Background	Pseudo-Riemannian	Contact&DH	Conclusion

Extensions and non-extensions of the Weyl principle

Dmitry Faifman

Université de Montréal

Castro Urdiales, September 2018

글 🖌 🖌 글

Background	Pseudo-Riemannian	Contact&DH	Conclusion
●0000		000000	O
Euclidean space			

We write $B^n \in \mathcal{K}(\mathbb{R}^n)$ the Euclidean unit ball, $\omega_n = |B^n|$.

イロト イヨト イヨト イヨト

э

Background ●0000	Pseudo-Riemannian	Contact&DH	Conclusion O
Euclidean space			

We write $B^n \in \mathcal{K}(\mathbb{R}^n)$ the Euclidean unit ball, $\omega_n = |B^n|$. For $K \in \mathcal{K}(\mathbb{R}^n)$, $\mu_k(K)$, k = 0, ..., n are its **intrinsic volumes**.

イロト イポト イヨト イヨト

Background ●0000	Pseudo-Riemannian	Contact&DH	Conclusion O
Euclidean space			

We write $B^n \in \mathcal{K}(\mathbb{R}^n)$ the Euclidean unit ball, $\omega_n = |B^n|$. For $K \in \mathcal{K}(\mathbb{R}^n)$, $\mu_k(K)$, k = 0, ..., n are its **intrinsic volumes**.

• $\mu_0(K) = \chi(K) = 1$, $\mu_n(K) = \operatorname{vol}_n(K)$, $\mu_{n-1}(K) = \frac{1}{2} \operatorname{vol}_{n-1}(\partial K)$.

A (10) × (10) × (10) ×

Э

Background ●0000	Pseudo-Riemannian	Contact&DH	Conclusion O
Euclidean space			

We write $B^n \in \mathcal{K}(\mathbb{R}^n)$ the Euclidean unit ball, $\omega_n = |B^n|$. For $K \in \mathcal{K}(\mathbb{R}^n)$, $\mu_k(K)$, k = 0, ..., n are its **intrinsic volumes**.

• $\mu_0(K) = \chi(K) = 1$, $\mu_n(K) = \operatorname{vol}_n(K)$, $\mu_{n-1}(K) = \frac{1}{2} \operatorname{vol}_{n-1}(\partial K)$.

They can be defined in several ways:

• Steiner formula: vol $(K + \epsilon B^n) = \sum_{k=0}^n \omega_{n-k} \mu_k(K) \epsilon^{n-k}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Э

Background	Pseudo-Riemannian	Contact&DH	Conclusion
00000	000000	000000	0
Euclidean space			

We write $B^n \in \mathcal{K}(\mathbb{R}^n)$ the Euclidean unit ball, $\omega_n = |B^n|$. For $\mathcal{K} \in \mathcal{K}(\mathbb{R}^n)$, $\mu_k(\mathcal{K})$, k = 0, ..., n are its **intrinsic volumes**.

• $\mu_0(K) = \chi(K) = 1$, $\mu_n(K) = \operatorname{vol}_n(K)$, $\mu_{n-1}(K) = \frac{1}{2} \operatorname{vol}_{n-1}(\partial K)$.

They can be defined in several ways:

- Steiner formula: vol $(K + \epsilon B^n) = \sum_{k=0}^n \omega_{n-k} \mu_k(K) \epsilon^{n-k}$.
- Curvature integrals. If ∂K is C^2 with principal curvatures $(\kappa_j)_{j=1}^{n-1}$

$$\mu_k(K) = c_{n,k} \int_{\partial K} \sigma_{n-1-k}(\kappa_1, \dots, \kappa_{n-1}) d \operatorname{vol}_{n-1}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Background	Pseudo-Riemannian	Contact&DH	Conclusion
0000			

Let M^n be a smooth oriented manifold, $S^*M := \mathbb{P}_+(T^*M)$.

 $\mathcal{P}(M)$ will be the set of compact differentiable polyhedra.

(日本)(日本)(日本)

3

Background	Pseudo-Riemannian	Contact&DH	Conclusion
0000	000000	000000	0
Valuations a	and curvature measu	IROC	

Let M^n be a smooth oriented manifold, $S^*M := \mathbb{P}_+(T^*M)$. $\mathcal{P}(M)$ will be the set of compact differentiable polyhedra.

Definition

For $K \in \mathcal{P}(M)$, its conormal cycle is $N^*K \subset S^*M$. $(x,\xi) \in N^*K \iff \xi(\dot{\gamma}) \leq 0$ for all curves $\gamma \subset K$ with $\gamma(0) = x$. N^*K is a Lipschitz submanifold of dimension n-1.

イロト イポト イヨト イヨト

Background	Pseudo-Riemannian	Contact&DH	Conclusion
○●○○○		000000	○
Valuations and	curvature measures		

Let M^n be a smooth oriented manifold, $S^*M := \mathbb{P}_+(T^*M)$. $\mathcal{P}(M)$ will be the set of compact differentiable polyhedra.

Definition

For $K \in \mathcal{P}(M)$, its conormal cycle is $N^*K \subset S^*M$. $(x,\xi) \in N^*K \iff \xi(\dot{\gamma}) \leq 0$ for all curves $\gamma \subset K$ with $\gamma(0) = x$. N^*K is a Lipschitz submanifold of dimension n-1.

Definition (Alesker, Fu)

A pair $\mu \in \Omega^n(M)$, $\omega \in \Omega^{n-1}(S^*M)$ defines:

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Background	Pseudo-Riemannian	Contact&DH	Conclusion
0000	000000	000000	0
Valuations and	curvatura maacu	roc	

Let M^n be a smooth oriented manifold, $S^*M := \mathbb{P}_+(T^*M)$. $\mathcal{P}(M)$ will be the set of compact differentiable polyhedra.

Definition

For $K \in \mathcal{P}(M)$, its conormal cycle is $N^*K \subset S^*M$. $(x,\xi) \in N^*K \iff \xi(\dot{\gamma}) \leq 0$ for all curves $\gamma \subset K$ with $\gamma(0) = x$. N^*K is a Lipschitz submanifold of dimension n-1.

Definition (Alesker, Fu)

A pair $\mu \in \Omega^{n}(M)$, $\omega \in \Omega^{n-1}(S^{*}M)$ defines: - A smooth valuation $\phi = ((\omega, \mu)) \in \mathcal{V}^{\infty}(M)$, given by $\phi : \mathcal{P}(M) \to \mathbb{R}, \ \phi(K) = \int_{K} \mu + \int_{N^{*}K} \omega.$

< ロ > < 同 > < 三 > < 三 >

Background	Pseudo-Riemannian	Contact&DH	Conclusion
0000	000000	000000	0
Valuations and			

Let M^n be a smooth oriented manifold, $S^*M := \mathbb{P}_+(T^*M)$. $\mathcal{P}(M)$ will be the set of compact differentiable polyhedra.

Definition

For $K \in \mathcal{P}(M)$, its conormal cycle is $N^*K \subset S^*M$. $(x,\xi) \in N^*K \iff \xi(\dot{\gamma}) \leq 0$ for all curves $\gamma \subset K$ with $\gamma(0) = x$. N^*K is a Lipschitz submanifold of dimension n-1.

Definition (Alesker, Fu)

A pair $\mu \in \Omega^n(M)$, $\omega \in \Omega^{n-1}(S^*M)$ defines: - A smooth valuation $\phi = ((\omega, \mu)) \in \mathcal{V}^{\infty}(M)$, given by $\phi : \mathcal{P}(M) \to \mathbb{R}$, $\phi(K) = \int_K \mu + \int_{N^*K} \omega$. - A smooth curvature measure $\Phi = (\omega, \mu) \in \mathcal{C}^{\infty}(M)$, given by $\Phi : \mathcal{P}(M) \to \mathcal{M}(M)$, $\Phi(K, U) = \int_{K \cap U} \mu + \int_{N^*X \cap \pi^{-1}(U)} \omega$.

< ロ > < 同 > < 三 > < 三 >

Background	Pseudo-Riemannian	Contact&DH	Conclusion
0000	000000	000000	0
Valuations and			

Let M^n be a smooth oriented manifold, $S^*M := \mathbb{P}_+(T^*M)$. $\mathcal{P}(M)$ will be the set of compact differentiable polyhedra.

Definition

For $K \in \mathcal{P}(M)$, its conormal cycle is $N^*K \subset S^*M$. $(x,\xi) \in N^*K \iff \xi(\dot{\gamma}) \leq 0$ for all curves $\gamma \subset K$ with $\gamma(0) = x$. N^*K is a Lipschitz submanifold of dimension n-1.

Definition (Alesker, Fu)

A pair $\mu \in \Omega^{n}(M)$, $\omega \in \Omega^{n-1}(S^{*}M)$ defines: - A smooth valuation $\phi = ((\omega, \mu)) \in \mathcal{V}^{\infty}(M)$, given by $\phi : \mathcal{P}(M) \to \mathbb{R}$, $\phi(K) = \int_{K} \mu + \int_{N^{*}K} \omega$. - A smooth curvature measure $\Phi = (\omega, \mu) \in \mathcal{C}^{\infty}(M)$, given by $\Phi : \mathcal{P}(M) \to \mathcal{M}(M)$, $\Phi(K, U) = \int_{K \cap U} \mu + \int_{N^{*}X \cap \pi^{-1}(U)} \omega$.

There is an obvious globalization map $glob : \mathcal{C}^{\infty}(M) \to \mathcal{Y}^{\infty}(M)$.

Background	Pseudo-Riemannian	Contact&DH	Conclusion
00000	000000	000000	0
Filtration by ba			

Filtration by homogeneity

Theorem (Alesker)

There is a canonic filtration

$$\mathcal{V}^{\infty}(M) = \mathcal{W}_0(M) \supset \mathcal{W}_1(M) \supset \cdots \supset \mathcal{W}_n(M)$$

such that $\mathcal{W}_k(M)/\mathcal{W}_{k+1}(M) = C^{\infty}(M, \operatorname{Val}_k(TM)).$

イロト イヨト イヨト イヨト 三日

Background	Pseudo-Riemannian	Contact&DH	Conclusion
00000	000000	000000	0
Filtration by ba			

Filtration by homogeneity

Theorem (Alesker)

There is a canonic filtration

$$\mathcal{V}^{\infty}(M) = \mathcal{W}_0(M) \supset \mathcal{W}_1(M) \supset \cdots \supset \mathcal{W}_n(M)$$

such that $\mathcal{W}_k(M)/\mathcal{W}_{k+1}(M) = C^{\infty}(M, \operatorname{Val}_k(TM)).$

•
$$\mathcal{W}_n(M) = \mathcal{M}^\infty(M).$$

イロト イヨト イヨト イヨト 三日

Background	Pseudo-Riemannian	Contact&DH	Conclusion
00000	000000	000000	0
Filtration by ba			

Filtration by homogeneity

Theorem (Alesker)

There is a canonic filtration

$$\mathcal{V}^{\infty}(M) = \mathcal{W}_0(M) \supset \mathcal{W}_1(M) \supset \cdots \supset \mathcal{W}_n(M)$$

such that $\mathcal{W}_k(M)/\mathcal{W}_{k+1}(M) = C^{\infty}(M, \operatorname{Val}_k(TM)).$

•
$$\mathcal{W}_n(M) = \mathcal{M}^\infty(M).$$

• $\mathcal{W}_k(M) = \{((\omega, \mu)) : \omega \in \pi^* \Omega^k(M)\}, \ \pi : \mathbb{P}_+(TM) \to M.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Background ○○●○○	Pseudo-Riemannian	Contact&DH	Conclusion O
Filtration by ho	mogeneity		

Theorem (Alesker)

There is a canonic filtration

$$\mathcal{V}^{\infty}(M) = \mathcal{W}_0(M) \supset \mathcal{W}_1(M) \supset \cdots \supset \mathcal{W}_n(M)$$

such that $\mathcal{W}_k(M)/\mathcal{W}_{k+1}(M) = C^{\infty}(M, \operatorname{Val}_k(TM)).$

•
$$\mathcal{W}_n(M) = \mathcal{M}^\infty(M).$$

•
$$\mathcal{W}_k(M) = \{((\omega, \mu)) : \omega \in \pi^* \Omega^k(M)\}, \ \pi : \mathbb{P}_+(TM) \to M.$$

A similar filtration $C_k^{\infty}(M)$ can be defined on the curvature measures (Solanes-Wannerer).

イロト イヨト イヨト

Э

Background ○○○●○	Pseudo-Riemannian	Contact&DH	Conclusion O
Riemannian Lip	schitz-Killing curvati	ires	

Theorem (Weyl)

Let (M^n, g) be a closed Riemannian manifold. Embed isometrically $M \subset \mathbb{R}^N$. Let M_{ϵ} denote the ϵ -extension. Then $\operatorname{vol}_N(M_{\epsilon}) = \sum_{k=0}^n \omega_{n-k} \mu_k(M) \epsilon^{N-k}$ for small ϵ . Remarkably, μ_k only depend on (M, g).

イロト イポト イヨト イヨト

Э

D:	Line di Li IZilliane		
00000	000000	000000	0
Background	Pseudo-Riemannian	Contact&DH	Conclusion

Theorem (Weyl)

Let (M^n, g) be a closed Riemannian manifold. Embed isometrically $M \subset \mathbb{R}^N$. Let M_{ϵ} denote the ϵ -extension. Then $\operatorname{vol}_N(M_{\epsilon}) = \sum_{k=0}^n \omega_{n-k} \mu_k(M) \epsilon^{N-k}$ for small ϵ . Remarkably, μ_k only depend on (M, g).

Theorem (Chern, Federer, Alesker)

Let (M^n, g) be a Riemannian manifold. There is a canonic collection of valuations $\{\mu_k\}_{k=0}^n \in \mathcal{V}^\infty(M)$ (curvature measures $\{LK_k\}_{k=0}^n$) that can be obtained by fixing an isometric embedding $M \subset \mathbb{R}^N$ and restricting the intrinsic volumes of \mathbb{R}^N (resp. Federer curvature measures) to M. Those valuations (curvature measures) can be described intrinsically through the curvature tensor.

00000	000000	000000	0

Theorem (Weyl)

Let (M^n, g) be a closed Riemannian manifold. Embed isometrically $M \subset \mathbb{R}^N$. Let M_{ϵ} denote the ϵ -extension. Then $\operatorname{vol}_N(M_{\epsilon}) = \sum_{k=0}^n \omega_{n-k} \mu_k(M) \epsilon^{N-k}$ for small ϵ . Remarkably, μ_k only depend on (M, g).

Theorem (Chern, Federer, Alesker)

Let (M^n, g) be a Riemannian manifold. There is a canonic collection of valuations $\{\mu_k\}_{k=0}^n \in \mathcal{V}^\infty(M)$ (curvature measures $\{LK_k\}_{k=0}^n$) that can be obtained by fixing an isometric embedding $M \subset \mathbb{R}^N$ and restricting the intrinsic volumes of \mathbb{R}^N (resp. Federer curvature measures) to M. Those valuations (curvature measures) can be described intrinsically through the curvature tensor.

Examples: For $X \subset M$, $\mu_0(X) = \chi$, $\mu_n(X) = \operatorname{vol}_n(X)$, $\mu_{n-1}(X) = \frac{1}{2}\operatorname{vol}_{n-1}(\partial X)$.

イロト 不得 トイラト イラト 二日

00000	000000	000000	0
00000	000000	000000	0
Background	Pseudo-Riemannian	Contact&DH	Conclusion

Theorem (Weyl)

Let (M^n, g) be a closed Riemannian manifold. Embed isometrically $M \subset \mathbb{R}^N$. Let M_{ϵ} denote the ϵ -extension. Then $\operatorname{vol}_N(M_{\epsilon}) = \sum_{k=0}^n \omega_{n-k} \mu_k(M) \epsilon^{N-k}$ for small ϵ . Remarkably, μ_k only depend on (M, g).

Theorem (Chern, Federer, Alesker)

Let (M^n, g) be a Riemannian manifold. There is a canonic collection of valuations $\{\mu_k\}_{k=0}^n \in \mathcal{V}^\infty(M)$ (curvature measures $\{LK_k\}_{k=0}^n$) that can be obtained by fixing an isometric embedding $M \subset \mathbb{R}^N$ and restricting the intrinsic volumes of \mathbb{R}^N (resp. Federer curvature measures) to M. Those valuations (curvature measures) can be described intrinsically through the curvature tensor.

Examples: For $X \subset M$, $\mu_0(X) = \chi$, $\mu_n(X) = \operatorname{vol}_n(X)$, $\mu_{n-1}(X) = \frac{1}{2} \operatorname{vol}_{n-1}(\partial X)$.

Example: Chern-Gauss-Bonnet Theorem

Let M^n be a closed oriented Riemannian manifold. 1. $\chi(M) = (2\pi)^{-n/2} \int_M \text{Pfaff}(\Omega)$ (where $\text{Pfaff}(\Omega) = 0$ if n is odd).

00000	000000	000000	0
00000	000000	000000	0
Background	Pseudo-Riemannian	Contact&DH	Conclusion

Theorem (Weyl)

Let (M^n, g) be a closed Riemannian manifold. Embed isometrically $M \subset \mathbb{R}^N$. Let M_{ϵ} denote the ϵ -extension. Then $\operatorname{vol}_N(M_{\epsilon}) = \sum_{k=0}^n \omega_{n-k} \mu_k(M) \epsilon^{N-k}$ for small ϵ . Remarkably, μ_k only depend on (M, g).

Theorem (Chern, Federer, Alesker)

Let (M^n, g) be a Riemannian manifold. There is a canonic collection of valuations $\{\mu_k\}_{k=0}^n \in \mathcal{V}^\infty(M)$ (curvature measures $\{LK_k\}_{k=0}^n$) that can be obtained by fixing an isometric embedding $M \subset \mathbb{R}^N$ and restricting the intrinsic volumes of \mathbb{R}^N (resp. Federer curvature measures) to M. Those valuations (curvature measures) can be described intrinsically through the curvature tensor.

Examples: For $X \subset M$, $\mu_0(X) = \chi$, $\mu_n(X) = \operatorname{vol}_n(X)$, $\mu_{n-1}(X) = \frac{1}{2}\operatorname{vol}_{n-1}(\partial X)$.

Example: Chern-Gauss-Bonnet Theorem

Let M^n be a closed oriented Riemannian manifold. 1. $\chi(M) = (2\pi)^{-n/2} \int_M \operatorname{Pfaff}(\Omega)$ (where $\operatorname{Pfaff}(\Omega) = 0$ if *n* is odd). 2. There is a (canonically defined, explicit) $\omega \in \Omega^{n-1}(SM)$ s.t. for $X \in \mathcal{P}(M^n)$, $\chi(X) = (2\pi)^{-n/2} \int_X \operatorname{Pfaff}(\Omega) + \int_{NX} \omega$.

Background	Pseudo-Riemannian	Contact&DH	Conclusion
00000	000000	000000	

Cartan apparatus. On the bundle of orthonormal frames $\Phi M = \{(x, E_0, \dots, E_n)\}$ over M^{n+1} , there are:

イロト イボト イヨト

크

Background	Pseudo-Riemannian	Contact&DH	Conclusion
00000			

Cartan apparatus. On the bundle of orthonormal frames $\Phi M = \{(x, E_0, \dots, E_n)\}$ over M^{n+1} , there are:

- solder forms $\theta_i = g(d\pi(\bullet), E_i), 0 \le i \le n$.

イロン イヨン イヨン イヨン

3

Background	Pseudo-Riemannian	Contact&DH	Conclusion
00000			

Cartan apparatus. On the bundle of orthonormal frames $\Phi M = \{(x, E_0, \dots, E_n)\}$ over M^{n+1} , there are:

- solder forms $\theta_i = g(d\pi(\bullet), E_i), 0 \le i \le n$.
- connection forms ω_{ij} given by $d\theta_i = -\sum \omega_{ij} \wedge \theta_j$, $(\omega_{ij})_{i,j=0}^n \in \mathfrak{so}(n+1)$.

3

Background	Pseudo-Riemannian	Contact&DH	Conclusion
00000			

Cartan apparatus. On the bundle of orthonormal frames $\Phi M = \{(x, E_0, \dots, E_n)\}$ over M^{n+1} , there are:

- solder forms $\theta_i = g(d\pi(\bullet), E_i), 0 \le i \le n$.
- connection forms ω_{ij} given by $d\theta_i = -\sum \omega_{ij} \wedge \theta_j$, $(\omega_{ij})_{i,j=0}^n \in \mathfrak{so}(n+1)$.
- curvature forms $\Omega_{ij} = d\omega_{ij} + \sum_k \omega_{ik} \wedge \omega_{kj}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Background	Pseudo-Riemannian	Contact&DH	Conclusion
00000	000000	000000	

Cartan apparatus. On the bundle of orthonormal frames $\Phi M = \{(x, E_0, \dots, E_n)\}$ over M^{n+1} , there are:

- solder forms $\theta_i = g(d\pi(\bullet), E_i), 0 \le i \le n$.
- connection forms ω_{ij} given by $d\theta_i = -\sum \omega_{ij} \wedge \theta_j$, $(\omega_{ij})_{i,j=0}^n \in \mathfrak{so}(n+1)$.
- curvature forms $\Omega_{ij} = d\omega_{ij} + \sum_k \omega_{ik} \wedge \omega_{kj}$. We use $\pi_0 : \Phi M \to SM$ to define elements $C_{k,p} \in \mathcal{C}_k^{\infty}(M)$. For $k < n + 1 = \dim M$,

$$C_{k,p} = \left(\frac{\omega_k}{\pi^k (n+1-k)\omega_{n+1-k}} \sum_{\tau \in S_n} (-1)^\tau \Omega_{\tau_1 \tau_2} \dots \Omega_{\tau_{2p-1} \tau_{2p}} \theta_{\tau_{2p+1}} \dots \theta_{\tau_k} \omega_{\tau_{k+1} 0} \dots \omega_{\tau_n 0}, 0\right)$$

• • = • • = •

Background	Pseudo-Riemannian	Contact&DH	Conclusion
00000			

Cartan apparatus. On the bundle of orthonormal frames $\Phi M = \{(x, E_0, \dots, E_n)\}$ over M^{n+1} , there are:

- solder forms $\theta_i = g(d\pi(\bullet), E_i), 0 \le i \le n$.
- connection forms ω_{ij} given by $d\theta_i = -\sum \omega_{ij} \wedge \theta_j$, $(\omega_{ij})_{i,j=0}^n \in \mathfrak{so}(n+1)$.
- curvature forms $\Omega_{ij} = d\omega_{ij} + \sum_k \omega_{ik} \wedge \omega_{kj}$. We use $\pi_0 : \Phi M \to SM$ to define elements $C_{k,p} \in \mathcal{C}_k^{\infty}(M)$. For $k < n + 1 = \dim M$,

$$C_{k,p} = \left(\frac{\omega_k}{\pi^k (n+1-k)\omega_{n+1-k}} \sum_{\tau \in S_n} (-1)^\tau \Omega_{\tau_1 \tau_2} \dots \Omega_{\tau_{2p-1} \tau_{2p}} \theta_{\tau_{2p+1}} \dots \theta_{\tau_k} \omega_{\tau_{k+1} 0} \dots \omega_{\tau_n 0}, 0\right)$$
$$C_{n+1,p} = \left(0, \frac{\omega_{n+1}}{\pi^{n+1}} \sum_{\tau \in S_{n+1}} \Omega_{\tau_0 \tau_1} \dots \Omega_{\tau_{2p-2} \tau_{2p-1}} \theta_{\tau_{2p}} \dots \theta_{\tau_n}\right) \in \mathcal{C}_{n+1}^{\infty}(M)$$

A B K A B K

Background	Pseudo-Riemannian	Contact&DH	Conclusion
00000			

Cartan apparatus. On the bundle of orthonormal frames $\Phi M = \{(x, E_0, \dots, E_n)\}$ over M^{n+1} , there are:

- solder forms $\theta_i = g(d\pi(\bullet), E_i), 0 \le i \le n$.
- connection forms ω_{ij} given by $\underline{d}\theta_i = -\sum \omega_{ij} \wedge \theta_j$, $(\omega_{ij})_{i,j=0}^n \in \mathfrak{so}(n+1)$.
- curvature forms $\Omega_{ij} = d\omega_{ij} + \sum_k \omega_{ik} \wedge \omega_{kj}$. We use $\pi_0 : \Phi M \to SM$ to define elements $C_{k,p} \in \mathcal{C}_k^{\infty}(M)$. For $k < n + 1 = \dim M$,

$$C_{k,p} = \left(\frac{\omega_k}{\pi^k (n+1-k)\omega_{n+1-k}} \sum_{\tau \in S_n} (-1)^{\tau} \Omega_{\tau_1 \tau_2} \dots \Omega_{\tau_{2p-1} \tau_{2p}} \theta_{\tau_{2p+1}} \dots \theta_{\tau_k} \omega_{\tau_{k+1} 0} \dots \omega_{\tau_n 0}, 0\right)$$

$$C_{n+1,p} = \left(0, \frac{\omega_{n+1}}{\pi^{n+1}} \sum_{\tau \in S_{n+1}} \Omega_{\tau_0 \tau_1} \dots \Omega_{\tau_{2p-2} \tau_{2p-1}} \theta_{\tau_{2p}} \dots \theta_{\tau_n}\right) \in \mathcal{C}_{n+1}^{\infty}(M)$$

Definition: The (normalized) L-K curvature measures are

$$LK_{k} = \frac{\pi^{k}}{k!\omega_{k}} \sum_{j=0}^{\infty} {\binom{\frac{k}{2}+j}{j}} 4^{-j} C_{k+2j,j} \in \mathcal{C}_{k}^{\infty}(M)$$

周 と イヨ と イヨ と

Background	Pseudo-Riemannian	Contact&DH	Conclusion
00000			

Cartan apparatus. On the bundle of orthonormal frames $\Phi M = \{(x, E_0, \dots, E_n)\}$ over M^{n+1} , there are:

- solder forms $\theta_i = g(d\pi(\bullet), E_i), 0 \le i \le n$.
- connection forms ω_{ij} given by $\underline{d}\theta_i = -\sum \omega_{ij} \wedge \theta_j$, $(\omega_{ij})_{i,j=0}^n \in \mathfrak{so}(n+1)$.
- curvature forms $\Omega_{ij} = d\omega_{ij} + \sum_k \omega_{ik} \wedge \omega_{kj}$. We use $\pi_0 : \Phi M \to SM$ to define elements $C_{k,p} \in \mathcal{C}_k^{\infty}(M)$. For $k < n + 1 = \dim M$,

$$C_{k,p} = \left(\frac{\omega_k}{\pi^k (n+1-k)\omega_{n+1-k}} \sum_{\tau \in S_n} (-1)^{\tau} \Omega_{\tau_1 \tau_2} \dots \Omega_{\tau_{2p-1} \tau_{2p}} \theta_{\tau_{2p+1}} \dots \theta_{\tau_k} \omega_{\tau_{k+1} 0} \dots \omega_{\tau_n 0}, 0\right)$$

$$C_{n+1,p} = \left(0, \frac{\omega_{n+1}}{\pi^{n+1}} \sum_{\tau \in S_{n+1}} \Omega_{\tau_0 \tau_1} \dots \Omega_{\tau_{2p-2} \tau_{2p-1}} \theta_{\tau_{2p}} \dots \theta_{\tau_n}\right) \in \mathcal{C}_{n+1}^{\infty}(M)$$

Definition: The (normalized) L-K curvature measures are

$$LK_{k} = \frac{\pi^{k}}{k!\omega_{k}} \sum_{j=0}^{\infty} {\binom{\frac{k}{2}+j}{j}} 4^{-j} C_{k+2j,j} \in \mathcal{C}_{k}^{\infty}(M)$$

Theorem (Fu-Wannerer '17)

The Lipschitz-Killing curvatures are the unique universally defined curvature measures on Riemannian manifolds that are invariant to isometric embeddings.

Dmitry Faifman Extensions and non-extensions of the Weyl principle

Backgroun	d	Pseudo-Riemannia	n	Contact&DH	Conclusion
00000		•00000		000000	

Let M^n be a manifold equipped with a smooth field Q of non-degenerate quadratic forms of (necessarily constant) signature (p, q), e.g. $ds^2 = dx_1^2 + \cdots + dx_p^2 - dx_{p+1}^2 - \cdots - dx_{p+q}^2$.

(日) (四) (三) (三) (三)

Background	Pseudo-Riemannian	Contact&DH	Conclusion
	00000		

Let M^n be a manifold equipped with a smooth field Q of non-degenerate quadratic forms of (necessarily constant) signature (p, q), e.g. $ds^2 = dx_1^2 + \cdots + dx_p^2 - dx_{p+1}^2 - \cdots - dx_{p+q}^2$.

• Most notions of Riemannian geometry go through with some adjustments: we can define positive-definite (space-like) and negative-definite (time-like) length of curves. Volume is defined in the same way.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Background	Pseudo-Riemannian	Contact&DH	Conclusion
	•00000		

Let M^n be a manifold equipped with a smooth field Q of non-degenerate quadratic forms of (necessarily constant) signature (p, q), e.g.

 $ds^2 = dx_1^2 + \dots + dx_p^2 - dx_{p+1}^2 - \dots - dx_{p+q}^2.$

• Most notions of Riemannian geometry go through with some adjustments: we can define positive-definite (space-like) and negative-definite (time-like) length of curves. Volume is defined in the same way.

• Some deeper results extend as well:

Theorem (Nash)

Any pseudo-Riemannian manifold can be isometrically embedded into a flat space, that is into some \mathbb{R}^N with a standard indefinite quadratic form.

イロト イポト イヨト イヨト

Background	Pseudo-Riemannian	Contact&DH	Conclusion
	•00000		

Let M^n be a manifold equipped with a smooth field Q of non-degenerate quadratic forms of (necessarily constant) signature (p, q), e.g.

$$ds^2 = dx_1^2 + \cdots + dx_p^2 - dx_{p+1}^2 - \cdots - dx_{p+q}^2.$$

- Most notions of Riemannian geometry go through with some adjustments: we can define positive-definite (space-like) and negative-definite (time-like) length of curves. Volume is defined in the same way.
- Some deeper results extend as well:

Theorem (Nash)

Any pseudo-Riemannian manifold can be isometrically embedded into a flat space, that is into some \mathbb{R}^N with a standard indefinite quadratic form.

Theorem (Chern '62, Avez '62)

The Chern-Gauss-Bonnet theorem holds for pseudo-Riemannian manifolds. Namely, for closed, oriented, even-dimensional $M^{p,q}$,

$$\chi(M) = (2\pi)^{-(p+q)/2} \int_M \operatorname{Pfaff}(\tilde{\Omega})$$

Here $\tilde{\Omega}_{ij} = \Omega_{ij}\epsilon_j$, $\epsilon_1 = \cdots = \epsilon_p = 1$, $\epsilon_{p+1} = \cdots = \epsilon_n = -1$.

Background

Question

Can we define intrinsic volumes/Lipschitz-Killing curvature measures for general pseudo-Riemannian manifolds?

イロト イヨト イヨト イヨト

Э

Contact&DH

Question

Can we define intrinsic volumes/Lipschitz-Killing curvature measures for general pseudo-Riemannian manifolds?

The challenge: The Cartan apparatus works with orthonormal frames, thus overlooking the degenerate (light-like) directions $LC \subset \mathbb{P}_+(TM)$ (the light-cone, which is a hypersurface). Furthermore, the L-K forms that can be defined away from LC, blow up as one approaches LC.

(日本) (日本) (日本)

Contact&DH

Question

Can we define intrinsic volumes/Lipschitz-Killing curvature measures for general pseudo-Riemannian manifolds?

The challenge: The Cartan apparatus works with orthonormal frames, thus overlooking the degenerate (light-like) directions $LC \subset \mathbb{P}_+(TM)$ (the light-cone, which is a hypersurface). Furthermore, the L-K forms that can be defined away from LC, blow up as one approaches LC.

Remark

This appears to be the reason why Chern and Avez only obtain the interior term. Later works by Birman-Nomizu ('83) and Gilkey-Park ('14) also contain a boundary term with the assumption that the boundary of the subset has non-degenerate metric. That is, if the boundary is connected, it necessarily has fixed signature.

イロト イポト イヨト イヨト

Э
с II I		C 1 1		
	00000			
Background	Pseudo-Riemannian	Contact&DH	Conclusion	

Roughly speaking, a generalized valuation $\phi \in \mathcal{V}^{-\infty}(M)$ is a functional on sufficiently nice subsets $X \in \mathcal{P}(M)$ given by $\phi(X) = \int_X \mu + \int_{N^*X} \omega$ for some currents (distributional forms) $\mu \in \mathcal{D}_0(M)$, $\omega \in \mathcal{D}_n(S^*M)$.

.

Consultant university of an annuality in					
00000	000000	000000	0		
Background	Pseudo-Riemannian	Contact&DH	Conclusion		

Roughly speaking, a generalized valuation $\phi \in \mathcal{V}^{-\infty}(M)$ is a functional on sufficiently nice subsets $X \in \mathcal{P}(M)$ given by $\phi(X) = \int_X \mu + \int_{N^*X} \omega$ for some currents (distributional forms) $\mu \in \mathcal{D}_0(M)$, $\omega \in \mathcal{D}_n(S^*M)$.

Example

Given $A \in \mathcal{P}(M)$, $\chi_A := \chi(\bullet \cap A)$ is a generalized valuation. Such valuations are the building blocks of Crofton formulas.

向下 イヨト イヨト

Consultant university of an annuality in					
00000	000000	000000	0		
Background	Pseudo-Riemannian	Contact&DH	Conclusion		

Roughly speaking, a generalized valuation $\phi \in \mathcal{V}^{-\infty}(M)$ is a functional on sufficiently nice subsets $X \in \mathcal{P}(M)$ given by $\phi(X) = \int_X \mu + \int_{N^*X} \omega$ for some currents (distributional forms) $\mu \in \mathcal{D}_0(M)$, $\omega \in \mathcal{D}_n(S^*M)$.

Example

Given $A \in \mathcal{P}(M)$, $\chi_A := \chi(\bullet \cap A)$ is a generalized valuation. Such valuations are the building blocks of Crofton formulas.

There is a natural dense inclusion $\mathcal{V}^{\infty}(M) \subset \mathcal{V}^{-\infty}(M)$.

伺 ト イヨト イヨト

00000	Pseudo-Riemannian 00€000	000000	⊂ Conclusion
		C 1 1	

Roughly speaking, a generalized valuation $\phi \in \mathcal{V}^{-\infty}(M)$ is a functional on sufficiently nice subsets $X \in \mathcal{P}(M)$ given by $\phi(X) = \int_X \mu + \int_{N^*X} \omega$ for some currents (distributional forms) $\mu \in \mathcal{D}_0(M)$, $\omega \in \mathcal{D}_n(S^*M)$.

Example

Given $A \in \mathcal{P}(M)$, $\chi_A := \chi(\bullet \cap A)$ is a generalized valuation. Such valuations are the building blocks of Crofton formulas.

There is a natural dense inclusion $\mathcal{V}^{\infty}(M) \subset \mathcal{V}^{-\infty}(M)$.

The space C^{-∞}(M) of generalized curvature measures can be defined similarly. Φ ∈ C^{-∞}(M) is then a valuation on sufficiently nice X ∈ P(M), with values in M^{-∞}(M).

(日本) (日本) (日本)

Background	Pseudo-Riemannian	Contact&DH	Conclusion
00000	000000	000000	
Intrincic vo	lumos of $\mathbb{D}^{p,q}$		

Intrinsic volumes of $\mathbb{R}^{p,q}$

Assume $p, q \ge 1$, n = p + q. Write $Q(x) = x_1^2 + \cdots + x_p^2 - \cdots - x_n^2$.

Theorem (Alesker-F. '13, Bernig-F. '16)

In $\mathbb{R}^{p,q}$, the space of O(p,q)-invariant generalized translation-invariant valuations is spanned by certain explicit $\mu_k^{\pm} \in \operatorname{Val}_k^{-\infty}(\mathbb{R}^{p,q})$, $1 \leq k \leq n-1$, together with χ and vol.

- 本部 とうき とうとう き

Background	Pseudo-Riemannian	Contact&DH	Conclusion
	000000		
Intrincic volumo	$c of \mathbb{D}_{p,q}$		

Intrinsic volumes of $\mathbb{R}^{p,q}$

Assume $p, q \ge 1$, n = p + q. Write $Q(x) = x_1^2 + \cdots + x_p^2 - \cdots - x_n^2$.

Theorem (Alesker-F. '13, Bernig-F. '16)

In $\mathbb{R}^{p,q}$, the space of O(p,q)-invariant generalized translation-invariant valuations is spanned by certain explicit $\mu_k^{\pm} \in \operatorname{Val}_k^{-\infty}(\mathbb{R}^{p,q})$, $1 \leq k \leq n-1$, together with χ and vol.

They can be naturally restricted to subspaces. For dim E = k, $Q|_E$ of signature (a, b), a + b = k:

$$\mu_k^+|_E = \begin{cases} \operatorname{vol}_E, & b \equiv 0 \mod 4\\ -\operatorname{vol}_E, & b \equiv 2 \mod 4\\ 0, & b \equiv 1 \mod 2 \end{cases}$$
$$\mu_k^-|_E = \begin{cases} \operatorname{vol}_E, & b \equiv 1 \mod 4\\ -\operatorname{vol}_E, & b \equiv 3 \mod 4\\ 0, & b \equiv 0 \mod 2 \end{cases}$$

(人間) トイヨト イヨト ニヨ

Background		Pseudo-Riemannian		Contact&DH	Conclusion	
00000		000000		000000		

Theorem (Bernig-F.-Solanes), in progress

• Let M^{n+1} have a pseudo-metric of signature (p+1,q), both positive. Then one can define generalized curvature measures $LK_k^{\pm} \in \mathcal{C}_k^{-\infty}(M)$ $(0 \le k \le n)$, $LK_{n+1} =$ vol, canonically associated to the metric. On $\mathbb{R}^{p+1,q}$, they globalize to the previously defined $\chi, 0, (\mu_k^{\pm})_{k=1}^n$, vol.

白 ト イ ヨ ト イ ヨ ト

Background		Pseudo-Riemannian		Contact&DH	Conclusion	
00000		000000		000000		

Theorem (Bernig-F.-Solanes), in progress

• Let M^{n+1} have a pseudo-metric of signature (p + 1, q), both positive. Then one can define generalized curvature measures $LK_k^{\pm} \in C_k^{-\infty}(M)$ $(0 \le k \le n)$, $LK_{n+1} =$ vol, canonically associated to the metric. On $\mathbb{R}^{p+1,q}$, they globalize to the previously defined $\chi, 0, (\mu_k^{\pm})_{k=1}^n$, vol.

• Definition. $0 = |\emptyset|$.

白 ト イ ヨ ト イ ヨ ト

Background		Pseudo-Riemannian		Contact&DH		Conclusion	
00000		000000		000000		0	

Theorem (Bernig-F.-Solanes), in progress

- Let M^{n+1} have a pseudo-metric of signature (p + 1, q), both positive. Then one can define generalized curvature measures $LK_k^{\pm} \in \mathcal{C}_k^{-\infty}(M)$ $(0 \le k \le n)$, $LK_{n+1} =$ vol, canonically associated to the metric. On $\mathbb{R}^{p+1,q}$, they globalize to the previously defined $\chi, 0, (\mu_k^{\pm})_{k=1}^n$, vol.
- Weyl's principle holds: Assume $M^{p+1,q} \subset N^{p'+1,q'}$ isometrically. Then the restrictions of the Lipschitz-Killing curvature measures $(LK_k^{\pm})_{k=0}^{p+q+1}$ of N to M are intrinsically defined.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Background		Pseudo-Riemannian		Contact&DH		Conclusion	
00000		000000		000000		0	

Theorem (Bernig-F.-Solanes), in progress

- Let M^{n+1} have a pseudo-metric of signature (p + 1, q), both positive. Then one can define generalized curvature measures $LK_k^{\pm} \in \mathcal{C}_k^{-\infty}(M)$ $(0 \le k \le n)$, $LK_{n+1} =$ vol, canonically associated to the metric. On $\mathbb{R}^{p+1,q}$, they globalize to the previously defined $\chi, 0, (\mu_k^{\pm})_{k=1}^n$, vol.
- Weyl's principle holds: Assume $M^{p+1,q} \subset N^{p'+1,q'}$ isometrically. Then the restrictions of the Lipschitz-Killing curvature measures $(LK_k^{\pm})_{k=0}^{p+q+1}$ of N to M are intrinsically defined.

Under construction

1. It seems very likely (but remains to be checked) that one can normalize the L-K curvature measures in such a way that they become universal with respect to isometric embeddings, same as in the Riemannian case.

• □ ▶ • □ ▶ • □ ▶ • □ ▶ • □ ▶

Background	Pseudo-Riem	nannian	Contact&DH	Conclusion
00000	000000		000000	

Theorem (Bernig-F.-Solanes), in progress

- Let M^{n+1} have a pseudo-metric of signature (p + 1, q), both positive. Then one can define generalized curvature measures $LK_k^{\pm} \in \mathcal{C}_k^{-\infty}(M)$ $(0 \le k \le n)$, $LK_{n+1} =$ vol, canonically associated to the metric. On $\mathbb{R}^{p+1,q}$, they globalize to the previously defined $\chi, 0, (\mu_k^{\pm})_{k=1}^n$, vol.
- Weyl's principle holds: Assume $M^{p+1,q} \subset N^{p'+1,q'}$ isometrically. Then the restrictions of the Lipschitz-Killing curvature measures $(LK_k^{\pm})_{k=0}^{p+q+1}$ of N to M are intrinsically defined.

Under construction

1. It seems very likely (but remains to be checked) that one can normalize the L-K curvature measures in such a way that they become universal with respect to isometric embeddings, same as in the Riemannian case. 2. Whether a Fu-Wannerer - type characterization of the LK_k^{\pm} holds remains unknown.

Background	Pseudo-Riemannian	Contact&DH	Conclusion
	00000●	000000	○
Applications			

For $M^{p,q}$, n = p + q, there is an explicit generalized form $\omega \in \Omega^{n-1}_{-\infty}(\mathbb{P}_+(TM))$ such that for nice $X \subset M$, $\chi(X) = (2\pi)^{-n/2} \int_X Pf(\tilde{\Omega}) + \int_{NX} \omega$. Here again $\tilde{\Omega}_{ij} = \Omega_{ij}\epsilon_j$.

(4月) (3日) (3日) 日

Background	Pseudo-Riemannian ○○○○○●	Contact&DH	Conclusion O
Applications			

For $M^{p,q}$, n = p + q, there is an explicit generalized form $\omega \in \Omega^{n-1}_{-\infty}(\mathbb{P}_+(TM))$ such that for nice $X \subset M$, $\chi(X) = (2\pi)^{-n/2} \int_X Pf(\tilde{\Omega}) + \int_{NX} \omega$. Here again $\tilde{\Omega}_{ij} = \Omega_{ij}\epsilon_j$.

Remark

Nice X: E.g. if $X \subset \mathbb{R}^{p,q}$ has full dimension, ∂X should have non-zero principal curvatures at points where $T_p \partial X$ inherits a degenerate metric.

(1月) (3日) (3日) 日

Background	Pseudo-Riemannian	Contact&DH	Conclusion
	00000●	000000	○
Applications			

For $M^{p,q}$, n = p + q, there is an explicit generalized form $\omega \in \Omega^{n-1}_{-\infty}(\mathbb{P}_+(TM))$ such that for nice $X \subset M$, $\chi(X) = (2\pi)^{-n/2} \int_X Pf(\tilde{\Omega}) + \int_{NX} \omega$. Here again $\tilde{\Omega}_{ij} = \Omega_{ij}\epsilon_j$.

Remark

Nice X: E.g. if $X \subset \mathbb{R}^{p,q}$ has full dimension, ∂X should have non-zero principal curvatures at points where $T_p \partial X$ inherits a degenerate metric.

Define the pseudo-sphere $S^{p,q}_{\pm}$ as the level set $\{Q = \pm 1\}$ of $Q = x_1^2 + \cdots + x_{p+1}^2 - \cdots - x_{p+1+q}^2$ in $\mathbb{R}^{p+1,q}$.

Background	Pseudo-Riemannian 00000●	Contact&DH	Conclusion ○
Applications			

For $M^{p,q}$, n = p + q, there is an explicit generalized form $\omega \in \Omega^{n-1}_{-\infty}(\mathbb{P}_+(TM))$ such that for nice $X \subset M$, $\chi(X) = (2\pi)^{-n/2} \int_X Pf(\tilde{\Omega}) + \int_{NX} \omega$. Here again $\tilde{\Omega}_{ij} = \Omega_{ij}\epsilon_j$.

Remark

Nice X: E.g. if $X \subset \mathbb{R}^{p,q}$ has full dimension, ∂X should have non-zero principal curvatures at points where $T_p \partial X$ inherits a degenerate metric.

Define the pseudo-sphere
$$S^{p,q}_{\pm}$$
 as the level set $\{Q = \pm 1\}$ of $Q = x_1^2 + \cdots + x_{p+1}^2 - \cdots - x_{p+1+q}^2$ in $\mathbb{R}^{p+1,q}$.

Theorem: Valuations on the pseudo-sphere

The invariant generalized valuations $\mathcal{V}^{-\infty}(S^{p,q}_{\pm})^{\mathcal{O}(p+1,q)}$ are spanned by the L-K valuations.

00000	occoco	€00000	o
Contact ma	nifolds		

Let M^{2n+1} be a manifold and $H \subset TM$ - a bundle of hyperplanes.

Contact m	nifolds		
00000	000000	00000	0
Background	Pseudo-Riemannian	Contact&DH	Conclusion

Let M^{2n+1} be a manifold and $H \subset TM$ - a bundle of hyperplanes.

Definition

(M, H) is **contact** if it is "maximally non-integrable", which can be made precise in several equivalent ways. *H* is then called the contact distribution.

イロト イヨト イヨト イヨト 三日

Contact mar	nifolds		
00000	000000	00000	0
Background	Pseudo-Riemannian	Contact&DH	Conclusion

Let M^{2n+1} be a manifold and $H \subset TM$ - a bundle of hyperplanes.

Definition

(M, H) is contact if it is "maximally non-integrable", which can be made precise in several equivalent ways. H is then called the contact distribution.

E.g., maximally non-integrable means that locally $H = \text{Ker } \alpha$ for $\alpha \in T^*M$, with $d\alpha|_H$ non-degenerate. This definition reveals the symplectic nature of contact manifolds.

Contact m	anifolde		
00000	000000	00000	0
Background	Pseudo-Riemannian	Contact&DH	Conclusion

Let M^{2n+1} be a manifold and $H \subset TM$ - a bundle of hyperplanes.

Definition

(M, H) is contact if it is "maximally non-integrable", which can be made precise in several equivalent ways. H is then called the contact distribution.

E.g., maximally non-integrable means that locally $H = \text{Ker } \alpha$ for $\alpha \in T^*M$, with $d\alpha|_H$ non-degenerate. This definition reveals the symplectic nature of contact manifolds.

Theorem (Darboux-Pfaff)

All contact manifolds are locally isomorphic.

Contact m	nifoldo		
00000	000000	00000	0
Background	Pseudo-Riemannian	Contact&DH	Conclusion

Let M^{2n+1} be a manifold and $H \subset TM$ - a bundle of hyperplanes.

Definition

(M, H) is contact if it is "maximally non-integrable", which can be made precise in several equivalent ways. H is then called the contact distribution.

E.g., maximally non-integrable means that locally $H = \text{Ker } \alpha$ for $\alpha \in T^*M$, with $d\alpha|_H$ non-degenerate. This definition reveals the symplectic nature of contact manifolds.

Theorem (Darboux-Pfaff)

All contact manifolds are locally isomorphic.

 \Rightarrow No local invariants such as curvature.

Contact m	nifoldo		
00000	000000	00000	0
Background	Pseudo-Riemannian	Contact&DH	Conclusion

Let M^{2n+1} be a manifold and $H \subset TM$ - a bundle of hyperplanes.

Definition

(M, H) is contact if it is "maximally non-integrable", which can be made precise in several equivalent ways. H is then called the contact distribution.

E.g., maximally non-integrable means that locally $H = \text{Ker } \alpha$ for $\alpha \in T^*M$, with $d\alpha|_H$ non-degenerate. This definition reveals the symplectic nature of contact manifolds.

Theorem (Darboux-Pfaff)

All contact manifolds are locally isomorphic.

 \Rightarrow No local invariants such as curvature.

• The group of symmetries *Cont*(*M*) is infinite-dimensional.

Comto at mos	:falda		
00000	000000	•00000	0
Background	Pseudo-Riemannian	Contact&DH	Conclusion

Let M^{2n+1} be a manifold and $H \subset TM$ - a bundle of hyperplanes.

Definition

(M, H) is contact if it is "maximally non-integrable", which can be made precise in several equivalent ways. H is then called the contact distribution.

E.g., maximally non-integrable means that locally $H = \text{Ker } \alpha$ for $\alpha \in T^*M$, with $d\alpha|_H$ non-degenerate. This definition reveals the symplectic nature of contact manifolds.

Theorem (Darboux-Pfaff)

All contact manifolds are locally isomorphic.

 \Rightarrow No local invariants such as curvature.

• The group of symmetries *Cont*(*M*) is infinite-dimensional.

xample

- $S^{2n+1} \subset \mathbb{C}^{n+1}$, with $T_x S^{2n+1} = x^{\perp}$ and $H_x S^{2n+1} = (\mathbb{C}x)^{\perp} \subset T_x S^{2n+1}$.
- There is no linear contact space (a translation-invariant horizontal distribution is integrable). The "standard" contact structure on R²ⁿ⁺¹ is a stereographic projection of the contact sphere S²ⁿ⁺¹.

Background	Pseudo-Riemannian	Contact&DH ○●○○○○	Conclusion O
Dual Heisenberg	g manifolds		

Let M^{2n+1} be a manifold and $H \subset TM$ - a bundle of hyperplanes.

Dual Haira	- h - u - u - u - i f - l - l - l		
00000	000000	00000	0
Background	Pseudo-Riemannian	Contact&DH	Conclusion

Let M^{2n+1} be a manifold and $H \subset TM$ - a bundle of hyperplanes.

Definition

(M, H) has DH structure if a field of non-degenerate forms is specified: $\omega \in C^{\infty}(M, \wedge^{2}H^{*} \otimes (TM/H)).$

That is, $T_x M$ is a dual Heisenberg algebra, smoothly varying with x.

D 111 ·			
		00000	
Background	Pseudo-Riemannian	Contact&DH	Conclusion

Let M^{2n+1} be a manifold and $H \subset TM$ - a bundle of hyperplanes.

Definition

(M, H) has DH structure if a field of non-degenerate forms is specified: $\omega \in C^{\infty}(M, \wedge^{2}H^{*} \otimes (TM/H)).$

That is, $T_{\times}M$ is a dual Heisenberg algebra, smoothly varying with x.

Examples

1. $\mathfrak{h}_{2n+1}^* = (\mathbb{R}^{2n+1}, H = \mathbb{R}^{2n} = \{(x_1, y_1, \dots, x_n, y_n, 0)\}, \omega)$ - the dual Heisenberg algebra - is a linear DH manifold. $\omega(v, v') = \sum_i (x_i y_i' - y_i x_i') \cdot e_{2n+1}.$

イロト 不得 トイラト イラト 二日

D 111 ·			
		00000	
Background	Pseudo-Riemannian	Contact&DH	Conclusion

Let M^{2n+1} be a manifold and $H \subset TM$ - a bundle of hyperplanes.

Definition

(M, H) has DH structure if a field of non-degenerate forms is specified: $\omega \in C^{\infty}(M, \wedge^{2}H^{*} \otimes (TM/H)).$

That is, $T_x M$ is a dual Heisenberg algebra, smoothly varying with x.

Examples

1. $\mathfrak{h}_{2n+1}^* = (\mathbb{R}^{2n+1}, H = \mathbb{R}^{2n} = \{(x_1, y_1, \dots, x_n, y_n, 0)\}, \omega)$ - the dual Heisenberg algebra - is a linear DH manifold. $\omega(v, v') = \sum_i (x_i y_i' - y_i x_i') \cdot e_{2n+1}.$ 2. A contact manifold (M, H) has a canonical DH structure.

00000	000000	000000	0
Background	Pseudo-Riemannian		Conclusion

Let M^{2n+1} be a manifold and $H \subset TM$ - a bundle of hyperplanes.

Definition

(M, H) has DH structure if a field of non-degenerate forms is specified: $\omega \in C^{\infty}(M, \wedge^{2}H^{*} \otimes (TM/H)).$

That is, $T_{\times}M$ is a dual Heisenberg algebra, smoothly varying with x.

Examples

1. $\mathfrak{h}_{2n+1}^* = (\mathbb{R}^{2n+1}, H = \mathbb{R}^{2n} = \{(x_1, y_1, \dots, x_n, y_n, 0)\}, \omega)$ - the dual Heisenberg algebra - is a linear DH manifold. $\omega(v, v') = \sum_i (x_i y_i' - y_i x_i') \cdot e_{2n+1}.$ 2. A contact manifold (M, H) has a canonical DH structure.

Definition: DH-isometric embedding

If $N \subset (M, H)$ intersects the horizontal distribution transversally, it has a naturally induced DH structure.

イロト イボト イヨト イヨト

э

Background	Pseudo-Riemannian	Contact&DH	Conclusion
00000	000000	00000	0
T I .			

We can construct certain canonic generalized valuations $\phi_k \in W_k^{-\infty}(M)$ on a DH manifold (M^{2n+1}, H, ω) . Here we just explain their geometric meaning.

イロト イヨト イヨト イヨト 三日

00000	000000	00000	0
Background	Pseudo-Riemannian	Contact&DH	Conclusion

We can construct certain canonic generalized valuations $\phi_k \in \mathcal{W}_k^{-\infty}(M)$ on a DH manifold (M^{2n+1}, H, ω) . Here we just explain their geometric meaning. Set $M_H = \{(x, \pm H_x^{\perp}) : x \in M\} \subset S^*M$.

<u> </u>			
		000000	
Background	Pseudo-Riemannian	Contact&DH	Conclusion

We can construct certain canonic generalized valuations $\phi_k \in W_k^{-\infty}(M)$ on a DH manifold (M^{2n+1}, H, ω) . Here we just explain their geometric meaning. Set $M_H = \{(x, \pm H_x^{\perp}) : x \in M\} \subset S^*M$. Assume $F^{2n} \subset M^{2n+1}$ is generic: $N^*F \pitchfork M_H$.

・ 回 ト ・ ヨ ト ・ ヨ ト

00000	000000	00000	0

We can construct certain canonic generalized valuations $\phi_k \in W_k^{-\infty}(M)$ on a DH manifold (M^{2n+1}, H, ω) . Here we just explain their geometric meaning. Set $M_H = \{(x, \pm H_x^{\perp}) : x \in M\} \subset S^*M$. Assume $F^{2n} \subset M^{2n+1}$ is generic: $N^*F \pitchfork M_H$. Choose a Riemannian metric g on M and complex structure J on H, compatible with the DH structure.

Background	Pseudo-Riemannian	Contact&DH	Conclusion
		00000	

We can construct certain canonic generalized valuations $\phi_k \in \mathcal{W}_k^{-\infty}(M)$ on a DH manifold (M^{2n+1}, H, ω) . Here we just explain their geometric meaning. Set $M_H = \{(x, \pm H_x^{\perp}) : x \in M\} \subset S^*M$. Assume $F^{2n} \subset M^{2n+1}$ is generic: $N^*F \pitchfork M_H$. Choose a Riemannian metric g on M and complex structure J on H, compatible with the DH structure. Define

$$\phi_k(F) := \sum_{x:T_xF \subset H_x} \operatorname{CA}_k(F, x)$$

イロト イボト イヨト イヨト

Background	Pseudo-Riemannian	Contact&DH	Conclusion
		00000	

We can construct certain canonic generalized valuations $\phi_k \in W_k^{-\infty}(M)$ on a DH manifold (M^{2n+1}, H, ω) . Here we just explain their geometric meaning. Set $M_H = \{(x, \pm H_x^{\perp}) : x \in M\} \subset S^*M$. Assume $F^{2n} \subset M^{2n+1}$ is generic: $N^*F \pitchfork M_H$. Choose a Riemannian metric g on M and complex structure J on H, compatible with the DH structure. Define

$$\phi_k(F) := \sum_{x:T_xF \subset H_x} \operatorname{CA}_k(F,x)$$

where:

$$\operatorname{CA}_{k}(F, x) = \binom{2n}{k} |\det(S_{x} - h_{x})|^{-1} D(S_{x} - h_{x}[2n - k], J[k])$$

- S_x =Second fundamental form of F at x.
- $h_x = (\text{Non-symmetric})$ second fundamental form of H at x.

Background	Pseudo-Riemannian	Contact&DH	Conclusion
		00000	

We can construct certain canonic generalized valuations $\phi_k \in W_k^{-\infty}(M)$ on a DH manifold (M^{2n+1}, H, ω) . Here we just explain their geometric meaning. Set $M_H = \{(x, \pm H_x^{\perp}) : x \in M\} \subset S^*M$. Assume $F^{2n} \subset M^{2n+1}$ is generic: $N^*F \pitchfork M_H$. Choose a Riemannian metric g on M and complex structure J on H, compatible with the DH structure. Define

$$\phi_k(F) := \sum_{x:T_xF \subset H_x} \operatorname{CA}_k(F,x)$$

where:

$$\operatorname{CA}_{k}(F, x) = \binom{2n}{k} |\det(S_{x} - h_{x})|^{-1} D(S_{x} - h_{x}[2n - k], J[k])$$

- S_x =Second fundamental form of F at x.
- $h_x = (\text{Non-symmetric})$ second fundamental form of H at x.

Thus $\phi_k(F)$ only depends on the germ of F at its contact points.

Background	Pseudo-Riemannian	Contact&DH	Conclusion
		00000	

We can construct certain canonic generalized valuations $\phi_k \in W_k^{-\infty}(M)$ on a DH manifold (M^{2n+1}, H, ω) . Here we just explain their geometric meaning. Set $M_H = \{(x, \pm H_x^{\perp}) : x \in M\} \subset S^*M$. Assume $F^{2n} \subset M^{2n+1}$ is generic: $N^*F \pitchfork M_H$. Choose a Riemannian metric g on M and complex structure J on H, compatible with the DH structure. Define

$$\phi_k(F) := \sum_{x: T_x F \subset H_x} \operatorname{CA}_k(F, x)$$

where:

$$\operatorname{CA}_{k}(F, x) = \binom{2n}{k} |\det(S_{x} - h_{x})|^{-1} D(S_{x} - h_{x}[2n - k], J[k])$$

- S_x =Second fundamental form of F at x.
- $h_x = (\text{Non-symmetric})$ second fundamental form of H at x.

Thus $\phi_k(F)$ only depends on the germ of F at its contact points. It can be shown to be independent of g, J.

Background	Pseudo-Riemannian	Contact&DH	Conclusion
		00000	

We can construct certain canonic generalized valuations $\phi_k \in W_k^{-\infty}(M)$ on a DH manifold (M^{2n+1}, H, ω) . Here we just explain their geometric meaning. Set $M_H = \{(x, \pm H_x^{\perp}) : x \in M\} \subset S^*M$. Assume $F^{2n} \subset M^{2n+1}$ is generic: $N^*F \pitchfork M_H$. Choose a Riemannian metric g on M and complex structure J on H, compatible with the DH structure. Define

$$\phi_k(F) := \sum_{x: T_x F \subset H_x} \operatorname{CA}_k(F, x)$$

where:

$$\operatorname{CA}_{k}(F, x) = \binom{2n}{k} |\det(S_{x} - h_{x})|^{-1} D(S_{x} - h_{x}[2n - k], J[k])$$

- S_x =Second fundamental form of F at x.
- $h_x = (\text{Non-symmetric})$ second fundamental form of H at x.

Thus $\phi_k(F)$ only depends on the germ of F at its contact points.

It can be shown to be independent of g, J.

Example: ϕ_0 , or the contact/DH Chern-Gauss-Bonnet Theorem

1. $\chi(M^{2n+1}) = 0.$
| Background | Pseudo-Riemannian | Contact&DH | Conclusion |
|------------|-------------------|------------|------------|
| | | 00000 | |
| | | | |

The contact DH valuations

We can construct certain canonic generalized valuations $\phi_k \in W_k^{-\infty}(M)$ on a DH manifold (M^{2n+1}, H, ω) . Here we just explain their geometric meaning. Set $M_H = \{(x, \pm H_x^{\perp}) : x \in M\} \subset S^*M$. Assume $F^{2n} \subset M^{2n+1}$ is generic: $N^*F \pitchfork M_H$. Choose a Riemannian metric g on M and complex structure J on H, compatible with the DH structure. Define

$$\phi_k(F) := \sum_{x: T_x F \subset H_x} \operatorname{CA}_k(F, x)$$

where:

$$\operatorname{CA}_{k}(F, x) = \binom{2n}{k} |\det(S_{x} - h_{x})|^{-1} D(S_{x} - h_{x}[2n - k], J[k])$$

- S_x =Second fundamental form of F at x.
- $h_x = (\text{Non-symmetric})$ second fundamental form of H at x.

Thus $\phi_k(F)$ only depends on the germ of F at its contact points.

It can be shown to be independent of g, J.

Example: ϕ_0 , or the contact/DH Chern-Gauss-Bonnet Theorem

1. $\chi(M^{2n+1}) = 0$. 2. For $F^{2n} \subset M^{2n+1}$, $\phi_0(F) = \chi(F) = \text{Index}(N^*F \cap M_H) = \sum_{x:T_xF=H_x} \pm 1$.

00000	000000	000000	0
F	ula a construction m3		

Example - the standard \mathbb{R}^3

Consider the standard (\mathbb{R}^3 , dz + ydx = 0).

Figure: $\alpha = dz + xdy$

イロト イポト イヨト イヨト

Э

E 1			
		000000	
Background	Pseudo-Riemannian	Contact&DH	Conclusion

Example - the standard \mathbb{R}^3

Consider the standard (\mathbb{R}^3 , dz + ydx = 0).

Figure: $\alpha = dz + xdy$

If $F = \{z = f(x, y)\}$ is tangent to the x - y plane at the origin

$$\operatorname{CA}_{2}(F,0) = \left(\det H^{2}f(0) + \frac{\partial^{2}f}{\partial x \partial y}(0)\right)^{-1}$$

A (1) A (2) A (3) A

Background	Pseudo-Riemannian	Contact&DH	Conclusion
00000	000000	000000	0
E 1	<u>ы ы ытъ</u> з		

Example - the standard \mathbb{R}^3

Consider the standard (\mathbb{R}^3 , dz + ydx = 0).

Figure: $\alpha = dz + xdy$

If $F = \{z = f(x, y)\}$ is tangent to the x - y plane at the origin

$$\operatorname{CA}_{2}(F,0) = \left(\det H^{2}f(0) + \frac{\partial^{2}f}{\partial x \partial y}(0)\right)^{-1}$$

• For a sphere of radius R, $\phi_2(S_R) = 2R^2$.

Background	Pseudo-Riemannian	Contact&DH	Conclusion
	000000	○○○○●○	O
Example - the o	ther standard \mathbb{R}^3		

Let \mathbb{R}^3 be equipped with the standard contact structure given by the form $\alpha = dz + xdy - ydx$. It is the stereographic projection of the contact $S^3 \subset \mathbb{C}^2$.

Figure: $\alpha = dz + xdy - ydx$

Background	Pseudo-Riemannian	Contact&DH ○○○○●○	Conclusion O
Example - the c	other standard \mathbb{R}^3		

Let \mathbb{R}^3 be equipped with the standard contact structure given by the form $\alpha = dz + xdy - ydx$. It is the stereographic projection of

the contact $S^3 \subset \mathbb{C}^2$.

Figure: $\alpha = dz + xdy - ydx$

If $F = \{z = f(x, y)\}$ is tangent to the x - y plane at the origin $CA_2(F, 0) = 4(1 + \det H^2 f(0))^{-1} = 4(1 + \kappa_F(0))^{-1}$

Background	Pseudo-Riemannian	Contact&DH ○○○○●○	Conclusion O
Example - the o	ther standard \mathbb{R}^3		

Let \mathbb{R}^3 be equipped with the standard contact structure given by the form $\alpha = dz + xdy - ydx$. It is the stereographic projection of the contact $S^3 \subset \mathbb{C}^2$.

Figure: $\alpha = dz + xdy - ydx$

If $F = \{z = f(x, y)\}$ is tangent to the x - y plane at the origin $CA_2(F, 0) = 4(1 + \det H^2 f(0))^{-1} = 4(1 + \kappa_F(0))^{-1}$ • For a sphere of radius R, $\phi_2(S_R) = 8(1 + \frac{1}{R^2})^{-1}$.

Canonic val	untions on contact /	DH manifolds	
		000000	
Background	Pseudo-Riemannian	Contact&DH	Conclusion

Any contact manifold M^{2n+1} admits a canonic family of independent generalized valuations: $\phi_{2k} \in W_{2k}^{-\infty}(M)$, k = 0, ..., n. Together, (ϕ_{2k}) span the full subspace of generalized valuations invariant under Cont(M).

イロト 不得 トイヨト イヨト

Э

Canonic val	uations on contact/	DH manifolds	
00000	000000	000000	
Background	Pseudo-Riemannian	Contact&DH	Conclusion

Any contact manifold M^{2n+1} admits a canonic family of independent generalized valuations: $\phi_{2k} \in W_{2k}^{-\infty}(M)$, k = 0, ..., n. Together, (ϕ_{2k}) span the full subspace of generalized valuations invariant under Cont(M).

Theorem (F. '17+) - Hadwiger classification for DH algebra

$$\mathsf{Val}^{-\infty}(\mathfrak{h}_{2n+1}^*)^{\mathsf{Aut}(\mathfrak{h}_{2n+1})} = \mathsf{Span}\{\phi_{2k}\}_{k=0}^n, \ \phi_{2k} \in \mathsf{Val}_{2k}^{-\infty}(\mathfrak{h}_{2n+1}^*).$$

イロト 不得 トイヨト イヨト

Background	Pseudo-Riemannian	Contact&DH ○○○○○●	Conclusion ○
Canonic valuation	ons on contact/DH i	manifolds	

Any contact manifold M^{2n+1} admits a canonic family of independent generalized valuations: $\phi_{2k} \in W_{2k}^{-\infty}(M)$, k = 0, ..., n. Together, (ϕ_{2k}) span the full subspace of generalized valuations invariant under Cont(M).

Theorem (F. '17+) - Hadwiger classification for DH algebra

$$\mathsf{Val}^{-\infty}(\mathfrak{h}_{2n+1}^*)^{\mathsf{Aut}(\mathfrak{h}_{2n+1})} = \mathsf{Span}\{\phi_{2k}\}_{k=0}^n, \ \phi_{2k} \in \mathsf{Val}_{2k}^{-\infty}(\mathfrak{h}_{2n+1}^*).$$

Theorem (F. '17+) - Existence of DH L-K valuations + Weyl principle

1. Every DH-manifold M^{2n+1} is equipped with a canonic set of generalized valuations $\phi_k \in \mathcal{W}_k^{-\infty}(M), \ k = 0, \dots, 2n.$

イロト 不得下 イヨト イヨト 二日

Background	Pseudo-Riemannian	Contact&DH ○○○○○●	Conclusion ○
Canonic valuation	ons on contact/DH i	manifolds	

Any contact manifold M^{2n+1} admits a canonic family of independent generalized valuations: $\phi_{2k} \in W_{2k}^{-\infty}(M)$, k = 0, ..., n. Together, (ϕ_{2k}) span the full subspace of generalized valuations invariant under Cont(M).

Theorem (F. '17+) - Hadwiger classification for DH algebra

$$\mathsf{Val}^{-\infty}(\mathfrak{h}_{2n+1}^*)^{\mathsf{Aut}(\mathfrak{h}_{2n+1})} = \mathsf{Span}\{\phi_{2k}\}_{k=0}^n, \ \phi_{2k} \in \mathsf{Val}_{2k}^{-\infty}(\mathfrak{h}_{2n+1}^*).$$

Theorem (F. '17+) - Existence of DH L-K valuations + Weyl principle

 Every DH-manifold M²ⁿ⁺¹ is equipped with a canonic set of generalized valuations *φ_k* ∈ W^{-∞}_k(M), *k* = 0,...,2*n*.

 They are universal to DH-isometric embeddings.

イロト 不得 トイラト イラト 二日

Background	Pseudo-Riemannian	Contact&DH ○○○○○●	Conclusion ○
Canonic valuation	ons on contact/DH i	manifolds	

Any contact manifold M^{2n+1} admits a canonic family of independent generalized valuations: $\phi_{2k} \in W_{2k}^{-\infty}(M)$, k = 0, ..., n. Together, (ϕ_{2k}) span the full subspace of generalized valuations invariant under Cont(M).

Theorem (F. '17+) - Hadwiger classification for DH algebra

$$\mathsf{Val}^{-\infty}(\mathfrak{h}_{2n+1}^*)^{\mathsf{Aut}(\mathfrak{h}_{2n+1})} = \mathsf{Span}\{\phi_{2k}\}_{k=0}^n, \ \phi_{2k} \in \mathsf{Val}_{2k}^{-\infty}(\mathfrak{h}_{2n+1}^*).$$

Theorem (F. '17+) - Existence of DH L-K valuations + Weyl principle

 Every DH-manifold M²ⁿ⁺¹ is equipped with a canonic set of generalized valuations φ_k ∈ W_k^{-∞}(M), k = 0,...,2n.
 They are universal to DH-isometric embeddings.

Unlike the (pseudo)metric setting, the ϕ_k don't seem to be the result of the globalization of naturally defined curvature measures.

イロト 不得 トイラト イラト 二日

Background	Pseudo-Riemannian	Contact&DH ○○○○○●	Conclusion ○	
Canonic valuations on contact/DH manifolds				

Any contact manifold M^{2n+1} admits a canonic family of independent generalized valuations: $\phi_{2k} \in W_{2k}^{-\infty}(M)$, k = 0, ..., n. Together, (ϕ_{2k}) span the full subspace of generalized valuations invariant under Cont(M).

Theorem (F. '17+) - Hadwiger classification for DH algebra

$$\mathsf{Val}^{-\infty}(\mathfrak{h}_{2n+1}^*)^{\mathsf{Aut}(\mathfrak{h}_{2n+1})} = \mathsf{Span}\{\phi_{2k}\}_{k=0}^n, \ \phi_{2k} \in \mathsf{Val}_{2k}^{-\infty}(\mathfrak{h}_{2n+1}^*).$$

Theorem (F. '17+) - Existence of DH L-K valuations + Weyl principle

1. Every DH-manifold M^{2n+1} is equipped with a canonic set of generalized valuations $\phi_k \in \mathcal{W}_k^{-\infty}(M), \ k = 0, \dots, 2n$.

2. They are universal to DH-isometric embeddings.

Unlike the (pseudo)metric setting, the ϕ_k don't seem to be the result of the globalization of naturally defined curvature measures. Also unlike the pseudo-Riemannian setting, not all L-K valuations appear in \mathfrak{h}_{2n+1}^* ,

providing an obvious obstruction to a DH Nash theorem. $(\Box) (\Box$

Background	Pseudo-Riemannian	Contact&DH 000000	Conclusion ●
The End			

Thanks for listening!

イロト イヨト イヨト イヨト

Ð,