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@ K C R"is called a convex body if it is convex, compact and has
non-empty interior.
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K is isotropic if all the (X, 6) are centered and have the same variance.
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Isotropic bodies

Hyperplane conjecture (Bourgain, 1990)
There exists an absolute constant C such that for every K C R”

Ly < C

o Ly < Cni log n (Bourgain 1990)
o Lx < Cni (Klartag 2005, Lee-Vempala 2016)

@ True for 1-unconditional bodies, polytopes with number of vertices
proportional to the dimension, zonoids, unit balls of finite dimensional

Schatten classes...
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2 _ 2
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o Var|X|? =777

Variance conjecture (Bobkov-Koldobsky, 2003)

There exists an absolute constant C such that for any isotropic
log-concave random vector

Var|X|? < CLXE|X|? = CnL¥.

@ The variance conjecture implies the hyperplane conjecture (not
body-wise). (Eldan-Klartag, 2012)

o Var|X|2 < Cnz[2E|X|2. (Lee-Vempala, 2016)

@ True for uniformly distributed random vectors on By

(Antilla-Ball-Perissinaki, 2003), Orlicz balls (Wojtaszczyk, 2007),
unconditional bodies (Klartag, 2012)
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negative correlation property with respect to the orthonormal basis {7;}7_,
if for every i #£ j

E(X, 0i)2 (X, m;)* — E(X, )2 E(X,n;)*> < 0

@ X uniformly distributed on B[,’, {ei 7. Antilla, Ball, Perissinaki
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e X uniformly distributed on an Orlicz ball, {e;}7_;. Wojtaszczyk
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e X uniformly distributed on Py B2, any {n;}"_;. A., Bastero (2013).
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Proposition (A., Bernués (2018)
Let X be a random vector uniformly distributed on a 1-symmetric convex

body, & = el\’gz, & = el\}zez, and f: S"1xS§"1 4R

F(n1,m2) = B(X, )% (X, m2)? — E(X, 1) *E(X, m2)>.

Then, if (n1,m2) =0

F(n1,m2) = f(e1, &) + 2(F(&1, &) — fler, &2)) > m(i)’ma(i).
=1
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F(n1,m2) = Fler, &) + 2(F(&1, &) — Fler, &) D> m(i)ma(i).

i=1

l
°0<Z771 np(i)? 5

f(é'?g)_f( ) ): P
1,Q2 €1, €2 2r<1+n:3>r(%>2 p
F(5x)IM(x
Fl = (r(32<)g)

e F is strictly increasing in (0,1] and F (3) = 3.
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Theorem (A., Bernués (2018)
Let X be a random vector uniformly distributed on BJ, &1 = %,
€2 = 72 I (n1,m2) = 0

f(&1,8) < f(n,m) < fler,e) if p>2
fler,e) < f(n,m) < f(&,&) if p<2

o) r(ie2)r(2) 1 r(1+2)r (1422

o)\ )

@ Since log'(x) is strictly convex f(er, e2) <

e f(n1,m2) < 0 for every n1,mp with (n1,m2) = 0.
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(193 () 1)

o f(&1,8) = o (1 . %) - (%)2
° |f1§p<2,F(%>>3
e By Stirling's formula, lim ] <1 i £> ] (1 i nTﬂ) =1

2
n—oo LH
r<1+ = )

If 1 < p < 2 there exists ny such that if n > ng f(&1,&) > 0.
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2 FeF,1(k)”F

= > [ F(Pe)Iiw(y), )l dox(y)
oK

dok Hausdorff measure on 9K



Random vectors on hyperplane projections of B

e By Cauchy’s formula, if X is uniformly distributed on Py.(BJ)
VI llp(x),0)]
Sy F(Por () el dorn (x)

L
Josy "m0 975()

Ef(X) =




Random vectors on hyperplane projections of B

e By Cauchy’s formula, if X is uniformly distributed on Py.(BJ)
VI llp(x),0)]
Sy F(Por () el dorn (x)

V-0 4 n
faBn |VH|T X)] dop(x)

Ef(X) =

e Since doj(x) = n|BJ[|V|| - [|p(x)|dup(x) (Naor, Romik, 2003)

Jagy F(Por CNIVI - [lp(x), 0)|dpip(x)
Jogy VI [1p(x), 0)]dpp(x)

Ef(X) =



Probabilistic representation of dy; (Schechtman-Zinn

(1990)

Let g1,...,8n be independent copies of a random variable with density
,‘t|P
e

1
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Then

@ The random vector £ = (£,..., %) and the random variable S are
independent.

o £ is distributed on 0B} according to dup.
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(1990)

Let g1,...,8n be independent copies of a random variable with density
,‘t|P
e

or (1+1)

1
n b
S = (Z |g,-|p> .
i=1
Then

@ The random vector £ = (£,..., %) and the random variable S are

independent.
o £ is distributed on 0B} according to dup.

If X is uniformly distributed on Py.(BJ)

Ef (Pn (%)) ¢
E¢ ’

and

Ef(X) = Z’g”p sen(gi);
Sp 1 g gl 1




The square negative correlation property on hyperplane

projections of B

0o = (%”W) P(,L(B”) is isotropic.
Theorem (A., Bernués, 2018)

Let X be a random vector uniformly distributed on P(,L(B”)
5 S 82+63 €4 g S 62263+e4 g _ e—e 52_63 €y

f —\/iand

f(m,m2) = E(X,m)*(X,m2)? — E(X,m)?E(X, m2)°.

If p > 2 there exists ng(p) such that if n > ng and (n1,m2) =0

f(&1,&) < Fm,m) < (€1, &)

If 1 < p < 2 there exists ni(p) such that if n > n; and (n1,7m2) =0

f(£1,&5) < f(m,m) < (&1, &).




The square negative correlation property on hyperplane
projections of B

Corollary (A., Bernués, 2018)

Let X be a random vector uniformly distributed on PQ(J]_(B;;). There exists

no(p) such that for all n > ng X satisfies the SNCP with respect to every
orthonormal basis in ;.




