Relating Brunn-Minkowski and Rogers-Shephard inequalities with the asymmetry measure of Minkowski

Katherina von Dichter (together with René Brandenberg and Bernardo González Merino)

Abstract

In this work we propose to improve Brunn-Minkowski and Rogers-Shephard inequality in terms of the asymmetry measure of Minkowski. We do a first step by computing some bounds via stability results of those inequalities.

Definitions and properties

- Let \mathcal{K}^{n} be the set of full-dimensional compact and convex sets in \mathbb{R}^{n}.
- A simplex Δ in \mathbb{R}^{n} is the convex hull of $n+1$ affinely independent points.
- Let the Minkowski sum of K and L be defined by

$$
K+L:=\left\{x+y \in \mathbb{R}^{n} \mid x \in K, y \in L\right\} .
$$

- Let $\operatorname{vol}(K)$ be the n-dimensional volume (or Lebesgue measure) of K.
- Let the Minkowski measure of asymmetry of K be defined by

$$
s(K):=\inf \left\{\lambda \geq 1 \mid-K \subset x+\lambda \cdot K, \text { for some } x \in \mathbb{R}^{n}\right\}
$$

Fig. 2: $K \subset s(K)(-K)$ and $\Delta \subset 2(-\Delta)$ for a triangle Δ
Lemma: Let $K \in \mathcal{K}^{n}$. Then $1 \leq s(K) \leq n$. Moreover, $s(K)=1 \quad$ iff $\quad K=x-K, \quad x \in \mathbb{R}^{n}$ and $s(K)=n \quad$ iff $\quad K \quad$ is a simplex.

References

[1] B. GRÜNBAUM, Measures of symmetry for convex sets, Convexity, Proceedings of Symposia in Pure Mathematics 7, American Mathematical Society, Providence, 1963, 233-270.
[2] R. SCHNEIDER: Convex Bodies: The Brunn-Minkowski Theory, 2. expanded edition. Encyclopedia of Mathematics and its Applications, vol. 151. Cambridge University Press, Cambridge, 2014.

Volume and Minkowski addition

- The Brunn-Minkowski inequality (BM) (cf. [4,5]) states for $K, L \in \mathcal{K}^{n}$ that

$$
\operatorname{vol}(K+L)^{\frac{1}{n}} \geq \operatorname{vol}(K)^{\frac{1}{n}}+\operatorname{vol}(L)^{\frac{1}{n}}
$$

Moreover, equality holds iff $L=x+\lambda \cdot K$, for some $x \in \mathbb{R}^{n}$ and $\lambda>0$.

- The Rogers-Shephard inequality (RS) (cf. [6]) states for $K, L \in \mathcal{K}^{n}$ that

$$
\operatorname{vol}(K+L) \operatorname{vol}(K \cap(-L)) \leq\binom{ 2 n}{n} \operatorname{vol}(K) \operatorname{vol}(L)
$$

Moreover, equality holds iff $L=-K$ is a simplex (cf. [3]).

- Letting $L=-K$, then (BM) and (RS) summarizes as

$$
2^{n} \leq \frac{\operatorname{vol}(K-K)}{\operatorname{vol}(K)} \leq\binom{ 2 n}{n}
$$

Moreover, $=$ on LHS iff $K=x-K, x \in \mathcal{K}^{n}$, resp. on RHS iff K is a simplex.
QUESTION: Let $K \in \mathcal{K}^{n}$ and $s \in[1, n]$ s.t. $s=s(K)$.
\bar{W} hat are the smallest $C(s)>0$ and largest $c(s)>0$ s.t.

$$
c(s) \leq \frac{\operatorname{vol}(K-K)}{\operatorname{vol}(K)} \leq C(s) ?
$$

References

[3] D. ALONSO-GUTIÉRREZ, C. H. JIMÉNEZ, R. VILLA, Brunn-Minkowski and Zhang inequalities for convolution bodies, Adv. Math., 238 (2013), 50--69.
[4] H. BRUNN, Über Ovale und Eiflïchen, Dissertation, München, 1887.
[5] H. MINKOWSKI, Geometrie der Zahlen, Leipzig: Teubner, 1910.
[6] C. A. ROGERS, G. C. SHEPHARD, Convex bodies associated with a given convex body, J. Lond. Math. Soc., 1 (1958), no. 3, 270--281.

Stability of Brunn-Minkowski and Rogers-Shephard

- A stability version of Brunn-Minkowski inequality (cf. [8,9]) states for $K \in \mathcal{K}^{n}$ that

$$
\frac{\operatorname{vol}(K-K)}{\operatorname{vol}(K)} \leq 2^{n}\left(1+\frac{A(K)^{2}}{14 n^{2} 4^{n-1}}\right)^{n}
$$

where $A(K)=\inf _{x \in \mathbb{R}^{n}} \frac{\operatorname{vol}((K \backslash(x-K)) \cup((x-K) \backslash K))}{\operatorname{vol}(K)}$.

- A stability version of Rogers-Shephard inequality (cf. [7]) states for $K \in \mathcal{K}^{n}$ that

$$
1-n\left(d_{B M}(K, \Delta)-1\right) \leq\binom{ 2 n}{n}^{-1} \frac{\operatorname{vol}(K-K)}{\operatorname{vol}(K)} \leq 1-\frac{d_{B M}(K, \Delta)-1}{n^{50 n^{2}}}
$$

where the Banach-Mazur distance between K and a simplex Δ is defined by

$$
d_{B M}(K, \Delta)=\inf _{x, y \in \mathbb{R}^{n}, M \in \mathbb{R}^{n \times n}}\{\lambda \geq 1 \mid \Delta \subset x+M(K) \subset y+\lambda \Delta\}
$$

References

[7] K. BÖRÖCZKY JR., The stability of the Rogers-Shephard inequality and some related inequalities, Adv. Math., 190 (2005), no. 1, 47--76.
[8] A. FIGALLI, F. MAGGI, A. PRATELLI, A mass transportation approach to quantitative isoperimetric inequalities, Invent. Math., 182 (2010), no. 1, 167-211.
[9] A. FIGALLI, F. MAGGI, A. PRATELLI, A refined Brunn-Minkowski inequality for convex sets, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), no. 6, 2511-2519.

First answers the question

Theorem 1: Let $K \in \mathcal{K}^{n}$ and let $s=s(K)$. Then

$$
c(s) \geq\left\{\begin{array}{lr}
2^{n}\left(1+\frac{1}{n 4^{n-1}}\left(\frac{(s-1)^{n} v^{2} l_{n-1}\left(\mathbb{B}_{2}^{n-1}\right)}{2^{n-1} n^{2 n} \operatorname{vol}_{n}\left(\mathbb{B}_{2}^{n}\right)}\right)^{2}\right)^{n} & \text { if } 1<s<n, \\
\binom{2 n}{n}\left(1-4 n^{2}(n-s)\right) & \text { if } n-\frac{1}{4 n}<s<n
\end{array}\right.
$$

and

$$
C(s) \leq\left\{\begin{array}{lr}
(1+s)^{n} & \text { if } 1<s<n \\
\binom{2 n}{n}\left(1-\frac{n-s}{n^{1+50 n^{2}}}\right) & \text { if } n-\frac{1}{4 n}<s<n
\end{array}\right.
$$

Remark: The 1. (resp. 2.) upper and lower bounds are specially good when $s(K) \approx 1(\operatorname{resp} . s(K) \approx n)$.

The diagram $f:[1, n] \rightarrow\left[2^{n},\binom{2 n}{n}\right]$ is defined by $f(K):=\left(s(K), \frac{\operatorname{vol}(K-K)}{\operatorname{vol}(K)}\right)$.
Theorem 2: $f\left(\mathcal{K}^{n}\right)$ is simply connected and contains $\left(1,2^{n}\right)$ and $\left(n,\binom{2 n}{n}\right)$.

References

[10] K. VON DICHTER, Volume estimates via the Asymmetry Measure of Minkowski, Master Thesis, 2018+, (Supervised by R. BRANDENBERG and B. GONZÁLEZ MERINO).

Stability results in the planar case

Let Δ be a regular simplex with center 0 ,
$K_{s}:=\Delta \cap(s(-\Delta)), C_{s}:=\operatorname{conv}(\Delta \cup(s(-\Delta)))$.

- $f\left(\mathcal{K}^{2}\right)$ contains the dark grey area, is contained in the light grey one.
- The lower boundary of the dark grey area is given by $f\left(K_{s}\right)=\left(s, \frac{2(s+1)^{2}}{2 s-(s-1)^{2}}\right)$.
- The upper boundary of the dark grey area is given by $f\left(C_{s}\right)=(s, 2(s+1))$.
- The blue and red dashed lines are given by Theorem 1.

The third author is partially supported by Fundación Séneca, project reference 19901/GERM/15, and by MINECO project reference MTM2015-63699-P, Spain.

