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K a convex body in RY;

74 =~ A\ c R a lattice.

@ The width of K w.r.t. a functional f € (RY)* is

maxpek f(p) — minpek £(p). (Equivalently, it is the length of f(K)).

@ The (lattice) width of K is the minimum with w.r.t. functionals in
A*\ 0. We denote it widtha(K).
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K a convex body in RY;  Z9 = A c R a lattice.
Definition
@ The width of K w.r.t. a functional f € (R)* is
maxpek f(p) —minyex F(p). (Equivalently, it is the length of 7(K)).

@ The (lattice) width of K is the minimum with w.r.t. functionals in
A*\ 0. We denote it widtha(K).

Remark: widtha(K) = min. length of a 1-dim lattice projection of K.
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K a convex body in RY;  Z9 = A c R a lattice.
Definition
@ The width of K w.r.t. a functional f € (R)* is
maxpek f(p) —minyex F(p). (Equivalently, it is the length of 7(K)).

@ The (lattice) width of K is the minimum with w.r.t. functionals in
A*\ 0. We denote it widthy(K).

Remark: widtha(K) = min. length of a 1-dim lattice projection of K.

. . . . . .
p——o . . . . .
p——o . . . .
. . . . . . . . . . . . . . . . . .

Width: 2 WidthQ: 1 Width: =2



Flatness Lattice polytopes Empty 4-simplices: 1) volume 3) infinite families 2) enumeration
©00000 00000000 000000 0000000000 0000000

Width

K a convex body in RY;  Z9 = A c R a lattice.
Definition
@ The width of K w.r.t. a functional f € (R)* is
maxpek f(p) —minyex F(p). (Equivalently, it is the length of 7(K)).

@ The (lattice) width of K is the minimum with w.r.t. functionals in
A*\ 0. We denote it widthy(K).

Remark: widtha(K) = min. length of a 1-dim lattice projection of K.

Width: 2 WidthQ: 1 Width: =2



Flatness Lattice polytopes Empty 4-simplices: 1) volume 3) infinite families 2) enumeration
©00000 00000000 000000 0000000000 0000000

Width

K a convex body in RY;  Z9 = A c R a lattice.
Definition
@ The width of K w.r.t. a functional f € (R)* is
maxpek f(p) —minyex F(p). (Equivalently, it is the length of 7(K)).

@ The (lattice) width of K is the minimum with w.r.t. functionals in
A*\ 0. We denote it widthy(K).

Remark: widtha(K) = min. length of a 1-dim lattice projection of K.

Width: 2 WidthQ: 1 Width: =2



Flatness Lattice polytopes Empty 4-simplices: 1) volume 3) infinite families 2) enumeration
©00000 00000000 000000 0000000000 0000000

Width

K a convex body in RY;  Z9 = A c R a lattice.
Definition

@ The width of K w.r.t. a functional f € (R)* is
maxpek f(p) —minyex F(p). (Equivalently, it is the length of 7(K)).

@ The (lattice) width of K is the minimum with w.r.t. functionals in
A*\ 0. We denote it widthy(K).

Remark: widtha(K) = min. length of a 1-dim lattice projection of K.

Width: 2 WidthQ: 1 Width: =2



Flatness Lattice polytopes Empty 4-simplices: 1) volume 3) infinite families 2) enumeration
©00000 00000000 000000 0000000000 0000000

Width

K a convex body in RY;  Z9 = A c R a lattice.
Definition
@ The width of K w.r.t. a functional f € (R)* is
maxpek f(p) —minyex F(p). (Equivalently, it is the length of 7(K)).

@ The (lattice) width of K is the minimum with w.r.t. functionals in
A*\ 0. We denote it widthy(K).

Remark: widtha(K) = min. length of a 1-dim lattice projection of K.

Width: 2 Width: =2



Flatness Lattice polytopes Empty 4-simplices: 1) volume 3) infinite families 2) enumeration
©00000 00000000 000000 0000000000 0000000

Width

K a convex body in RY;  Z9 = A c R a lattice.
Definition
@ The width of K w.r.t. a functional f € (R)* is
maxpek f(p) —minyex F(p). (Equivalently, it is the length of 7(K)).

@ The (lattice) width of K is the minimum with w.r.t. functionals in
A*\ 0. We denote it widthy(K).

Remark: widtha(K) = min. length of a 1-dim lattice projection of K.

o . p——o

. . p——o

. . ——o
Width: 2 Width: =2



Flatness Lattice polytopes Empty 4-simplices: 1) volume 3) infinite families 2) enumeration
©00000 00000000 000000 0000000000 0000000

Width

K a convex body in RY;  Z9 = A c R a lattice.
Definition

@ The width of K w.r.t. a functional f € (R)* is
maxpek f(p) —minyex F(p). (Equivalently, it is the length of 7(K)).

@ The (lattice) width of K is the minimum with w.r.t. functionals in
A*\ 0. We denote it widthy(K).

Remark: widtha(K) = min. length of a 1-dim lattice projection of K.

Width: 2

Width: =2



Flatness Lattice polytopes Empty 4-simplices: 1) volume 3) infinite families 2) enumeration
©00000 00000000 000000 0000000000 0000000

Width

K a convex body in RY;  Z9 = A c R a lattice.
Definition
@ The width of K w.r.t. a functional f € (R)* is
maxpek f(p) —minyex F(p). (Equivalently, it is the length of 7(K)).

@ The (lattice) width of K is the minimum with w.r.t. functionals in
A*\ 0. We denote it widthy(K).

Remark: widtha(K) = min. length of a 1-dim lattice projection of K.

Width: 2 Width: =2



K is lattice-free if int(K) NA =0

For each dimension d,

sup  widtha(K) < oo.
K lattice-free
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Flatness Theorem

K is lattice-free if int(K) NA =0

Theorem (Flatness Theorem)

For each dimension d,

W, := sup widtha(K) < co.

K lattice-free

ooooooo

Known values: W; =1, Wp = 1+ 3/v/2 ~ 2.1547 (Hurkens 1990)
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@ Lenstra 1983: W, € 20(*) 4 poly-time algorithm.
@ Hastad 1986: W, € O(d*/?).

@ Kannan-Lovész 1988: W, € O(d?). NICE PROOF. Def of covering
minima.

@ Banaszczyk-Litvak-Pajor-Szarek 1999, W, € O(d*/?).
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Flatness History

@ Khinchine 1948: W, < O(d!)

@ Lenstra 1983: Wy € 20() 1 poly-time algorithm.

@ Hastad 1986: Wy € O(d%/?).

@ Kannan-Lovész 1988: W, € O(d?). NICE PROOF. Def of covering
minima.

@ Banaszczyk-Litvak-Pajor-Szarek 1999, Wy € O(d%/?).

Also, Wy € O(d log min(fy, f4—1)) for lattice-free polytopes with at
most fy vertices and fy_1 facets. In particular, O(d log d) for
simplices.
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Flatness History

@ Khinchine 1948: W, < O(d!)

@ Lenstra 1983: Wy € 20() 1 poly-time algorithm.

@ Hastad 1986: Wy € O(d%/?).

@ Kannan-Lovész 1988: W, € O(d?). NICE PROOF. Def of covering

minima.
@ Banaszczyk-Litvak-Pajor-Szarek 1999, Wy € O(d%/?).

Also, Wy € O(d log min(fy, f4—1)) for lattice-free polytopes with at
most fy vertices and fy_1 facets. In particular, O(d log d) for
simplices.

@ Rudelson 2000 W, € O(d*/3log® d)

Current “guess’: W, € O(d) (perhaps modulo poly-log factors). )
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@ Wy 1d, > Wy, + Wy, via a direct sum argument
(Codenotti-Santos?).

The last remark has the following consequences:
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Flatness lower bounds

@ W, > d is trivial (d-th dilation of unimodular simplex is
lattice-free).

e W, =1+2/v/3=2.1547... (Hurkens 1990).

0 Wy t+q, > Wy + Wy, via a direct sum argument
(Codenotti-Santos?).

The last remark has the following consequences:

limg_yoo 2¢ = sup, %¢ > 1.077...

of arbitrary convex bodies.

Moreover, the limit is the same if restricted to lattice polytopes instead




Related to the flatness theorem is the fact that lattice-free (d 4 1)-bodies
of width larger than Wy must have bounded volume.
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Related to the flatness theorem is the fact that lattice-free (d 4 1)-bodies
of width larger than Wy must have bounded volume.
Let K be a lattice-free convex 2-body with w > 1.
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Width vs. volume, dim 2

Related to the flatness theorem is the fact that lattice-free (d + 1)-bodies
of width larger than Wy must have bounded volume.

Theorem (Averkov-Wagner 2012)

Let K be a lattice-free convex 2-body with w > 1. Then

2

WD) forw € (1,2],

voI(K)g{ R ) 2
i Vit forwe (2,14 7]

The bound is attained iff K is as follows, respectively:

\




Let K be a lattice-free convex 3-body of lattice width
w > 1+42/4/3 = 2.155. Then,

3w e 2 _
vol(K) < | sz WS 2(VB—1)+1=242,
W ifw > 2.427.

25 3 35 4

These bound are not attained.
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We now concentrate on lattice polytopes. P :=
convex hull of a finite set of points in A.

@ P is hollow (or lattice-free) if
no lattice points in int(P)

@ P is empty if
no lattice points in P apart of its vertices.
E.g.: empty d-simplex < lattice
d-polytope with exacty d + 1 lattice
points.

PN G



We would like to understand better (and hopefully, classify exhaustively)
hollow polytopes and, especially, empty simplices.
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hollow polytopes and, especially, empty simplices.

- They are the building blocks for lattice polytopes; every lattice
polytope can be triangulated into empty simplices.
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Goal and motivation

We would like to understand better (and hopefully, classify exhaustively)
hollow polytopes and, especially, empty simplices.

- They are the building blocks for lattice polytopes; every lattice
polytope can be triangulated into empty simplices.

- In particular, sometimes good properties of empty simplices have
implications for all lattice polytopes.
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- In particular, sometimes good properties of empty simplices have
implications for all lattice polytopes.

- They correspond to terminal quotient singularities in the minimal
model program.
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We would like to understand better (and hopefully, classify exhaustively)
hollow polytopes and, especially, empty simplices.

- They are the building blocks for lattice polytopes; every lattice
polytope can be triangulated into empty simplices.

- In particular, sometimes good properties of empty simplices have
implications for all lattice polytopes.

- They correspond to terminal quotient singularities in the minimal
model program.

Classifying is meant modulo unimodular equivalence (lattice-preserving
affine isomorphism = GL(d,Z) + integer translations).



Flatness Lattice polytopes Empty 4-simplices: 1) volume 3) infinite families 2) enumeration
000000 0®000000 000000 0000000000 0000000

Goal and motivation

We would like to understand better (and hopefully, classify exhaustively)
hollow polytopes and, especially, empty simplices.

- They are the building blocks for lattice polytopes; every lattice
polytope can be triangulated into empty simplices.

- In particular, sometimes good properties of empty simplices have
implications for all lattice polytopes.

- They correspond to terminal quotient singularities in the minimal
model program.

Classifying is meant modulo unimodular equivalence (lattice-preserving
affine isomorphism = GL(d,Z) + integer translations).

Remark

Volume, combinatorial type, hollowness, emptyness, width ... are
invariant modulo unimodular equivalence.

[0}



@ Dimension 1: the only hollow 1-polytope, in particular the only
empty 1-simplex, is the unit segment.
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@ Dimension 1: the only hollow 1-polytope, in particular the only
empty 1-simplex, is the unit segment.

@ Dimension 2: infinitely many hollow polygons (and triangles), but
only one empty triangle, the unimodular one (:< vertices are an
affine basis for the lattice < normalized volume = 1).
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Empty 4-simplices: 1) volume 3) infinite families 2) enumeration
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@ Dimension 1: the only hollow 1-polytope, in particular the only
empty 1-simplex, is the unit segment.

@ Dimension 2: infinitely many hollow polygons (and triangles), but
only one empty triangle, the unimodular one (:< vertices are an
affine basis for the lattice < normalized volume = 1).

Corollary (Pick's theorem): If P is a lattice polygon with b and i
lattice points in its boundary and interior, then area(P) = 3(b+ 2i — 2).
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@ Dimension 1: the only hollow 1-polytope, in particular the only
empty 1-simplex, is the unit segment.

@ Dimension 2: infinitely many hollow polygons (and triangles), but
only one empty triangle, the unimodular one (:< vertices are an
affine basis for the lattice < normalized volume = 1).

Corollary (Pick's theorem): If P is a lattice polygon with b and i
lattice points in its boundary and interior, then area(P) = 3(b+ 2i — 2).

Theorem (Classification of hollow
polygons) The hollow polygons are

the polygons of width one and the
second dilation of a unimodular triangle.
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@ Dimension 1: the only hollow 1-polytope, in particular the only
empty 1-simplex, is the unit segment.

@ Dimension 2: infinitely many hollow polygons (and triangles), but
only one empty triangle, the unimodular one (:< vertices are an
affine basis for the lattice < normalized volume = 1).

Corollary (Pick's theorem): If P is a lattice polygon with b and i
lattice points in its boundary and interior, then area(P) = 3(b+ 2i — 2).

Theorem (Classification of hollow

polygons) The hollow polygons are i

the polygons of width one and the
second dilation of a unimodular triangle.
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In dimension 3, there are infinitely many (classes of) empty simplices.
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In dimension 3, there are infinitely many (classes of) empty simplices.
Yet, they have a nice and relatively simple classification:
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243

In dimension 3, there are infinitely many (classes of) empty simplices.
Yet, they have a nice and relatively simple classification:

z
o (p,q,1)
Every empty tetrahedron has width one. =
Hence it is equivalent to A(p, q) :=
Y
COﬂV{(0,0, 0)’(17050)7(07071)7(.07 qvl)}> & 2=0
for some g € N, p € Z, gcd(p, q) = 1. o |/ & "
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In dimension 3, there are infinitely many (classes of) empty simplices.

Yet, they have a nice and relatively simple classification:

Theorem (White 1964) z=1

€3

Every empty tetrahedron has width one.
Hence it is equivalent to A(p, q) :=

conv {(0,0,0), (1,0,0), (0,0,1), (p, g, 1)} ,
for some g € N, p € Z, gcd(p, q) = 1.

That is:

There are infinitely many empty tetrahedra, but they form a
two-parameter family that we can describe completely.

11



What about hollow 3-polytopes?

The whole list of hollow 3-polytopes consists of:
@ Those of width one.

@ Those that project to the dilated unimodular triangle.

«0» «4F)r « =)



Classification of hollow 3-polytopes

What about hollow 3-polytopes?

The whole list of hollow 3-polytopes consists of:
@ Those of width one.

@ Those that project to the dilated unimodular triangle.

© An additional finite list (Treutlein 2008)
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Classification of hollow 3-polytopes

What about hollow 3-polytopes?

Theorem
The whole list of hollow 3-polytopes consists of:
@ Those of width one.
@ Those that project to the dilated unimodular triangle.

© An additional finite list (Treutlein 2008) with only twelve maximal
elements (Averkov-Kriimpelmann-Weltge, 2016): Seven of width two and
five of width three.

12
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Classification of hollow 3-polytopes

What about hollow 3-polytopes?

Theorem
The whole list of hollow 3-polytopes consists of:

@ Those of width one.

@ Those that project to the dilated unimodular triangle.

© An additional finite list (Treutlein 2008) with only twelve maximal
elements (Averkov-Kriimpelmann-Weltge, 2016): Seven of width two and
five of width three.

y

The three cases (1), (2) and (3) correspond to what is the minimal
dimension of a lattice projection of P that is still hollow.
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Finiteness of the number of hollow 3-polytopes that *do not project* to
lower dimensions is a general fact:

For each d, all except finitely many hollow d-polytopes (in particular,
empty d-simplices) project to hollow polytopes of dimension < d.

14
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Hollow projections of hollow polytopes
Finiteness of the number of hollow 3-polytopes that *do not project* to
lower dimensions is a general fact:

Theorem (Nill-Ziegler 2011, also Lawrence 1991)

For each d, all except finitely many hollow d-polytopes (in particular,
empty d-simplices) project to hollow polytopes of dimension < d.

...and this result gives a first step towards a classification of empty (or
hollow) d-polytopes. To each hollow (or empty) d-polytope P we assign
a number k < d and a hollow k-polytope @ such that P projects to @
but Q does not project further.

14
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...and this result gives a first step towards a classification of empty (or
hollow) d-polytopes. To each hollow (or empty) d-polytope P we assign
a number k < d and a hollow k-polytope @ such that P projects to @
but Q does not project further. The above theorem says that there are
finitely many Q’s for each k, hence for each d.
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Hollow projections of hollow polytopes
Finiteness of the number of hollow 3-polytopes that *do not project* to
lower dimensions is a general fact:

Theorem (Nill-Ziegler 2011, also Lawrence 1991)

For each d, all except finitely many hollow d-polytopes (in particular,
empty d-simplices) project to hollow polytopes of dimension < d.

...and this result gives a first step towards a classification of empty (or
hollow) d-polytopes. To each hollow (or empty) d-polytope P we assign
a number k < d and a hollow k-polytope @ such that P projects to @
but Q does not project further. The above theorem says that there are
finitely many Q’s for each k, hence for each d.

P projects to a hollow 1-polytope < P has width one.
P projects to a hollow 2-polytope < P either has width one or projects
to the second dilation of a unimodular triangle.

14



In dimension 4, Haase and Ziegler (2000) experimentally found that:
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In dimension 4, Haase and Ziegler (2000) experimentally found that:

@ There are infinitely many empty 4-simplices of width two (e. g.,
conv(ey,...,es, v), where v =(2,2,3,D — 6) and gecd(D, 6) = 1).

@ Among the empty 4-simplices of determinant up to 1000 those of
width larger than two have determinant < 179. (There are 178 of
width three plus one of width 4 and determinant 101).

15
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In dimension 4, Haase and Ziegler (2000) experimentally found that:

@ There are infinitely many empty 4-simplices of width two (e. g.,
conv(er, ..., e, v), where v =(2,2,3,D — 6) and gcd(D, 6) = 1).

@ Among the empty 4-simplices of determinant up to 1000 those of
width larger than two have determinant < 179. (There are 178 of
width three plus one of width 4 and determinant 101).

These 179 are the only empty 4-simplices of width > 2. '
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In dimension 4, Haase and Ziegler (2000) experimentally found that:

@ There are infinitely many empty 4-simplices of width two (e. g.,
conv(ey,...,es, v), where v =(2,2,3,D — 6) and gecd(D, 6) = 1).

@ Among the empty 4-simplices of determinant up to 1000 those of
width larger than two have determinant < 179. (There are 178 of
width three plus one of width 4 and determinant 101).

Conjecture (H-Z, 2000)
These 179 are the only empty 4-simplices of width > 2.

On the positive side: Every empty 4-simplex is cyclic (Barile et al. 2011).
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@ There are infinitely many empty 4-simplices of width two (e. g.,
conv(ey,..., e, v), where v =(2,2,3,D — 6) and gcd(D, 6) = 1).

@ Among the empty 4-simplices of determinant up to 1000 those of
width larger than two have determinant < 179. (There are 178 of
width three plus one of width 4 and determinant 101).

Conjecture (H-Z, 2000)
These 179 are the only empty 4-simplices of width > 2.

On the positive side: Every empty 4-simplex is cyclic (Barile et al. 2011).
Here, a simplex A is called cyclic if the quotient group A/L(A) is cyclic, where
L(A) is the lattice spanned by the vertices of A.
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In dimension 4, Haase and Ziegler (2000) experimentally found that:

@ There are infinitely many empty 4-simplices of width two (e. g.,
conv(ey,..., e, v), where v =(2,2,3,D — 6) and gcd(D, 6) = 1).

@ Among the empty 4-simplices of determinant up to 1000 those of
width larger than two have determinant < 179. (There are 178 of
width three plus one of width 4 and determinant 101).

Conjecture (H-Z, 2000)
These 179 are the only empty 4-simplices of width > 2.

On the positive side: Every empty 4-simplex is cyclic (Barile et al. 2011).
Here, a simplex A is called cyclic if the quotient group A/L(A) is cyclic, where
L(A) is the lattice spanned by the vertices of A.

Observe that |Z9/L(A)| equals the normalized volume (= the
determinant) of A.
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In dimension 4, Haase and Ziegler (2000) experimentally found that:

@ There are infinitely many empty 4-simplices of width two (e. g.,
conv(ey,..., e, v), where v =(2,2,3,D — 6) and gcd(D, 6) = 1).

@ Among the empty 4-simplices of determinant up to 1000 those of
width larger than two have determinant < 179. (There are 178 of
width three plus one of width 4 and determinant 101).

Conjecture (H-Z, 2000)
These 179 are the only empty 4-simplices of width > 2.

On the positive side: Every empty 4-simplex is cyclic (Barile et al. 2011).
Here, a simplex A is called cyclic if the quotient group A/L(A) is cyclic, where
L(A) is the lattice spanned by the vertices of A.

Observe that |Z9/L(A)| equals the normalized volume (= the
determinant) of A.

4 # 5: In dimension > 5 there are non-cyclic empty, simplices.
15
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determinant < 7600.

All empty 4-simplices that do not project to a hollow 3-polytope have
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The complete classification of empty 4-simplices
(Iglesias-S., 2018+)

Theorem 1 (volume bound)

All empty 4-simplices that do not project to a hollow 3-polytope have

determinant < 7600.

Theorem 2 (enumeration)

There are 2461 of them. Their determinants range from 24 to 419.

There is one of width 4 (determinant=101), 178 of width three
(dets.€ [49,179]), and the rest have width two (as predicted by
Haase-Ziegler).

2) enumeration
0000000
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The complete classification of empty 4-simplices
(Iglesias-S., 2018+)

Theorem 1 (volume bound)

2) enumeration
0000000

All empty 4-simplices that do not project to a hollow 3-polytope have

determinant < 7600.

Theorem 2 (enumeration)

There are 2461 of them. Their determinants range from 24 to 419.

There is one of width 4 (determinant=101), 178 of width three
(dets.€ [49,179]), and the rest have width two (as predicted by
Haase-Ziegler).

Theorem 3 (infinite families)

All empty 4-simplices that project to hollow 3-polytopes belong to

1+ 3 4 52 families with 3, 2 and 1 parameters respectively.
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The complete classification of empty 4-simplices
(Iglesias-S., 2018+)

Theorem 1 (volume bound)

All empty 4-simplices that do not project to a hollow 3-polytope have
determinant < 7600.

Theorem 2 (enumeration)

There are 2461 of them. Their determinants range from 24 to 419.
There is one of width 4 (determinant=101), 178 of width three
(dets.€ [49,179]), and the rest have width two (as predicted by
Haase-Ziegler).

Theorem 3 (infinite families)

All empty 4-simplices that project to hollow 3-polytopes belong to
1+ 3 4 52 families with 3, 2 and 1 parameters respectively. All of them
have width one or two.

16



all hollow simplices:

Although we are interested only in empty ones, the first theorem holds for

All hollow 4-simplices that do not project to a hollow 3-polytope have
(normalized) volume < 7600.

17
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all hollow simplices:

Although we are interested only in empty ones, the first theorem holds for

All hollow 4-simplices that do not project to a hollow 3-polytope have
(normalized) volume < 7600.

We prove this in two parts:

@ The case of width at least three
@ The case of width two.

17
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hollow 3-polytope.

Let P be a hollow 4-simplex of width > 3 that does not project to a
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|dea of proof for width> 3

Let P be a hollow 4-simplex of width > 3 that does not project to a
hollow 3-polytope.

Consider the lattice projection 7 : P — @ along the direction where the
rational diameter of P is attained.
Q is not hollow, but still has width > 3.

We call rational diameter §(P) of P the maximum length (w.r.t. the lattice) of

a rational segment contained in P. It equals A7 (P — P), where \;(C) = first
successive minimum of C.

18



Flatness Lattice polytopes Empty 4-simplices: 1) volume 3) infinite families 2) enumeration
000000 00000000 0®0000 0000000000 0000000

|dea of proof for width> 3

Let P be a hollow 4-simplex of width > 3 that does not project to a
hollow 3-polytope.

Consider the lattice projection 7 : P — @ along the direction where the
rational diameter of P is attained.
Q is not hollow, but still has width > 3.

We call rational diameter §(P) of P the maximum length (w.r.t. the lattice) of
a rational segment contained in P. It equals A7 (P — P), where \;(C) = first
successive minimum of C.

Minkowski's first theorem

Vol(P) < YeC=P) < q15(P)9.
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|dea of proof for width> 3

Let P be a hollow 4-simplex of width > 3 that does not project to a
hollow 3-polytope.

Consider the lattice projection 7 : P — @ along the direction where the
rational diameter of P is attained.
Q is not hollow, but still has width > 3.

We call rational diameter §(P) of P the maximum length (w.r.t. the lattice) of
a rational segment contained in P. It equals A7 (P — P), where \;(C) = first
successive minimum of C.

Minkowski's first theorem
Vol(P) < YeC=P) < q15(P)9.
294!

(%)

5(P)?

If P is a simplex this can be improved to Vol(P) <
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Bounding Vol(P) from Vol(Q)

Lemma

Let m : P — Q be an integer projection of a hollow d-simplex P onto a
non-hollow (d — 1)-polytope Q. Let:

@ x € @ be the Radon point of the projection.
@ § be the length of 771(x).

@ 0 < r <1 be the maximum dilation factor such that
= x + r(Q — x) is hollow.

Then:
Q@ Vol(P) =6 Vol(Q).
Q@il>1—r

10
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Bounding Vol(P) from Vol(Q)

Lemma

Let m : P — Q be an integer projection of a hollow d-simplex P onto a
non-hollow (d — 1)-polytope Q. Let:

@ x € @ be the Radon point of the projection.
@ § be the length of 771(x).

@ 0 < r <1 be the maximum dilation factor such that
= x + r(Q — x) is hollow.

Then:
Q@ Vol(P) =6 Vol(Q).
Q@il>1—r

@ In what follows we project along the direction with j=diameter(P).
@ r measures whether Q is “close to hollow” (r ~ 1) or “far from hollow”
(r~0)

10



Now, suppose that 7 : P — Q is the projection along the direction giving
the rational diameter of P, so that the ¢ in the theorem equals the
rational diameter of P. We have a dichotomy:

«0» «4F)r « =)
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An upper bound for the volume of empty 4-simplices

Now, suppose that 7 : P — @ is the projection along the direction giving
the rational diameter of P, so that the  in the theorem equals the
rational diameter of P. We have a dichotomy:

o If Q is “far from hollow" then we use Minkowski's inequality
vol(P — P) < 2967, Together with Vol(P — P) = (*/) Vol(P)
(Rogers-Shephard for a simplex):

Vol(P) = Vol(P—P) _ 24vol(P —P) 2416, oo

() @ = @

20
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An upper bound for the volume of empty 4-simplices

Now, suppose that 7 : P — @ is the projection along the direction giving
the rational diameter of P, so that the  in the theorem equals the

rational diameter of P. We have a dichotomy:

o If Q is “far from hollow" then we use Minkowski's inequality
vol(P — P) < 2967, Together with Vol(P — P) = (*/) Vol(P)
(Rogers-Shephard for a simplex):

_Vol(P—P) _24vol(P—P) 2416, o

Vol(P) = . <=
(a) (a) (a)
E.g., whenever r < 0.81 we have § < 1/0.19 and
5.48
Vol(P) < —— = 4210.
ol(P) < 5 1ge 0
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An upper bound for the volume of empty 4-simplices

Now, suppose that 7 : P — @ is the projection along the direction giving
the rational diameter of P, so that the  in the theorem equals the
rational diameter of P. We have a dichotomy:

@ If Qis “close to hollow” then we use the Lemma:

Vol(P) = 6 Vol(Q) = %VOKQ,), where :
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An upper bound for the volume of empty 4-simplices

Now, suppose that 7 : P — @ is the projection along the direction giving
the rational diameter of P, so that the  in the theorem equals the
rational diameter of P. We have a dichotomy:

@ If Qis “close to hollow” then we use the Lemma:

Vol(P) = 6 Vol(Q) = %VOKQ,), where :

e ¢ < 42 (we skip details).

20
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An upper bound for the volume of empty 4-simplices

Now, suppose that 7 : P — @ is the projection along the direction giving
the rational diameter of P, so that the  in the theorem equals the
rational diameter of P. We have a dichotomy:

@ If Qis “close to hollow” then we use the Lemma:

Vol(P) = 6 Vol(Q) = %VOKQ,), where :

e ¢ < 42 (we skip details).
e ris bounded away from O (by the previous case we can assume
r > .81).
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An upper bound for the volume of empty 4-simplices

Now, suppose that 7 : P — @ is the projection along the direction giving
the rational diameter of P, so that the  in the theorem equals the
rational diameter of P. We have a dichotomy:

@ If Qis “close to hollow” then we use the Lemma:

VoI(P) = §Vol(Q) = % Vol(Q,),  where
r
o § < 42 (we skip details).

e ris bounded away from O (by the previous case we can assume
r > .81).

e @, is a lattice-free 3-polytope of width at least 3r > 2.43,
which gives an upper bound for Vol(Q,).

20
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An upper bound for the volume of empty 4-simplices

Now, suppose that 7 : P — @ is the projection along the direction giving
the rational diameter of P, so that the  in the theorem equals the
rational diameter of P. We have a dichotomy:

@ If Qis “close to hollow” then we use the Lemma:

VoI(P) = §Vol(Q) = % Vol(Q,),  where
r
o § < 42 (we skip details).

e ris bounded away from O (by the previous case we can assume
r > .81).

e @, is a lattice-free 3-polytope of width at least 3r > 2.43,
which gives an upper bound for Vol(Q,).

Putting this together we get “Theorem 2":

Vol(P) < %VOI(Q,) < ... <7600

20



Let K be a hollow convex 3-body of width w > 1 + % = 2.155. Then,

vol(K) < {

8W3/(W - 1)37

3w /4(

w— (1 +2/\/§))7

ifw> Z2:(V5—1)+1=2427,
ifw < 2.427.

35

25

20
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a hollow 3-polytope.

Let P be a hollow lattice 4-simplex of width = 2 that does not project to
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Let P be a hollow lattice 4-simplex of width = 2 that does not project to
a hollow 3-polytope.

W.l.o.g. suppose P C [-1,1] x R3, and let @ = PN ({0} x R3). Then,
by Schwarz symmetrization:

Vol(P) < 2*Vol(Q).
Hence, it suffices to show that Vol(Q) < 7600/16 = 475.
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|dea of proof for width = 2

Let P be a hollow lattice 4-simplex of width = 2 that does not project to
a hollow 3-polytope.

W.l.o.g. suppose P C [-1,1] x R3, and let @ = PN ({0} x R3). Then,
by Schwarz symmetrization:

Vol(P) < 2*Vol(Q).

Hence, it suffices to show that Vol(Q) < 7600/16 = 475.
Observe @ is half-integer. Two cases:

© width(Q) > 5/2 = since Q is hollow,

8(5/2)3
((3//2))3 =222.2

Vol(Q) =6vol Q <6

bl
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|dea of proof for width = 2

Let P be a hollow lattice 4-simplex of width = 2 that does not project to
a hollow 3-polytope.

W.l.o.g. suppose P C [-1,1] x R3, and let @ = PN ({0} x R3). Then,
by Schwarz symmetrization:

Vol(P) < 2*Vol(Q).

Hence, it suffices to show that Vol(Q) < 7600/16 = 475.
Observe @ is half-integer. Two cases:

© width(Q) > 5/2 = since Q is hollow,
8(5/2)°
(3/2)3 =222.2

@ width(Q) < 2 = we apply to the middle slice of @ (call it R) the
same ideas: R is a lattice-free polygon which does not project to
dimension 1 = (we skip details...) Vol(Q) < 324

Vol(Q) =6vol Q <6

29
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Empty 4-simplices of prime volume

Motivated by their equivalence to terminal quotient singularities, Mori,

Morrison and Morrison (1989) studied empty 4-simplices of prime
determinant and found that:

@ There are 1+14-29 infinite families with three, two, and one
parameters respectively.

@ Up to determinant 419 there are some 4-simplices not in those
families, but between 420 and 1600 there are none.

23
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Empty 4-simplices of prime volume

Motivated by their equivalence to terminal quotient singularities, Mori,

Morrison and Morrison (1989) studied empty 4-simplices of prime
determinant and found that:

@ There are 1+14-29 infinite families with three, two, and one
parameters respectively.

@ Up to determinant 419 there are some 4-simplices not in those
families, but between 420 and 1600 there are none.

CONJECTURE 1.4 (four-dimensional terminal lemma). Fiz p > 421. Up to
the actions of (Z/pZ)* and S*, each isolated four-dimensional terminal Z/pZ-

quotient singularity of indez p s associated with one of the p-terminal quintuples
given in Theorem 1.3.

This conjecture was proved (modulo the “finitely many exceptions”) by
Bover (2009) (partially by Sankaran 1990)

23
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Empty 4-simplices of prime volume

Motivated by their equivalence to terminal quotient singularities, Mori,

Morrison and Morrison (1989) studied empty 4-simplices of prime
determinant and found that:

@ There are 1+14-29 infinite families with three, two, and one
parameters respectively.

@ Up to determinant 419 there are some 4-simplices not in those
families, but between 420 and 1600 there are none.

CONJECTURE 1.4 (four-dimensional terminal lemma). Fiz p > 421. Up to
the actions of (Z/pZ)* and S*, each isolated four-dimensional terminal Z/pZ-

quotient singularity of indez p s associated with one of the p-terminal quintuples
given in Theorem 1.3.

This conjecture was proved (modulo the “finitely many exceptions”) by

Bover (2009) (partially by Sankaran 1990) = Complete classification of
empty simplices of prime volume.

23
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Empty 4-simplices of prime volume

THEOREM 1.3. Let Q be a quintuple of integers summing to zero, and let p be

a prime number. Suppose that either

(a) Q@ = (o, —a. 87,

(b) Q@ = (o, —20, 5,

Then Q s p-terminal.

TABLE 1.

Stable Quintuple
(9,1,-2,-3,-5)
(9,2,-1,-4,-6)
(12,3,~-4,-5,—6)
(12,2,-3,-4,-7)
(9,4,-2,-3,-8)
(12,1,-2,-3,-8)
(12,3,~1,-6,—8)
( -8)
(12 2,-1, 44, -9)
( -9)
( )
(
(

15,1,-2, -5, -9
12,5, -3, -4, —10)
15,2, -3, —4, - 10)

ite families
O®00000000

=B =) with 0 <lel, |Bl, || <p/2, and B+ #0, or

—2B,a+ B) with0 < |af, |8] < p/2, and a+ B #0, or
(c) Q is one of the 29 quintuples listed in Table 1.9 and p > Mg.

9

Linear Relations
02100, 11002, 20122
01200, 02010, 20212
02001, 10002, 12220
02010, 11002, 20212
01200, 02001, 20221
02100, 12021, 20122
02010, 10020, 12202

02001, 20221
01200,02010, 20212
02120, 10020, 12202

02100, 20122
02001, 02210, 20221

02010, 20212

24

(6,4,3,-1,-12)
(7,5,3,-1,-14)
(9,7,1,-3,-14)
(15,7,-3,-5, - 14)
(8,5,3,-1,-15)
(10,6,1,-2, -15)
(12,5,2, -4, —15)
(9,6,4,—1,-18)
(9,6,5,-2,-18)

(

12,9,1, -4, —18)
(10,7,4, -1, -20)
(10,8,3, -1, -20)

(10,9,4, -3, -20)

02221, 20001
02221, 20001
02001, 20221
02001, 20221
02211,20011
00210, 22012
00210, 22012
02221, 20001
02221, 20001
02001, 20221
02221, 20001
02221, 20001
02221, 20001
02001, 20221
02221, 20001
02221, 20001

2) enumeration
0000000



All but finitely many empty 4-simplices belong to the 29 4+ 1 + 1 families
of Mori-Morrison-Morrison (1988), all of which have width one or two.

25



All but finitely many empty 4-simplices belong to the 29 4+ 1 + 1 families
of Mori-Morrison-Morrison (1988), all of which have width one or two.

This is only true for 4-simplices of prime volume.

25
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Theorem 3
(Almost) Theorem 3 (Barile, Bernardi, Borisov and Kantor, 2011)
All but finitely many empty 4-simplices belong to the 29 + 1 + 1 families

of Mori-Morrison-Morrison (1988), all of which have width one or two.

This is only true for 4-simplices of prime volume. J

The correct version is:

Theorem 3 (Iglesias, Santos, 2018+)

All empty 4-simplices that project to hollow 3-polytopes belong to:
© The 3-parameter family with quintuple (a,—a, b,c, —b — ¢).

@ One of the two 2-parameter families with quintuples
(a, —2a, b, —2b,a + b) and (a, —2a, b, —2b,a + b).

© One of the 29 + 23 one-parameter families given by the 29
quintuples of Mori, Morrison and Morrison (1988) or the new 23
non-primitive quintuples.

25,
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Cyclic simplices represented as (d + 1)-tuples

For each choice of D € N, a quintuple v = (v, v1, v, v3, v4) represents
a generator of Z*/\(D).

“the” cyclic simplex A in which v/D are the barycentric coordinates for




Cyclic simplices represented as (d + 1)-tuples

For each choice of D € N, a quintuple v = (v, v1, v, v3, v4) represents

“the” cyclic simplex A in which v/D are the barycentric coordinates for
a generator of Z*/\(D).

Remarks:

@ All empty 4-simplces are cyclic (Barile et al 2011), so they can be
represented in this way.
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Cyclic simplices represented as (d + 1)-tuples

For each choice of D € N, a quintuple v = (v, v1, v, v3, v4) represents

“the” cyclic simplex A in which v/D are the barycentric coordinates for
a generator of Z*/\(D).

Remarks:

@ All empty 4-simplces are cyclic (Barile et al 2011), so they can be
represented in this way.

@ D equals the determinant of A.
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Cyclic simplices represented as (d + 1)-tuples

For each choice of D € N, a quintuple v = (v, v1, v, v3, v4) represents

“the” cyclic simplex A in which v/D are the barycentric coordinates for
a generator of Z*/\(D).

Remarks:

@ All empty 4-simplces are cyclic (Barile et al 2011), so they can be
represented in this way.

@ D equals the determinant of A.

@ the v;'s are integers, and they are important only modulo D.
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Cyclic simplices represented as (d + 1)-tuples

For each choice of D € N, a quintuple v = (v, v1, v, v3, v4) represents
“the” cyclic simplex A in which v/D are the barycentric coordinates for
a generator of Z*/\(D).

Remarks:

@ All empty 4-simplces are cyclic (Barile et al 2011), so they can be
represented in this way.

@ D equals the determinant of A.
@ the v;'s are integers, and they are important only modulo D.

@ if we choose > v; = 0 and do not specify D, then a quintuple

(vo, v1, va, v, v4) represents an infinite family of simplices, one for
each D.

u]
]
I

i
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Each quintuple is a 1-parameter family of empty 4-simplices that project
to a particular hollow 3-polytope.

«0» «4F)r « =)
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Each quintuple is a 1-parameter family of empty 4-simplices that project
to a particular hollow 3-polytope. We get one simplex of determinant D
for each choice of D € N.

«0» «4F)r « =)
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Interpretation of the quintuples

Each quintuple is a 1-parameter family of empty 4-simplices that project
to a particular hollow 3-polytope. We get one simplex of determinant D
for each choice of D € N. The entries in a quintuple can be interpreted

as:

@ Divided by D, they are barycentric coordinates for a generator of
the (cyclic) group Z*/L(A).

27
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Interpretation of the quintuples

Each quintuple is a 1-parameter family of empty 4-simplices that project
to a particular hollow 3-polytope. We get one simplex of determinant D
for each choice of D € N. The entries in a quintuple can be interpreted

as:
@ Divided by D, they are barycentric coordinates for a generator of
the (cyclic) group Z*/L(A).

@ They are homogeneous coordinates for a line
e {xeR®: Y x; = 1} = R* passing through the origin (assumed
to be a vertex of A). This line gives the projection direction, and
has the property that the projection of A is hollow.
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Interpretation of the quintuples

Each quintuple is a 1-parameter family of empty 4-simplices that project
to a particular hollow 3-polytope. We get one simplex of determinant D
for each choice of D € N. The entries in a quintuple can be interpreted
as:

@ Divided by D, they are barycentric coordinates for a generator of
the (cyclic) group Z*/L(A).

@ They are homogeneous coordinates for a line
e {xeR®: Y x; = 1} = R* passing through the origin (assumed
to be a vertex of A). This line gives the projection direction, and
has the property that the projection of A is hollow.

@ It gives the (unique) affine dependence among the projection of the
vertices of A in the direction of the line /.

27
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Interpretation of the quintuples

More generally: a k-parameter family corresponds to the set of all
d-dimensional lifts of a certain configuration of d 4+ 1 points in dimension
d — k. The "k-parameter (d + 1)-tuple” parametrizes the affine
dependences among the d + 1 points in R¥.

In particular, the Nill-Ziegler result ( “all except finitely many hollow
d-polytopes project to a hollow < d-polytope”) implies:
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Interpretation of the quintuples

More generally: a k-parameter family corresponds to the set of all
d-dimensional lifts of a certain configuration of d 4+ 1 points in dimension
d — k. The "k-parameter (d + 1)-tuple” parametrizes the affine
dependences among the d + 1 points in R¥.

In particular, the Nill-Ziegler result ( “all except finitely many hollow
d-polytopes project to a hollow < d-polytope”) implies:

Corollary

In any fixed dimension d, the set of all hollow d-simplices can be
stratified “a la Mori et al.” into a finite number of “families”. Each
family is represented as a k-dimensional rational linear subspace of R9+1
(k €{0,...,d —1}). A k-parameter family corresponds to simplices
projecting to a particular configuration A of d + 1 points in R¥ such that
conv(A) is hollow but does not project to dimension < d — k.
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Proof of Theorem 3

The list in the statement corresponds to empty 4-simplices projectiong to
lower dimensional hollow polytopes:

@ Simplices projecting to dim 1 (that is, of width one) can a priori
project in two ways: “4 + 1" or “3 + 2". But the classification of
3-dimensional empty simplices implies that the former is a special
case of the latter. Affine dependences in the latter are parametrized
by (a,—a, b, c, —b — c) (the 3-parameter family of MMM).
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Proof of Theorem 3

The list in the statement corresponds to empty 4-simplices projectiong to
lower dimensional hollow polytopes:

@ Simplices projecting to dim 1 (that is, of width one) can a priori
project in two ways: “4 + 1" or “3 + 2". But the classification of
3-dimensional empty simplices implies that the former is a special
case of the latter. Affine dependences in the latter are parametrized
by (a,—a, b, c, —b — c) (the 3-parameter family of MMM).

@ A lattice 4-simplex A projecting to dim 2 must project to the
second dilation of a unimodular triangle. For A to be empty one
needs the vertices to project to one of the following configurations:

projection:

aff. dependence: (a, —2a, b, —2b,a+ b) (a,—2a, b, —2b,a+ b)

20



@ Lattice 4-simplices projecting to dim. 3 can be exhaustively

described via the (finite) classification of hollow 3-polytopes with at

most 5 vertices and not projecting to dim two (Averkov et al. 2016).

20



Flatness Lattice polytopes Empty 4-simplices: 1) volume 3) infinite families 2) enumeration
000000 00000000 000000 0000000800 0000000

Proof of Theorem 3 (cont.)

@ Lattice 4-simplices projecting to dim. 3 can be exhaustively
described via the (finite) classification of hollow 3-polytopes with at
most 5 vertices and not projecting to dim two (Averkov et al. 2016).

To narrow the search we use that, of the three types of 3-polytopes
with <5 vertices (tetrahedron, sq. pyramid, triang. bipyramid) only
the latter can possibly produce infinitely many hollow 4-dimensional
lifts (Blanco-Haase-Hofmann-S. 2016).
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Proof of Theorem 3 (cont.)

@ Lattice 4-simplices projecting to dim. 3 can be exhaustively
described via the (finite) classification of hollow 3-polytopes with at
most 5 vertices and not projecting to dim two (Averkov et al. 2016).

To narrow the search we use that, of the three types of 3-polytopes
with <5 vertices (tetrahedron, sq. pyramid, triang. bipyramid) only
the latter can possibly produce infinitely many hollow 4-dimensional
lifts (Blanco-Haase-Hofmann-S. 2016).

In this way we recover the 29 quintuples of Mori-Morrison-Morrison
1988, plus 23 additional “non-primitive quintuples”.
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000000

Lattice polytopes
00000000

The 29 quintuples

Q{(e, 4 3

7

12)}

Empty 4-simplices:

1) volume 3) infinite families
Q{(7,5,3,—-1,-14)}
Q{(9,7 1, —3,-14)}
Q{(15, —37 —5,-14)}
Q{(8,5,3,-1,-15)}
Q{(10,6, ,—2,—15)}
Q{(12,5,2,—4,-15)}
Q{(9,6,4,—-1,-18)}
Q{(9,6,5,—2,—-18)}
Q{(12,9,1,—4,-18)}
Q{(10,7,4,—-1,-20)}
Q{(10,8,3,—-1,—-20)}
Q{(10,9,4,-3,—-20)}
Q{(12,10,1,—3,—20)}
Q{(12,8,5,—-1,—-24)}

Q{(157 107 6> _17 _30)}

2) enumeration
0000000

The 29 quintuples of Mori-Morrison-Morrison. Each represents (the rational
points in) a line through the origin, in the 4-torus R*/L(A).
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The 23 “non-primitive quintuples”

(0,0,3,3,00 + Q{(6,-2,-12,4,4)} 0,0,2,1,00 + Q{(-9,6,3,3,-3)}
(3,0,0,0,3) + Q{(8,—6,2,-8,4)} (3,0,2,0,00 + Q{(9,-9,3,-6,3)}
(0,0,3,0,3) + Q{8 —4 -12,6,2)} (0,0,1,2,00 + Q{(—9,3,6,6,—6)}
(3,0,0,0,3) + @{(4,6,—2,-16,8)} (0,0,1,2,00 + Q{(12,-6,-12,3,3)}
(0,3,3,000 + Q{2 -12,4,12,-6)} (3,0,3,0,00 + ©Qf(9,-18,6,6,—3)}
(,0,1,000 + @{(12,-16,8 —6,2)} (3,0,2,0,00 + Q{(12,-18,3,6,-3)}
(0,3,0,0,3) + @{(2,12,-8,-12,6)} (3,0,3,0,00 + ©Q{f(12,-9,3,—12,6)}
(3,0,0,0,3) + Q{(8,6,-2,-24,12)} (3,0,2,0,00 + Q{(6,—3,6,—18,9)}
(0,1,0,0,3) + @{(6,-2,8 —24,12)} (0,03, 3, 1) + Q{3 -18,6,18,-9)}
(3,%,2,000 + Qf(12,-12,4,-8,4)} (3,0,0,2, 1) + Q{6 -18,6,12,—6)}
(0,%3,4,0) + 0f@4s8 -4 -1638)}
(0,0,2,3,5) + Q@4 —16,4,16,-8)}

(0%, 1,0,1) + @412 -4,-24,12)}

The 23 non-primitive quintuples. Each represents (the rational points in) a line
in R*/A(A) not passing through the origin.
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With determinant < 7600 there are 2461 empty 4-simplices that do not
project to hollow 3-polytopes. Their determinants range from 24 to 419.
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With determinant < 7600 there are 2461 empty 4-simplices that do not
project to hollow 3-polytopes. Their determinants range from 24 to 419.

The proof is via an exhaustive computer enumeration.

23
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Theorem 2 (enumeration)

Theorem 2 (lIglesias-S., 2017+)

With determinant < 7600 there are 2461 empty 4-simplices that do not
project to hollow 3-polytopes. Their determinants range from 24 to 419.

The proof is via an exhaustive computer enumeration.

Note: It is easy to prove (by induction on the dimension) that there are finitely
many lattice polytopes of a given dimension d and with normalized volume
bounded by D, for every d,D € N (e.g., Lagarias-Ziegler, 1991).

The algorithm implicit in the general proof is impracticable, but for the case of
simplices another methods can be used.

23



two algorithms:

To enumerate all empty 4-simplices of a given volume D we use one of

24
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Enumeration algorithms

To enumerate all empty 4-simplices of a given volume D we use one of
two algorithms:

@ Algorithm 1: If D has less than 5 prime factors, then every empty
4-simplex A of volume D has a unimodular facet (because A is
cyclic, by Barile et al. 2011, which implies the volumes of facets are
relatively prime). Thus, A is equivalent to

conv{er, e, €3, 1, v},

for some v = (v1, v2, 3, v4) € Z* with > v; = D + 1. Moreover, v
needs only to be considered modulo D, which gives a priori D3
possibilities.
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Enumeration algorithms

To enumerate all empty 4-simplices of a given volume D we use one of
two algorithms:

@ Algorithm 1: If D has less than 5 prime factors, then every empty
4-simplex A of volume D has a unimodular facet (because A is
cyclic, by Barile et al. 2011, which implies the volumes of facets are
relatively prime). Thus, A is equivalent to

conv{er, e, €3, 1, v},

for some v = (v1, v2, 3, v4) € Z* with > v; = D + 1. Moreover, v
needs only to be considered modulo D, which gives a priori D3
possibilities.

@ Algorithm 2: If D has at least 2 prime factors, then we can
decompose D = pqg with p and g relatively prime. Every 4-simplex
Ap of volume D can be obtained by “merging” simplices A, and
A, of volumes p and gq.

24



More than 10000 hours of computation have been used.
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Computational performance data

More than 10000 hours of computation have been used.
Algorithm 2 is much slower than Algorithm 1 if p << g, and slightly
faster than Algorithm 1 if p ~ q.

lde5| [« Algorithm 2 (p~q)
r-AIgor!thm 1
12es] -~ Algorithm 2 (p<<q) .
1e5
-
. -’
o
8ed . *
.-
o - s -
6ed e
e . -
- .
4ed - . ™ o
-t o
2ed . - et tn e
-t e, L - e,
e o) i L
3500 4000 4500 5000

Computation time (seconds) for the list of all
empty lattice 4-simplices of a given volume
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The “finitely many exceptions”

The enumeration gives us the 2461 empty 4-simplices that do not belong
to the infinite families of Theorem 3. Their determinants range from 24
to 419.

Those of width > 3 coincide with the list computed by Haase and Ziegler
(2000): there are 178 of width three (with determinants in [49,179] and
exactly one of width 4 (with determinant 101 and quintuple
(-1,6,14,17,65)).
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Lattice polytopes Empty 4-simplices: 1) volume 3) infinite families 2) enumeration
00000000 000000 0000000000 0000e00

sporadic 4-simplices (part 1 of 2)

V=24: 1 V =53: 38 V=178: 3 vV =103: 51 V=129: 17
vV =27: 1 V =54 11 V=79: 55 V =104 : 8 V =130: 2
V=29: 3 V=55: 20 V=80: 7 V=105: 7 V=131: 29
V=3: 2 V=56: 3 V=8: 18 | V=106: 8 =132: 5
V=31: 2 V=57: 16 V=8: 13 | V=107: 54 =133: 14
V=32: 3 V=58: 13 V=83: 60| V=108: 5 =134:

V=33: 4 V=59: 51 V=284: 7 V=109: 44 | V=135: 6
V=34: 5 V=60: 4 V=8: 27| V=110: 5 =136: 6
V=3: 3 V=61: 38 V=8: 11 | V=111: 13 =137: 28
V=37: 6 V=62: 26 V=87: 24| V=112: 2 V=138: 2
V=38: 8 V=63: 17 V=28: 5 V=113: 40 | V=139: 37
V=39: 9 V=64: 9 V=89: 55| V=114: 4 V=140: 5
V=40: 1 V=65: 27 V=9: 6 V=115: 21 V=141: 6
V=41: 14| V=66: 3 V=901: 18 | V=116: 11 V=142: 9
V=42: 5 V=67: 41 V=902: 9 V=117: 10 | V=143: 13
V=43: 20| V=68: 13 V=903: 17 | V=118: 9 V=144: 1
V=44: 8 V=69: 26 V=94: 12 | V=119: 22 =145: 14
V=45: 6 V=70: 4 V=905: 35| V=120: 3 V=146: 5
V=46: 7 V=71: 50 V=96: 3 V=121: 18 | V=147: 10
V=47: 30| V=72: 3 V=97 46 | V =122 9 V =148 7
V=48: 5 V=73: 44 V=908: 9 V=123: 17 | V=149: 26
V=49: 17 | V=74: 18 V=99: 13 | V=124: 8 =150: 2
V=50: 8 V=7: 22| V=100: 8 V=125: 25 =151: 19
V=51: 16 | V=76: 14 | V=101: 41 | V=127: 24 =152: 6
V=52: 6 V=77 19 | V=102: 3 V=128: 9 =153: 9
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000000

00000000

Nbr. of sporadic

V =154:
V =155:
V =156
V =157:
V =158:
V =159 :
V =160 :
V =161:
V =163 :
V =164 :
V =165:
V =166 :
V =167:
V =168 :
V =169 :
V =170:
vV =171:
vV =172:
VvV =173:
V =174 :
V =175:
V =176:
vV =177:
vV =178:
vV =179 :
V =180:

w

H NN O A 0 W
=

Empty 4-simplices:

1) volume
000000

3) infinite families
0000000000

4-simplices (part 2 of 2)

=181:
V =182:
V =183 :
=184 :
V =185:
=186 :
=187:
=188:
=189:
=190 :
=191:
=192:
V =193 :
V =19
=196 :
=197 :
=199 :
V =200 :
VvV =201:
VvV =202:
V =203 :
V =204:
V =205 :
V =206 :
V =207 :
V =208 :
V =209 :

RFONNONN SO oo

N N
= W )

HFNABRRNNDW

=
o

vV =211:
V =212
V =213:
V =214
V =215:
V =216
V =218:
V =219:
V =220:
vV =221:
V =222
V =223
V =225
V =226
V =227
V =229
V =230:
V =232:
V =233:
V =234:
V =235:
V =237:
V =238:
V =239:
V =241
V =244
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V =245
V =247
V =248 :
V =249 :
V =250:
V =251:
V =254
V =256 :
V =257
V =259
V =261:
V =263:
V =265:
V =267:
V =268 :
V =269 :
V =271:
VvV =272
V =274
V =275
vV =1278:
V =283:
V =287:
V =289:
V =290 :
vV =201:
VvV =202:

HRRERARNNRHERANRRERHENRENDONROHED®®WW

V =293:
V =299 :
V =304:
V =308:
V =310:
V =311:
V =313:
V =314
V =317:
V =319:
V =321:
VvV =323:
V =331:
VvV =332:
V =334:
V =335:
V =347
V =349 :
V =353:
V =355:
V =356 :
V =376
V =377:
VvV =397:
V =308:
V =419 :

FRRERNRRPRPRRENRRNRERRRRNRRRRRRRNDOG

2) enumeration
0000080



Flatness
000000

Lattice polytopes
00000000

Empty 4-simplices:

1) volume
000000

3) infinite families
0000000000

2) enumeration
[efelelolole] ]

Nbr. of sporadic t.q.s. of prime volume (MMM vs. us)

EEBEEEE e

37
41
43
47
53
59
61
67
71

73
79
83
89
97
101
103
107

113
127
131
137
139
149
151
157
163
167
173

TABLE 1.14

Sp P S
220 179 105
275 181 65
300 191 40
275 193 60
230 197 65
201 199 55
255 211 20
270 223 35
220 227 45
200 229 30
120 233 45
145 239 15

185 251 25
130 257 15

95 263 35
55 269 10
85 271 20
90 217 0
75 281 0

283
293
307
311
313
317
331
337
347
349
353
359
367
373
379
383
389
397
409
419

S
10

@ o v oo

oo o oo oo o wm

V=29
V=31
vV =37
V =41
V =143
V =47
V =53
V =59
V =61
V =67
V=T1
V=713
V=19
V =83
V =89
V=97
V =101:
V =103 :
V =107 :
V =109 :
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15
10
30
66

150
190
255
186
205
250
220
275
300
275
230
201
255
270
220

vV =113:
vV =127:
vV =131:
vV =137:
vV =139:
V =149 :
V =151:
V =157:
V =163:
V =167:
vV =173:
V =179:
vV =181:
vV =191:
vV =193:
vV =197:
V =199 :
vV =211:
vV =223:
VvV =227:

200
120
145
140
185
130
95
55
85
90
75
105
65
40
60
65
55
20
35
45

V =229
V =233:
V =239:
V =241
V =251:
V =257
V =263:
V =269 :
vV =271:
V =283:
V =293:
V =311:
V =313:
V =317:
V =331:
V =347
V =349:
V =353:
V =397:
V =419 :



Thank you for your attention

http://personales.unican.es/santosf
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