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Euclidean space

We write Bn ∈ K(Rn) the Euclidean unit ball, ωn = |Bn|.

For K ∈ K(Rn), µk(K ), k = 0, . . . , n are its intrinsic volumes.

• µ0(K ) = χ(K ) = 1, µn(K ) = voln(K ), µn−1(K ) = 1
2 voln−1(∂K ).

They can be defined in several ways:

• Steiner formula: vol(K + εBn) =
∑n

k=0 ωn−kµk(K )εn−k .

• Curvature integrals. If ∂K is C 2 with principal curvatures (κj)
n−1
j=1

µk(K ) = cn,k

�

∂K

σn−1−k(κ1, . . . , κn−1)d voln−1
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Valuations and curvature measures

Let Mn be a smooth oriented manifold, S∗M := P+(T ∗M).
P(M) will be the set of compact differentiable polyhedra.

Definition

For K ∈ P(M), its conormal cycle is N∗K ⊂ S∗M.
(x , ξ) ∈ N∗K ⇐⇒ ξ(γ̇) ≤ 0 for all curves γ ⊂ K with γ(0) = x . N∗K is
a Lipschitz submanifold of dimension n − 1.

Definition (Alesker, Fu)

A pair µ ∈ Ωn(M), ω ∈ Ωn−1(S∗M) defines:
- A smooth valuation φ = ((ω, µ)) ∈ V∞(M), given by
φ : P(M)→ R, φ(K ) =

�
K

µ+
�

N∗K

ω.

- A smooth curvature measure Φ = (ω, µ) ∈ C∞(M), given by
Φ : P(M)→M(M), Φ(K ,U) =

�
K∩U

µ+
�

N∗X∩π−1(U)

ω.

There is an obvious globalization map glob : C∞(M)→ V∞(M).
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Filtration by homogeneity

Theorem (Alesker)

There is a canonic filtration

V∞(M) =W0(M) ⊃ W1(M) ⊃ · · · ⊃ Wn(M)

such that Wk(M)/Wk+1(M) = C∞(M,Valk(TM)).

• Wn(M) =M∞(M).

• Wk(M) = {((ω, µ)) : ω ∈ π∗Ωk(M)}, π : P+(TM)→ M.

A similar filtration C∞k (M) can be defined on the curvature
measures (Solanes-Wannerer).
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Riemannian Lipschitz-Killing curvatures

Theorem (Weyl)

Let (Mn, g) be a closed Riemannian manifold. Embed isometrically M ⊂ RN . Let Mε

denote the ε-extension. Then volN(Mε) =
∑n

k=0 ωn−kµk (M)εN−k for small ε.
Remarkably, µk only depend on (M, g).

Theorem (Chern, Federer, Alesker)

Let (Mn, g) be a Riemannian manifold. There is a canonic collection of valuations
{µk}nk=0 ∈ V

∞(M) (curvature measures {LKk}nk=0) that can be obtained by fixing an

isometric embedding M ⊂ RN and restricting the intrinsic volumes of RN (resp.
Federer curvature measures) to M. Those valuations (curvature measures) can be
described intrinsically through the curvature tensor.

Examples: For X ⊂ M, µ0(X ) = χ, µn(X ) = voln(X ), µn−1(X ) = 1
2

voln−1(∂X ).

Example: Chern-Gauss-Bonnet Theorem

Let Mn be a closed oriented Riemannian manifold.
1. χ(M) = (2π)−n/2

�
M Pfaff(Ω) (where Pfaff(Ω) = 0 if n is odd).

2. There is a (canonically defined, explicit) ω ∈ Ωn−1(SM) s.t. for X ∈ P(Mn),
χ(X ) = (2π)−n/2

�
X Pfaff(Ω) +

�
NX ω.
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Constructing the Lipschitz-Killing curvature measures

Cartan apparatus. On the bundle of orthonormal frames ΦM = {(x ,E0, . . . ,En)} over
Mn+1, there are:

- solder forms θi = g(dπ(•),Ei ), 0 ≤ i ≤ n.
- connection forms ωij given by dθi = −

∑
ωij ∧ θj , (ωij )

n
i,j=0 ∈ so(n + 1).

- curvature forms Ωij = dωij +
∑

k ωik ∧ ωkj .
We use π0 : ΦM → SM to define elements Ck,p ∈ C∞k (M). For k < n + 1 = dimM,

Ck,p =

 ωk

πk (n + 1− k)ωn+1−k

∑
τ∈Sn

(−1)τΩτ1τ2 . . .Ωτ2p−1τ2p θτ2p+1 . . . θτkωτk+10 . . . ωτn0, 0



Cn+1,p =

0,
ωn+1

πn+1

∑
τ∈Sn+1

Ωτ0τ1 . . .Ωτ2p−2τ2p−1θτ2p . . . θτn

 ∈ C∞n+1(M)

Definition: The (normalized) L-K curvature measures are

LKk =
πk

k!ωk

∞∑
j=0

( k
2

+ j

j

)
4−jCk+2j,j ∈ C∞k (M)

Theorem (Fu-Wannerer ’17)

The Lipschitz-Killing curvatures are the unique universally defined curvature measures
on Riemannian manifolds that are invariant to isometric embeddings.
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Pseudo-Riemannian crash course

Let Mn be a manifold equipped with a smooth field Q of non-degenerate quadratic
forms of (necessarily constant) signature (p, q), e.g.
ds2 = dx2

1 + · · ·+ dx2
p − dx2

p+1 − · · · − dx2
p+q .

• Most notions of Riemannian geometry go through with some adjustments: we can
define positive-definite (space-like) and negative-definite (time-like) length of curves.
Volume is defined in the same way.
• Some deeper results extend as well:

Theorem (Nash)

Any pseudo-Riemannian manifold can be isometrically embedded into a flat space,
that is into some RN with a standard indefinite quadratic form.

Theorem (Chern ’62, Avez ’62)

The Chern-Gauss-Bonnet theorem holds for pseudo-Riemannian manifolds. Namely,
for closed, oriented, even-dimensional Mp,q ,

χ(M) = (2π)−(p+q)/2
�
M

Pfaff(Ω̃)

Here Ω̃ij = Ωij εj , ε1 = · · · = εp = 1, εp+1 = · · · = εn = −1.
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Background Pseudo-Riemannian Contact&DH Conclusion

Question

Can we define intrinsic volumes/Lipschitz-Killing curvature
measures for general pseudo-Riemannian manifolds?

The challenge: The Cartan apparatus works with orthonormal
frames, thus overlooking the degenerate (light-like) directions
LC ⊂ P+(TM) (the light-cone, which is a hypersurface).
Furthermore, the L-K forms that can be defined away from LC ,
blow up as one approaches LC .

Remark

This appears to be the reason why Chern and Avez only obtain the
interior term. Later works by Birman-Nomizu (’83) and Gilkey-Park
(’14) also contain a boundary term with the assumption that the
boundary of the subset has non-degenerate metric. That is, if the
boundary is connected, it necessarily has fixed signature.
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Generalized valuations on manifolds

Roughly speaking, a generalized valuation φ ∈ V−∞(M) is a functional
on sufficiently nice subsets X ∈ P(M) given by φ(X ) =

�
X
µ+

�
N∗X

ω
for some currents (distributional forms) µ ∈ D0(M), ω ∈ Dn(S∗M).

Example

Given A ∈ P(M), χA := χ(• ∩ A) is a generalized valuation. Such
valuations are the building blocks of Crofton formulas.

There is a natural dense inclusion V∞(M) ⊂ V−∞(M).

• The space C−∞(M) of generalized curvature measures can be
defined similarly. Φ ∈ C−∞(M) is then a valuation on sufficiently
nice X ∈ P(M), with values in M−∞(M).
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Intrinsic volumes of Rp,q

Assume p, q ≥ 1, n = p + q. Write Q(x) = x2
1 + · · ·+ x2

p − · · · − x2
n .

Theorem (Alesker-F. ’13, Bernig-F. ’16)

In Rp,q, the space of O(p, q)-invariant generalized translation-invariant
valuations is spanned by certain explicit µ±k ∈ Val−∞k (Rp,q),
1 ≤ k ≤ n − 1, together with χ and vol.

They can be naturally restricted to subspaces. For dimE = k, Q|E of
signature (a, b), a + b = k :

µ+
k |E =

 volE , b ≡ 0 mod 4
− volE , b ≡ 2 mod 4

0, b ≡ 1 mod 2

µ−k |E =

 volE , b ≡ 1 mod 4
− volE , b ≡ 3 mod 4

0, b ≡ 0 mod 2
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Pseudo-Riemannian Lipschitz-Killing curvatures

Theorem (Bernig-F.-Solanes), in progress

• Let Mn+1 have a pseudo-metric of signature (p + 1, q), both
positive. Then one can define generalized curvature measures
LK±k ∈ C

−∞
k (M) (0 ≤ k ≤ n), LKn+1 = vol, canonically associated

to the metric. On Rp+1,q, they globalize to the previously defined
χ, 0, (µ±k )nk=1, vol.

• Weyl’s principle holds: Assume Mp+1,q ⊂ Np′+1,q′ isometrically.
Then the restrictions of the Lipschitz-Killing curvature measures
(LK±k )p+q+1

k=0 of N to M are intrinsically defined.

• Definition. 0 = |∅|.

Under construction
1. It seems very likely (but remains to be checked) that one can normalize
the L-K curvature measures in such a way that they become universal
with respect to isometric embeddings, same as in the Riemannian case.
2. Whether a Fu-Wannerer - type characterization of the LK±k holds
remains unknown.
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Applications

Theorem: Full version of pseudo-Riemannian Chern-Gauss-Bonnet

For Mp,q, n = p + q, there is an explicit generalized form
ω ∈ Ωn−1

−∞(P+(TM)) such that for nice X ⊂ M,

χ(X ) = (2π)−n/2
�
X Pf (Ω̃) +

�
NX ω. Here again Ω̃ij = Ωijεj .

Remark

Nice X : E.g. if X ⊂ Rp,q has full dimension, ∂X should have
non-zero principal curvatures at points where Tp∂X inherits a
degenerate metric.

Define the pseudo-sphere Sp,q
± as the level set {Q = ±1} of

Q = x2
1 + · · ·+ x2

p+1 − · · · − x2
p+1+q in Rp+1,q.

Theorem: Valuations on the pseudo-sphere

The invariant generalized valuations V−∞(Sp,q
± )O(p+1,q) are

spanned by the L-K valuations.

Dmitry Faifman Extensions and non-extensions of the Weyl principle



Background Pseudo-Riemannian Contact&DH Conclusion

Applications

Theorem: Full version of pseudo-Riemannian Chern-Gauss-Bonnet

For Mp,q, n = p + q, there is an explicit generalized form
ω ∈ Ωn−1

−∞(P+(TM)) such that for nice X ⊂ M,

χ(X ) = (2π)−n/2
�
X Pf (Ω̃) +

�
NX ω. Here again Ω̃ij = Ωijεj .

Remark

Nice X : E.g. if X ⊂ Rp,q has full dimension, ∂X should have
non-zero principal curvatures at points where Tp∂X inherits a
degenerate metric.

Define the pseudo-sphere Sp,q
± as the level set {Q = ±1} of

Q = x2
1 + · · ·+ x2

p+1 − · · · − x2
p+1+q in Rp+1,q.

Theorem: Valuations on the pseudo-sphere

The invariant generalized valuations V−∞(Sp,q
± )O(p+1,q) are

spanned by the L-K valuations.

Dmitry Faifman Extensions and non-extensions of the Weyl principle



Background Pseudo-Riemannian Contact&DH Conclusion

Applications

Theorem: Full version of pseudo-Riemannian Chern-Gauss-Bonnet

For Mp,q, n = p + q, there is an explicit generalized form
ω ∈ Ωn−1

−∞(P+(TM)) such that for nice X ⊂ M,

χ(X ) = (2π)−n/2
�
X Pf (Ω̃) +

�
NX ω. Here again Ω̃ij = Ωijεj .

Remark

Nice X : E.g. if X ⊂ Rp,q has full dimension, ∂X should have
non-zero principal curvatures at points where Tp∂X inherits a
degenerate metric.

Define the pseudo-sphere Sp,q
± as the level set {Q = ±1} of

Q = x2
1 + · · ·+ x2

p+1 − · · · − x2
p+1+q in Rp+1,q.

Theorem: Valuations on the pseudo-sphere

The invariant generalized valuations V−∞(Sp,q
± )O(p+1,q) are

spanned by the L-K valuations.

Dmitry Faifman Extensions and non-extensions of the Weyl principle



Background Pseudo-Riemannian Contact&DH Conclusion

Applications

Theorem: Full version of pseudo-Riemannian Chern-Gauss-Bonnet

For Mp,q, n = p + q, there is an explicit generalized form
ω ∈ Ωn−1

−∞(P+(TM)) such that for nice X ⊂ M,

χ(X ) = (2π)−n/2
�
X Pf (Ω̃) +

�
NX ω. Here again Ω̃ij = Ωijεj .

Remark

Nice X : E.g. if X ⊂ Rp,q has full dimension, ∂X should have
non-zero principal curvatures at points where Tp∂X inherits a
degenerate metric.

Define the pseudo-sphere Sp,q
± as the level set {Q = ±1} of

Q = x2
1 + · · ·+ x2

p+1 − · · · − x2
p+1+q in Rp+1,q.

Theorem: Valuations on the pseudo-sphere

The invariant generalized valuations V−∞(Sp,q
± )O(p+1,q) are

spanned by the L-K valuations.
Dmitry Faifman Extensions and non-extensions of the Weyl principle



Background Pseudo-Riemannian Contact&DH Conclusion

Contact manifolds

Let M2n+1 be a manifold and H ⊂ TM - a bundle of hyperplanes.

Definition

(M,H) is contact if it is ”maximally non-integrable”, which can be made precise in
several equivalent ways. H is then called the contact distribution.

E.g., maximally non-integrable means that locally H = Kerα for α ∈ T∗M, with dα|H
non-degenerate. This definition reveals the symplectic nature of contact manifolds.

Theorem (Darboux-Pfaff)

All contact manifolds are locally isomorphic.

⇒ No local invariants such as curvature.
• The group of symmetries Cont(M) is infinite-dimensional.

Example

• S2n+1 ⊂ Cn+1, with TxS2n+1 = x⊥ and HxS2n+1 = (Cx)⊥ ⊂ TxS2n+1.

• There is no linear contact space (a translation-invariant horizontal distribution is
integrable). The ”standard” contact structure on R2n+1 is a stereographic
projection of the contact sphere S2n+1.
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Dual Heisenberg manifolds

Let M2n+1 be a manifold and H ⊂ TM - a bundle of hyperplanes.

Definition

(M,H) has DH structure if a field of non-degenerate forms is specified:
ω ∈ C∞(M,∧2H∗ ⊗ (TM/H)).
That is, TxM is a dual Heisenberg algebra, smoothly varying with x .

Examples

1. h∗2n+1 = (R2n+1,H = R2n = {(x1, y1, . . . , xn, yn, 0)}, ω) - the dual Heisenberg
algebra - is a linear DH manifold.
ω(v , v ′) =

∑
i (xiy

′
i − yix

′
i ) · e2n+1.

2. A contact manifold (M,H) has a canonical DH structure.

Definition: DH-isometric embedding

If N ⊂ (M,H) intersects the horizontal distribution transversally, it has a
naturally induced DH structure.
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The contact DH valuations

We can construct certain canonic generalized valuations φk ∈ W−∞k (M) on a DH

manifold (M2n+1,H, ω). Here we just explain their geometric meaning.

Set MH = {(x ,±H⊥x ) : x ∈ M} ⊂ S∗M.
Assume F 2n ⊂ M2n+1 is generic: N∗F t MH .
Choose a Riemannian metric g on M and complex structure J on H, compatible with
the DH structure.
Define

φk (F ) :=
∑

x :TxF⊂Hx

CAk (F , x)

where:

CAk (F , x) =
(2n

k

)
| det(Sx − hx )|−1D(Sx − hx [2n − k], J[k])

• Sx=Second fundamental form of F at x .
• hx=(Non-symmetric) second fundamental form of H at x .
Thus φk (F ) only depends on the germ of F at its contact points.
It can be shown to be independent of g , J.

Example: φ0, or the contact/DH Chern-Gauss-Bonnet Theorem

1. χ(M2n+1) = 0.
2. For F 2n ⊂ M2n+1, φ0(F ) = χ(F ) = Index(N∗F ∩MH) =

∑
x :TxF=Hx

±1.
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It can be shown to be independent of g , J.

Example: φ0, or the contact/DH Chern-Gauss-Bonnet Theorem

1. χ(M2n+1) = 0.

2. For F 2n ⊂ M2n+1, φ0(F ) = χ(F ) = Index(N∗F ∩MH) =
∑

x :TxF=Hx
±1.
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The contact DH valuations
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Example - the standard R3

Consider the standard (R3, dz + ydx = 0).

Figure: α = dz + xdy

If F = {z = f (x , y)} is tangent to the x − y plane at the origin

CA2(F , 0) =

(
detH2f (0) +

∂2f

∂x∂y
(0)

)−1

• For a sphere of radius R, φ2(SR) = 2R2.
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Example - the other standard R3

Let R3 be equipped with the standard contact structure given by
the form α = dz + xdy − ydx . It is the stereographic projection of
the contact S3 ⊂ C2.

Figure: α = dz + xdy − ydx

If F = {z = f (x , y)} is tangent to the x − y plane at the origin

CA2(F , 0) = 4(1 + detH2f (0))−1 = 4(1 + κF (0))−1

• For a sphere of radius R, φ2(SR) = 8(1 + 1
R2 )−1.
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Canonic valuations on contact/DH manifolds

Theorem (F. ’17+) - Existence and uniqueness of contact Lipschitz-Killing valuations

Any contact manifold M2n+1 admits a canonic family of independent generalized
valuations: φ2k ∈ W−∞2k (M), k = 0, . . . , n.
Together, (φ2k ) span the full subspace of generalized valuations invariant under
Cont(M).

Theorem (F. ’17+) - Hadwiger classification for DH algebra

Val−∞(h∗2n+1)Aut(h2n+1) = Span{φ2k}nk=0, φ2k ∈ Val−∞2k (h∗2n+1).

Theorem (F. ’17+) - Existence of DH L-K valuations + Weyl principle

1. Every DH-manifold M2n+1 is equipped with a canonic set of generalized valuations
φk ∈ W−∞k (M), k = 0, . . . , 2n.
2. They are universal to DH-isometric embeddings.

Unlike the (pseudo)metric setting, the φk don’t seem to be the result of the
globalization of naturally defined curvature measures.
Also unlike the pseudo-Riemannian setting, not all L-K valuations appear in h∗2n+1,
providing an obvious obstruction to a DH Nash theorem.
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The End

Thanks for listening!
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