Abstract

In this work we propose to improve Brunn-Minkowski and Rogers-Shephard inequalities in terms of the asymmetry measure of Minkowski. We do a first step by computing some bounds via stability results of those inequalities.

Definitions and properties

Let K^n be the set of full-dimensional compact and convex sets in \mathbb{R}^n.

- A simplex Δ in \mathbb{R}^n is the convex hull of $n + 1$ affinely independent points.
- Let the Minkowski sum of K and L be defined by
 \[K + L := \{ x + y \in \mathbb{R}^n \mid x \in K, y \in L \}. \]

Let $vol(K)$ be the n-dimensional volume (or Lebesgue measure) of K.

Let the Minkowski measure of asymmetry of K be defined by

\[s(K) := \inf \{ \lambda \geq 1 \mid -K \subset x + \lambda \cdot K, \text{ for some } x \in \mathbb{R}^n \}. \]

Figure 2: $K \subset s(K)(-K)$ and $\Delta \subset 2(-\Delta)$ for a triangle Δ

Lemma: Let $K \in \mathcal{K}^n$. Then $1 \leq s(K) \leq n$. Moreover, $s(K) = 1$ iff $K = x - K$, $x \in \mathbb{R}^n$ and $s(K) = n$ iff K is a simplex.

Volume and Minkowski addition

- The Brunn-Minkowski inequality (BM) (cf. [4,5]) states for $K, L \in \mathcal{K}^n$ that
 \[vol(K + L)^\frac{1}{n} \geq vol(K)^\frac{1}{n} + vol(L)^\frac{1}{n}, \]
 Moreover, equality holds iff $L = x + \lambda \cdot K$, for some $x \in \mathbb{R}^n$ and $\lambda > 0$.
- The Rogers-Shephard inequality (RS) (cf. [6]) states for $K, L \in \mathcal{K}^n$ that
 \[vol(K + L)vol(K \cap (-L)) \leq \left(\frac{2n}{n} \right)^n vol(K)vol(L), \]
 Moreover, equality holds iff $L = -K$ is a simplex (cf. [3]).
- Letting $L = -K$, then (BM) and (RS) summarizes as
 \[2^n \leq \frac{vol(K - K)}{vol(K)} \leq \frac{2n}{n}. \]
 Moreover, on LHS iff $K = x - K, x \in \mathcal{K}^n$, resp. on RHS iff K is a simplex.

QUESTION: Let $K \in \mathcal{K}^n$ and $s \in [1, n]$ s.t. $s = s(K)$.

What are the smallest $C(s) > 0$ and largest $c(s) > 0$ s.t.

\[c(s) \leq \frac{vol(K - K)}{vol(K)} \leq C(s)? \]

References

Stability of Brunn-Minkowski and Rogers-Shephard

- A stability version of Brunn-Minkowski inequality (cf. [8,9]) states for $K \in \mathcal{K}^n$ that
 \[\frac{vol(K - K)}{vol(K)} \leq 2^n \left(1 + \frac{A(K)^2}{14n^24^{n-1}} \right)^n, \]
 where $A(K) = \inf_{x \in \mathbb{R}^n} \frac{vol(K - x)}{vol(K)}$.
- A stability version of Rogers-Shephard inequality (cf. [7]) states for $K \in \mathcal{K}^n$ that
 \[1 - n(d_{BM}(K, \Delta)) \leq \left(\frac{2n}{n} \right)^{-1} \frac{vol(K - K)}{vol(K)} \leq 1 - \frac{d_{BM}(K, \Delta) - 1}{n^{n-1}}, \]
 where the Banach-Mazur distance between K and a simplex Δ is defined by
 \[d_{BM}(K, \Delta) = \inf_{x \in \mathbb{R}^n \setminus M \in \mathcal{K}^n} \{ \lambda \geq 1 \mid \Delta \subset x + M(K) \subset y + \lambda \Delta \}. \]

References

First answers the question

Theorem 1: Let $K \in \mathcal{K}^n$ and let $s = s(K)$. Then

\[c(s) \geq \begin{cases} \frac{2^n}{n} \left(1 - \frac{1}{n} \left(1 - \frac{n-s}{n} \right)^{n-1} \right)^n & \text{if } 1 < s < n, \\ \frac{(2n)^n}{(1 - 4n^2(n-s))} & \text{if } n - \frac{1}{n} < s < n, \end{cases} \]

and

\[C(s) \leq \begin{cases} (1 + s)^n & \text{if } 1 < s < n, \\ \left(\frac{2n}{n} \right)^{-1} \left(1 - \frac{n-s}{n} \right)^{n-1} & \text{if } n - \frac{1}{n} < s < n. \end{cases} \]

Remark: The 1. (resp. 2.) upper and lower bounds are specially good when $s(K) \approx 1$ (resp. $s(K) \approx n$).

The **diagram** $f : [1, n] \to \left[2^n, \left(\frac{2n}{n} \right)^n \right]$ is defined by $f(K) := \left(s(K), \frac{vol(K - K)}{vol(K)} \right)$.

Theorem 2: $f(K^n)$ is simply connected and contains (1, 2n) and $(n, (\frac{2n}{n})^n)$.

References

(Supervised by R. BRANDENBERG and B. GONZÁLEZ MERINO).

Stability results in the planar case

Let Δ be a regular simplex with center 0.

- $K_{\Delta} := \Delta \cap (s(-\Delta))$.
- $\Delta_{\Delta} := \cap (s(-\Delta))$.

- $f(K_{\Delta})$ contains the dark grey area, is contained in the light grey one.
- The lower boundary of the dark grey area is given by $f(K_{\Delta}) = \{ s, \frac{2(s+1)^2}{2s} \}$. The upper boundary of the dark grey area is given by $f(C_{\Delta}) = \{ s, 2(s+1) \}$. The blue and red dashed lines are given by Theorem 1.

The third author is partially supported by Fundación Séneca, project reference 19901/GERM/15, and by MINECO project reference MTM2015-63699-P, Spain.