥ ∩ K 6= ∅} Hd (dx)

Void probability

P(X̃(HK ) = 0) = exp (−2γSβdU1(K ))
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A spherical Urysohn inequality

Theorem (Gao, Hug, Schneider (2003))

Let K ∈ Kd
s and let C ⊂ Sd be a spherical cap with Hd (C) = Hd (K ).

Then
U1(K ) ≥ U1(C).

Equality holds if and only if K is a spherical cap.

We need a quantitative improvement / stability result!

Is K close to C (in a quantitative way), if U1(K ) is ε-close to U(C)?
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A deviation functional

For K ∈ Kd
s , e ∈ K ∩ (−K ∗), let αK ,e(u) be the spherical radial function,

defined on Se := e⊥ ∩ Sd :

Hd (K ) =

∫
Se

∫ αK ,e(u)

0
sind−1 t dt︸ ︷︷ ︸

=:D(αK ,e(u))

Hd−1(du)

Hd (C)

βd−1
= D(αC), αC ∈ (0, π/2) const.

∆(K ) := inf
{
‖ D ◦ αK ,e − D ◦ αK ,e ‖L2(Se) : e ∈ K ∩ (−K ∗)

}
.



A deviation functional

For K ∈ Kd
s , e ∈ K ∩ (−K ∗), let αK ,e(u) be the spherical radial function,

defined on Se := e⊥ ∩ Sd :

Hd (K ) =

∫
Se

∫ αK ,e(u)

0
sind−1 t dt︸ ︷︷ ︸

=:D(αK ,e(u))

Hd−1(du)

Hd (C)

βd−1
= D(αC), αC ∈ (0, π/2) const.

∆(K ) := inf
{
‖ D ◦ αK ,e − D ◦ αK ,e ‖L2(Se) : e ∈ K ∩ (−K ∗)

}
.



A deviation functional

For K ∈ Kd
s , e ∈ K ∩ (−K ∗), let αK ,e(u) be the spherical radial function,

defined on Se := e⊥ ∩ Sd :

Hd (K ) =

∫
Se

∫ αK ,e(u)

0
sind−1 t dt︸ ︷︷ ︸

=:D(αK ,e(u))

Hd−1(du)

Hd (C)

βd−1
= D(αC), αC ∈ (0, π/2) const.

∆(K ) := inf
{
‖ D ◦ αK ,e − D ◦ αK ,e ‖L2(Se) : e ∈ K ∩ (−K ∗)

}
.



A deviation functional

For K ∈ Kd
s , e ∈ K ∩ (−K ∗), let αK ,e(u) be the spherical radial function,

defined on Se := e⊥ ∩ Sd :

Hd (K ) =

∫
Se

∫ αK ,e(u)

0
sind−1 t dt︸ ︷︷ ︸

=:D(αK ,e(u))

Hd−1(du)

Hd (C)

βd−1
= D(αC), αC ∈ (0, π/2) const.

∆(K ) := inf
{
‖ D ◦ αK ,e − D ◦ αK ,e ‖L2(Se) : e ∈ K ∩ (−K ∗)

}
.



A geometric stability result

Theorem (Hug, Reichenbacher)

Let K ∈ Kd
s and let C be a spherical cap with Hd (K ) = Hd (C) > 0.

Let α0 ∈ (0, π/2) be such that α0 ≤ αC . Then

U1(K ) ≥ (1 + γ̃∆(K )2)U1(C)

with

γ̃ = 2 ·min

{(d+1
2

)
sind+1(α0) tan−2d (αC)

d + d
(d+1

2

) (
π
2

)2
tan−d (αC)

,

(
2
π

)2

D
(π

2
− αC

)}
.
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A deviation result for the spherical Crofton cell

Theorem (Hug, Reichenbacher)

Let 0 < a < βd/2 and 0 < ε < 1. Then there are constants c̃1, c̃2 > 0
such that

P(∆(Z0) ≥ ε | Hd (Z0) ≥ a) ≤ c̃1 · exp
(
−c̃2 · ε2(d+1) · γS

)
,

where c̃1 = c̃1(a, ε, d), c̃2 = c̃2(a, d).



Asymptotic distribution

Theorem (Hug, Reichenbacher)

Let 0 < a < βd/2. Then

lim
γS→∞

γ−1
S · ln P(Hd (Z0) ≥ a) = −2βd · U1(Ba),

where Ba is a spherical cap of volume a.

Similar results have been obtained for binomial processes and for the
spherical inradius as the size functional, but also for general continuous,
increasing size functionals Σ 6≡ 0 vanishing on one-pointed sets.
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Illustration

γS = 1 (17 great subspheres)



Illustration

γS = 10 (118 great subspheres)



Spherical Poisson–Voronoi cells

Let X be an isotropic Poisson process on Sd with intensity γs, and let
X ′ = {C(x ,X) : x ∈ X} be the associated Poisson–Voronoi tessellation.

The distribution of the typical cell Z then satisfies

P(Z ∈ ·) = P(C(ō,X + δō) ∈ ·).



Hitting and deviation functional
Hence Z is equal in distribution to the Crofton cell of a (non-isotropic)
Poisson process Y of great subspheres with hitting functional

EY (HK ) = γsŨ(K ), ō ∈ K ∈ Kd
s ,

where

Ũ(K ) = 2
∫

ō⊥∩Sd

∫
As(u)

sind−1 (2ds(S̃u, t)
)

1{t⊥ ∩ K 6= ∅}H1(dt)Hd−1(du)

with S̃u = {−ō, u} and As(u) = arc(−ō, u).

Define

rs(K ) := max{r ≥ 0 : Bs(ō, r) ⊂ K}
Rs(K ) := min{r ≥ 0 : Bs(ō, r) ⊃ K}
ϑ(K ) := Rs(K )− rs(K ).
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Geometric stability

Theorem (Hug, Reichenbacher)

Let a ∈ (0, π/2), ō ∈ K ∈ Kd
s with rs(K ) ≥ a and C := Bs(ō, a). Then

Ũ(K ) ≥ Ũ(C) = Hd (Bs(ō, 2a)).

Equality holds if and only if K = C.

More generally,

Ũ(K ) ≥
(
1 + c5(a, d)ϑ(K )d) Ũ(C).



Shape deviation

Theorem (Hug, Reichenbacher)

Let a ∈ (0, π/2) and ε ∈ (0, 1]. Let Z be the typical cell of the Voronoi
tessellation associated with an isotropic Poisson point process with
intensity γs on Sd . Then

P(Rs(Z )− rs(Z ) ≥ ε | rs(Z ) ≥ a) ≤ c6 · exp
(
−c7 · εd · γS

)
,

where c6 = c6(a, d , ε) and c7 = c7(a, d).

Davies, J. https://www.jasondavies.com/maps/voronoi



Splitting tessellations in spherical space
Joint work with Christoph Thäle

A recursive cell splitting scheme:



Figure: Illustration of a splitting tessellation.



A splitting process via cell-splitting
Define � : Pd × Sd−1 × Td → Td by

�(c,S,T ) := (T \ {c}) ∪ {c ∩ S+, c ∩ S−} ∈ Td ,

if c ∈ T , S ∈ Sd−1[c], and where S± are the two closed hemispheres
determined by S; otherwise �(c,S,T ) := T .

Definition

A splitting process (Yt)t≥0 with initial tessellation Y0 := {Sd} is a
continuous time, pure jump Markov process on Td with generator

(Af )(T ) :=
∑
c∈T

∫
Sd−1[c]

[
f (�(c,S,T ))− f (T )

]
νd−1(dS) , T ∈ Td ,

where f ∈ Fb(Td ). For t > 0 we call Yt a splitting tessellation.

Note that the unbounded intensity function λ of Y , A is λ(T ) = |T |, T ∈ Td .
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An auxiliary martingale

Lemma

Let E be a Borel space and let (Xt)t≥0 be a Markov process with values in
E and with generator L whose domain is D(L). Then, for f ∈ D(L), the
random process

f (Xt)− f (X0)−
∫ t

0
(Lf )(Xs) ds , t ≥ 0 ,

is a martingale with respect to the filtration induced by (Xt)t≥0. If (Xt)t≥0

is a jump process with bounded intensity function, then Fb(E) = D(L).



Applications

Proposition

Let φ : Pd → R be bounded and measurable. Define

Σφ(T ) :=
∑
c∈T

φ(c) =

∫
Pd
φ dµT , T ∈ Td .

Then the stochastic process

Mt(φ) := Σφ(Yt)− Σφ(Y0)−
∫ t

0
(AΣφ)(Ys) ds , t ≥ 0 ,

is a martingale with respect to Y , the filtration generated by (Yt)t≥0.



Proposition

Let φi : Pd → R for i ∈ {1, 2} be bounded and measurable. Define

Σφ1,φ2(T ) := Σφ1(T ) Σφ2(T ) , T ∈ Td .

Then the stochastic process

Mt(φ1, φ2) := Σφ1,φ2(Yt)−Σφ1,φ2(Y0)−
∫ t

0
(AΣφ1,φ2)(Ys) ds , t ≥ 0 ,

is a martingale with respect to Y .

By time augmentation, we can also treat functionals of the form

Ψφ1,φ2(T , t) := (Σφ1(T )− b1tv1)(Σφ2(T )− b2tv2) , T ∈ Td , t ≥ 0 .
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Expected spherical curvature measures

For t ≥ 0, j ∈ {0, . . . , d} and A ∈ B(Sd ), define

Σj(t; A) :=
∑
c∈Yt

φj(c,A) .

More generally, if h : Sd → R is bounded, measurable and µ is a finite
Borel measure on Sd , we write µ(h) :=

∫
Sd h dµ .

Theorem

Let t ≥ 0 and j ∈ {0, . . . , d}. Then

EΣj(t; h) =
td−j

(d − j)!

Hd (h)

βd
,

where h : Sd → R is bounded and measurable.
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Idea of proof
The random process

Σj(t; h)−
∫ t

0

∑
c∈Ys

∫
Sd−1[c]

[φj(c∩S+, h)+φj(c∩S−, h)−φj(c, h)] νd−1(dS) ds

is a Y-martingale. The valuation property of φj yields that

φj(c ∩ S+, h) + φj(c ∩ S−, h)− φj(c, h) = φj(c ∩ S, h) .

Taking expectations and applying the local spherical Crofton formula,

EΣj(t; h) = E
∫ t

0

∑
c∈Ys

∫
Sd−1[c]

φj(c ∩ S, h) νd−1(dS) ds

= E
∫ t

0

∑
c∈Ys

φj+1(c, h) ds = E
∫ t

0
Σj+1(s; h) ds .

Now work recursively and use that, with probability one,

Σd (s; h) =
∑
c∈Ys

φd (c, h) =
∑
c∈Ys

Hd (h1c)

βd
=
Hd (h)

βd
.
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Variances

Theorem

If t ≥ 0 and h : Sd → R is bounded and measurable, then

Var Σd−1(t; h) =
πβd−2

βdβ2
d−1

∫
Sd

∫
Sd

1− exp
(
− 1

π `(x , y)t
)

`(x , y) sin(`(x , y))

× h(x)h(y)Hd (dx)Hd (dy) <∞.

Proof uses auxiliary martingales and basic spherical integral
geometry.

Covariances and variances for different functions h and lower order
curvature measures can also be determined.

The mean and variance of the Hausdorff measure of the boundary Zt

of Yt can be obtained as a special case.

Euclidean analogue is due to Schreiber & Thäle.

Next we study an application.
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Next we study an application.



Variances

Theorem

If t ≥ 0 and h : Sd → R is bounded and measurable, then

Var Σd−1(t; h) =
πβd−2

βdβ2
d−1

∫
Sd

∫
Sd

1− exp
(
− 1

π `(x , y)t
)

`(x , y) sin(`(x , y))

× h(x)h(y)Hd (dx)Hd (dy) <∞.

Proof uses auxiliary martingales and basic spherical integral
geometry.

Covariances and variances for different functions h and lower order
curvature measures can also be determined.

The mean and variance of the Hausdorff measure of the boundary Zt

of Yt can be obtained as a special case.

Euclidean analogue is due to Schreiber & Thäle.
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Spherical K -function and pair-correlation function

Definition

Let M be an isotropic random measure on Sd with intensity µ ∈ (0,∞),
determined by E[M( · )] = µβ−1

d Hd ( · ) on Sd .

The spherical K -function of M can be defined by

KM(r) :=
1
µ2 E

∫
(Sd )2

1(`(x , y) ≤ r) M2(d(x , y))

where B(e, r) = {x ∈ Sd : `(e, x) ≤ r}.

If KM is differentiable, then

gM(r) :=
βd

βd−1(sin r)d−1 K ′M(r) , r ∈ (0, π) ,

is the spherical pair-correlation function of M.
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K -function and g-function for specific M

Choose the random measure M = Hd−1xZt .

Theorem

If t > 0 and r ∈ (0, π), then

Kd,t(r) =
βd−1

βd

∫ r

0

(
1 + π

βd−2βd

β2
d−1

1− exp
(
− t

πϕ
)

t2ϕ sinϕ

)
(sinϕ)d−1 dϕ

and

gd,t(r) = 1 + π
βd−2βd

β2
d−1

1− exp(−rt
π )

t2r sin r
.

We compare this to Poisson hypersphere tessellations.
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and

gd,t(r) = 1 + π
βd−2βd

β2
d−1

1− exp(−rt
π )

t2r sin r
.

We compare this to Poisson hypersphere tessellations.



K -function and g-function for specific M

Choose the random measure M = Hd−1xZt .

Theorem

If t > 0 and r ∈ (0, π), then

Kd,t(r) =
βd−1

βd

∫ r

0

(
1 + π

βd−2βd

β2
d−1

1− exp
(
− t

πϕ
)

t2ϕ sinϕ

)
(sinϕ)d−1 dϕ

and

gd,t(r) = 1 + π
βd−2βd

β2
d−1

1− exp(−rt
π )

t2r sin r
.

We compare this to Poisson hypersphere tessellations.



Poisson hypersphere tessellation
Let ηt be a Poisson process on Sd with intensity measure t β−1

d Hd .
Denote by Y t the tessellation of Sd induced by ηt , and let

Z t :=
⋃

u∈ηt

(u⊥ ∩ Sd )

be the associated random closed set.

Figure: Illustration of Poisson circle tessellation on S2.



K -function and g-function for specific M

The random measure Hd−1xZ t is isotropic and its intensity
µ := EHd−1(Z t ∩ Sd ) equals µ = tβd−1.

This is also the intensity of Hd−1xZt .
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The K -function of Y t equals

K d,t(r) =
Hd (B(e, r))

βd
+

1
t
βd−2

βd−1

∫ r

0
(sinϕ)d−2 dϕ , r ∈ (0, π) ,

and the K -function of Yt equals

Kd,t(r) =
Hd (B(e, r))

βd
+

1
t
βd−2

βd−1

∫ r

0

π

tϕ
(1− e−

tϕ
π ) (sinϕ)d−2 dϕ.

Since 1− e−t ≤ t , t ∈ R, it follows that

Kd,t ≤ K d,t .

In the same way, we get gd,t ≤ gd,t .
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Illustration
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3

4

Figure: The spherical pair-correlation functions g2,2(r) (solid curve) and g2,2(r)
(dashed curve).



Dynamic description of Poisson tessellation process

Splitting tessellations and Poisson hypersphere tessellations are linked to
each other: for T ∈ Td and S ∈ Sd−1, we define

⊗(S,T ) := (T \{c ∈ T : int(c)∩S 6= ∅})∪
⋃
c∈T

int(c)∩S 6=∅

{c∩S+, c∩S−} ∈ Td .

Define a continuous-time Markov process (Y t)t≥0 with initial tessellation
Y 0 = {Sd} in Td via its generator A, where

(Af )(T ) =

∫
Sd−1

[f (⊗(S,T ))− f (T )] νd−1(dS) , T ∈ Td ,

where f ∈ Fb(Td ).

For t > 0, the random tessellation Y t has the same distribution as a
Poisson hypersphere tessellation with intensity t .
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Relationships for intensity measures

Consider the random measureMt and its intensity measure Mt on Pd ,

Mt :=
∑
c∈Yt

δc and Mt := EMt , t ≥ 0.

Similarly, for a Poisson hypersphere tessellation Y t with intensity t ≥ 0,

Mt :=
∑
c∈Y t

δc and Mt := EMt .

Theorem

If t ≥ 0, then Mt = Mt .
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Sketch of proof

Let φ : Pd → R be bounded and measurable. Then

Σφ(Yt)− Σφ(Y0)−
∫ t

0

∑
c∈Ys

∫
Sd−1[c]

[φ(c ∩ S+) + φ(c ∩ S−)

− φ(c)] νd−1(dS) ds

is a Y-martingale. Take expectations, we get∫
φ(c)Mt(dc) = φ(Sd ) +

∫ t

0

∫ ∫
Sd−1[c]

[φ(c ∩ S+) + φ(c ∩ S−)

− φ(c)] νd−1(dS)Ms(dc) ds .



Sketch of proof

Denote by Mbv(Pd ) the Banach space of real-valued Borel measures on
Pd with the total variation norm ‖ · ‖TV. Then the linear operator

Γ : Mbv(Pd )→Mbv(Pd ), µ 7→
∫ ∫

Sd−1

[δc∩S++δc∩S−−δc] νd−1(dS)µ(dc),

is bounded with operator norm ‖Γ‖ ≤ 3.

It follows that

Mt = δSd +

∫ t

0
Γ(Ms) ds , t ≥ 0 ,

in Mbv(Pd ) and ‖Mt −Mr‖TV ≤ 3ca|t − r | for 0 ≤ r ≤ t ≤ a.

By similar arguments it can be shown that Mt , t ≥ 0, satisfies the same
initial value problem.

Since the solution is unique, the result follows.
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