A discrete Borell-Brascamp-Lieb inequality.

D. Iglesias López (david.iglesias@um.es) (joint work with J. Yepes Nicolás (jesus.yepes@um.es))

Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain

Abstract

If $f, g, h : \mathbb{R}^n \longrightarrow \mathbb{R}_{>0}$ are non-negative measurable functions such that h(x+y) is greater than or equal to the *p*-sum of f(x) and g(y), where $-1/n \le p \le +\infty$, $p \ne 0$, then the Borell-Brascamp-Lieb inequality asserts that the integral of h is not smaller than the q-sum of the integrals of f and g, for q = p/(np+1). Here we show a discrete analog of it for the sum over finite subsets of the integer lattice \mathbb{Z}^n : under the same assumption as before, for $A, B \subset \mathbb{Z}^n$, then $\sum_{A+B} h \ge [(\sum_{r_f(A)} f)^q + (\sum_B g)^q]^{1/q}$, where $r_f(A)$ is obtained by removing points from A in a particular way, and depending on f. We also prove that the classical Borell-Brascamp-Lieb inequality for Riemann integrable functions can be obtained as a consequence of this new discrete version.

Notation

As usual, we write \mathbb{R}^n to represent the *n*-dimensional Euclidean space. The *n*-dimensional volume of a compact set

Next, given a non-negative function $f : \Lambda \longrightarrow \mathbb{R}_{>0}$ (which will be often referred to as a *weight function*), let $m_0 = m_0(\Lambda, f) \in \pi_k(\Lambda)$ be such that $\sum_{x \in \Lambda(m_0)} f(x, m_0) = \max_m \sum_{x \in \Lambda(m)} f(x, m)$. Certainly the integer m_0 providing the "maximum section" with respect to the weight function f does not have to be necessarily unique. In that case, we can establish as a criterion to take

$$m_0 = \max\left\{m' \in \pi_k(\Lambda) : \sum_{x \in \Lambda(m')} f(x, m') = \max_m \sum_{x \in \Lambda(m)} f(x, m)\right\}$$

Now we define the function

$$\rho_k : \{\Lambda \subset \mathbb{Z}^k : \Lambda \text{ finite}\} \longrightarrow \{\Lambda \subset \mathbb{Z}^k : \Lambda \text{ finite}\}$$

given by

$$\rho_k(\Lambda) = \begin{cases} \Lambda \setminus \{m_0\} & \text{if } k = 1, \\ \Lambda \setminus \left(\Lambda(m_0) \times \{m_0\}\right) & \text{if } k > 1; \end{cases}$$

i.e., ρ_k acts on Λ just removing the "maximum section" $\Lambda(m_0)$, with respect to the weight function f, from the set. To

 $K \subset \mathbb{R}^n$, i.e., its *n*-dimensional Lebesgue measure, is denoted by vol(K) (when integrating, as usual, dx will stand for dvol(x)), and as a discrete counterpart, we use |A| to represent the cardinality of a finite subset $A \subset \mathbb{R}^n$. We write π_{i_1,\ldots,i_k} , $1 \le i_1,\ldots,i_k \le n$, to denote the orthogonal projection onto the k-dimensional coordinate plane

$$\mathbb{R}e_{i_1} + \cdots + \mathbb{R}e_{i_k}$$

Let \mathbb{Z}^n be the integer lattice, i.e., the lattice of all points with integral coordinates in \mathbb{R}^n , and let $\mathbb{Z}^n_+ = \{x \in \mathbb{Z}^n : x_i \ge 0\}$.

The classical Borell-Brascamp-Lieb inequality 2

Relating the volume with the Minkowski addition of compact sets, one is led to the famous Brunn-Minkowski inequality. One form of it states that if $K, L \subset \mathbb{R}^n$ are compact, then

$$\operatorname{vol}(K+L)^{1/n} \ge \operatorname{vol}(K)^{1/n} + \operatorname{vol}(L)^{1/n},$$
(1)

with equality, if vol(K)vol(L) > 0, if and only if K and L are homothetic compact convex sets. Here + is used for the Minkowski (vectorial) sum, i.e.,

$$A + B = \{a + b : a \in A, b \in B\}$$

for any $A, B \subset \mathbb{R}^n$.

The Brunn-Minkowski inequality is one of the most powerful theorems in Convex Geometry and beyond: it implies, among others, strong results such as the isoperimetric and Urysohn inequalities (see e.g. [7, s. 7.2]) or even the Aleksandrov-Fenchel inequality (see e.g. [7, s. 7.3]). It would not be possible to collect here all references regarding versions, applications and/or generalizations on the Brunn-Minkowski inequality. So, for extensive and beautiful surveys on them we refer the reader to [3].

Regarding an analytical counterpart for functions of the Brunn-Minkowski inequality, one is naturally led to the so-called Borell-Brascamp-Lieb inequality, originally proved in [1] and [2]. In order to introduce it, we first recall the definition of the *p*-sum of two non-negative numbers.

Definition 1 (*p***-sum)** Let $p \neq 0$ be a parameter varying in $\mathbb{R} \cup \{\pm \infty\}$. If $p \in \mathbb{R}$, with $p \neq 0$, then we set the *p*-sum of two non-negative numbers a, b > 0 as

$$S_p(a,b) = (a^p + b^p)^{1/p}.$$

For $p = \pm \infty$ we set $S_{+\infty}(a, b) = \max\{a, b\}$ and $S_{-\infty}(x, y) = \min\{a, b\}$. Finally, if ab = 0, we define $S_p(a, b) = 0$ for all

complete the picture we set $\rho_k(\emptyset) = \emptyset$. Then, for $1 \le k \le n$, we write

$$A_{k}^{-} = \bigcup_{m \in \pi_{n,\dots,k+1}(A_{k-1}^{-})} \left(\rho_{k} \left(A_{k-1}^{-}(m) \right) \times \{m\} \right),$$

 $\mathbf{r}_f(A) = \rho_n \big(A_{n-1}^- \big).$

with $A_0^- = A$. Then we define

In other words, $r_f(A)$ is given by

$$\mathbf{r}_f(A) = \bigcup_{m \in \pi_n(A) \setminus \{m_0(A_{n-1}^-, f)\}} \Big(\mathbf{r}_f\big(A(m)\big) \times \{m\}\Big).$$

Figure 1: An example of transforming a discrete set A (left) into $r_f(A)$ (right) when f(x) = 1 for all $x \in \mathbb{Z}^2$.

Using this technique, in [5, Theorem 2.2] the following result was shown, where $\varphi : \mathbb{Z}^n \longrightarrow \mathbb{R}_{>0}$ is the constant weight function given by $\varphi(x) = 1$ for all $x \in \mathbb{Z}^n$.

Theorem 2 Let $A, B \subset \mathbb{Z}^n$ be finite, $A, B \neq \emptyset$. Then

$$|A + B|^{1/n} \ge |\mathbf{r}_{\varphi}(A)|^{1/n} + |B|^{1/n}.$$

(3)

The inequality is sharp.

Equality holds in (3) when both A and B are *lattice cubes*. By a lattice cube we mean the intersection of a cube $r[0,1]^n$,

 $p \in \mathbb{R} \cup \{\pm \infty\}, p \neq 0.$

Note that $S_p(a,b) = 0$, if ab = 0, is redundant for all p < 0, however it is relevant for p > 0. For a general reference for *p*-sums of non-negative numbers, we refer the reader to the classic text of Hardy, Littlewood, and Pólya [4].

The following theorem contains the Borell-Brascamp-Lieb inequality (see also [3] for a detailed presentation) which, as previously stated, can be regarded as the functional counterpart of the Brunn-Minkowski inequality. In fact, a straightforward proof of (1) can be obtained by applying (2) to the characteristic functions $f = \chi_{K}$, $g = \chi_{L}$ and $h = \chi_{K+L}$ with $p = +\infty$.

Theorem 1 (The Borell-Brascamp-Lieb inequality) Let $-1/n \le p \le +\infty$, $p \ne 0$, and let $f, g, h : \mathbb{R}^n \longrightarrow \mathbb{R}_{>0}$ be non-negative measurable functions such that $h(x+y) \ge \mathcal{S}_p(f(x), g(y))$ for all $x, y \in \mathbb{R}^n$. Then $\int_{\mathbb{D}^n} h(x) \, \mathrm{d}x \ge \mathcal{S}_{\frac{p}{np+1}} \left(\int_{\mathbb{D}^n} f(x) \, \mathrm{d}x, \int_{\mathbb{D}^n} g(x) \, \mathrm{d}x \right).$ (2)

Working with finite sets 3

Next we move to the discrete setting, i.e., we consider finite subsets of (integer) points. We would like to point out that one cannot expect to obtain a discrete analog of the Borell-Brascamp-Lieb inequality just by "replacing integrals by sums" since it is not even possible to get a Brunn-Minkowski inequality in its classical form for the cardinality. Indeed, simply taking $A = \{0\}$ to be the origin and any finite set $B \subset \mathbb{Z}^n$, then

 $|A + B|^{1/n} < |A|^{1/n} + |B|^{1/n}.$

Therefore, discrete counterparts for both the Brunn-Minkowski inequality and the Borell-Brascamp-Lieb inequality should either have a different structure or involve modifications of the sets.

An example of a Brunn-Minkowski type inequality with a modified structure could be

 $|A + B| \ge |A| + |B| - 1$

for finite subsets A, B in \mathbb{Z}^n , which provides, in particular, a 1-dimensional discrete Brunn-Minkowski inequality.

 $r \in \mathbb{N}$, with the lattice \mathbb{Z}^n .

The main results 4

Our main goal is to show a discrete analog of Theorem 1, in the spirit of the above Theorem 2 for the classical Brunn-Minkowski inequality. These results can be found at [6].

Theorem 3 Let $A, B \subset \mathbb{Z}^n$ be finite sets. Let $-1/n \leq p \leq +\infty$, $p \neq 0$, and let $f, g, h : \mathbb{R}^n \longrightarrow \mathbb{R}_{>0}$ be non-negative functions such that $h(x+y) \ge \mathcal{S}_p(f(x), g(y))$ for all $x \in A$, $y \in B$. Then $\sum_{z \in A+B} h(z) \ge \mathcal{S}_{\frac{p}{np+1}} \left(\sum_{x \in \mathrm{r}_{\ell}(A)} f(x), \sum_{y \in B} g(y) \right).$ (4)

We note that the above result holds true for finite subsets $A, B \subset \mathbb{R}^n$, just suitably constructing the set $r_f(A)$. We state Theorem 3 in the case of \mathbb{Z}^n for the sake of simplicity.

As in the continuous setting, inequality (4) can be seen as a functional extension of the discrete Brunn-Minkowski inequality (3), just by considering the characteristic functions $f = \chi_A$, $g = \chi_B$ and $h = \chi_{A+B}$, and taking $p = +\infty$.

Moreover, we also show that the classical Borell-Brascamp-Lieb inequality (2) can be obtained from the discrete version (4) under the mild (but necessary) assumption that the functions f, g are Riemann integrable:

Theorem 4 The discrete Borell-Brascamp-Lieb inequality (4) implies the classical Borell-Brascamp-Lieb inequality (2), provided that the functions f, g are Riemann integrable.

References

[1] C. Borell, Convex set functions in *d*-space, *Period. Math. Hungar.* 6 (1975), 111–136.

Reducing one of the sets 3.1

An alternative to get a "classical" Brunn-Minkowski type inequality might be to transform (one of) the sets involved in the problem, either by adding or removing some points. In this spirit, two (equivalent) new discrete Brunn-Minkowski type inequalities have been obtained in [5]. Similarly, and in the case of removing points from the original (finite) set $A \subset \mathbb{Z}^n$, $A \neq \emptyset$, we may define a new set $r_f(A)$ to *reduce* it according to a particular function f.

To this aim, we need the following notation. If $\Lambda \subset \mathbb{Z}^k$ is finite, $k \in \{1, \ldots, n\}$, for each $m \in \mathbb{Z}$ we write $\Lambda(m)$ to represent the "section of Λ at m orthogonal to the (last) coordinate line $\mathbb{R}e_k$ ", i.e.,

$\Lambda(m) = \{ p \in \mathbb{Z}^{k-1} : (p,m) \in \Lambda \}.$

- [2] H. J. Brascamp, E. H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions and with an application to the diffusion equation, J. Functional Analysis 22 (4) (1976), 366–389.
- [3] R. J. Gardner, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. 39 (3) (2002), 355-405.
- [4] G. H. Hardy, J. E. Littlewood, G. Pólya, *Inequalities*. Cambridge Mathematical Library, Reprint of the 1952 edition, Cambridge University Press, Cambridge, 1988.
- [5] M. A. Hernández Cifre, D. Iglesias, J. Yepes Nicolás, On a discrete Brunn-Minkowski type inequality, To appear in SIAM J. Discrete Math..
- [6] D. Iglesias, J. Yepes Nicolás, On discrete Borell-Brascamp-Lieb inequalities, Submitted.
- [7] R. Schneider, *Convex bodies: the Brunn-Minkowski theory*. Second edition. Cambridge University Press, Cambridge, 2014.