Abstract

In this work we propose to improve Brunn-Minkowski and Rogers-Shephard
inequality in terms of the asymmetry measure of Minkowski. We do a first step
by computing some bounds via stability results of those inequalities.

Detinitions and properties
o Let /U be the sef of full-dimensional compact and convex sets in R™.

o A simplex A in R"™ is the convex hull of n 4 1 atfinely independent points.

o Let the Minkowski sum of K and L be defined by

K+ L:={z+yeR"|xe K, yec L}.

e Let vol( /) be the n-dimensional volume (or Lebesgue measure) of K.

o Let the Minkowski measure of asymmetry ot K be defined by

s(K):=inf{A\>1| - K Cx

M- K, forsomex € R"}.
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Fig. 2: K Cs(K)(—K) and A C2(—A) for a triangle A

Lemma: Let K € K". Then 1 < s(K) < n. Moreover,

s(K)=1 iff K=x—K, xze€eR"ands(K)=n iff K isasimplex.
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Volume and Minkowski addition
e The Brunn-Minkowski inequality (BM) (ct. [4,5]) states for K, L € K" that

vol(K + L)» > vol(K)™ + vol(L).

Moreover, equality holds itf L = x 4+ A - K, for some z € R" and A > 0.
o The Rogers-Shephard inequality (RS) (ct. [6]) states for K, L € K™ that

2n
n

vol(K + L)vol(K N (—L)) < ( )VOI(K)VOI(L).

Moreover, equality holds iff L. = — K is a simplex (cf. [3]).

o [ etting L = — K, then (BM) and (RS) summarizes as

()

Moreover, = on LHS iff K=z-K, x € K", resp. on RHS iff K is a simplex.

QOUESTION: Let K € K™ and s € [1,n] s.t. s = s(K).
What are the smallest C'(s) > 0 and largest c¢(s) > 0 s.t.

vol(K — K)
vol( K)

c(s) < < (C(s)?
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Stability of Brunn-Minkowski and Rogers-Shephard

o A stability version of Brunn-Minkowski inequality (ct. [8,9]) states for K € K™ that

_ 2 n
VUK — K)o (AU |
vol(K) 14n24n—1

where A(K) = inf ,cgn VOI((K\(”;_@%()I%()@_K)\K)).

o A stability version of Rogers-Shephard inequality (ct. [7]) states for K € K" that

dBM(K7 A) —1

n50n2 ?

Qn) “'vol(K — K)

L n(dp(K.A) — 1) < ( U=

n

where the Banach-Mazur distance between K and a simplex A is defined by

dBM(K,A) — inf

IA>1|ACa+ MK)Cy+AA).
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First answers the question
Theorem 1: Let K € K™ and let s = s(K). Then

(1 | 1 ((Sl)nvolnl(Bg’l))2>n
' np4qn—1 2n—1In2nyol,, (BY)

(27?) (1 —4n?(n —s))

o(s) > if 1 < s <n,

: 1
1fn—R<s<n

if 1 < s <n,
: 1
) 1fn—ﬂ<s<n.

n nl+50n2

e < (14 s)"
(S) = { (Qn) (1 n—s

Remark: The 1. (resp. 2.) upper and lower bounds are specially good when
s(K) ~ 1 (resp. s(K) = n).

The diagram f : [1,n] — [27, (*")] is defined by f(K) := (s(K), Voigﬁfg{))

Theorem 2: f(K™) is simply connected and contains (1,2") and (n, (*")).
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Stability results in the planar case

Let A be a regular simplex with center 0,
Ks :=AN(s(—A)), Cs :=conv(A U (s(—A))).
e f(K?) contains the dark grey area, is contained in the light grey one.
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e The upper boundary of the dark grey area is given by f(Cs) = (s,2(s 4+ 1)).
e The blue and red dashed lines are given by Theorem 1.

e The lower boundary of the dark grey area is given by f(K;) = (s
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