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Abstract
If f, g, h : Rn −→ R≥0 are non-negative measurable functions such that h(x + y) is greater than or equal to the
p-sum of f (x) and g(y), where −1/n ≤ p ≤ +∞, p 6= 0, then the Borell-Brascamp-Lieb inequality asserts that the
integral of h is not smaller than the q-sum of the integrals of f and g, for q = p/(np + 1).
Here we show a discrete analog of it for the sum over finite subsets of the integer lattice Zn: under the same as-
sumption as before, for A,B ⊂ Zn, then

∑
A+B h ≥ [(

∑
rf (A) f )q + (

∑
B g)q]1/q, where rf(A) is obtained by removing

points from A in a particular way, and depending on f . We also prove that the classical Borell-Brascamp-Lieb
inequality for Riemann integrable functions can be obtained as a consequence of this new discrete version.

1 Notation
As usual, we write Rn to represent the n-dimensional Euclidean space. The n-dimensional volume of a compact set
K ⊂ Rn, i.e., its n-dimensional Lebesgue measure, is denoted by vol(K) (when integrating, as usual, dx will stand for
dvol(x)), and as a discrete counterpart, we use |A| to represent the cardinality of a finite subset A ⊂ Rn.
We write πi1,...,ik, 1 ≤ i1, . . . , ik ≤ n, to denote the orthogonal projection onto the k-dimensional coordinate plane

Rei1 + · · · + Reik.

Let Zn be the integer lattice, i.e., the lattice of all points with integral coordinates in Rn, and let Zn+ =
{
x ∈ Zn : xi ≥ 0

}
.

2 The classical Borell-Brascamp-Lieb inequality
Relating the volume with the Minkowski addition of compact sets, one is led to the famous Brunn-Minkowski inequality.
One form of it states that if K,L ⊂ Rn are compact, then

vol(K + L)1/n ≥ vol(K)1/n + vol(L)1/n, (1)

with equality, if vol(K)vol(L) > 0, if and only if K and L are homothetic compact convex sets. Here + is used for the
Minkowski (vectorial) sum, i.e.,

A + B = {a + b : a ∈ A, b ∈ B}

for any A,B ⊂ Rn.
The Brunn-Minkowski inequality is one of the most powerful theorems in Convex Geometry and beyond: it implies, among
others, strong results such as the isoperimetric and Urysohn inequalities (see e.g. [7, s. 7.2]) or even the Aleksandrov-
Fenchel inequality (see e.g. [7, s. 7.3]). It would not be possible to collect here all references regarding versions,
applications and/or generalizations on the Brunn-Minkowski inequality. So, for extensive and beautiful surveys on them
we refer the reader to [3].

Regarding an analytical counterpart for functions of the Brunn-Minkowski inequality, one is naturally led to the so-called
Borell-Brascamp-Lieb inequality, originally proved in [1] and [2]. In order to introduce it, we first recall the definition of the
p-sum of two non-negative numbers.

Definition 1 (p-sum) Let p 6= 0 be a parameter varying in R ∪ {±∞}. If p ∈ R, with p 6= 0, then we set the p-sum of two
non-negative numbers a, b > 0 as

Sp (a, b) = (ap + bp)1/p.

For p = ±∞ we set S+∞ (a, b) = max{a, b} and S−∞ (x, y) = min{a, b}. Finally, if ab = 0, we define Sp (a, b) = 0 for all
p ∈ R ∪ {±∞}, p 6= 0.

Note that Sp (a, b) = 0, if ab = 0, is redundant for all p < 0, however it is relevant for p > 0. For a general reference for
p-sums of non-negative numbers, we refer the reader to the classic text of Hardy, Littlewood, and Pólya [4].
The following theorem contains the Borell-Brascamp-Lieb inequality (see also [3] for a detailed presentation) which, as
previously stated, can be regarded as the functional counterpart of the Brunn-Minkowski inequality. In fact, a straight-
forward proof of (1) can be obtained by applying (2) to the characteristic functions f = χ

K
, g = χ

L
and h = χ

K+L
with

p = +∞.

Theorem 1 (The Borell-Brascamp-Lieb inequality) Let −1/n ≤ p ≤ +∞, p 6= 0, and let f, g, h : Rn −→ R≥0 be
non-negative measurable functions such that

h(x + y) ≥ Sp (f (x), g(y))

for all x, y ∈ Rn. Then ∫
Rn
h(x) dx ≥ S p

np+1

(∫
Rn
f (x) dx,

∫
Rn
g(x) dx

)
. (2)

3 Working with finite sets
Next we move to the discrete setting, i.e., we consider finite subsets of (integer) points. We would like to point out that
one cannot expect to obtain a discrete analog of the Borell-Brascamp-Lieb inequality just by “replacing integrals by sums”
since it is not even possible to get a Brunn-Minkowski inequality in its classical form for the cardinality. Indeed, simply
taking A = {0} to be the origin and any finite set B ⊂ Zn, then

|A + B|1/n < |A|1/n + |B|1/n.

Therefore, discrete counterparts for both the Brunn-Minkowski inequality and the Borell-Brascamp-Lieb inequality should
either have a different structure or involve modifications of the sets.
An example of a Brunn-Minkowski type inequality with a modified structure could be

|A + B| ≥ |A| + |B| − 1

for finite subsets A,B in Zn, which provides, in particular, a 1-dimensional discrete Brunn-Minkowski inequality.

3.1 Reducing one of the sets

An alternative to get a “classical” Brunn-Minkowski type inequality might be to transform (one of) the sets involved in the
problem, either by adding or removing some points. In this spirit, two (equivalent) new discrete Brunn-Minkowski type
inequalities have been obtained in [5]. Similarly, and in the case of removing points from the original (finite) set A ⊂ Zn,
A 6= ∅, we may define a new set rf(A) to reduce it according to a particular function f .
To this aim, we need the following notation. If Λ ⊂ Zk is finite, k ∈ {1, . . . , n}, for each m ∈ Z we write Λ(m) to represent
the “section of Λ at m orthogonal to the (last) coordinate line Rek”, i.e.,

Λ(m) =
{
p ∈ Zk−1 : (p,m) ∈ Λ

}
.

Next, given a non-negative function f : Λ −→ R≥0 (which will be often referred to as a weight function), let
m0 = m0(Λ, f ) ∈ πk(Λ) be such that

∑
x∈Λ(m0) f (x,m0) = maxm

∑
x∈Λ(m) f (x,m). Certainly the integer m0 providing the

“maximum section” with respect to the weight function f does not have to be necessarily unique. In that case, we can
establish as a criterion to take

m0 = max

m′ ∈ πk(Λ) :
∑

x∈Λ(m′)

f (x,m′) = max
m

∑
x∈Λ(m)

f (x,m)

 .

Now we define the function
ρk : {Λ ⊂ Zk : Λ finite} −→ {Λ ⊂ Zk : Λ finite}

given by

ρk(Λ) =

{
Λ \ {m0} if k = 1,

Λ \
(

Λ(m0)× {m0}
)

if k > 1;

i.e., ρk acts on Λ just removing the “maximum section” Λ(m0), with respect to the weight function f , from the set. To
complete the picture we set ρk(∅) = ∅.
Then, for 1 ≤ k < n, we write

A−k =
⋃

m∈πn,...,k+1(A−k−1)

(
ρk
(
A−k−1(m)

)
× {m}

)
,

with A−0 = A. Then we define
rf(A) = ρn

(
A−n−1

)
.

In other words, rf(A) is given by

rf(A) =
⋃

m∈πn(A)\{m0(A−n−1,f)}

(
rf
(
A(m)

)
× {m}

)
.

Figure 1: An example of transforming a discrete set A (left) into rf(A) (right) when f (x) = 1 for all x ∈ Z2.

Using this technique, in [5, Theorem 2.2] the following result was shown, where ϕ : Zn −→ R≥0 is the constant weight
function given by ϕ(x) = 1 for all x ∈ Zn.

Theorem 2 Let A,B ⊂ Zn be finite, A,B 6= ∅. Then

|A + B|1/n ≥
∣∣rϕ(A)

∣∣1/n + |B|1/n. (3)

The inequality is sharp.

Equality holds in (3) when both A and B are lattice cubes. By a lattice cube we mean the intersection of a cube r[0, 1]n,
r ∈ N, with the lattice Zn.

4 The main results

Our main goal is to show a discrete analog of Theorem 1, in the spirit of the above Theorem 2 for the classical Brunn-
Minkowski inequality. These results can be found at [6].

Theorem 3 Let A,B ⊂ Zn be finite sets. Let −1/n ≤ p ≤ +∞, p 6= 0, and let f, g, h : Rn −→ R≥0 be non-negative
functions such that

h(x + y) ≥ Sp (f (x), g(y))

for all x ∈ A, y ∈ B. Then ∑
z∈A+B

h(z) ≥ S p
np+1

 ∑
x∈rf (A)

f (x),
∑
y∈B

g(y)

 . (4)

We note that the above result holds true for finite subsets A,B ⊂ Rn, just suitably constructing the set rf(A). We state
Theorem 3 in the case of Zn for the sake of simplicity.
As in the continuous setting, inequality (4) can be seen as a functional extension of the discrete Brunn-Minkowski in-
equality (3), just by considering the characteristic functions f = χ

A
, g = χ

B
and h = χ

A+B
, and taking p = +∞.

Moreover, we also show that the classical Borell-Brascamp-Lieb inequality (2) can be obtained from the discrete ver-
sion (4) under the mild (but necessary) assumption that the functions f, g are Riemann integrable:

Theorem 4 The discrete Borell-Brascamp-Lieb inequality (4) implies the classical Borell-Brascamp-Lieb inequality
(2), provided that the functions f, g are Riemann integrable.
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