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Flatness Lattice polytopes Empty 4-simplices: 1) volume 3) infinite families 2) enumeration

Width

K a convex body in Rd ; Zd ∼= Λ ⊂ Rd a lattice.

Definition

The width of K w.r.t. a functional f ∈ (Rd)∗ is
maxp∈K f (p)−minp∈K f (p). (Equivalently, it is the length of f (K )).

The (lattice) width of K is the minimum with w.r.t. functionals in
Λ∗ \ 0. We denote it widthΛ(K ).

Remark: widthΛ(K ) = min. length of a 1-dim lattice projection of K .

Width: 2 Width: 1 Width: 2
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Flatness Theorem

K is lattice-free if int(K ) ∩ Λ = ∅
Theorem (Flatness Theorem)

For each dimension d ,

Wd := sup
K lattice-free

widthΛ(K ) <∞.

Known values: W1 = 1, W2 = 1 + 3/
√

2 ' 2.1547 (Hurkens 1990)

CONVEX SETS IN THE PLANE 123 

FIG. 2. 

2. PROOF OF THE MAIN THEOREM 

Let B be a convex set such that int(B)+Z’ z R2. Then clearly B is the 
translate of a convex lattice-point free set. Here a set C c R? is called 
lattice-point free with respect to a lattice -8 c R2 if we have int(C) n -8 =0. 
If no lattice is specified, then we take by convention the integer lattice Z2. 
For our proof we need to study only the case that B is an inclusionwise 
maximal convex lattice-point free set. Then it is clear that B must be closed 
and that one of the following holds: 

[l] B is a line with an irrational slope; 
[2] B is an infinite strip with lattice points on both sides; 
[3] B is a triangle with one lattice point zi (i = 1,2,3) on each of its sides; 
[4] B is a quadrilateral with one lattice point zi (i = 1,2,3,4) on each of 

its sides. 

For k = 1,2,3,4, we calculate cp( k > := min{t 1 t > 0, and for each B of type [k ] 
and for each LY > t there is a line not meeting (Y- ‘B + Z2). 

We claim that ~(1) = 0, (p(2) = 1, rp(3) = 1 + +a, (p(4) = 2. 
The first two cases are trivial, and we leave it to the reader to verify 

them. For case [3] one should remark that: 

{zl, z2, z3} generates the complete lattice, (1) 

i.e., for all z E Z2 there exist integers U, o, w with u + u + w = 1 such that 
z = uzl + oz2 + wzg. This also holds for each triple taken from (z1,z2,z3,zq} 
in case [4]. We use this property in the calculation of (p(3) and (p(4). 

3
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Flatness History

Khinchine 1948: Wd ≤ O(d!)

Lenstra 1983: Wd ∈ 2O(d2) + poly-time algorithm.

Hastad 1986: Wd ∈ O(d5/2).

Kannan-Lovász 1988: Wd ∈ O(d2). NICE PROOF. Def of covering
minima.

Banaszczyk-Litvak-Pajor-Szarek 1999, Wd ∈ O(d3/2).

Also, Wd ∈ O(d log min(f0, fd−1)) for lattice-free polytopes with at
most f0 vertices and fd−1 facets. In particular, O(d log d) for
simplices.

Rudelson 2000 Wd ∈ O(d4/3 log9 d)

Current “guess”: Wd ∈ O(d) (perhaps modulo poly-log factors).
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Flatness lower bounds

Wd ≥ d is trivial (d-th dilation of unimodular simplex is
lattice-free).

W2 = 1 + 2/
√

3 = 2.1547 . . . (Hurkens 1990).

Wd1+d2 ≥Wd1 + Wd2 , via a direct sum argument
(Codenotti-Santos?).

The last remark has the following consequences:

Corollary

limd→∞
Wd

d = supd
Wd

d ≥ 1.077 . . .

Moreover, the limit is the same if restricted to lattice polytopes instead
of arbitrary convex bodies.
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Width vs. volume, dim 2

Related to the flatness theorem is the fact that lattice-free (d + 1)-bodies
of width larger than Wd must have bounded volume.

Theorem (Averkov-Wagner 2012)

Let K be a lattice-free convex 2-body with w > 1. Then

vol(K ) ≤
{

w2

2(w−1) for w ∈ (1, 2],
3w2

3w+1−
√

1+6w−3w2
for w ∈ [2, 1 + 2√

3
].

The bound is attained iff K is as follows, respectively:

4 Beitr Algebra Geom (2012) 53:1–23

Fig. 2 Pairs (w, A) satisfying
the inequalities of Theorem 2.2;
w0 = 1 + 2/

√
3, A0 is the area

of K with w(K ) = w0

(a) (b) (c)

Fig. 3 Examples of sets yielding equality in (2.3)–(2.2) (shaded)

A ≤ w2

2(w − 1)
for 1 < w ≤ 2, (2.3)

A ≤ 3w2

3w + 1 −
√

1 + 6w − 3w2
for 2 < w ≤ 1 + 2√

3
, (2.4)

A ≥ 3
8
w2 for 0 < w ≤ 1 + 2√

3
(2.5)

(see Fig. 2). Furthermore, the following statements hold.

I. Equality in (2.2) is attained if and only if K is unbounded and contained in a
split.

II. Equality in (2.3) is attained if and only if, up to unimodular transformations,
K = conv(I1 ∪ I2), where I1 is a translate of conv{(0, 0), (w, 0)}, I2 is a trans-
late of conv{(0, 0), (0, w

w−1 )}, and I1 ∩ I2 ̸= ∅ (see Fig. 3a).
III. Equality in (2.4) is attained if and only if K is a triangle with vertices q0, q1, q2

such that, for every i, the point pi := +λqi+2(1 − λ)qi+1 + λqi+2 belongs to
Z2 for

λ := 3w + 1 −
√

1 + 6w − 3w2

6w

(see Fig. 3b).
IV. If 0 < w ≤ 2, then equality in (2.2) is attained if and only if, up to unimod-

ular transformations, K is a translate of w
2 conv{(1, 0), (0, 1), (−1,−1)} (see

Fig. 3c).

The bound (2.2) is not sharp when 2 < w ≤ 1 + 2√
3
. To see why, we need a result

of Fejes Tóth and Makai (1974).

123
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Fig. 3c).

The bound (2.2) is not sharp when 2 < w ≤ 1 + 2√
3
. To see why, we need a result

of Fejes Tóth and Makai (1974).
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Width vs. volume, dim 2
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Width vs. volume, dim 3

Theorem (IglesiasValiño-Santos, 2018)

Let K be a lattice-free convex 3-body of lattice width
w > 1 + 2/

√
3 = 2.155.Then,

vol(K ) ≤
{

3w3

4(w−(1+2/
√

3))
, if w ≤ 2√

3
(
√

5− 1) + 1 = 2.427,

8w3

(w−1)3 , if w ≥ 2.427.

These bound are not attained.
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Definition

We now concentrate on lattice polytopes. P :=
convex hull of a finite set of points in Λ.

P is hollow (or lattice-free) if

no lattice points in int(P)

P is empty if

no lattice points in P apart of its vertices.

E.g.: empty d-simplex ⇔ lattice
d-polytope with exacty d + 1 lattice
points.
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Flatness Lattice polytopes Empty 4-simplices: 1) volume 3) infinite families 2) enumeration

Goal and motivation

We would like to understand better (and hopefully, classify exhaustively)
hollow polytopes and, especially, empty simplices.

- They are the building blocks for lattice polytopes; every lattice
polytope can be triangulated into empty simplices.

- In particular, sometimes good properties of empty simplices have
implications for all lattice polytopes.

- They correspond to terminal quotient singularities in the minimal
model program.

Classifying is meant modulo unimodular equivalence (lattice-preserving
affine isomorphism = GL(d ,Z) + integer translations).

Remark

Volume, combinatorial type, hollowness, emptyness, width ... are
invariant modulo unimodular equivalence.
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Flatness Lattice polytopes Empty 4-simplices: 1) volume 3) infinite families 2) enumeration

1 6= 2

Dimension 1: the only hollow 1-polytope, in particular the only
empty 1-simplex, is the unit segment.

Dimension 2: infinitely many hollow polygons (and triangles), but
only one empty triangle, the unimodular one (:⇔ vertices are an
affine basis for the lattice ⇔ normalized volume = 1).

Corollary (Pick’s theorem): If P is a lattice polygon with b and i
lattice points in its boundary and interior, then area(P) = 1

2 (b + 2i − 2).

Theorem (Classification of hollow
polygons) The hollow polygons are
the polygons of width one and the
second dilation of a unimodular triangle.
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Flatness Lattice polytopes Empty 4-simplices: 1) volume 3) infinite families 2) enumeration

2 6= 3

In dimension 3, there are infinitely many (classes of) empty simplices.

Yet, they have a nice and relatively simple classification:

Theorem (White 1964)

Every empty tetrahedron has width one.
Hence it is equivalent to ∆(p, q) :=
conv {(0, 0, 0), (1, 0, 0), (0, 0, 1), (p, q, 1)} ,
for some q ∈ N, p ∈ Z, gcd(p, q) = 1.

(1, 0, 0)(0, 0, 0)

(0, 1, 0)

(1, 1, 1)

That is:

There are infinitely many empty tetrahedra, but they form a
two-parameter family that we can describe completely.
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conv {(0, 0, 0), (1, 0, 0), (0, 0, 1), (p, q, 1)} ,
for some q ∈ N, p ∈ Z, gcd(p, q) = 1.

(1, 0, 0)(0, 0, 0)

(0, 1, 0)

(1, 1, 4)

That is:

There are infinitely many empty tetrahedra, but they form a
two-parameter family that we can describe completely.
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Classification of hollow 3-polytopes

What about hollow 3-polytopes?

Theorem

The whole list of hollow 3-polytopes consists of:

1 Those of width one.

2 Those that project to the dilated unimodular triangle.

3 An additional finite list (Treutlein 2008) with only twelve maximal
elements (Averkov-Krümpelmann-Weltge, 2016): Seven of width two and
five of width three.

Remark

The three cases (1), (2) and (3) correspond to what is the minimal
dimension of a lattice projection of P that is still hollow.
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The maximal hollow 3-polytopes (d’après AKW2016)
M4,6 M4,4 M4,2

M ′
4,4 M5,4 M5,2 M6,2

Figure 1: The Z3-maximal integral lattice-free polytopes with lattice width two. For
further reference, the polytopes are labeled by a pair of indices (i, j), where i is the
number of facets and j the lattice diameter (defined at the end of the introduction).

Figure 2: The Z3-maximal integral lattice-free polytopes with lattice width three.

Proof strategy

In the proof of Theorem 1, we use a classification of all Z2-maximal polytopes in P(1
2Zd).

This is provided in Section 2. Every such polytope is contained in an R2-maximal lattice-
free convex set L in the plane and its vertices then have to be contained in L ∩ 1

2Z2. We
give a slightly extended version of the well-known classification of R2-maximal lattice-free
convex sets L which allows us to enumerate all Z2-maximal lattice-free 1

2Z2-polyhedra.
We then turn to integral Z3-maximal lattice-free polyhedra in dimension three. We
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2Z2. We
give a slightly extended version of the well-known classification of R2-maximal lattice-free
convex sets L which allows us to enumerate all Z2-maximal lattice-free 1

2Z2-polyhedra.
We then turn to integral Z3-maximal lattice-free polyhedra in dimension three. We

4

13



Flatness Lattice polytopes Empty 4-simplices: 1) volume 3) infinite families 2) enumeration

Hollow projections of hollow polytopes

Finiteness of the number of hollow 3-polytopes that *do not project* to
lower dimensions is a general fact:

Theorem (Nill-Ziegler 2011, also Lawrence 1991)

For each d , all except finitely many hollow d-polytopes (in particular,
empty d-simplices) project to hollow polytopes of dimension < d .

. . . and this result gives a first step towards a classification of empty (or
hollow) d-polytopes. To each hollow (or empty) d-polytope P we assign
a number k ≤ d and a hollow k-polytope Q such that P projects to Q
but Q does not project further. The above theorem says that there are
finitely many Q’s for each k, hence for each d .

Examples

P projects to a hollow 1-polytope ⇔ P has width one.
P projects to a hollow 2-polytope ⇔ P either has width one or projects
to the second dilation of a unimodular triangle.

14
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Flatness Lattice polytopes Empty 4-simplices: 1) volume 3) infinite families 2) enumeration

3 6= 4

In dimension 4, Haase and Ziegler (2000) experimentally found that:

There are infinitely many empty 4-simplices of width two (e. g.,

conv(e1, . . . , e4, v), where v = (2, 2, 3,D − 6) and gcd(D, 6) = 1).

Among the empty 4-simplices of determinant up to 1000 those of
width larger than two have determinant ≤ 179. (There are 178 of

width three plus one of width 4 and determinant 101).

Conjecture (H-Z, 2000)

These 179 are the only empty 4-simplices of width > 2.

On the positive side: Every empty 4-simplex is cyclic (Barile et al. 2011).
Here, a simplex ∆ is called cyclic if the quotient group Λ/L(∆) is cyclic, where

L(∆) is the lattice spanned by the vertices of ∆.

Observe that |Zd/L(∆)| equals the normalized volume (= the
determinant) of ∆.

4 6= 5: In dimension ≥ 5 there are non-cyclic empty simplices.

15



Flatness Lattice polytopes Empty 4-simplices: 1) volume 3) infinite families 2) enumeration

3 6= 4

In dimension 4, Haase and Ziegler (2000) experimentally found that:

There are infinitely many empty 4-simplices of width two (e. g.,

conv(e1, . . . , e4, v), where v = (2, 2, 3,D − 6) and gcd(D, 6) = 1).

Among the empty 4-simplices of determinant up to 1000 those of
width larger than two have determinant ≤ 179. (There are 178 of

width three plus one of width 4 and determinant 101).

Conjecture (H-Z, 2000)

These 179 are the only empty 4-simplices of width > 2.

On the positive side: Every empty 4-simplex is cyclic (Barile et al. 2011).
Here, a simplex ∆ is called cyclic if the quotient group Λ/L(∆) is cyclic, where

L(∆) is the lattice spanned by the vertices of ∆.

Observe that |Zd/L(∆)| equals the normalized volume (= the
determinant) of ∆.

4 6= 5: In dimension ≥ 5 there are non-cyclic empty simplices.

15



Flatness Lattice polytopes Empty 4-simplices: 1) volume 3) infinite families 2) enumeration

3 6= 4

In dimension 4, Haase and Ziegler (2000) experimentally found that:

There are infinitely many empty 4-simplices of width two (e. g.,

conv(e1, . . . , e4, v), where v = (2, 2, 3,D − 6) and gcd(D, 6) = 1).

Among the empty 4-simplices of determinant up to 1000 those of
width larger than two have determinant ≤ 179. (There are 178 of

width three plus one of width 4 and determinant 101).

Conjecture (H-Z, 2000)

These 179 are the only empty 4-simplices of width > 2.

On the positive side: Every empty 4-simplex is cyclic (Barile et al. 2011).
Here, a simplex ∆ is called cyclic if the quotient group Λ/L(∆) is cyclic, where

L(∆) is the lattice spanned by the vertices of ∆.

Observe that |Zd/L(∆)| equals the normalized volume (= the
determinant) of ∆.

4 6= 5: In dimension ≥ 5 there are non-cyclic empty simplices.

15



Flatness Lattice polytopes Empty 4-simplices: 1) volume 3) infinite families 2) enumeration

3 6= 4

In dimension 4, Haase and Ziegler (2000) experimentally found that:

There are infinitely many empty 4-simplices of width two (e. g.,

conv(e1, . . . , e4, v), where v = (2, 2, 3,D − 6) and gcd(D, 6) = 1).

Among the empty 4-simplices of determinant up to 1000 those of
width larger than two have determinant ≤ 179. (There are 178 of

width three plus one of width 4 and determinant 101).

Conjecture (H-Z, 2000)

These 179 are the only empty 4-simplices of width > 2.

On the positive side: Every empty 4-simplex is cyclic (Barile et al. 2011).

Here, a simplex ∆ is called cyclic if the quotient group Λ/L(∆) is cyclic, where

L(∆) is the lattice spanned by the vertices of ∆.

Observe that |Zd/L(∆)| equals the normalized volume (= the
determinant) of ∆.

4 6= 5: In dimension ≥ 5 there are non-cyclic empty simplices.

15



Flatness Lattice polytopes Empty 4-simplices: 1) volume 3) infinite families 2) enumeration

3 6= 4

In dimension 4, Haase and Ziegler (2000) experimentally found that:

There are infinitely many empty 4-simplices of width two (e. g.,

conv(e1, . . . , e4, v), where v = (2, 2, 3,D − 6) and gcd(D, 6) = 1).

Among the empty 4-simplices of determinant up to 1000 those of
width larger than two have determinant ≤ 179. (There are 178 of

width three plus one of width 4 and determinant 101).

Conjecture (H-Z, 2000)

These 179 are the only empty 4-simplices of width > 2.

On the positive side: Every empty 4-simplex is cyclic (Barile et al. 2011).
Here, a simplex ∆ is called cyclic if the quotient group Λ/L(∆) is cyclic, where

L(∆) is the lattice spanned by the vertices of ∆.

Observe that |Zd/L(∆)| equals the normalized volume (= the
determinant) of ∆.

4 6= 5: In dimension ≥ 5 there are non-cyclic empty simplices.

15



Flatness Lattice polytopes Empty 4-simplices: 1) volume 3) infinite families 2) enumeration

3 6= 4

In dimension 4, Haase and Ziegler (2000) experimentally found that:

There are infinitely many empty 4-simplices of width two (e. g.,

conv(e1, . . . , e4, v), where v = (2, 2, 3,D − 6) and gcd(D, 6) = 1).

Among the empty 4-simplices of determinant up to 1000 those of
width larger than two have determinant ≤ 179. (There are 178 of

width three plus one of width 4 and determinant 101).

Conjecture (H-Z, 2000)

These 179 are the only empty 4-simplices of width > 2.

On the positive side: Every empty 4-simplex is cyclic (Barile et al. 2011).
Here, a simplex ∆ is called cyclic if the quotient group Λ/L(∆) is cyclic, where

L(∆) is the lattice spanned by the vertices of ∆.

Observe that |Zd/L(∆)| equals the normalized volume (= the
determinant) of ∆.

4 6= 5: In dimension ≥ 5 there are non-cyclic empty simplices.

15



Flatness Lattice polytopes Empty 4-simplices: 1) volume 3) infinite families 2) enumeration

3 6= 4

In dimension 4, Haase and Ziegler (2000) experimentally found that:

There are infinitely many empty 4-simplices of width two (e. g.,

conv(e1, . . . , e4, v), where v = (2, 2, 3,D − 6) and gcd(D, 6) = 1).

Among the empty 4-simplices of determinant up to 1000 those of
width larger than two have determinant ≤ 179. (There are 178 of

width three plus one of width 4 and determinant 101).

Conjecture (H-Z, 2000)

These 179 are the only empty 4-simplices of width > 2.

On the positive side: Every empty 4-simplex is cyclic (Barile et al. 2011).
Here, a simplex ∆ is called cyclic if the quotient group Λ/L(∆) is cyclic, where

L(∆) is the lattice spanned by the vertices of ∆.

Observe that |Zd/L(∆)| equals the normalized volume (= the
determinant) of ∆.

4 6= 5: In dimension ≥ 5 there are non-cyclic empty simplices.
15



Flatness Lattice polytopes Empty 4-simplices: 1) volume 3) infinite families 2) enumeration

The complete classification of empty 4-simplices
(Iglesias-S., 2018+)

Theorem 1 (volume bound)

All empty 4-simplices that do not project to a hollow 3-polytope have
determinant ≤ 7600.

Theorem 2 (enumeration)

There are 2461 of them. Their determinants range from 24 to 419.
There is one of width 4 (determinant=101), 178 of width three
(dets.∈ [49, 179]), and the rest have width two (as predicted by
Haase-Ziegler).

Theorem 3 (infinite families)

All empty 4-simplices that project to hollow 3-polytopes belong to
1 + 3 + 52 families with 3, 2 and 1 parameters respectively. All of them
have width one or two.
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Flatness Lattice polytopes Empty 4-simplices: 1) volume 3) infinite families 2) enumeration

Theorem 1

Although we are interested only in empty ones, the first theorem holds for
all hollow simplices:

Theorem 1

All hollow 4-simplices that do not project to a hollow 3-polytope have
(normalized) volume ≤ 7600.

We prove this in two parts:

1 The case of width at least three.

2 The case of width two.
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Flatness Lattice polytopes Empty 4-simplices: 1) volume 3) infinite families 2) enumeration

Idea of proof for width≥ 3

Let P be a hollow 4-simplex of width ≥ 3 that does not project to a
hollow 3-polytope.

Consider the lattice projection π : P → Q along the direction where the
rational diameter of P is attained.
Q is not hollow, but still has width ≥ 3.

We call rational diameter δ(P) of P the maximum length (w.r.t. the lattice) of
a rational segment contained in P. It equals λ−1

1 (P − P), where λ1(C) ≡ first
successive minimum of C .

Minkowski’s first theorem

Vol(P) ≤ Vol(P−P)

2d
≤ d!δ(P)d .

If P is a simplex this can be improved to Vol(P) ≤ 2dd!(
2d
d

) δ(P)d

18



Flatness Lattice polytopes Empty 4-simplices: 1) volume 3) infinite families 2) enumeration

Idea of proof for width≥ 3

Let P be a hollow 4-simplex of width ≥ 3 that does not project to a
hollow 3-polytope.

Consider the lattice projection π : P → Q along the direction where the
rational diameter of P is attained.
Q is not hollow, but still has width ≥ 3.

We call rational diameter δ(P) of P the maximum length (w.r.t. the lattice) of
a rational segment contained in P. It equals λ−1

1 (P − P), where λ1(C) ≡ first
successive minimum of C .

Minkowski’s first theorem

Vol(P) ≤ Vol(P−P)

2d
≤ d!δ(P)d .

If P is a simplex this can be improved to Vol(P) ≤ 2dd!(
2d
d

) δ(P)d

18



Flatness Lattice polytopes Empty 4-simplices: 1) volume 3) infinite families 2) enumeration

Idea of proof for width≥ 3

Let P be a hollow 4-simplex of width ≥ 3 that does not project to a
hollow 3-polytope.

Consider the lattice projection π : P → Q along the direction where the
rational diameter of P is attained.
Q is not hollow, but still has width ≥ 3.

We call rational diameter δ(P) of P the maximum length (w.r.t. the lattice) of
a rational segment contained in P. It equals λ−1

1 (P − P), where λ1(C) ≡ first
successive minimum of C .

Minkowski’s first theorem

Vol(P) ≤ Vol(P−P)

2d
≤ d!δ(P)d .

If P is a simplex this can be improved to Vol(P) ≤ 2dd!(
2d
d

) δ(P)d

18



Flatness Lattice polytopes Empty 4-simplices: 1) volume 3) infinite families 2) enumeration

Idea of proof for width≥ 3

Let P be a hollow 4-simplex of width ≥ 3 that does not project to a
hollow 3-polytope.

Consider the lattice projection π : P → Q along the direction where the
rational diameter of P is attained.
Q is not hollow, but still has width ≥ 3.

We call rational diameter δ(P) of P the maximum length (w.r.t. the lattice) of
a rational segment contained in P. It equals λ−1

1 (P − P), where λ1(C) ≡ first
successive minimum of C .

Minkowski’s first theorem

Vol(P) ≤ Vol(P−P)

2d
≤ d!δ(P)d .

If P is a simplex this can be improved to Vol(P) ≤ 2dd!(
2d
d

) δ(P)d

18



Flatness Lattice polytopes Empty 4-simplices: 1) volume 3) infinite families 2) enumeration

Bounding Vol(P) from Vol(Q)

Lemma

Let π : P → Q be an integer projection of a hollow d-simplex P onto a
non-hollow (d − 1)-polytope Q. Let:

x ∈ Q be the Radon point of the projection.

δ be the length of π−1(x).

0 < r < 1 be the maximum dilation factor such that
Qr := x + r(Q − x) is hollow.

Then:

1 Vol(P) = δ Vol(Q).

2 δ−1 ≥ 1− r .

In what follows we project along the direction with δ=diameter(P).

r measures whether Q is “close to hollow” (r ' 1) or “far from hollow”
(r ' 0)

19
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Flatness Lattice polytopes Empty 4-simplices: 1) volume 3) infinite families 2) enumeration

An upper bound for the volume of empty 4-simplices

Now, suppose that π : P → Q is the projection along the direction giving
the rational diameter of P, so that the δ in the theorem equals the
rational diameter of P. We have a dichotomy:

20
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An upper bound for the volume of empty 4-simplices

Now, suppose that π : P → Q is the projection along the direction giving
the rational diameter of P, so that the δ in the theorem equals the
rational diameter of P. We have a dichotomy:

If Q is “far from hollow” then we use Minkowski’s inequality

vol(P − P) ≤ 2dδd . Together with Vol(P − P) =
(

2d
d

)
Vol(P)

(Rogers-Shephard for a simplex):

Vol(P) =
Vol(P − P)(

8
4

) =
24 vol(P − P)(

8
4

) ≤ 24 · 16(
8
4

) δ4 = 5.48δ4.

E.g., whenever r ≤ 0.81 we have δ ≤ 1/0.19 and

Vol(P) ≤ 5.48

0.194
= 4210.
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An upper bound for the volume of empty 4-simplices

Now, suppose that π : P → Q is the projection along the direction giving
the rational diameter of P, so that the δ in the theorem equals the
rational diameter of P. We have a dichotomy:

If Q is “close to hollow” then we use the Lemma:

Vol(P) = δ Vol(Q) =
δ

r3
Vol(Qr ), where :

δ ≤ 42 (we skip details).
r is bounded away from 0 (by the previous case we can assume
r ≥ .81).
Qr is a lattice-free 3-polytope of width at least 3r ≥ 2.43,
which gives an upper bound for Vol(Qr ).

Putting this together we get “Theorem 2”:

Vol(P) ≤ δ

r3
Vol(Qr ) ≤ · · · ≤ 7600

20
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A bound on the volume of wide 3-polytopes

Lemma (Iglesias-S. 2017+, inspired in AKW 2016)

Let K be a hollow convex 3-body of width w > 1 + 2√
3

= 2.155. Then,

vol(K ) ≤
{

8w3/(w − 1)3, if w ≥ 2√
3

(
√

5− 1) + 1 = 2.427,

3w3/4(w − (1 + 2/
√

3)), if w ≤ 2.427.
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Idea of proof for width = 2

Let P be a hollow lattice 4-simplex of width = 2 that does not project to
a hollow 3-polytope.

W.l.o.g. suppose P ⊂ [−1, 1]× R3, and let Q = P ∩ ({0} × R3). Then,
by Schwarz symmetrization:

Vol(P) ≤ 24 Vol(Q).

Hence, it suffices to show that Vol(Q) ≤ 7600/16 = 475.
Observe Q is half-integer. Two cases:

1 width(Q) ≥ 5/2 ⇒ since Q is hollow,

Vol(Q) = 6 volQ ≤ 6
8(5/2)3

(3/2)3
= 222.2

2 width(Q) ≤ 2 ⇒ we apply to the middle slice of Q (call it R) the
same ideas: R is a lattice-free polygon which does not project to
dimension 1 ⇒ (we skip details...) Vol(Q) ≤ 324
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Empty 4-simplices of prime volume

Motivated by their equivalence to terminal quotient singularities, Mori,
Morrison and Morrison (1989) studied empty 4-simplices of prime
determinant and found that:

1 There are 1+1+29 infinite families with three, two, and one
parameters respectively.

2 Up to determinant 419 there are some 4-simplices not in those
families, but between 420 and 1600 there are none.
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This conjecture was proved (modulo the “finitely many exceptions”) by
Bover (2009) (partially by Sankaran 1990) ⇒ Complete classification of
empty simplices of prime volume.
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This conjecture was proved (modulo the “finitely many exceptions”) by
Bover (2009) (partially by Sankaran 1990)

⇒ Complete classification of
empty simplices of prime volume.
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�D�� �� ���D�� �� ���� �� ������ �� �D� �� ���  � �L��� M� �� N��� O�S�

%XW� LI�L�  � M�  � N� � ��� WKHQ� �D�� �� S���� ���� �� S���� DQG� �D�� �� ���� !� S�� D� FRQWUDGLFWLRQ�
7KXV�� L���M� �� N��� ��!� ���YHULI\LQJ� WKH� FRQGLWLRQ�

&DVH� �F��� 6WDEOH� 4XLQWXSOHV�� /HW� 4�  � �D�E�F�G�H�� EH� D� TXLQWXSOH� RI� LQWHJHUV
VXPPLQJ� WR� ]HUR�� OHW� ,T� EH� WKH� OHDVW� FRPPRQ� PXOWLSOH� RI�^_D_�� _�_�� _F_�� _G_�� _H_`� DQG� 0T
EH� WKH� PD[LPXP� RI� WKLV� ODVW� VHW�� 7R� VWDWH� RXU� PDLQ� UHVXOW� DERXW� VWDEOH� TXLQWXSOHV�
ZH�QHHG� D� GHILQLWLRQ�� /HW

54�[�� ���OLP� �^D\`��� >E\@��� >F\@��� >G\@��� ?H\?��
\�W[� �

ZLWK� >]@�GHQRWLQJ� WKH� JUHDWHVW� LQWHJHU� OHVV� WKDQ� RU� HTXDO� WR� ]�
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This conjecture was proved (modulo the “finitely many exceptions”) by
Bover (2009) (partially by Sankaran 1990) ⇒ Complete classification of
empty simplices of prime volume.
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Empty 4-simplices of prime volume

���� 6+,*()80,� 025,�� '$9,'� 5�� 0255,621�� $1'� ,$1� 0255,621

*LYHQ� D� S�WHUPLQDO� TXLQWXSOH� 4� ²��D�E�F�G�H��� VLQFH� WKH� �S�WHUPLQDO�� FRQGLWLRQ
LV� V\PPHWULF�� HDFK� RI� WKH� ILYH� =�S=�TXRWLHQW� VLQJXODULWLHV� >D�E�F�G@S�� >D�E�F�H@S�
>D��E��G��H@S�� >D��F��G��H@S�� DQG� >E��F�G�� H@S� LV� WHUPLQDO�� ZH� FDOO� WKHVH� WKH� DVVRFLDWHG� S�
VLQJXODULWLHV� RI� 4�� $� TXLQWXSOH� 4�  � �D��E��F��G��H�� LV� FDOOHG� VWDEOH� LI� LW� LV� S�WHUPLQDO
IRU� DOO� VXIILFLHQWO\� ODUJH� S�� :H� VD\� WKDW� D� WHUPLQDO� VLQJXODULW\� >D��E��F��G@S�LV� VWDEOH
LI� LW� LV� DVVRFLDWHG� ZLWK� D� VWDEOH� TXLQWXSOH� 4�  � �D�E�F�G�H�� ZLWK� S� !� 0T�� ZH� FDOO
>D�����F��G@S� VSRUDGLF� LI� LW� LV� QRW� VWDEOH�

(YHU\� WHUPLQDO� VLQJXODULW\� KDV� DQ� LQGH[�� LQ� WKH� FDVH� RI� D� TXRWLHQW� VLQJXODULW\
&��*�� WKH� LQGH[� LV� WKH� VPDOOHVW� QDWXUDO� QXPEHU� Q� ZLWK� WKH� SURSHUW\� WKDW� WKH� JURXS
*� DFWV� WULYLDOO\� RQ� �$F������ )RU� D� =�S=�TXRWLHQW� VLQJXODULW\� >D�E�F�G@S�� WKH� LQGH[
LV� �� LI� V�  � �� �LQ� WKLV� FDVH�� WKH� VLQJXODULW\� LV� *RUHQVWHLQ��� DQG� WKH� LQGH[� LV� S� LI� V� LV
UHODWLYHO\� SULPH� WR� S�

,I�WKH� HQWULHV� LQ� D� TXLQWXSOH� 4� DUH� DOO� QRQ]HUR� DQG� S� !� 0T� ��WKHQ� HDFK� DVVRFLDWHG
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)RU� WKH� UHPDLQGHU� RI�WKLV� SDSHU�� ZH�UHVWULFW� RXU� DWWHQWLRQ� WR� LVRODWHG� VLQJXODULWLHV
RI�SULPH� LQGH[�� :H�ZLOO� LPSOLFLWO\� DVVXPH� WKDW� HDFK� TXRWLHQW� VLQJXODULW\� ZH�FRQVLGHU
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WKH� SKUDVH� �WHUPLQDO� TXRWLHQW� VLQJXODULW\� RI� LQGH[� S�� VHUYHV� DV� DQ� DEEUHYLDWLRQ� IRU
�LVRODWHG� WHUPLQDO� =�S=�TXRWLHQW� VLQJXODULW\� RI� LQGH[� S��

$Q� H[WHQVLYH� FRPSXWHU� VWXG\� RI� WHUPLQDO� TXRWLHQW� VLQJXODULWLHV� RI� SULPH� LQGH[
OHG� XV� WR� WKH� GLVFRYHU\� RI� VRPH� ODUJH� FODVVHV� RI� VWDEOH� TXLQWXSOHV�

7+(25(0� ����� /HW� 4� EH� D� TXLQWXSOH� RI� LQWHJHUV� VXPPLQJ� WR� ]HUR�� DQG� OHW� S� EH
D� SULPH� QXPEHU�� 6XSSRVH� WKDW� HLWKHU

�D�� 4� � �D�� �D�� ��������� �� ��� ZLWK����� ?D?�� ?�?�� _�\_��� S���� DQG� ���� �� A� ��� RU
�E�� 4� � �D�� ��D�� ��� ������ D� �� ��� ZLWK����� ?D?�� ?�?��� S���� DQGD� �� �A2�� RU
�F��4� LV� RQH� RI�WKH���� TXLQWXSOHV� OLVWHG� LQ� 7DEOH�����DQG�S�!�0T�

7KHQ�4� LV�S�WHUPLQDO�

,W� IROORZV� LPPHGLDWHO\� WKDW� HDFK� RI� WKH� TXLQWXSOHV� GHVFULEHG� LQ� WKH� WKHRUHP� LV
VWDEOH�� DQG� WKDW� HDFK� RI�WKHLU� DVVRFLDWHG� S�VLQJXODULWLHV� LV�WHUPLQDO� DQG� VWDEOH� �ZKHQ
S� VDWLVILHV� WKH� JLYHQ� UHVWULFWLRQV��� :H� FDOO� WKH� ��� TXLQWXSOHV� RI� FDVH� �F�� H[FHSWLRQDO
VWDEOH� TXLQWXSOHV� EHFDXVH� WKH\� GR� QRW� ILW� LQWR� LQILQLWH� IDPLOLHV� OLNH� WKRVH� RI� FDVHV
�D�� DQG� �E��� 7KHVH� WZR� LQILQLWH� IDPLOLHV� DUH� LQ� IDFW� FKDUDFWHUL]HG� E\� FHUWDLQ� OLQHDU
UHODWLRQV� DPRQJ� D��E��F��G�� DQG� H�ZKLFK� ZLOO� EH� LPSRUWDQW� LQ� 6HFWLRQ� ��� �6SHFLILFDOO\�
ZH� KDYH� D� �� E�²�F��� G��� H� � �
P� FDVH� �D�� DQG� �D� �� E� � �F��� G�  � D� �� F�²�H�  � �� LQ
FDVH� �E���

%HIRUH� SURYLQJ� WKLV� WKHRUHP�� ZH� ZLVK� WR� VWDWH� WKH� FRQMHFWXUH� DERXW� WHUPLQDO
TXRWLHQW� VLQJXODULWLHV� VXJJHVWHG� E\� RXU� FRPSXWHU� FDOFXODWLRQV�� � 7R� GR� VR�� ZH� ILUVW


�7KLV� LV� XQUHODWHG� WR� WKH� QRWLRQV� RI� VWDELOLW\� DULVLQJ� LQ� JHRPHWULF� LQYDULDQW� WKHRU\�
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:H� FRQFOXGH� WKLV� VHFWLRQ� ZLWK� D� IHZ� FRPPHQWV� RQ� &RQMHFWXUH� ���� DQG� RXU� HY�
LGHQFH� IRU� LW�� ��7KH� H[LVWHQFH� RI� VSRUDGLF� VLQJXODULWpV� VKRZV� WKDW� LW� LV� SRVVLEOH� IRU
D� TXLQWXSOH� 4� WR� EH� S�WHUPLQDO� IRU� VRPH� S� !� 0T�� DQG� \HW� QRW� EH� VWDEOH�� �7R� VD\
WKDW� 4� LV�QRW� VWDEOH� PHDQV�� E\�3URSRVLWLRQ� �����WKDW� ,T� � � ^L��� ,T?5T�t�,T�� �� ��
RU� 5T�t�,T�� !� ��`� LV� QRQHPSW\�� 2Q� WKH� RWKHU� KDQG�� E\� &ODLP� ����� 4� FDQ� EH
S�WHUPLQDO� RQO\� LI�IRU� DOO� N��� S�� 54�N�S�� LV�HLWKHU� ��� RU� ���� ,Q� RWKHU� ZRUGV�� WKH� VHW
-S�L� � � ^>:�S-,A� �� 3`�PXVW� EH� GLVMRLQW� IURP� ,T�� :H�VD\� WKDW� S� GHWHFWV� DQ� XQVWDEOH
TXLQWXSOH�4�LI

,T�Q�-S�L�¢� ��
&RUROODU\� ����VKRZV� WKDW� DQ\� S� !� ,T� GHWHFWV� DQ� XQVWDEOH� 4�� 7KLV� UHVXOW� LV�VRPHZKDW
XQVDWLVIDFWRU\� VLQFH� LI�ZH�DFW� RQ�4�E\� DQ� HOHPHQW� RI��=�S=�� ZH�ZLOO� FHUWDLQO\� FKDQJH
LWV� OHDVW� FRPPRQ� PXOWLSOH� �� ZLWKRXW� DIIHFWLQJ� LWV� S�WHUPLQDOLW\�
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Flatness Lattice polytopes Empty 4-simplices: 1) volume 3) infinite families 2) enumeration

Theorem 3

(Almost) Theorem 3 (Barile, Bernardi, Borisov and Kantor, 2011)

All but finitely many empty 4-simplices belong to the 29 + 1 + 1 families
of Mori-Morrison-Morrison (1988), all of which have width one or two.

This is only true for 4-simplices of prime volume.

The correct version is:

Theorem 3 (Iglesias, Santos, 2018+)

All empty 4-simplices that project to hollow 3-polytopes belong to:

1 The 3-parameter family with quintuple (a,−a, b, c ,−b − c).

2 One of the two 2-parameter families with quintuples
(a,−2a, b,−2b, a + b) and (a,−2a, b,−2b, a + b).

3 One of the 29 + 23 one-parameter families given by the 29
quintuples of Mori, Morrison and Morrison (1988) or the new 23
non-primitive quintuples.
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Flatness Lattice polytopes Empty 4-simplices: 1) volume 3) infinite families 2) enumeration

Cyclic simplices represented as (d + 1)-tuples

What are these “quintuples”

For each choice of D ∈ N, a quintuple v = (v0, v1, v2, v3, v4) represents
“the” cyclic simplex ∆ in which v/D are the barycentric coordinates for
a generator of Z4/Λ(D).

Remarks:

All empty 4-simplces are cyclic (Barile et al 2011), so they can be
represented in this way.

D equals the determinant of ∆.

the vi ’s are integers, and they are important only modulo D.

if we choose
∑

vi = 0 and do not specify D, then a quintuple
(v0, v1, v2, v3, v4) represents an infinite family of simplices, one for
each D.
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each D.
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Interpretation of the quintuples

Each quintuple is a 1-parameter family of empty 4-simplices that project
to a particular hollow 3-polytope.

We get one simplex of determinant D
for each choice of D ∈ N. The entries in a quintuple can be interpreted
as:

Divided by D, they are barycentric coordinates for a generator of
the (cyclic) group Z4/L(∆).

They are homogeneous coordinates for a line
` ∈ {x ∈ R5 :

∑
xi = 1} ∼= R4 passing through the origin (assumed

to be a vertex of ∆). This line gives the projection direction, and
has the property that the projection of ∆ is hollow.

It gives the (unique) affine dependence among the projection of the
vertices of ∆ in the direction of the line `.
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Interpretation of the quintuples

More generally: a k-parameter family corresponds to the set of all
d-dimensional lifts of a certain configuration of d + 1 points in dimension
d − k. The “k-parameter (d + 1)-tuple” parametrizes the affine
dependences among the d + 1 points in Rk .

In particular, the Nill-Ziegler result (“all except finitely many hollow
d-polytopes project to a hollow < d-polytope”) implies:

Corollary

In any fixed dimension d , the set of all hollow d-simplices can be
stratified “à la Mori et al.” into a finite number of “families”. Each
family is represented as a k-dimensional rational linear subspace of Rd+1

(k ∈ {0, . . . , d − 1}). A k-parameter family corresponds to simplices
projecting to a particular configuration A of d + 1 points in Rk such that
conv(A) is hollow but does not project to dimension < d − k.
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Proof of Theorem 3

The list in the statement corresponds to empty 4-simplices projectiong to
lower dimensional hollow polytopes:

Simplices projecting to dim 1 (that is, of width one) can a priori
project in two ways: “4 + 1” or “3 + 2”. But the classification of
3-dimensional empty simplices implies that the former is a special
case of the latter. Affine dependences in the latter are parametrized
by (a,−a, b, c ,−b − c) (the 3-parameter family of MMM).

A lattice 4-simplex ∆ projecting to dim 2 must project to the
second dilation of a unimodular triangle. For ∆ to be empty one
needs the vertices to project to one of the following configurations:

projection:

aff. dependence: (a,−2a, b,−2b, a + b) (a,−2a, b,−2b, a + b)
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Proof of Theorem 3 (cont.)

Lattice 4-simplices projecting to dim. 3 can be exhaustively
described via the (finite) classification of hollow 3-polytopes with at
most 5 vertices and not projecting to dim two (Averkov et al. 2016).

To narrow the search we use that, of the three types of 3-polytopes
with ≤ 5 vertices (tetrahedron, sq. pyramid, triang. bipyramid) only
the latter can possibly produce infinitely many hollow 4-dimensional
lifts (Blanco-Haase-Hofmann-S. 2016).

In this way we recover the 29 quintuples of Mori-Morrison-Morrison
1988, plus 23 additional “non-primitive quintuples”.
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The 29 quintuples

Q{(9, 1,−2,−3,−5)}
Q{(9, 2,−1,−4,−6)}
Q{(12, 3,−4,−5,−6)}
Q{(12, 2,−3,−4,−7)}
Q{(9, 4,−2,−3,−8)}
Q{(12, 1,−2,−3,−8)}
Q{(12, 3,−1,−6,−8)}
Q{(15, 4,−5,−6,−8)}
Q{(12, 2,−1,−4,−9)}
Q{(10, 6,−2,−5,−9)}
Q{(15, 1,−2,−5,−9)}
Q{(12, 5,−3,−4,−10)}
Q{(15, 2,−3,−4,−10)}
Q{(6, 4, 3,−1,−12)}

Q{(7, 5, 3,−1,−14)}
Q{(9, 7, 1,−3,−14)}
Q{(15, 7,−3,−5,−14)}
Q{(8, 5, 3,−1,−15)}
Q{(10, 6, 1,−2,−15)}
Q{(12, 5, 2,−4,−15)}
Q{(9, 6, 4,−1,−18)}
Q{(9, 6, 5,−2,−18)}
Q{(12, 9, 1,−4,−18)}
Q{(10, 7, 4,−1,−20)}
Q{(10, 8, 3,−1,−20)}
Q{(10, 9, 4,−3,−20)}
Q{(12, 10, 1,−3,−20)}
Q{(12, 8, 5,−1,−24)}
Q{(15, 10, 6,−1,−30)}

The 29 quintuples of Mori-Morrison-Morrison. Each represents (the rational

points in) a line through the origin, in the 4-torus R4/L(∆).

31



Flatness Lattice polytopes Empty 4-simplices: 1) volume 3) infinite families 2) enumeration

The 23 “non-primitive quintuples”

(0, 0, 1
2
, 1

2
, 0) + Q{(6,−2,−12, 4, 4)}

( 1
2
, 0, 0, 0, 1

2
) + Q{(8,−6, 2,−8, 4)}

(0, 0, 1
2
, 0, 1

2
) + Q{(8,−4,−12, 6, 2)}

( 1
2
, 0, 0, 0, 1

2
) + Q{(4, 6,−2,−16, 8)}

(0, 1
2
, 1

2
, 0, 0) + Q{(2,−12, 4, 12,−6)}

( 1
2
, 0, 1

2
, 0, 0) + Q{(12,−16, 8,−6, 2)}

(0, 1
2
, 0, 0, 1

2
) + Q{(2, 12,−8,−12, 6)}

( 1
2
, 0, 0, 0, 1

2
) + Q{(8, 6,−2,−24, 12)}

(0, 1
2
, 0, 0, 1

2
) + Q{(6,−2, 8,−24, 12)}

( 1
2
, 1

4
, 1

4
, 0, 0) + Q{(12,−12, 4,−8, 4)}

(0, 1
4
, 1

4
, 0, 1

2
) + Q{(4, 8,−4,−16, 8)}

(0, 0, 1
4
, 1

2
, 1

4
) + Q{(4,−16, 4, 16,−8)}

(0 1
4
, 1

4
, 0, 1

2
) + Q{(4, 12,−4,−24, 12)}

(0, 0, 2
3
, 1

3
, 0) + Q{(−9, 6, 3, 3,−3)}

( 1
3
, 0, 2

3
, 0, 0) + Q{(9,−9, 3,−6, 3)}

(0, 0, 1
3
, 2

3
, 0) + Q{(−9, 3, 6, 6,−6)}

(0, 0, 1
3
, 2

3
, 0) + Q{(12,−6,−12, 3, 3)}

( 1
3
, 0, 2

3
, 0, 0) + Q{(9,−18, 6, 6,−3)}

( 1
3
, 0, 2

3
, 0, 0) + Q{(12,−18, 3, 6,−3)}

( 1
3
, 0, 2

3
, 0, 0) + Q{(12,−9, 3,−12, 6)}

( 1
3
, 0, 2

3
, 0, 0) + Q{(6,−3, 6,−18, 9)}

(0, 0, 1
3
, 1

3
, 1

3
) + Q{(3,−18, 6, 18,−9)}

( 1
6
, 0, 0, 2

3
, 1

6
) + Q{(6,−18, 6, 12,−6)}

The 23 non-primitive quintuples. Each represents (the rational points in) a line
in R4/Λ(∆) not passing through the origin.
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Theorem 2 (enumeration)

Theorem 2 (Iglesias-S., 2017+)

With determinant ≤ 7600 there are 2461 empty 4-simplices that do not
project to hollow 3-polytopes. Their determinants range from 24 to 419.

The proof is via an exhaustive computer enumeration.

Note: It is easy to prove (by induction on the dimension) that there are finitely
many lattice polytopes of a given dimension d and with normalized volume
bounded by D, for every d ,D ∈ N (e.g., Lagarias-Ziegler, 1991).

The algorithm implicit in the general proof is impracticable, but for the case of

simplices another methods can be used.
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Enumeration algorithms

To enumerate all empty 4-simplices of a given volume D we use one of
two algorithms:

Algorithm 1: If D has less than 5 prime factors, then every empty
4-simplex ∆ of volume D has a unimodular facet (because ∆ is

cyclic, by Barile et al. 2011, which implies the volumes of facets are
relatively prime). Thus, ∆ is equivalent to

conv{e1, e2, e3, e4, v},
for some v = (v1, v2, v3, v4) ∈ Z4 with

∑
vi = D + 1. Moreover, v

needs only to be considered modulo D, which gives a priori D3

possibilities.

Algorithm 2: If D has at least 2 prime factors, then we can
decompose D = pq with p and q relatively prime. Every 4-simplex
∆D of volume D can be obtained by “merging” simplices ∆p and
∆q of volumes p and q.
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Computational performance data

More than 10000 hours of computation have been used.

Algorithm 2 is much slower than Algorithm 1 if p << q, and slightly
faster than Algorithm 1 if p ' q.

Computation time (seconds) for the list of all
empty lattice 4-simplices of a given volume
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The “finitely many exceptions”

The enumeration gives us the 2461 empty 4-simplices that do not belong
to the infinite families of Theorem 3. Their determinants range from 24
to 419.

Those of width ≥ 3 coincide with the list computed by Haase and Ziegler
(2000): there are 178 of width three (with determinants in [49, 179] and
exactly one of width 4 (with determinant 101 and quintuple
(−1, 6, 14, 17, 65)).
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Nbr. of sporadic 4-simplices (part 1 of 2)

V = 24 : 1

V = 27 : 1

V = 29 : 3

V = 30 : 2

V = 31 : 2

V = 32 : 3

V = 33 : 4

V = 34 : 5

V = 35 : 3

V = 37 : 6

V = 38 : 8

V = 39 : 9

V = 40 : 1

V = 41 : 14

V = 42 : 5

V = 43 : 20

V = 44 : 8

V = 45 : 6

V = 46 : 7

V = 47 : 30

V = 48 : 5

V = 49 : 17

V = 50 : 8

V = 51 : 16

V = 52 : 6

V = 53 : 38

V = 54 : 11

V = 55 : 20

V = 56 : 3

V = 57 : 16

V = 58 : 13

V = 59 : 51

V = 60 : 4

V = 61 : 38

V = 62 : 26

V = 63 : 17

V = 64 : 9

V = 65 : 27

V = 66 : 3

V = 67 : 41

V = 68 : 13

V = 69 : 26

V = 70 : 4

V = 71 : 50

V = 72 : 3

V = 73 : 44

V = 74 : 18

V = 75 : 22

V = 76 : 14

V = 77 : 19

V = 78 : 3

V = 79 : 55

V = 80 : 7

V = 81 : 18

V = 82 : 13

V = 83 : 60

V = 84 : 7

V = 85 : 27

V = 86 : 11

V = 87 : 24

V = 88 : 5

V = 89 : 55

V = 90 : 6

V = 91 : 18

V = 92 : 9

V = 93 : 17

V = 94 : 12

V = 95 : 35

V = 96 : 3

V = 97 : 46

V = 98 : 9

V = 99 : 13

V = 100 : 8

V = 101 : 41

V = 102 : 3

V = 103 : 51

V = 104 : 8

V = 105 : 7

V = 106 : 8

V = 107 : 54

V = 108 : 5

V = 109 : 44

V = 110 : 5

V = 111 : 13

V = 112 : 2

V = 113 : 40

V = 114 : 4

V = 115 : 21

V = 116 : 11

V = 117 : 10

V = 118 : 9

V = 119 : 22

V = 120 : 3

V = 121 : 18

V = 122 : 9

V = 123 : 17

V = 124 : 8

V = 125 : 25

V = 127 : 24

V = 128 : 9

V = 129 : 17

V = 130 : 2

V = 131 : 29

V = 132 : 5

V = 133 : 14

V = 134 : 8

V = 135 : 6

V = 136 : 6

V = 137 : 28

V = 138 : 2

V = 139 : 37

V = 140 : 5

V = 141 : 6

V = 142 : 9

V = 143 : 13

V = 144 : 1

V = 145 : 14

V = 146 : 5

V = 147 : 10

V = 148 : 7

V = 149 : 26

V = 150 : 2

V = 151 : 19

V = 152 : 6

V = 153 : 9
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Nbr. of sporadic 4-simplices (part 2 of 2)

V = 154 : 3

V = 155 : 12

V = 156 : 2

V = 157 : 11

V = 158 : 10

V = 159 : 9

V = 160 : 3

V = 161 : 13

V = 163 : 17

V = 164 : 6

V = 165 : 1

V = 166 : 7

V = 167 : 18

V = 168 : 3

V = 169 : 13

V = 170 : 2

V = 171 : 6

V = 172 : 3

V = 173 : 15

V = 174 : 3

V = 175 : 8

V = 176 : 4

V = 177 : 5

V = 178 : 2

V = 179 : 21

V = 180 : 1

V = 181 : 13

V = 182 : 5

V = 183 : 5

V = 184 : 5

V = 185 : 7

V = 186 : 2

V = 187 : 7

V = 188 : 5

V = 189 : 2

V = 190 : 2

V = 191 : 8

V = 192 : 1

V = 193 : 12

V = 194 : 3

V = 196 : 4

V = 197 : 13

V = 199 : 11

V = 200 : 4

V = 201 : 3

V = 202 : 2

V = 203 : 7

V = 204 : 1

V = 205 : 4

V = 206 : 4

V = 207 : 2

V = 208 : 1

V = 209 : 10

V = 211 : 4

V = 212 : 2

V = 213 : 3

V = 214 : 2

V = 215 : 5

V = 216 : 1

V = 218 : 5

V = 219 : 4

V = 220 : 1

V = 221 : 3

V = 222 : 1

V = 223 : 7

V = 225 : 2

V = 226 : 4

V = 227 : 9

V = 229 : 6

V = 230 : 3

V = 232 : 1

V = 233 : 9

V = 234 : 1

V = 235 : 3

V = 237 : 1

V = 238 : 2

V = 239 : 3

V = 241 : 6

V = 244 : 2

V = 245 : 3

V = 247 : 3

V = 248 : 3

V = 249 : 2

V = 250 : 1

V = 251 : 5

V = 254 : 1

V = 256 : 2

V = 257 : 3

V = 259 : 2

V = 261 : 1

V = 263 : 7

V = 265 : 1

V = 267 : 1

V = 268 : 1

V = 269 : 2

V = 271 : 4

V = 272 : 1

V = 274 : 1

V = 275 : 1

V = 278 : 2

V = 283 : 2

V = 287 : 1

V = 289 : 4

V = 290 : 1

V = 291 : 1

V = 292 : 1

V = 293 : 5

V = 299 : 2

V = 304 : 1

V = 308 : 1

V = 310 : 1

V = 311 : 1

V = 313 : 1

V = 314 : 1
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Nbr. of sporadic t.q.s. of prime volume (MMM vs. us)

���� 6+,*()80,� 025,�� '$9,'� 5�� 0255,621�� $1'� ,$1�0255,621

������ S��� ������ WKH� RQO\� WHUPLQDO� TXRWLHQW� VLQJXODULWLHV� IRXQG� DUH� WKRVH� SUHGLFWHG
E\�&RQMHFWXUH� ����

&RXOG� WKHUH� SRVVLEO\� EH� PRUH� VWDEOH� TXLQWXSOHV"� %\� &RUROODU\� ���� DQG� 3URSR�
VLWLRQ� ������ LI�4� LV� D� VWDEOH� TXLQWXSOH� ZKLFK� LV� QRW� DQ� LQWHJUDO� PXOWLSOH� RI� RQH� RI
WKRVH� LQ� ������� DQG� LI�S� !� PD[^�J��04`�� WKHQ� WKH� DVVRFLDWHG� S�VLQJXODULWLHV� RI� 4
D[H�WHUPLQDO� EXW� DUH� QRW� DVVRFLDWHG� ZLWK� DQ\� TXLQWXSOH� RQ� RXU� OLVW� ������� 7KXV�� RXU
FRPSXWDWLRQV� LPSO\� WKDW� DQ\� QHZ� VWDEOH� TXLQWXSOH� PXVW� KDYH� ,T� DW� OHDVW� ����� RU
0T� DW� OHDVW� ����� 2Q� WKH� RWKHU� KDQG�� WKH� ODUJHVW� YDOXH� RI� ,T� IRU� WKH� ��� TXLQWXSOHV
4�LQ�7DEOH�����LV�����IRU�4� � ��������������� DQG�4� � ������������������ DQG
WKH� ODUJHVW� YDOXH�RI�0T� LV����

2XU� IDLWK� LQ� WKH� FRQMHFWXUH� UHIOHFWV� RXU� EHOLHI� WKDW� WKHVH� SKHQRPHQD� UHSUHVHQW� D
JHQHUDO� SDWWHUQ� IRU� ODUJH� SULPHV�� :H� ILQG� LW� KDUG� WR� LPDJLQH� WKDW� QHZ� VSRUDGLF� VLQ�
JXODULWLHV� RU� VWDEOH� TXLQWXSOHV� ZLOO�DSSHDU� DIWHU� VXFK� D� ORQJ� SHULRG� RI�SUHGLFWDELOLW\�

7$%/(�����

S� 6S���������S� 6S���������S� 6S� S� 6S
�� �� ��� ���� ���� ���� ���� ��
�� �� ��� ���� ���� ��� ���� ��
�� �� ��� ���� ���� ��� ���� �
�� �� ��� ���� ���� ��� ���� �
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��� �� ���� ���� ���� ��� ���� �
��� ��� ���� ���� ���� ��� ���� �
��� ��� ���� ���� ���� ��� ���� �
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��� ��� ���� ���� ���� ��� ���� �
��� ��� ���� ���� ���� ��� ���� �
��� ��� ���� ���� ���� ��� ���� �
��� ���� ���� ���� ���� ��� ���� �
��� ���� ���� ���� ���� ��� ���� �
��� ���� ���� ��� ���� ��� ���� �
��� ���� ���� ��� ���� ��� ���� �
��� ���� ���� ��� ���� ��� ���� �
��� ���� ���� ��� ���� �� ���� �
��� ���� ���� ��� ���� �� ���� �

��� $QWLFDQRQLFDO� 'LYLVRUV� DQG� $QWLELFDQRQLFDO� &RYHUV�� ,Q� WKLV� VHFWLRQ� ZH
LQGLFDWH� KRZ� WKH� WHFKQLTXHV� RI�WRULF� JHRPHWU\� FDQ� EH� XVHG� WR� GHFLGH� ZKHWKHU� D�JLYHQ
WHUPLQDO� TXRWLHQW� VLQJXODULW\� KDV� HLWKHU� RI� WKH� WZR� LPSRUWDQW� SURSHUWLHV� GHVFULEHG
LQ� WKH� LQWURGXFWLRQ�� ZKHWKHU� LWV� JHQHUDO� DQWLFDQRQLFDO� GLYLVRU� KDV� RQO\� FDQRQLFDO
VLQJXODULWLHV�� DQG� ZKHWKHU� WKH� GRXEOH� FRYHU� EUDQFKHG� RQ� WKH� JHQHUDO� DQWLELFDQRQLFDO
GLYLVRU� RI� WKH� TXRWLHQW� VLQJXODULW\� KDV� RQO\� FDQRQLFDO� VLQJXODULWLHV�� :H� ZLOO� QRW
FRPSOHWHO\� VHWWOH� WKH� TXHVWLRQ� IRU� DQWLFDQRQLFDO� GLYLVRUV�� FRQWHQWLQJ� RXUVHOYHV� ZLWK
JLYLQJ� DQ� LQILQLWH� QXPEHU� RI� H[DPSOHV� IRU� HDFK� DOWHUQDWLYH� �VHH� ([DPSOHV� ���� DQG
������ �:H� ZLOO� EH� PRUH� FRQFHUQHG� ZLWK� ZKHWKHU� HDFK� WHUPLQDO� TXRWLHQW� VLQJXODULW\
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V = 59 : 255
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V = 67 : 205

V = 71 : 250

V = 73 : 220
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Thank you for your attention

http://personales.unican.es/santosf
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