Hollow lattice polytopes and convex geometry

Francisco Santos
(mostly joint with O. Iglesias-Valiño)
U. de Cantabria, visiting Freie U. Berlin

New perspectives in convex geometry, CIEM — Sept 6-7, 2018

Width

K a convex body in $\mathbb{R}^{d} ; \quad \mathbb{Z}^{d} \cong \Lambda \subset \mathbb{R}^{d}$ a lattice.

Width

K a convex body in $\mathbb{R}^{d} ; \quad \mathbb{Z}^{d} \cong \Lambda \subset \mathbb{R}^{d}$ a lattice.

Definition

- The width of K w.r.t. a functional $f \in\left(\mathbb{R}^{d}\right)^{*}$ is $\max _{p \in K} f(p)-\min _{p \in K} f(p)$.

Width

K a convex body in $\mathbb{R}^{d} ; \quad \mathbb{Z}^{d} \cong \Lambda \subset \mathbb{R}^{d}$ a lattice.

Definition

- The width of K w.r.t. a functional $f \in\left(\mathbb{R}^{d}\right)^{*}$ is $\max _{p \in K} f(p)-\min _{p \in K} f(p)$. (Equivalently, it is the length of $f(K)$).

Width

K a convex body in $\mathbb{R}^{d} ; \quad \mathbb{Z}^{d} \cong \Lambda \subset \mathbb{R}^{d}$ a lattice.

Definition

- The width of K w.r.t. a functional $f \in\left(\mathbb{R}^{d}\right)^{*}$ is $\max _{p \in K} f(p)-\min _{p \in K} f(p)$. (Equivalently, it is the length of $f(K)$).
- The (lattice) width of K is the minimum with w.r.t. functionals in $\Lambda^{*} \backslash 0$. We denote it width ${ }_{\wedge}(K)$.

Width

K a convex body in $\mathbb{R}^{d} ; \quad \mathbb{Z}^{d} \cong \Lambda \subset \mathbb{R}^{d}$ a lattice.

Definition

- The width of K w.r.t. a functional $f \in\left(\mathbb{R}^{d}\right)^{*}$ is $\max _{p \in K} f(p)-\min _{p \in K} f(p)$. (Equivalently, it is the length of $f(K)$).
- The (lattice) width of K is the minimum with w.r.t. functionals in $\Lambda^{*} \backslash 0$. We denote it width $\wedge_{\wedge}(K)$.

Remark: width $_{\wedge}(K)=\min$. length of a 1-dim lattice projection of K.

Width: 2
Width: 1
마 Width: 5_{2}

Width

K a convex body in $\mathbb{R}^{d} ; \quad \mathbb{Z}^{d} \cong \Lambda \subset \mathbb{R}^{d}$ a lattice.

Definition

- The width of K w.r.t. a functional $f \in\left(\mathbb{R}^{d}\right)^{*}$ is $\max _{p \in K} f(p)-\min _{p \in K} f(p)$. (Equivalently, it is the length of $f(K)$).
- The (lattice) width of K is the minimum with w.r.t. functionals in $\Lambda^{*} \backslash 0$. We denote it width $\wedge_{\wedge}(K)$.

Remark: width $_{\wedge}(K)=\min$. length of a 1-dim lattice projection of K.

Width: 2

Width: 1

ㅁ. Width: $=2$

Width

K a convex body in $\mathbb{R}^{d} ; \quad \mathbb{Z}^{d} \cong \Lambda \subset \mathbb{R}^{d}$ a lattice.

Definition

- The width of K w.r.t. a functional $f \in\left(\mathbb{R}^{d}\right)^{*}$ is $\max _{p \in K} f(p)-\min _{p \in K} f(p)$. (Equivalently, it is the length of $f(K)$).
- The (lattice) width of K is the minimum with w.r.t. functionals in $\Lambda^{*} \backslash 0$. We denote it width $\wedge_{\wedge}(K)$.

Remark: width $_{\wedge}(K)=\min$. length of a 1-dim lattice projection of K.

Width: 2
Width: 1
(ㅁ) Width: $=2$

Width

K a convex body in $\mathbb{R}^{d} ; \quad \mathbb{Z}^{d} \cong \Lambda \subset \mathbb{R}^{d}$ a lattice.

Definition

- The width of K w.r.t. a functional $f \in\left(\mathbb{R}^{d}\right)^{*}$ is $\max _{p \in K} f(p)-\min _{p \in K} f(p)$. (Equivalently, it is the length of $f(K)$).
- The (lattice) width of K is the minimum with w.r.t. functionals in $\Lambda^{*} \backslash 0$. We denote it width $\wedge_{\wedge}(K)$.

Remark: width $_{\wedge}(K)=\min$. length of a 1-dim lattice projection of K.

Width: 2
Width: 1
(ㅁ. Width: $=2$

Width

K a convex body in $\mathbb{R}^{d} ; \quad \mathbb{Z}^{d} \cong \Lambda \subset \mathbb{R}^{d}$ a lattice.

Definition

- The width of K w.r.t. a functional $f \in\left(\mathbb{R}^{d}\right)^{*}$ is $\max _{p \in K} f(p)-\min _{p \in K} f(p)$. (Equivalently, it is the length of $f(K)$).
- The (lattice) width of K is the minimum with w.r.t. functionals in $\Lambda^{*} \backslash 0$. We denote it width $\wedge_{\wedge}(K)$.

Remark: width $_{\wedge}(K)=\min$. length of a 1-dim lattice projection of K.

Width: 2

Width: 1
마 Width: $=2$

Width

K a convex body in $\mathbb{R}^{d} ; \quad \mathbb{Z}^{d} \cong \Lambda \subset \mathbb{R}^{d}$ a lattice.

Definition

- The width of K w.r.t. a functional $f \in\left(\mathbb{R}^{d}\right)^{*}$ is $\max _{p \in K} f(p)-\min _{p \in K} f(p)$. (Equivalently, it is the length of $f(K)$).
- The (lattice) width of K is the minimum with w.r.t. functionals in $\Lambda^{*} \backslash 0$. We denote it width $\wedge_{\wedge}(K)$.

Remark: width $_{\wedge}(K)=\min$. length of a 1-dim lattice projection of K.

Width: 2

Width

K a convex body in $\mathbb{R}^{d} ; \quad \mathbb{Z}^{d} \cong \Lambda \subset \mathbb{R}^{d}$ a lattice.

Definition

- The width of K w.r.t. a functional $f \in\left(\mathbb{R}^{d}\right)^{*}$ is $\max _{p \in K} f(p)-\min _{p \in K} f(p)$. (Equivalently, it is the length of $f(K)$).
- The (lattice) width of K is the minimum with w.r.t. functionals in $\Lambda^{*} \backslash 0$. We denote it width $\wedge_{\wedge}(K)$.

Remark: width $_{\wedge}(K)=\min$. length of a 1-dim lattice projection of K.

Width: 2

Width: 1
마 Width: $=2$

Width

K a convex body in $\mathbb{R}^{d} ; \quad \mathbb{Z}^{d} \cong \Lambda \subset \mathbb{R}^{d}$ a lattice.

Definition

- The width of K w.r.t. a functional $f \in\left(\mathbb{R}^{d}\right)^{*}$ is $\max _{p \in K} f(p)-\min _{p \in K} f(p)$. (Equivalently, it is the length of $f(K)$).
- The (lattice) width of K is the minimum with w.r.t. functionals in $\Lambda^{*} \backslash 0$. We denote it width $\wedge_{\wedge}(K)$.

Remark: width $_{\wedge}(K)=\min$. length of a 1-dim lattice projection of K.

Width: 2

Width: 1

ㅁ. Width: $=2$

Width

K a convex body in $\mathbb{R}^{d} ; \quad \mathbb{Z}^{d} \cong \Lambda \subset \mathbb{R}^{d}$ a lattice.

Definition

- The width of K w.r.t. a functional $f \in\left(\mathbb{R}^{d}\right)^{*}$ is $\max _{p \in K} f(p)-\min _{p \in K} f(p)$. (Equivalently, it is the length of $f(K)$).
- The (lattice) width of K is the minimum with w.r.t. functionals in $\Lambda^{*} \backslash 0$. We denote it width $\wedge_{\wedge}(K)$.

Remark: width $_{\wedge}(K)=\min$. length of a 1-dim lattice projection of K.

Width: 2

Width: 1

ㅁ. Width: ${ }^{2}$

Flatness Theorem

K is lattice-free if $\operatorname{int}(K) \cap \Lambda=\emptyset$
Theorem (Flatness Theorem)
For each dimension d,

$$
W_{d}:=\sup _{K \text { lattice-free }} \text { width }_{\wedge}(K)<\infty .
$$

Flatness Theorem

K is lattice-free if $\operatorname{int}(K) \cap \Lambda=\emptyset$
Theorem (Flatness Theorem)
For each dimension d,

$$
W_{d}:=\sup _{K \text { lattice-free }} \text { width }_{\wedge}(K)<\infty .
$$

Known values: $W_{1}=1, W_{2}=1+3 / \sqrt{2} \simeq 2.1547$ (Hurkens 1990)

Flatness History

- Khinchine 1948: $W_{d} \leq O(d!)$

Flatness History

- Khinchine 1948: $W_{d} \leq O(d!)$
- Lenstra 1983: $W_{d} \in 2^{O\left(d^{2}\right)}+$ poly-time algorithm.

Flatness History

- Khinchine 1948: $W_{d} \leq O(d!)$
- Lenstra 1983: $W_{d} \in 2^{O\left(d^{2}\right)}+$ poly-time algorithm.
- Hastad 1986: $W_{d} \in O\left(d^{5 / 2}\right)$.

Flatness History

- Khinchine 1948: $W_{d} \leq O(d!)$
- Lenstra 1983: $W_{d} \in 2^{O\left(d^{2}\right)}+$ poly-time algorithm.
- Hastad 1986: $W_{d} \in O\left(d^{5 / 2}\right)$.
- Kannan-Lovász 1988: $W_{d} \in O\left(d^{2}\right)$. NICE PROOF. Def of covering minima.

Flatness History

- Khinchine 1948: $W_{d} \leq O(d!)$
- Lenstra 1983: $W_{d} \in 2^{O\left(d^{2}\right)}+$ poly-time algorithm.
- Hastad 1986: $W_{d} \in O\left(d^{5 / 2}\right)$.
- Kannan-Lovász 1988: $W_{d} \in O\left(d^{2}\right)$. NICE PROOF. Def of covering minima.
- Banaszczyk-Litvak-Pajor-Szarek 1999, $W_{d} \in O\left(d^{3 / 2}\right)$.

Flatness History

- Khinchine 1948: $W_{d} \leq O(d!)$
- Lenstra 1983: $W_{d} \in 2^{O\left(d^{2}\right)}+$ poly-time algorithm.
- Hastad 1986: $W_{d} \in O\left(d^{5 / 2}\right)$.
- Kannan-Lovász 1988: $W_{d} \in O\left(d^{2}\right)$. NICE PROOF. Def of covering minima.
- Banaszczyk-Litvak-Pajor-Szarek 1999, $W_{d} \in O\left(d^{3 / 2}\right)$. Also, $W_{d} \in O\left(d \log \min \left(f_{0}, f_{d-1}\right)\right)$ for lattice-free polytopes with at most f_{0} vertices and f_{d-1} facets. In particular, $O(d \log d)$ for simplices.

Flatness History

- Khinchine 1948: $W_{d} \leq O(d!)$
- Lenstra 1983: $W_{d} \in 2^{O\left(d^{2}\right)}+$ poly-time algorithm.
- Hastad 1986: $W_{d} \in O\left(d^{5 / 2}\right)$.
- Kannan-Lovász 1988: $W_{d} \in O\left(d^{2}\right)$. NICE PROOF. Def of covering minima.
- Banaszczyk-Litvak-Pajor-Szarek 1999, $W_{d} \in O\left(d^{3 / 2}\right)$. Also, $W_{d} \in O\left(d \log \min \left(f_{0}, f_{d-1}\right)\right)$ for lattice-free polytopes with at most f_{0} vertices and f_{d-1} facets. In particular, $O(d \log d)$ for simplices.
- Rudelson $2000 W_{d} \in O\left(d^{4 / 3} \log ^{9} d\right)$

Flatness History

- Khinchine 1948: $W_{d} \leq O(d!)$
- Lenstra 1983: $W_{d} \in 2^{O\left(d^{2}\right)}+$ poly-time algorithm.
- Hastad 1986: $W_{d} \in O\left(d^{5 / 2}\right)$.
- Kannan-Lovász 1988: $W_{d} \in O\left(d^{2}\right)$. NICE PROOF. Def of covering minima.
- Banaszczyk-Litvak-Pajor-Szarek 1999, $W_{d} \in O\left(d^{3 / 2}\right)$. Also, $W_{d} \in O\left(d \log \min \left(f_{0}, f_{d-1}\right)\right)$ for lattice-free polytopes with at most f_{0} vertices and f_{d-1} facets. In particular, $O(d \log d)$ for simplices.
- Rudelson $2000 W_{d} \in O\left(d^{4 / 3} \log ^{9} d\right)$

Current "guess": $W_{d} \in O(d)$ (perhaps modulo poly-log factors).

Flatness lower bounds

- $W_{d} \geq d$ is trivial (d-th dilation of unimodular simplex is lattice-free).

Flatness lower bounds

- $W_{d} \geq d$ is trivial (d-th dilation of unimodular simplex is lattice-free).
- $W_{2}=1+2 / \sqrt{3}=2.1547 \ldots$ (Hurkens 1990).

Flatness lower bounds

- $W_{d} \geq d$ is trivial (d-th dilation of unimodular simplex is lattice-free).
- $W_{2}=1+2 / \sqrt{3}=2.1547 \ldots$ (Hurkens 1990).
- $W_{d_{1}+d_{2}} \geq W_{d_{1}}+W_{d_{2}}$, via a direct sum argument (Codenotti-Santos?).

Flatness lower bounds

- $W_{d} \geq d$ is trivial (d-th dilation of unimodular simplex is lattice-free).
- $W_{2}=1+2 / \sqrt{3}=2.1547 \ldots$ (Hurkens 1990).
- $W_{d_{1}+d_{2}} \geq W_{d_{1}}+W_{d_{2}}$, via a direct sum argument (Codenotti-Santos?).

The last remark has the following consequences:
Corollary
$\lim _{d \rightarrow \infty} \frac{W_{d}}{d}=\sup _{d} \frac{W_{d}}{d} \geq 1.077 \ldots$

Flatness lower bounds

- $W_{d} \geq d$ is trivial (d-th dilation of unimodular simplex is lattice-free).
- $W_{2}=1+2 / \sqrt{3}=2.1547 \ldots$ (Hurkens 1990).
- $W_{d_{1}+d_{2}} \geq W_{d_{1}}+W_{d_{2}}$, via a direct sum argument (Codenotti-Santos?).

The last remark has the following consequences:

Corollary

$\lim _{d \rightarrow \infty} \frac{W_{d}}{d}=\sup _{d} \frac{W_{d}}{d} \geq 1.077 \ldots$
Moreover, the limit is the same if restricted to lattice polytopes instead of arbitrary convex bodies.

Width vs. volume, dim 2

Related to the flatness theorem is the fact that lattice-free $(d+1)$-bodies of width larger than W_{d} must have bounded volume.

Width vs. volume, dim 2

Related to the flatness theorem is the fact that lattice-free $(d+1)$-bodies of width larger than W_{d} must have bounded volume.

Theorem (Averkov-Wagner 2012)
Let K be a lattice-free convex 2-body with $w>1$.

Width vs. volume, dim 2

Related to the flatness theorem is the fact that lattice-free $(d+1)$-bodies of width larger than W_{d} must have bounded volume.

Theorem (Averkov-Wagner 2012)
Let K be a lattice-free convex 2-body with $w>1$. Then

$$
\operatorname{vol}(K) \leq \begin{cases}\frac{w^{2}}{2(w-1)} & \text { for } w \in(1,2] \\ \frac{3 w^{2}}{3 w+1-\sqrt{1+6 w-3 w^{2}}} & \text { for } w \in\left[2,1+\frac{2}{\sqrt{3}}\right]\end{cases}
$$

The bound is attained iff K is as follows, respectively:

Width vs. volume, dim 3

Theorem (IglesiasValiño-Santos, 2018)
Let K be a lattice-free convex 3-body of lattice width $w>1+2 / \sqrt{3}=2.155$. Then,

$$
\operatorname{vol}(K) \leq \begin{cases}\frac{3 w^{3}}{4(w-(1+2 / \sqrt{3}))}, & \text { if } w \leq \frac{2}{\sqrt{3}}(\sqrt{5}-1)+1=2.427 \\ \frac{8 w^{3}}{(w-1)^{3}}, & \text { if } w \geq 2.427\end{cases}
$$

These bound are not attained.

Definition

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

Definition

We now concentrate on lattice polytopes. $P:=$ convex hull of a finite set of points in Λ.

Definition

We now concentrate on lattice polytopes. $P:=$ convex hull of a finite set of points in Λ.

- P is hollow (or lattice-free) if no lattice points in $\operatorname{int}(P)$

Definition

We now concentrate on lattice polytopes. $P:=$ convex hull of a finite set of points in Λ.

- P is hollow (or lattice-free) if no lattice points in $\operatorname{int}(P)$

Definition

We now concentrate on lattice polytopes. $P:=$ convex hull of a finite set of points in Λ.

- P is hollow (or lattice-free) if no lattice points in $\operatorname{int}(P)$

- P is empty if no lattice points in P apart of its vertices.

Definition

We now concentrate on lattice polytopes. $P:=$ convex hull of a finite set of points in Λ.

- P is hollow (or lattice-free) if no lattice points in $\operatorname{int}(P)$
- P is empty if
no lattice points in P apart of its vertices.
E.g.: empty d-simplex \Leftrightarrow lattice d-polytope with exacty $d+1$ lattice points.

Goal and motivation

We would like to understand better (and hopefully, classify exhaustively) hollow polytopes and, especially, empty simplices.

Goal and motivation

We would like to understand better (and hopefully, classify exhaustively) hollow polytopes and, especially, empty simplices.

- They are the building blocks for lattice polytopes; every lattice polytope can be triangulated into empty simplices.

Goal and motivation

We would like to understand better (and hopefully, classify exhaustively) hollow polytopes and, especially, empty simplices.

- They are the building blocks for lattice polytopes; every lattice polytope can be triangulated into empty simplices.
- In particular, sometimes good properties of empty simplices have implications for all lattice polytopes.

Goal and motivation

We would like to understand better (and hopefully, classify exhaustively) hollow polytopes and, especially, empty simplices.

- They are the building blocks for lattice polytopes; every lattice polytope can be triangulated into empty simplices.
- In particular, sometimes good properties of empty simplices have implications for all lattice polytopes.
- They correspond to terminal quotient singularities in the minimal model program.

Goal and motivation

We would like to understand better (and hopefully, classify exhaustively) hollow polytopes and, especially, empty simplices.

- They are the building blocks for lattice polytopes; every lattice polytope can be triangulated into empty simplices.
- In particular, sometimes good properties of empty simplices have implications for all lattice polytopes.
- They correspond to terminal quotient singularities in the minimal model program.

Classifying is meant modulo unimodular equivalence (lattice-preserving affine isomorphism $=G L(d, \mathbb{Z})+$ integer translations $)$.

Goal and motivation

We would like to understand better (and hopefully, classify exhaustively) hollow polytopes and, especially, empty simplices.

- They are the building blocks for lattice polytopes; every lattice polytope can be triangulated into empty simplices.
- In particular, sometimes good properties of empty simplices have implications for all lattice polytopes.
- They correspond to terminal quotient singularities in the minimal model program.

Classifying is meant modulo unimodular equivalence (lattice-preserving affine isomorphism $=G L(d, \mathbb{Z})+$ integer translations $)$.

Remark

Volume, combinatorial type, hollowness, emptyness, width ... are invariant modulo unimodular equivalence.

$1 \neq 2$

- Dimension 1: the only hollow 1-polytope, in particular the only empty 1 -simplex, is the unit segment.

$1 \neq 2$

- Dimension 1: the only hollow 1-polytope, in particular the only empty 1 -simplex, is the unit segment.
- Dimension 2: infinitely many hollow polygons (and triangles), but only one empty triangle, the unimodular one ($: \Leftrightarrow$ vertices are an affine basis for the lattice \Leftrightarrow normalized volume $=1$).

$1 \neq 2$

- Dimension 1: the only hollow 1-polytope, in particular the only empty 1 -simplex, is the unit segment.
- Dimension 2: infinitely many hollow polygons (and triangles), but only one empty triangle, the unimodular one ($: \Leftrightarrow$ vertices are an affine basis for the lattice \Leftrightarrow normalized volume $=1$).

Corollary (Pick's theorem): If P is a lattice polygon with b and i lattice points in its boundary and interior, then area $(P)=\frac{1}{2}(b+2 i-2)$.

$1 \neq 2$

- Dimension 1: the only hollow 1-polytope, in particular the only empty 1 -simplex, is the unit segment.
- Dimension 2: infinitely many hollow polygons (and triangles), but only one empty triangle, the unimodular one ($: \Leftrightarrow$ vertices are an affine basis for the lattice \Leftrightarrow normalized volume $=1$).

Corollary (Pick's theorem): If P is a lattice polygon with b and i lattice points in its boundary and interior, then area $(P)=\frac{1}{2}(b+2 i-2)$.

> Theorem (Classification of hollow
> polygons) The hollow polygons are the polygons of width one and the second dilation of a unimodular triangle.

$1 \neq 2$

- Dimension 1: the only hollow 1-polytope, in particular the only empty 1 -simplex, is the unit segment.
- Dimension 2: infinitely many hollow polygons (and triangles), but only one empty triangle, the unimodular one ($: \Leftrightarrow$ vertices are an affine basis for the lattice \Leftrightarrow normalized volume $=1$).

Corollary (Pick's theorem): If P is a lattice polygon with b and i lattice points in its boundary and interior, then area $(P)=\frac{1}{2}(b+2 i-2)$.

Theorem (Classification of hollow polygons) The hollow polygons are the polygons of width one and the second dilation of a unimodular triangle.

$2 \neq 3$

In dimension 3, there are infinitely many (classes of) empty simplices.

$2 \neq 3$

In dimension 3, there are infinitely many (classes of) empty simplices.

$2 \neq 3$

In dimension 3, there are infinitely many (classes of) empty simplices.

$2 \neq 3$

In dimension 3, there are infinitely many (classes of) empty simplices.

$2 \neq 3$

In dimension 3, there are infinitely many (classes of) empty simplices.

$2 \neq 3$

In dimension 3, there are infinitely many (classes of) empty simplices.

$2 \neq 3$

In dimension 3, there are infinitely many (classes of) empty simplices. Yet, they have a nice and relatively simple classification:

$2 \neq 3$

In dimension 3, there are infinitely many (classes of) empty simplices.
Yet, they have a nice and relatively simple classification:
Theorem (White 1964)
Every empty tetrahedron has width one.

$2 \neq 3$

In dimension 3, there are infinitely many (classes of) empty simplices.
Yet, they have a nice and relatively simple classification:

Theorem (White 1964)

Every empty tetrahedron has width one. Hence it is equivalent to $\Delta(p, q):=$ conv $\{(0,0,0),(1,0,0),(0,0,1),(p, q, 1)\}$, for some $q \in \mathbb{N}, p \in \mathbb{Z}, \operatorname{gcd}(p, q)=1$.

$2 \neq 3$

In dimension 3, there are infinitely many (classes of) empty simplices.
Yet, they have a nice and relatively simple classification:

Theorem (White 1964)

Every empty tetrahedron has width one. Hence it is equivalent to $\Delta(p, q):=$ conv $\{(0,0,0),(1,0,0),(0,0,1),(p, q, 1)\}$, for some $q \in \mathbb{N}, p \in \mathbb{Z}, \operatorname{gcd}(p, q)=1$.

That is:
There are infinitely many empty tetrahedra, but they form a two-parameter family that we can describe completely.

Classification of hollow 3-polytopes

What about hollow 3-polytopes?

Theorem

The whole list of hollow 3-polytopes consists of:
(1) Those of width one.
(2) Those that project to the dilated unimodular triangle.

Classification of hollow 3-polytopes

What about hollow 3-polytopes?

Theorem

The whole list of hollow 3-polytopes consists of:
(1) Those of width one.
(2) Those that project to the dilated unimodular triangle.
(3) An additional finite list (Treutlein 2008)

Classification of hollow 3-polytopes

What about hollow 3-polytopes?

Theorem

The whole list of hollow 3-polytopes consists of:
(1) Those of width one.
(2) Those that project to the dilated unimodular triangle.
(3) An additional finite list (Treutlein 2008) with only twelve maximal elements (Averkov-Krümpelmann-Weltge, 2016): Seven of width two and five of width three.

Classification of hollow 3-polytopes

What about hollow 3-polytopes?

Theorem

The whole list of hollow 3-polytopes consists of:
(1) Those of width one.
(2) Those that project to the dilated unimodular triangle.
(3) An additional finite list (Treutlein 2008) with only twelve maximal elements (Averkov-Krümpelmann-Weltge, 2016): Seven of width two and five of width three.

Remark

The three cases (1), (2) and (3) correspond to what is the minimal dimension of a lattice projection of P that is still hollow.

The maximal hollow 3-polytopes (d'après AKW2016)

Hollow projections of hollow polytopes

Finiteness of the number of hollow 3-polytopes that *do not project* to lower dimensions is a general fact:

Theorem (Nill-Ziegler 2011, also Lawrence 1991)
For each d, all except finitely many hollow d-polytopes (in particular, empty d-simplices) project to hollow polytopes of dimension $<d$.

Hollow projections of hollow polytopes

Finiteness of the number of hollow 3-polytopes that *do not project* to lower dimensions is a general fact:

Theorem (Nill-Ziegler 2011, also Lawrence 1991)
For each d, all except finitely many hollow d-polytopes (in particular, empty d-simplices) project to hollow polytopes of dimension $<d$.
... and this result gives a first step towards a classification of empty (or hollow) d-polytopes. To each hollow (or empty) d-polytope P we assign a number $k \leq d$ and a hollow k-polytope Q such that P projects to Q but Q does not project further.

Hollow projections of hollow polytopes

Finiteness of the number of hollow 3-polytopes that *do not project* to lower dimensions is a general fact:

Theorem (Nill-Ziegler 2011, also Lawrence 1991)
For each d, all except finitely many hollow d-polytopes (in particular, empty d-simplices) project to hollow polytopes of dimension $<d$.
... and this result gives a first step towards a classification of empty (or hollow) d-polytopes. To each hollow (or empty) d-polytope P we assign a number $k \leq d$ and a hollow k-polytope Q such that P projects to Q but Q does not project further. The above theorem says that there are finitely many Q 's for each k, hence for each d.

Hollow projections of hollow polytopes

Finiteness of the number of hollow 3-polytopes that *do not project* to lower dimensions is a general fact:

Theorem (Nill-Ziegler 2011, also Lawrence 1991)

For each d, all except finitely many hollow d-polytopes (in particular, empty d-simplices) project to hollow polytopes of dimension $<d$.
... and this result gives a first step towards a classification of empty (or hollow) d-polytopes. To each hollow (or empty) d-polytope P we assign a number $k \leq d$ and a hollow k-polytope Q such that P projects to Q but Q does not project further. The above theorem says that there are finitely many Q 's for each k, hence for each d.

Examples

P projects to a hollow 1-polytope $\Leftrightarrow P$ has width one.
P projects to a hollow 2-polytope $\Leftrightarrow P$ either has width one or projects to the second dilation of a unimodular triangle.
$3 \neq 4$
In dimension 4, Haase and Ziegler (2000) experimentally found that:

$3 \neq 4$

In dimension 4, Haase and Ziegler (2000) experimentally found that:

- There are infinitely many empty 4 -simplices of width two (e. g., $\operatorname{conv}\left(e_{1}, \ldots, e_{4}, v\right)$, where $v=(2,2,3, D-6)$ and $\left.\operatorname{gcd}(D, 6)=1\right)$.
- Among the empty 4 -simplices of determinant up to 1000 those of width larger than two have determinant ≤ 179. (There are 178 of width three plus one of width 4 and determinant 101).

$3 \neq 4$

In dimension 4, Haase and Ziegler (2000) experimentally found that:

- There are infinitely many empty 4 -simplices of width two (e. g., $\operatorname{conv}\left(e_{1}, \ldots, e_{4}, v\right)$, where $v=(2,2,3, D-6)$ and $\left.\operatorname{gcd}(D, 6)=1\right)$.
- Among the empty 4 -simplices of determinant up to 1000 those of width larger than two have determinant ≤ 179. (There are 178 of width three plus one of width 4 and determinant 101).

Conjecture (H-Z, 2000)
These 179 are the only empty 4 -simplices of width >2.

$3 \neq 4$

In dimension 4, Haase and Ziegler (2000) experimentally found that:

- There are infinitely many empty 4 -simplices of width two (e. g., $\operatorname{conv}\left(e_{1}, \ldots, e_{4}, v\right)$, where $v=(2,2,3, D-6)$ and $\left.\operatorname{gcd}(D, 6)=1\right)$.
- Among the empty 4 -simplices of determinant up to 1000 those of width larger than two have determinant ≤ 179. (There are 178 of width three plus one of width 4 and determinant 101).

Conjecture (H-Z, 2000)
These 179 are the only empty 4 -simplices of width >2.
On the positive side: Every empty 4-simplex is cyclic (Barile et al. 2011).

$3 \neq 4$

In dimension 4, Haase and Ziegler (2000) experimentally found that:

- There are infinitely many empty 4 -simplices of width two (e. g., $\operatorname{conv}\left(e_{1}, \ldots, e_{4}, v\right)$, where $v=(2,2,3, D-6)$ and $\left.\operatorname{gcd}(D, 6)=1\right)$.
- Among the empty 4 -simplices of determinant up to 1000 those of width larger than two have determinant ≤ 179. (There are 178 of width three plus one of width 4 and determinant 101).

Conjecture (H-Z, 2000)
These 179 are the only empty 4 -simplices of width >2.
On the positive side: Every empty 4-simplex is cyclic (Barile et al. 2011). Here, a simplex Δ is called cyclic if the quotient group $\Lambda / L(\Delta)$ is cyclic, where $L(\Delta)$ is the lattice spanned by the vertices of Δ.

$3 \neq 4$

In dimension 4, Haase and Ziegler (2000) experimentally found that:

- There are infinitely many empty 4 -simplices of width two (e. g., $\operatorname{conv}\left(e_{1}, \ldots, e_{4}, v\right)$, where $v=(2,2,3, D-6)$ and $\left.\operatorname{gcd}(D, 6)=1\right)$.
- Among the empty 4 -simplices of determinant up to 1000 those of width larger than two have determinant ≤ 179. (There are 178 of width three plus one of width 4 and determinant 101).

Conjecture (H-Z, 2000)

These 179 are the only empty 4 -simplices of width >2.
On the positive side: Every empty 4-simplex is cyclic (Barile et al. 2011). Here, a simplex Δ is called cyclic if the quotient group $\Lambda / L(\Delta)$ is cyclic, where $L(\Delta)$ is the lattice spanned by the vertices of Δ.
Observe that $\left|\mathbb{Z}^{d} / L(\Delta)\right|$ equals the normalized volume (= the determinant) of Δ.

$3 \neq 4$

In dimension 4, Haase and Ziegler (2000) experimentally found that:

- There are infinitely many empty 4 -simplices of width two (e. g., $\operatorname{conv}\left(e_{1}, \ldots, e_{4}, v\right)$, where $v=(2,2,3, D-6)$ and $\left.\operatorname{gcd}(D, 6)=1\right)$.
- Among the empty 4 -simplices of determinant up to 1000 those of width larger than two have determinant ≤ 179. (There are 178 of width three plus one of width 4 and determinant 101).

Conjecture (H-Z, 2000)

These 179 are the only empty 4 -simplices of width >2.
On the positive side: Every empty 4-simplex is cyclic (Barile et al. 2011). Here, a simplex Δ is called cyclic if the quotient group $\Lambda / L(\Delta)$ is cyclic, where $L(\Delta)$ is the lattice spanned by the vertices of Δ.
Observe that $\left|\mathbb{Z}^{d} / L(\Delta)\right|$ equals the normalized volume (= the determinant) of Δ.
$4 \neq 5$: In dimension ≥ 5 there are non-cyclic empty simplices.

The complete classification of empty 4-simplices (Iglesias-S., 2018+)

The complete classification of empty 4-simplices

 (Iglesias-S., 2018+)Theorem 1 (volume bound)
All empty 4-simplices that do not project to a hollow 3-polytope have determinant ≤ 7600.

The complete classification of empty 4-simplices (Iglesias-S., 2018+)

Theorem 1 (volume bound)
All empty 4-simplices that do not project to a hollow 3-polytope have determinant ≤ 7600.

Theorem 2 (enumeration)

There are 2461 of them. Their determinants range from 24 to 419 . There is one of width 4 (determinant=101), 178 of width three (dets. $\in[49,179]$), and the rest have width two (as predicted by Haase-Ziegler).

The complete classification of empty 4-simplices (Iglesias-S., 2018+)

Theorem 1 (volume bound)

All empty 4-simplices that do not project to a hollow 3-polytope have determinant ≤ 7600.

Theorem 2 (enumeration)

There are 2461 of them. Their determinants range from 24 to 419 . There is one of width 4 (determinant=101), 178 of width three (dets. $\in[49,179]$), and the rest have width two (as predicted by Haase-Ziegler).

Theorem 3 (infinite families)
All empty 4-simplices that project to hollow 3-polytopes belong to $1+3+52$ families with 3,2 and 1 parameters respectively.

The complete classification of empty 4-simplices (Iglesias-S., 2018+)

Theorem 1 (volume bound)

All empty 4-simplices that do not project to a hollow 3-polytope have determinant ≤ 7600.

Theorem 2 (enumeration)

There are 2461 of them. Their determinants range from 24 to 419 . There is one of width 4 (determinant=101), 178 of width three (dets. $\in[49,179]$), and the rest have width two (as predicted by Haase-Ziegler).

Theorem 3 (infinite families)

All empty 4-simplices that project to hollow 3-polytopes belong to $1+3+52$ families with 3,2 and 1 parameters respectively. All of them have width one or two.

Theorem 1

Although we are interested only in empty ones, the first theorem holds for all hollow simplices:

Theorem 1

All hollow 4-simplices that do not project to a hollow 3-polytope have (normalized) volume ≤ 7600.

Theorem 1

Although we are interested only in empty ones, the first theorem holds for all hollow simplices:

Theorem 1

All hollow 4-simplices that do not project to a hollow 3-polytope have (normalized) volume ≤ 7600.

We prove this in two parts:
(1) The case of width at least three.
(2) The case of width two.

Idea of proof for width ≥ 3

Let P be a hollow 4-simplex of width ≥ 3 that does not project to a hollow 3-polytope.

Idea of proof for width ≥ 3

Let P be a hollow 4-simplex of width ≥ 3 that does not project to a hollow 3-polytope.

Consider the lattice projection $\pi: P \rightarrow Q$ along the direction where the rational diameter of P is attained.
Q is not hollow, but still has width ≥ 3.
We call rational diameter $\delta(P)$ of P the maximum length (w.r.t. the lattice) of a rational segment contained in P. It equals $\lambda_{1}^{-1}(P-P)$, where $\lambda_{1}(C) \equiv$ first successive minimum of C.

Idea of proof for width ≥ 3

Let P be a hollow 4-simplex of width ≥ 3 that does not project to a hollow 3-polytope.

Consider the lattice projection $\pi: P \rightarrow Q$ along the direction where the rational diameter of P is attained.
Q is not hollow, but still has width ≥ 3.

We call rational diameter $\delta(P)$ of P the maximum length (w.r.t. the lattice) of a rational segment contained in P. It equals $\lambda_{1}^{-1}(P-P)$, where $\lambda_{1}(C) \equiv$ first successive minimum of C.

Minkowski's first theorem
$\operatorname{Vol}(P) \leq \frac{\operatorname{Vol}(P-P)}{2^{d}} \leq d!\delta(P)^{d}$.

Idea of proof for width ≥ 3

Let P be a hollow 4-simplex of width ≥ 3 that does not project to a hollow 3-polytope.

Consider the lattice projection $\pi: P \rightarrow Q$ along the direction where the rational diameter of P is attained.
Q is not hollow, but still has width ≥ 3.
We call rational diameter $\delta(P)$ of P the maximum length (w.r.t. the lattice) of a rational segment contained in P. It equals $\lambda_{1}^{-1}(P-P)$, where $\lambda_{1}(C) \equiv$ first successive minimum of C.

Minkowski's first theorem
$\operatorname{Vol}(P) \leq \frac{\operatorname{Vol}(P-P)}{2^{d}} \leq d!\delta(P)^{d}$.
If P is a simplex this can be improved to

$$
\operatorname{Vol}(P) \leq \frac{2^{d} d!}{\binom{2 d}{d}} \delta(P)^{d}
$$

Bounding $\operatorname{Vol}(P)$ from $\operatorname{Vol}(Q)$

Lemma

Let $\pi: P \rightarrow Q$ be an integer projection of a hollow d-simplex P onto a non-hollow ($d-1$)-polytope Q. Let:

- $x \in Q$ be the Radon point of the projection.
- δ be the length of $\pi^{-1}(x)$.
- $0<r<1$ be the maximum dilation factor such that $Q_{r}:=x+r(Q-x)$ is hollow.

Then:
(1) $\operatorname{Vol}(P)=\delta \operatorname{Vol}(Q)$.
(2) $\delta^{-1} \geq 1-r$.

Bounding $\operatorname{Vol}(P)$ from $\operatorname{Vol}(Q)$

Lemma

Let $\pi: P \rightarrow Q$ be an integer projection of a hollow d-simplex P onto a non-hollow ($d-1$)-polytope Q. Let:

- $x \in Q$ be the Radon point of the projection.
- δ be the length of $\pi^{-1}(x)$.
- $0<r<1$ be the maximum dilation factor such that $Q_{r}:=x+r(Q-x)$ is hollow.

Then:
(1) $\operatorname{Vol}(P)=\delta \operatorname{Vol}(Q)$.
(2) $\delta^{-1} \geq 1-r$.

- In what follows we project along the direction with $\delta=\operatorname{diameter}(P)$.
- r measures whether Q is "close to hollow" ($r \simeq 1$) or "far from hollow" $(r \simeq 0)$

An upper bound for the volume of empty 4-simplices

Now, suppose that $\pi: P \rightarrow Q$ is the projection along the direction giving the rational diameter of P, so that the δ in the theorem equals the rational diameter of P. We have a dichotomy:

An upper bound for the volume of empty 4-simplices

Now, suppose that $\pi: P \rightarrow Q$ is the projection along the direction giving the rational diameter of P, so that the δ in the theorem equals the rational diameter of P. We have a dichotomy:

- If Q is "far from hollow" then we use Minkowski's inequality $\operatorname{vol}(P-P) \leq 2^{d} \delta^{d}$. Together with $\operatorname{Vol}(P-P)=\binom{2 d}{d} \operatorname{Vol}(P)$ (Rogers-Shephard for a simplex):

$$
\operatorname{Vol}(P)=\frac{\operatorname{Vol}(P-P)}{\binom{8}{4}}=\frac{24 \operatorname{vol}(P-P)}{\binom{8}{4}} \leq \frac{24 \cdot 16}{\binom{8}{4}} \delta^{4}=5.48 \delta^{4} .
$$

An upper bound for the volume of empty 4-simplices

Now, suppose that $\pi: P \rightarrow Q$ is the projection along the direction giving the rational diameter of P, so that the δ in the theorem equals the rational diameter of P. We have a dichotomy:

- If Q is "far from hollow" then we use Minkowski's inequality $\operatorname{vol}(P-P) \leq 2^{d} \delta^{d}$. Together with $\operatorname{Vol}(P-P)=\binom{2 d}{d} \operatorname{Vol}(P)$ (Rogers-Shephard for a simplex):

$$
\operatorname{Vol}(P)=\frac{\operatorname{Vol}(P-P)}{\binom{8}{4}}=\frac{24 \operatorname{vol}(P-P)}{\binom{8}{4}} \leq \frac{24 \cdot 16}{\binom{8}{4}} \delta^{4}=5.48 \delta^{4}
$$

E.g., whenever $r \leq 0.81$ we have $\delta \leq 1 / 0.19$ and

$$
\operatorname{Vol}(P) \leq \frac{5.48}{0.19^{4}}=4210
$$

An upper bound for the volume of empty 4-simplices

Now, suppose that $\pi: P \rightarrow Q$ is the projection along the direction giving the rational diameter of P, so that the δ in the theorem equals the rational diameter of P. We have a dichotomy:

- If Q is "close to hollow" then we use the Lemma:

$$
\operatorname{Vol}(P)=\delta \operatorname{Vol}(Q)=\frac{\delta}{r^{3}} \operatorname{Vol}\left(Q_{r}\right), \quad \text { where }:
$$

An upper bound for the volume of empty 4-simplices

Now, suppose that $\pi: P \rightarrow Q$ is the projection along the direction giving the rational diameter of P, so that the δ in the theorem equals the rational diameter of P. We have a dichotomy:

- If Q is "close to hollow" then we use the Lemma:

$$
\operatorname{Vol}(P)=\delta \operatorname{Vol}(Q)=\frac{\delta}{r^{3}} \operatorname{Vol}\left(Q_{r}\right), \quad \text { where }:
$$

- $\delta \leq 42$ (we skip details).

An upper bound for the volume of empty 4-simplices

Now, suppose that $\pi: P \rightarrow Q$ is the projection along the direction giving the rational diameter of P, so that the δ in the theorem equals the rational diameter of P. We have a dichotomy:

- If Q is "close to hollow" then we use the Lemma:

$$
\operatorname{Vol}(P)=\delta \operatorname{Vol}(Q)=\frac{\delta}{r^{3}} \operatorname{Vol}\left(Q_{r}\right), \quad \text { where }:
$$

- $\delta \leq 42$ (we skip details).
- r is bounded away from 0 (by the previous case we can assume $r \geq .81$).

An upper bound for the volume of empty 4-simplices

Now, suppose that $\pi: P \rightarrow Q$ is the projection along the direction giving the rational diameter of P, so that the δ in the theorem equals the rational diameter of P. We have a dichotomy:

- If Q is "close to hollow" then we use the Lemma:

$$
\operatorname{Vol}(P)=\delta \operatorname{Vol}(Q)=\frac{\delta}{r^{3}} \operatorname{Vol}\left(Q_{r}\right), \quad \text { where }:
$$

- $\delta \leq 42$ (we skip details).
- r is bounded away from 0 (by the previous case we can assume $r \geq .81$).
- Q_{r} is a lattice-free 3-polytope of width at least $3 r \geq 2.43$, which gives an upper bound for $\operatorname{Vol}\left(Q_{r}\right)$.

An upper bound for the volume of empty 4-simplices

Now, suppose that $\pi: P \rightarrow Q$ is the projection along the direction giving the rational diameter of P, so that the δ in the theorem equals the rational diameter of P. We have a dichotomy:

- If Q is "close to hollow" then we use the Lemma:

$$
\operatorname{Vol}(P)=\delta \operatorname{Vol}(Q)=\frac{\delta}{r^{3}} \operatorname{Vol}\left(Q_{r}\right), \quad \text { where }:
$$

- $\delta \leq 42$ (we skip details).
- r is bounded away from 0 (by the previous case we can assume $r \geq .81$).
- Q_{r} is a lattice-free 3-polytope of width at least $3 r \geq 2.43$, which gives an upper bound for $\operatorname{Vol}\left(Q_{r}\right)$.

Putting this together we get "Theorem 2":

$$
\operatorname{Vol}(P) \leq \frac{\delta}{r^{3}} \operatorname{Vol}\left(Q_{r}\right) \leq \cdots \leq 7600
$$

A bound on the volume of wide 3-polytopes

Lemma (Iglesias-S. 2017+, inspired in AKW 2016)

Let K be a hollow convex 3 -body of width $w>1+\frac{2}{\sqrt{3}}=2.155$. Then,

$$
\operatorname{vol}(K) \leq \begin{cases}8 w^{3} /(w-1)^{3}, & \text { if } w \geq \frac{2}{\sqrt{3}}(\sqrt{5}-1)+1=2.427, \\ 3 w^{3} / 4(w-(1+2 / \sqrt{3})), & \text { if } w \leq 2.427\end{cases}
$$

Idea of proof for width $=2$

Let P be a hollow lattice 4-simplex of width $=2$ that does not project to a hollow 3-polytope.

Idea of proof for width $=2$

Let P be a hollow lattice 4-simplex of width $=2$ that does not project to a hollow 3-polytope.
W.I.o.g. suppose $P \subset[-1,1] \times \mathbb{R}^{3}$, and let $Q=P \cap\left(\{0\} \times \mathbb{R}^{3}\right)$. Then, by Schwarz symmetrization:

$$
\operatorname{Vol}(P) \leq 2^{4} \operatorname{Vol}(Q)
$$

Hence, it suffices to show that $\operatorname{Vol}(Q) \leq 7600 / 16=475$.

Idea of proof for width $=2$

Let P be a hollow lattice 4-simplex of width $=2$ that does not project to a hollow 3-polytope.
W.I.o.g. suppose $P \subset[-1,1] \times \mathbb{R}^{3}$, and let $Q=P \cap\left(\{0\} \times \mathbb{R}^{3}\right)$. Then, by Schwarz symmetrization:

$$
\operatorname{Vol}(P) \leq 2^{4} \operatorname{Vol}(Q)
$$

Hence, it suffices to show that $\operatorname{Vol}(Q) \leq 7600 / 16=475$. Observe Q is half-integer. Two cases:
(1) width $(Q) \geq 5 / 2 \Rightarrow$ since Q is hollow,

$$
\operatorname{Vol}(Q)=6 \mathrm{vol} Q \leq 6 \frac{8(5 / 2)^{3}}{(3 / 2)^{3}}=222.2
$$

Idea of proof for width $=2$

Let P be a hollow lattice 4-simplex of width $=2$ that does not project to a hollow 3-polytope.
W.I.o.g. suppose $P \subset[-1,1] \times \mathbb{R}^{3}$, and let $Q=P \cap\left(\{0\} \times \mathbb{R}^{3}\right)$. Then, by Schwarz symmetrization:

$$
\operatorname{Vol}(P) \leq 2^{4} \operatorname{Vol}(Q)
$$

Hence, it suffices to show that $\operatorname{Vol}(Q) \leq 7600 / 16=475$. Observe Q is half-integer. Two cases:
(1) width $(Q) \geq 5 / 2 \Rightarrow$ since Q is hollow,

$$
\operatorname{Vol}(Q)=6 \mathrm{vol} Q \leq 6 \frac{8(5 / 2)^{3}}{(3 / 2)^{3}}=222.2
$$

(2) width $(Q) \leq 2 \Rightarrow$ we apply to the middle slice of Q (call it R) the same ideas: R is a lattice-free polygon which does not project to dimension $1 \Rightarrow$ (we skip details...) $\operatorname{Vol}(Q) \leq 324$

Empty 4-simplices of prime volume

Motivated by their equivalence to terminal quotient singularities, Mori, Morrison and Morrison (1989) studied empty 4 -simplices of prime determinant and found that:
(1) There are $1+1+29$ infinite families with three, two, and one parameters respectively.
(2) Up to determinant 419 there are some 4-simplices not in those families, but between 420 and 1600 there are none.

Empty 4-simplices of prime volume

Motivated by their equivalence to terminal quotient singularities, Mori, Morrison and Morrison (1989) studied empty 4 -simplices of prime determinant and found that:
(1) There are $1+1+29$ infinite families with three, two, and one parameters respectively.
(2) Up to determinant 419 there are some 4 -simplices not in those families, but between 420 and 1600 there are none.

Conjecture 1.4 (four-dimensional terminal lemma). Fix $p \geq 421$. Up to the actions of $(\mathbf{Z} / p \mathbf{Z})^{*}$ and \mathbf{S}^{4}, each isolated four-dimensional terminal $\mathbf{Z} / p \mathbf{Z}$ quotient singularity of index p is associated with one of the p-terminal quintuples given in Theorem 1.3.
This conjecture was proved (modulo the "finitely many exceptions") by Bover (2009) (partially by Sankaran 1990)

Empty 4-simplices of prime volume

Motivated by their equivalence to terminal quotient singularities, Mori, Morrison and Morrison (1989) studied empty 4 -simplices of prime determinant and found that:
(1) There are $1+1+29$ infinite families with three, two, and one parameters respectively.
(2) Up to determinant 419 there are some 4 -simplices not in those families, but between 420 and 1600 there are none.

Conjecture 1.4 (four-dimensional terminal lemma). Fix $p \geq 421$. Up to the actions of $(\mathbf{Z} / p \mathbf{Z})^{*}$ and \mathbf{S}^{4}, each isolated four-dimensional terminal $\mathbf{Z} / p \mathbf{Z}$ quotient singularity of index p is associated with one of the p-terminal quintuples given in Theorem 1.3.
This conjecture was proved (modulo the "finitely many exceptions") by Bover (2009) (partially by Sankaran 1990) \Rightarrow Complete classification of empty simplices of prime volume.

Empty 4-simplices of prime volume

THEOREM 1.3. Let Q be a quintuple of integers summing to zero, and let p be a prime number. Suppose that either
(a) $Q=(\alpha,-\alpha, \beta, \gamma,-\beta-\gamma)$ with $0<|\alpha|,|\beta|,|\gamma|<p / 2$, and $\beta+\gamma \neq 0$, or
(b) $Q=(\alpha,-2 \alpha, \beta,-2 \beta, \alpha+\beta)$ with $0<|\alpha|,|\beta|<p / 2$, and $\alpha+\beta \neq 0$, or
(c) Q is one of the 29 quintuples listed in Table 1.9 and $p>M_{Q}$.

Then Q is p-terminal.

TABLE 1.9

Stable Quintuple
($9,1,-2,-3,-5$)
$(9,2,-1,-4,-6)$
$(12,3,-4,-5,-6)$
$(12,2,-3,-4,-7)$
$(9,4,-2,-3,-8)$
$(12,1,-2,-3,-8)$
$(12,3,-1,-6,-8)$
$(15,4,-5,-6,-8)$
$(12,2,-1,-4,-9)$
$(10,6,-2,-5,-9)$
$(15,1,-2,-5,-9)$
$(12,5,-3,-4,-10)$
$(15,2,-3,-4,-10)$

Linear Relations 02100, 11002, 20122 01200, 02010, 20212 02001, 10002, 12220 02010, 11002, 20212 01200, 02001, 20221 02100, 12021, 20122 02010, 10020, 12202 02001, 20221
01200, 02010, 20212 02120, 10020, 12202 02100, 20122
02001, 02210, 20221 02010, 20212

$(6,4,3,-1,-12)$	02221,20001
$(7,5,3,-1,-14)$	02221,20001
$(9,7,1,-3,-14)$	02001,20221
$(15,7,-3,-5,-14)$	02001,20221
$(8,5,3,-1,-15)$	02211,20011
$(10,6,1,-2,-15)$	00210,22012
$(12,5,2,-4,-15)$	00210,22012
$(9,6,4,-1,-18)$	02221,20001
$(9,6,5,-2,-18)$	02221,20001
$(12,9,1,-4,-18)$	02001,20221
$(10,7,4,-1,-20)$	02221,20001
$(10,8,3,-1,-20)$	02221,20001
$(10,9,4,-3,-20)$	02221,20001
$(12,10,1,-3,-20)$	02001,20221
$(12,8,5,-1,-24)$	02221,20001
$(15,10,6,-1,-30)$	02221,20001

Theorem 3

(Almost) Theorem 3 (Barile, Bernardi, Borisov and Kantor, 2011)

All but finitely many empty 4 -simplices belong to the $29+1+1$ families of Mori-Morrison-Morrison (1988), all of which have width one or two.

Theorem 3

(Almost) Theorem 3 (Barile, Bernardi, Borisov and Kantor, 2011)

All but finitely many empty 4 -simplices belong to the $29+1+1$ families of Mori-Morrison-Morrison (1988), all of which have width one or two.

This is only true for 4-simplices of prime volume.

Theorem 3

(Almost) Theorem 3 (Barile, Bernardi, Borisov and Kantor, 2011)

All but finitely many empty 4 -simplices belong to the $29+1+1$ families of Mori-Morrison-Morrison (1988), all of which have width one or two.

This is only true for 4-simplices of prime volume.
The correct version is:
Theorem 3 (Iglesias, Santos, 2018+)
All empty 4-simplices that project to hollow 3-polytopes belong to:
(1) The 3-parameter family with quintuple $(a,-a, b, c,-b-c)$.
(2) One of the two 2-parameter families with quintuples

$$
(a,-2 a, b,-2 b, a+b) \text { and }(a,-2 a, b,-2 b, a+b) .
$$

(3) One of the $29+23$ one-parameter families given by the 29 quintuples of Mori, Morrison and Morrison (1988) or the new 23 non-primitive quintuples.

Cyclic simplices represented as $(d+1)$-tuples

Cyclic simplices represented as $(d+1)$-tuples

What are these "quintuples"

For each choice of $D \in \mathbb{N}$, a quintuple $v=\left(v_{0}, v_{1}, v_{2}, v_{3}, v_{4}\right)$ represents "the" cyclic simplex Δ in which v / D are the barycentric coordinates for a generator of $\mathbb{Z}^{4} / \Lambda(D)$.

Cyclic simplices represented as $(d+1)$-tuples

What are these "quintuples"

For each choice of $D \in \mathbb{N}$, a quintuple $v=\left(v_{0}, v_{1}, v_{2}, v_{3}, v_{4}\right)$ represents "the" cyclic simplex Δ in which v / D are the barycentric coordinates for a generator of $\mathbb{Z}^{4} / \Lambda(D)$.

Remarks:

- All empty 4-simplces are cyclic (Barile et al 2011), so they can be represented in this way.

Cyclic simplices represented as $(d+1)$-tuples

What are these "quintuples"

For each choice of $D \in \mathbb{N}$, a quintuple $v=\left(v_{0}, v_{1}, v_{2}, v_{3}, v_{4}\right)$ represents "the" cyclic simplex Δ in which v / D are the barycentric coordinates for a generator of $\mathbb{Z}^{4} / \Lambda(D)$.

Remarks:

- All empty 4-simplces are cyclic (Barile et al 2011), so they can be represented in this way.
- D equals the determinant of Δ.

Cyclic simplices represented as $(d+1)$-tuples

What are these "quintuples"

For each choice of $D \in \mathbb{N}$, a quintuple $v=\left(v_{0}, v_{1}, v_{2}, v_{3}, v_{4}\right)$ represents "the" cyclic simplex Δ in which v / D are the barycentric coordinates for a generator of $\mathbb{Z}^{4} / \Lambda(D)$.

Remarks:

- All empty 4-simplces are cyclic (Barile et al 2011), so they can be represented in this way.
- D equals the determinant of Δ.
- the v_{i} 's are integers, and they are important only modulo D.

Cyclic simplices represented as $(d+1)$-tuples

What are these "quintuples"

For each choice of $D \in \mathbb{N}$, a quintuple $v=\left(v_{0}, v_{1}, v_{2}, v_{3}, v_{4}\right)$ represents "the" cyclic simplex Δ in which v / D are the barycentric coordinates for a generator of $\mathbb{Z}^{4} / \Lambda(D)$.

Remarks:

- All empty 4-simplces are cyclic (Barile et al 2011), so they can be represented in this way.
- D equals the determinant of Δ.
- the v_{i} 's are integers, and they are important only modulo D.
- if we choose $\sum v_{i}=0$ and do not specify D, then a quintuple ($v_{0}, v_{1}, v_{2}, v_{3}, v_{4}$) represents an infinite family of simplices, one for each D.

Interpretation of the quintuples

Each quintuple is a 1-parameter family of empty 4-simplices that project to a particular hollow 3-polytope.

Interpretation of the quintuples

Each quintuple is a 1-parameter family of empty 4 -simplices that project to a particular hollow 3-polytope. We get one simplex of determinant D for each choice of $D \in \mathbb{N}$.

Interpretation of the quintuples

Each quintuple is a 1-parameter family of empty 4 -simplices that project to a particular hollow 3-polytope. We get one simplex of determinant D for each choice of $D \in \mathbb{N}$. The entries in a quintuple can be interpreted as:

- Divided by D, they are barycentric coordinates for a generator of the (cyclic) group $\mathbb{Z}^{4} / L(\Delta)$.

Interpretation of the quintuples

Each quintuple is a 1-parameter family of empty 4 -simplices that project to a particular hollow 3-polytope. We get one simplex of determinant D for each choice of $D \in \mathbb{N}$. The entries in a quintuple can be interpreted as:

- Divided by D, they are barycentric coordinates for a generator of the (cyclic) group $\mathbb{Z}^{4} / L(\Delta)$.
- They are homogeneous coordinates for a line $\ell \in\left\{x \in \mathbb{R}^{5}: \sum x_{i}=1\right\} \cong \mathbb{R}^{4}$ passing through the origin (assumed to be a vertex of Δ). This line gives the projection direction, and has the property that the projection of Δ is hollow.

Interpretation of the quintuples

Each quintuple is a 1-parameter family of empty 4-simplices that project to a particular hollow 3-polytope. We get one simplex of determinant D for each choice of $D \in \mathbb{N}$. The entries in a quintuple can be interpreted as:

- Divided by D, they are barycentric coordinates for a generator of the (cyclic) group $\mathbb{Z}^{4} / L(\Delta)$.
- They are homogeneous coordinates for a line $\ell \in\left\{x \in \mathbb{R}^{5}: \sum x_{i}=1\right\} \cong \mathbb{R}^{4}$ passing through the origin (assumed to be a vertex of Δ). This line gives the projection direction, and has the property that the projection of Δ is hollow.
- It gives the (unique) affine dependence among the projection of the vertices of Δ in the direction of the line ℓ.

Interpretation of the quintuples

More generally: a k-parameter family corresponds to the set of all d-dimensional lifts of a certain configuration of $d+1$ points in dimension $d-k$. The " k-parameter $(d+1)$-tuple" parametrizes the affine dependences among the $d+1$ points in \mathbb{R}^{k}.

In particular, the Nill-Ziegler result ("all except finitely many hollow d-polytopes project to a hollow $<d$-polytope") implies:

Interpretation of the quintuples

More generally: a k-parameter family corresponds to the set of all d-dimensional lifts of a certain configuration of $d+1$ points in dimension $d-k$. The " k-parameter $(d+1)$-tuple" parametrizes the affine dependences among the $d+1$ points in \mathbb{R}^{k}.

In particular, the Nill-Ziegler result ("all except finitely many hollow d-polytopes project to a hollow $<d$-polytope") implies:

Corollary

In any fixed dimension d, the set of all hollow d-simplices can be stratified "à la Mori et al." into a finite number of "families". Each family is represented as a k-dimensional rational linear subspace of \mathbb{R}^{d+1} ($k \in\{0, \ldots, d-1\}$). A k-parameter family corresponds to simplices projecting to a particular configuration A of $d+1$ points in \mathbb{R}^{k} such that $\operatorname{conv}(A)$ is hollow but does not project to dimension $<d-k$.

Proof of Theorem 3

The list in the statement corresponds to empty 4 -simplices projectiong to lower dimensional hollow polytopes:

- Simplices projecting to $\operatorname{dim} 1$ (that is, of width one) can a priori project in two ways: " $4+1$ " or " $3+2$ ". But the classification of 3-dimensional empty simplices implies that the former is a special case of the latter. Affine dependences in the latter are parametrized by $(a,-a, b, c,-b-c)$ (the 3-parameter family of MMM).

Proof of Theorem 3

The list in the statement corresponds to empty 4-simplices projectiong to lower dimensional hollow polytopes:

- Simplices projecting to $\operatorname{dim} 1$ (that is, of width one) can a priori project in two ways: " $4+1$ " or " $3+2$ ". But the classification of 3-dimensional empty simplices implies that the former is a special case of the latter. Affine dependences in the latter are parametrized by $(a,-a, b, c,-b-c)$ (the 3-parameter family of MMM).
- A lattice 4 -simplex Δ projecting to dim 2 must project to the second dilation of a unimodular triangle. For Δ to be empty one needs the vertices to project to one of the following configurations:

Proof of Theorem 3 (cont.)

- Lattice 4 -simplices projecting to dim. 3 can be exhaustively described via the (finite) classification of hollow 3-polytopes with at most 5 vertices and not projecting to dim two (Averkov et al. 2016).

Proof of Theorem 3 (cont.)

- Lattice 4 -simplices projecting to dim. 3 can be exhaustively described via the (finite) classification of hollow 3-polytopes with at most 5 vertices and not projecting to dim two (Averkov et al. 2016).

To narrow the search we use that, of the three types of 3-polytopes with ≤ 5 vertices (tetrahedron, sq. pyramid, triang. bipyramid) only the latter can possibly produce infinitely many hollow 4-dimensional lifts (Blanco-Haase-Hofmann-S. 2016).

Proof of Theorem 3 (cont.)

- Lattice 4-simplices projecting to dim. 3 can be exhaustively described via the (finite) classification of hollow 3-polytopes with at most 5 vertices and not projecting to dim two (Averkov et al. 2016).

To narrow the search we use that, of the three types of 3-polytopes with ≤ 5 vertices (tetrahedron, sq. pyramid, triang. bipyramid) only the latter can possibly produce infinitely many hollow 4-dimensional lifts (Blanco-Haase-Hofmann-S. 2016).

In this way we recover the 29 quintuples of Mori-Morrison-Morrison 1988, plus 23 additional "non-primitive quintuples".

The 29 quintuples

$$
\begin{aligned}
& \mathbb{Q}\{(9,1,-2,-3,-5)\} \\
& \mathbb{Q}\{(9,2,-1,-4,-6)\} \\
& \mathbb{Q}\{(12,3,-4,-5,-6)\} \\
& \mathbb{Q}\{(12,2,-3,-4,-7)\} \\
& \mathbb{Q}\{(9,4,-2,-3,-8)\} \\
& \mathbb{Q}\{(12,1,-2,-3,-8)\} \\
& \mathbb{Q}\{(12,3,-1,-6,-8)\} \\
& \mathbb{Q}\{(15,4,-5,-6,-8)\} \\
& \mathbb{Q}\{(12,2,-1,-4,-9)\} \\
& \mathbb{Q}\{(10,6,-2,-5,-9)\} \\
& \mathbb{Q}\{(15,1,-2,-5,-9)\} \\
& \mathbb{Q}\{(12,5,-3,-4,-10)\} \\
& \mathbb{Q}\{(15,2,-3,-4,-10)\} \\
& \mathbb{Q}\{(6,4,3,-1,-12)\}
\end{aligned}
$$

$\mathbb{Q}\{(7,5,3,-1,-14)\}$
$\mathbb{Q}\{(9,7,1,-3,-14)\}$
$\mathbb{Q}\{(15,7,-3,-5,-14)\}$
$\mathbb{Q}\{(8,5,3,-1,-15)\}$
$\mathbb{Q}\{(10,6,1,-2,-15)\}$
$\mathbb{Q}\{(12,5,2,-4,-15)\}$
$\mathbb{Q}\{(9,6,4,-1,-18)\}$
$\mathbb{Q}\{(9,6,5,-2,-18)\}$
$\mathbb{Q}\{(12,9,1,-4,-18)\}$
$\mathbb{Q}\{(10,7,4,-1,-20)\}$
$\mathbb{Q}\{(10,8,3,-1,-20)\}$
$\mathbb{Q}\{(10,9,4,-3,-20)\}$
$\mathbb{Q}\{(12,10,1,-3,-20)\}$
$\mathbb{Q}\{(12,8,5,-1,-24)\}$
$\mathbb{Q}\{(15,10,6,-1,-30)\}$

The 29 quintuples of Mori-Morrison-Morrison. Each represents (the rational points in) a line through the origin, in the 4 -torus $\mathbb{R}^{4} / L(\Delta)$.

The 23 "non-primitive quintuples"

$$
\begin{aligned}
&\left(0,0, \frac{1}{2}, \frac{1}{2}, 0\right)+\mathbb{Q}\{(6,-2,-12,4,4)\} \\
&\left(\frac{1}{2}, 0,0,0, \frac{1}{2}\right)+\mathbb{Q}\{(8,-6,2,-8,4)\} \\
&\left(0,0, \frac{1}{2}, 0, \frac{1}{2}\right)+\mathbb{Q}\{(8,-4,-12,6,2)\} \\
&\left(\frac{1}{2}, 0,0,0, \frac{1}{2}\right)+\mathbb{Q}\{(4,6,-2,-16,8)\} \\
&\left(0, \frac{1}{2}, \frac{1}{2}, 0,0\right)+\mathbb{Q}\{(2,-12,4,12,-6)\} \\
&\left(\frac{1}{2}, 0, \frac{1}{2}, 0,0\right)+\mathbb{Q}\{(12,-16,8,-6,2)\} \\
&\left(0, \frac{1}{2}, 0,0, \frac{1}{2}\right)+\mathbb{Q}\{(2,12,-8,-12,6)\} \\
&\left(\frac{1}{2}, 0,0,0, \frac{1}{2}\right)+ \\
&\left(0, \frac{1}{2}, 0,0, \frac{1}{2}\right)+\mathbb{Q}\{(8,6,-2,-24,12)\} \\
& \\
&\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}, 0,0\right)+\mathbb{Q}\{(12,-2,8,-24,12)\} \\
&\left(0, \frac{1}{4}, \frac{1}{4}, 0, \frac{1}{2}\right)+ \\
&\left(0,0, \frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right)+\mathbb{Q}\{(4,8,-4,-16,8)\} \\
&\left(0 \frac{\mathbb{1}}{4}, \frac{1}{4}, 0, \frac{1}{2}\right)+\mathbb{Q}\{(4,-16,4,16,-8)\} \\
& \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
\left(0,0, \frac{2}{3}, \frac{1}{3}, 0\right) & +\mathbb{Q}\{(-9,6,3,3,-3)\} \\
\left(\frac{1}{3}, 0, \frac{2}{3}, 0,0\right) & +\mathbb{Q}\{(9,-9,3,-6,3)\} \\
\left(0,0, \frac{1}{3}, \frac{2}{3}, 0\right) & +\mathbb{Q}\{(-9,3,6,6,-6)\} \\
\left(0,0, \frac{1}{3}, \frac{2}{3}, 0\right) & +\mathbb{Q}\{(12,-6,-12,3,3)\} \\
\left(\frac{1}{3}, 0, \frac{2}{3}, 0,0\right) & +\mathbb{Q}\{(9,-18,6,6,-3)\} \\
\left(\frac{1}{3}, 0, \frac{2}{3}, 0,0\right) & +\mathbb{Q}\{(12,-18,3,6,-3)\} \\
\left(\frac{1}{3}, 0, \frac{2}{3}, 0,0\right) & +\mathbb{Q}\{(12,-9,3,-12,6)\} \\
\left(\frac{1}{3}, 0, \frac{2}{3}, 0,0\right) & +\mathbb{Q}\{(6,-3,6,-18,9)\} \\
\left(0,0, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right) & +\mathbb{Q}\{(3,-18,6,18,-9)\} \\
\left(\frac{1}{6}, 0,0, \frac{2}{3}, \frac{1}{6}\right) & +\mathbb{Q}\{(6,-18,6,12,-6)\}
\end{aligned}
$$

The 23 non-primitive quintuples. Each represents (the rational points in) a line in $\mathbb{R}^{4} / \Lambda(\Delta)$ not passing through the origin.

Theorem 2 (enumeration)

Theorem 2 (Iglesias-S., 2017+)
With determinant ≤ 7600 there are 2461 empty 4 -simplices that do not project to hollow 3-polytopes. Their determinants range from 24 to 419.

Theorem 2 (enumeration)

Theorem 2 (Iglesias-S., 2017+)
With determinant ≤ 7600 there are 2461 empty 4 -simplices that do not project to hollow 3-polytopes. Their determinants range from 24 to 419.

The proof is via an exhaustive computer enumeration.

Theorem 2 (enumeration)

Theorem 2 (Iglesias-S., 2017+)

With determinant ≤ 7600 there are 2461 empty 4 -simplices that do not project to hollow 3-polytopes. Their determinants range from 24 to 419 .

The proof is via an exhaustive computer enumeration.
Note: It is easy to prove (by induction on the dimension) that there are finitely many lattice polytopes of a given dimension d and with normalized volume bounded by D, for every $d, D \in \mathbb{N}$ (e.g., Lagarias-Ziegler, 1991).

The algorithm implicit in the general proof is impracticable, but for the case of simplices another methods can be used.

Enumeration algorithms

To enumerate all empty 4-simplices of a given volume D we use one of two algorithms:

Enumeration algorithms

To enumerate all empty 4-simplices of a given volume D we use one of two algorithms:

- Algorithm 1: If D has less than 5 prime factors, then every empty 4 -simplex Δ of volume D has a unimodular facet (because Δ is cyclic, by Barile et al. 2011, which implies the volumes of facets are relatively prime). Thus, Δ is equivalent to

$$
\operatorname{conv}\left\{e_{1}, e_{2}, e_{3}, e_{4}, v\right\}
$$

for some $v=\left(v_{1}, v_{2}, v_{3}, v_{4}\right) \in \mathbb{Z}^{4}$ with $\sum v_{i}=D+1$. Moreover, v needs only to be considered modulo D, which gives a priori D^{3} possibilities.

Enumeration algorithms

To enumerate all empty 4-simplices of a given volume D we use one of two algorithms:

- Algorithm 1: If D has less than 5 prime factors, then every empty 4 -simplex Δ of volume D has a unimodular facet (because Δ is cyclic, by Barile et al. 2011, which implies the volumes of facets are relatively prime). Thus, Δ is equivalent to

$$
\operatorname{conv}\left\{e_{1}, e_{2}, e_{3}, e_{4}, v\right\}
$$

for some $v=\left(v_{1}, v_{2}, v_{3}, v_{4}\right) \in \mathbb{Z}^{4}$ with $\sum v_{i}=D+1$. Moreover, v needs only to be considered modulo D, which gives a priori D^{3} possibilities.

- Algorithm 2: If D has at least 2 prime factors, then we can $\overline{\text { decompose } D}=p q$ with p and q relatively prime. Every 4 -simplex Δ_{D} of volume D can be obtained by "merging" simplices Δ_{p} and Δ_{q} of volumes p and q.

Computational performance data

More than 10000 hours of computation have been used.

Computational performance data

More than 10000 hours of computation have been used. Algorithm 2 is much slower than Algorithm 1 if $p \ll q$, and slightly faster than Algorithm 1 if $p \simeq q$.

Computation time (seconds) for the list of all empty lattice 4 -simplices of a given volume

The "finitely many exceptions"

The enumeration gives us the 2461 empty 4 -simplices that do not belong to the infinite families of Theorem 3. Their determinants range from 24 to 419 .

Those of width ≥ 3 coincide with the list computed by Haase and Ziegler (2000): there are 178 of width three (with determinants in [49, 179] and exactly one of width 4 (with determinant 101 and quintuple ($-1,6,14,17,65$)).

Nbr. of sporadic 4-simplices (part 1 of 2)

$V=24:$	1	$V=53:$	38	$V=78:$	3	$V=103:$	51	$V=129$	17
$V=27$	1	$V=54$:	11	$V=79$	55	$V=104$	8	$V=130$	2
$V=29$	3	$V=55$:	20	$V=80$	7	$V=105$	7	$V=131$:	29
$V=30$	2	$V=56$:	3	$V=81$	18	$V=106$	8	$V=132$	5
$V=31:$	2	$V=57$:	16	$V=82$	13	$V=107$	54	$V=133$:	14
$V=32$	3	$V=58$:	13	$V=83$	60	$V=108$	5	$V=134$	8
$V=33$	4	$V=59$:	51	$V=84$	7	$V=109$	44	$V=135$	6
$V=34$	5	$V=60$	4	$V=85$	27	$V=110$	5	$V=136$	6
$V=35$	3	$V=61$:	38	$V=86$	11	$V=111$	13	$V=137$	28
$V=37$	6	$V=62$	26	$V=87$	24	$V=112$	2	$V=138$	2
$V=38$	8	$V=63$	17	$V=88$	5	$V=113$	40	$V=139$	37
$V=39$	9	$V=64$:	9	$V=89$	55	$V=114$	4	$V=140$	5
$V=40$	1	$V=65$	27	$V=90$	6	$V=115$	21	$V=141$	6
$V=41$:	14	$V=66$	3	$V=91$	18	$V=116$	11	$V=142$	9
$V=42$	5	$V=67$:	41	$V=92$	9	$V=117$	10	$V=143$	13
$V=43$	20	$V=68$:	13	$V=93$	17	$V=118$	9	$V=144$	1
$V=44$	8	$V=69$	26	$V=94$	12	$V=119$	22	$V=145$	14
$V=45$	6	$V=70$	4	$V=95$	35	$V=120$	3	$V=146$	5
$V=46$	7	$V=71$:	50	$V=96$	3	$V=121$	18	$V=147$	10
$V=47$	30	$V=72$:	3	$V=97$	46	$V=122$	9	$V=148$	7
$V=48$	5	$V=73$	44	$V=98$	9	$V=123$	17	$V=149$	26
$V=49$	17	$V=74$:	18	$V=99$	13	$V=124$	8	$V=150$:	2
$V=50$	8	$V=75$:	22	$V=100$	8	$V=125$	25	$V=151$:	19
$V=51$:	16	$V=76:$	14	$V=101$:	41	$V=127$	24	$V=152$:	6
$V=52$	6	$V=77$:	19	$V=102$:	3	$V=128$:	9	$V=153$:	9

Nbr. of sporadic 4-simplices (part 2 of 2)

Nbr. of sporadic t.q.s. of prime volume (MMM vs. us)

Table 1.14

p	S_{p}	p	S_{p}	p	S_{p}	p	S_{p}
2	0	73	220	179	105	283	10
3	0	79	275	181	65	293	25
5	0	83	300	191	40	307	0
7	0	89	275	193	60	311	5
11	0	97	230	197	65	313	5
13	0	101	201	199	55	317	5
17	9	103	255	211	20	331	5
19	13	107	270	223	35	337	0
23	28	109	220	227	45	347	5
29	39	113	200	229	30	349	10
31	30	127	120	233	45	353	5
37	50	131	145	239	15	359	0
41	76	137	140	241	30	367	0
43	110	139	185	251	25	373	0
47	100	149	130	257	15	379	0
53	195	151	95	263	35	383	0
59	260	157	55	269	10	389	0
61	186	163	85	271	20	397	5
67	205	167	90	277	0	409	0
71	250	173	75	281	0	419	5

$V=29:$	15	$V=113:$	200	$V=229:$	30
$V=31:$	10	$V=127:$	120	$V=233:$	45
$V=37:$	30	$V=131:$	145	$V=239:$	15
$V=41:$	66	$V=137:$	140	$V=241:$	30
$V=43:$	100	$V=139:$	185	$V=251:$	25
$V=47:$	150	$V=149:$	130	$V=257:$	15
$V=53:$	190	$V=151:$	95	$V=263:$	35
$V=59:$	255	$V=157:$	55	$V=269:$	10
$V=61:$	186	$V=163:$	85	$V=271:$	20
$V=67:$	205	$V=167:$	90	$V=283:$	10
$V=71:$	250	$V=173:$	75	$V=293:$	25
$V=73:$	220	$V=179:$	105	$V=311:$	5
$V=79:$	275	$V=181:$	65	$V=313:$	5
$V=83:$	300	$V=191:$	40	$V=317:$	5
$V=89:$	275	$V=193:$	60	$V=331:$	5
$V=97:$	230	$V=197:$	65	$V=347:$	5
$V=101:$	201	$V=199:$	55	$V=349:$	10
$V=103:$	255	$V=211:$	20	$V=353:$	5
$V=107:$	270	$V=223:$	35	$V=397:$	5
$V=109:$	220	$V=227:$	45	$V=419:$	5

Thank you for your attention

http://personales.unican.es/santosf

