GOETHE 解
 UNIVERSITÄT
 Cone valuations, Gram's RELAtion, and Flag-angles
 Spencer Backman, Sebastian Manecke, Raman Sanyal

We study linear relations of interior and exterior angle sums of polytopes with respect to simple cone valuations. For all these cone angles we prove that only one linear relation exists, for the interior angle this being the Gram-relation. The uniqueness follows from a connection between angle sums and the combinatorics of zonotopes. Surprisingly for a zonotope, the angle-sums are independent of the notion of angle used and only depend on the combinatorics.
We further introduce flag-angles, an analogue to flag-f-vectors and show that flag-angle sums again exhibit a connection to the combinatorics of zonotopes. This allows us to determine all linear relations on flag-angle vectors.

Solid angles and cone valuations

A generalization of angle in higher dimensions is the notion of solid angle. Given a cone $C \subseteq \mathbb{R}^{d}$, the solid angle $\alpha(C)$ of this cone is defined as

$$
\alpha(C)=\frac{\operatorname{vol}_{d} C \cap B_{d}(0)}{\operatorname{vol}_{d} B_{d}(0)},
$$

where $B_{d}(0) \subseteq \mathbb{R}^{d}$ is the unit ball centered at the origin. Here, we normalized the angle, such that $\alpha\left(\mathbb{R}^{d}\right)=1$.
To measure angles at a face F of a fulldimensional polytope $P \subseteq \mathbb{R}^{d}$, we evaluate α
on the tangent cone $T_{F} P=$ cone $P-q$ for some $q \in$ relint F :

$$
\widehat{\alpha}(F, P):=\alpha\left(T_{F} P\right) .
$$

For any polytope P, let $\widehat{\alpha}_{i}(P)=\sum_{\operatorname{dim} F=i} \widehat{\alpha}(F, P)$. The solid angle satisfies the Gram-relation, an analogue of the Euler-relation:

The Gram-relation (Gram 1874, Perles and Shephard 1969)
$\widehat{\alpha}_{0}(P)-\widehat{\alpha}_{1}(P)+\cdots+(-1)^{d-1} \widehat{\alpha}_{d-1}(P)=(-1)^{d+1}$

Flag angles

For a cone angle α, a polytope P, and a subset $S=\left\{0 \leq s_{1}<\cdots<s_{k} \leq d-1\right\}$ define the interior flag-angle

$$
\widehat{\alpha}_{S}(P)=\sum_{F_{1} \subseteq \ldots \subseteq F_{k}} \widehat{\alpha}\left(F_{1}, F_{2}\right) \cdot \ldots \cdot \widehat{\alpha}\left(F_{k}, P\right)
$$

where the sum is over all chains of faces of P, such that $\operatorname{dim} F_{i}=s_{i}, i=1, \ldots, k$.

Theorem: Relations of the interior flag-angles

The only linear relations among the flag-angle sums $\widehat{\alpha}_{S}(P), S \subseteq\{0,1, \ldots, d-1\}$ are the flag-analogues of the Gram-relation.

Exterior angles

All results also are true for exterior angles, which measure the normal cone

$$
\breve{\alpha}(F, P):=\alpha\left(N_{F} P+N_{F} P^{\perp}\right) .
$$

The single relation taking the place of the Gram-relation is the trivial relation $\breve{\alpha}_{0}(P)=1$.
This duality is best stated as an algebraic connection between the angles of zonotopes and the ζ - and μ-functions on the lattice of flats. There is an adjoint pair of maps between their incidence algebras:
$\mathcal{F}(Z) \backslash\{\varnothing\}$

$$
\underset{F \mapsto \operatorname{aff}(F-q)}{L}
$$

$\mathcal{I}(\mathcal{F}(Z)) \xrightarrow{L_{*}}$		
$\mathcal{I}(\mathcal{L}(Z))$		
$\mathcal{I}(\mathcal{F}(Z)) \prec$	L^{*}	$\mathcal{I}(\mathcal{L}(Z))$

This correspondence results in a correspond:

Zonotope Z
Lattice of flats $\mathcal{L}(Z)$
Interior angles $\widehat{\alpha}$
Exterior angles $\check{\alpha}$
Interior angle sums $\widehat{\alpha}_{i}$
Exterior angle sums $\check{\alpha}_{i}$
Flag-interior angle sums $\widehat{\alpha}_{S}$
Flag-exterior angle sums $\check{\alpha}_{S}$

Möbius function
Zeta function
Co-Whitney numbers of the first kind
Co-Whitney numbers of the second kind
Co-Flag-Whitney numbers of the first kind Co-Flag-Whitney numbers of the second kind

