Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 0000000

Hollow lattice polytopes and convex geometry

Francisco Santos (mostly joint with O. Iglesias-Valiño)

U. de Cantabria, visiting Freie U. Berlin

New perspectives in convex geometry, CIEM — Sept 6-7, 2018

Flatness ●00000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration
Width					

K a convex body in \mathbb{R}^d ; $\mathbb{Z}^d \cong \Lambda \subset \mathbb{R}^d$ a lattice.

Flatness •00000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 0000000
NA / 1 1					

K a convex body in \mathbb{R}^d ; $\mathbb{Z}^d \cong \Lambda \subset \mathbb{R}^d$ a lattice.

Definition

The width of K w.r.t. a functional f ∈ (ℝ^d)* is max_{p∈K} f(p) - min_{p∈K} f(p).

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Flatness ●00000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 0000000
1 4 /* 1.1					

K a convex body in \mathbb{R}^d ; $\mathbb{Z}^d \cong \Lambda \subset \mathbb{R}^d$ a lattice.

Definition

 The width of K w.r.t. a functional f ∈ (ℝ^d)* is max_{p∈K} f(p) - min_{p∈K} f(p). (Equivalently, it is the length of f(K)).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

Flatness •00000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 0000000

 ${\mathcal K}$ a convex body in ${\mathbb R}^d;$ ${\mathbb Z}^d\cong \Lambda\subset {\mathbb R}^d$ a lattice.

Definition

- The width of K w.r.t. a functional f ∈ (ℝ^d)* is max_{p∈K} f(p) − min_{p∈K} f(p). (Equivalently, it is the length of f(K)).
- The (lattice) width of K is the minimum with w.r.t. functionals in $\Lambda^* \setminus 0$. We denote it width_{Λ}(K).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

Flatness ●00000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration

 ${\mathcal K}$ a convex body in ${\mathbb R}^d;$ ${\mathbb Z}^d\cong \Lambda\subset {\mathbb R}^d$ a lattice.

Definition

- The width of K w.r.t. a functional f ∈ (ℝ^d)* is max_{p∈K} f(p) − min_{p∈K} f(p). (Equivalently, it is the length of f(K)).
- The (lattice) width of K is the minimum with w.r.t. functionals in $\Lambda^* \setminus 0$. We denote it width_{Λ}(K).

Flatness ●00000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration

 ${\mathcal K}$ a convex body in ${\mathbb R}^d;$ ${\mathbb Z}^d\cong \Lambda\subset {\mathbb R}^d$ a lattice.

Definition

- The width of K w.r.t. a functional f ∈ (ℝ^d)* is max_{p∈K} f(p) − min_{p∈K} f(p). (Equivalently, it is the length of f(K)).
- The (lattice) width of K is the minimum with w.r.t. functionals in $\Lambda^* \setminus 0$. We denote it width_{Λ}(K).

Flatness ●00000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration

 ${\mathcal K}$ a convex body in ${\mathbb R}^d;$ ${\mathbb Z}^d\cong \Lambda\subset {\mathbb R}^d$ a lattice.

Definition

- The width of K w.r.t. a functional f ∈ (ℝ^d)* is max_{p∈K} f(p) − min_{p∈K} f(p). (Equivalently, it is the length of f(K)).
- The (lattice) width of K is the minimum with w.r.t. functionals in $\Lambda^* \setminus 0$. We denote it width_{Λ}(K).

Flatness ●00000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration

 ${\mathcal K}$ a convex body in ${\mathbb R}^d;$ ${\mathbb Z}^d\cong \Lambda\subset {\mathbb R}^d$ a lattice.

Definition

- The width of K w.r.t. a functional f ∈ (ℝ^d)* is max_{p∈K} f(p) − min_{p∈K} f(p). (Equivalently, it is the length of f(K)).
- The (lattice) width of K is the minimum with w.r.t. functionals in $\Lambda^* \setminus 0$. We denote it width_{Λ}(K).

Flatness ●00000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration

 ${\mathcal K}$ a convex body in ${\mathbb R}^d;$ ${\mathbb Z}^d\cong \Lambda\subset {\mathbb R}^d$ a lattice.

Definition

- The width of K w.r.t. a functional f ∈ (ℝ^d)* is max_{p∈K} f(p) − min_{p∈K} f(p). (Equivalently, it is the length of f(K)).
- The (lattice) width of K is the minimum with w.r.t. functionals in $\Lambda^* \setminus 0$. We denote it width_{Λ}(K).

Flatness ●00000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration

 ${\mathcal K}$ a convex body in ${\mathbb R}^d;$ ${\mathbb Z}^d\cong \Lambda\subset {\mathbb R}^d$ a lattice.

Definition

- The width of K w.r.t. a functional f ∈ (ℝ^d)* is max_{p∈K} f(p) − min_{p∈K} f(p). (Equivalently, it is the length of f(K)).
- The (lattice) width of K is the minimum with w.r.t. functionals in $\Lambda^* \setminus 0$. We denote it width_{Λ}(K).

Flatness ●00000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration

 ${\mathcal K}$ a convex body in ${\mathbb R}^d;$ ${\mathbb Z}^d\cong \Lambda\subset {\mathbb R}^d$ a lattice.

Definition

- The width of K w.r.t. a functional f ∈ (ℝ^d)* is max_{p∈K} f(p) − min_{p∈K} f(p). (Equivalently, it is the length of f(K)).
- The (lattice) width of K is the minimum with w.r.t. functionals in $\Lambda^* \setminus 0$. We denote it width_{Λ}(K).

Flatness ●00000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 0000000

 ${\mathcal K}$ a convex body in ${\mathbb R}^d;$ ${\mathbb Z}^d\cong \Lambda\subset {\mathbb R}^d$ a lattice.

Definition

- The width of K w.r.t. a functional f ∈ (ℝ^d)* is max_{p∈K} f(p) − min_{p∈K} f(p). (Equivalently, it is the length of f(K)).
- The (lattice) width of K is the minimum with w.r.t. functionals in $\Lambda^* \setminus 0$. We denote it width_{Λ}(K).

Flatness ●00000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 0000000

 ${\mathcal K}$ a convex body in ${\mathbb R}^d;$ ${\mathbb Z}^d\cong \Lambda\subset {\mathbb R}^d$ a lattice.

Definition

- The width of K w.r.t. a functional f ∈ (ℝ^d)* is max_{p∈K} f(p) − min_{p∈K} f(p). (Equivalently, it is the length of f(K)).
- The (lattice) width of K is the minimum with w.r.t. functionals in $\Lambda^* \setminus 0$. We denote it width_{Λ}(K).

Flatness	Lattice polytopes	Empty 4-simplices:	1) volume	infinite families	enumeration
00000	0000000		000000	000000000	0000000

Flatness Theorem

K is lattice-free if $int(K) \cap \Lambda = \emptyset$

Theorem (Flatness Theorem)

For each dimension d,

$$W_d := \sup_{K \; lattice-free} \mathsf{width}_\Lambda(K) < \infty.$$

イロト イポト イヨト イヨト 三日

DQC

Flatness	Lattice polytopes	Empty 4-simplices:	1) volume	infinite families	enumeration
00000	0000000		000000	000000000	0000000

Flatness Theorem

K is lattice-free if $int(K) \cap \Lambda = \emptyset$

Theorem (Flatness Theorem)

For each dimension d,

$$\mathcal{W}_d := \sup_{K \; lattice-free} \mathsf{width}_\Lambda(K) < \infty.$$

Known values: $W_1 = 1$, $W_2 = 1 + 3/\sqrt{2} \simeq 2.1547$ (Hurkens 1990)

Flatness 00●000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration
Flatnes	s History				

• Khinchine 1948: $W_d \leq O(d!)$

Flatness 00●000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 0000000
Flatne	ss Historv				

- Khinchine 1948: $W_d \leq O(d!)$
- Lenstra 1983: $W_d \in 2^{O(d^2)} + \text{poly-time algorithm}.$

Flatness 00●000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration
Flatne	ss History				

- Khinchine 1948: $W_d \leq O(d!)$
- Lenstra 1983: $W_d \in 2^{O(d^2)} + \text{poly-time algorithm}$.
- Hastad 1986: $W_d \in O(d^{5/2})$.

・ロト・日本・モン・モン・モー うへぐ

Flatness 00●000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 0000000
Flatne	ss History				

- Khinchine 1948: $W_d \leq O(d!)$
- Lenstra 1983: $W_d \in 2^{O(d^2)} + \text{poly-time algorithm}$.
- Hastad 1986: $W_d \in O(d^{5/2})$.
- Kannan-Lovász 1988: W_d ∈ O(d²). NICE PROOF. Def of covering minima.

Flatness 00●000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 0000000
Flatne	ss History				

- Khinchine 1948: $W_d \leq O(d!)$
- Lenstra 1983: $W_d \in 2^{O(d^2)} + \text{poly-time algorithm}$.
- Hastad 1986: $W_d \in O(d^{5/2})$.
- Kannan-Lovász 1988: W_d ∈ O(d²). NICE PROOF. Def of covering minima.
- Banaszczyk-Litvak-Pajor-Szarek 1999, $W_d \in O(d^{3/2})$.

Flatness 00●000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration
Flatne	ss History				

- Khinchine 1948: $W_d \leq O(d!)$
- Lenstra 1983: $W_d \in 2^{O(d^2)} + \text{poly-time algorithm}$.
- Hastad 1986: $W_d \in O(d^{5/2})$.
- Kannan-Lovász 1988: W_d ∈ O(d²). NICE PROOF. Def of covering minima.
- Banaszczyk-Litvak-Pajor-Szarek 1999, $W_d \in O(d^{3/2})$.

Also, $W_d \in O(d \log \min(f_0, f_{d-1}))$ for lattice-free polytopes with at most f_0 vertices and f_{d-1} facets. In particular, $O(d \log d)$ for simplices.

Flatness 00●000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration
Flatne	ss History				

- Khinchine 1948: $W_d \leq O(d!)$
- Lenstra 1983: $W_d \in 2^{O(d^2)} + \text{poly-time algorithm}$.
- Hastad 1986: $W_d \in O(d^{5/2})$.
- Kannan-Lovász 1988: W_d ∈ O(d²). NICE PROOF. Def of covering minima.
- Banaszczyk-Litvak-Pajor-Szarek 1999, W_d ∈ O(d^{3/2}).
 Also, W_d ∈ O(d log min(f₀, f_{d-1})) for lattice-free polytopes with at most f₀ vertices and f_{d-1} facets. In particular, O(d log d) for simplices.
- Rudelson 2000 $W_d \in O(d^{4/3} \log^9 d)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

Flatness 00●000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration
Flatne	ss History				

- Khinchine 1948: $W_d \leq O(d!)$
- Lenstra 1983: $W_d \in 2^{O(d^2)} + \text{poly-time algorithm}$.
- Hastad 1986: $W_d \in O(d^{5/2})$.
- Kannan-Lovász 1988: W_d ∈ O(d²). NICE PROOF. Def of covering minima.
- Banaszczyk-Litvak-Pajor-Szarek 1999, W_d ∈ O(d^{3/2}).
 Also, W_d ∈ O(d log min(f₀, f_{d-1})) for lattice-free polytopes with at most f₀ vertices and f_{d-1} facets. In particular, O(d log d) for simplices.
- Rudelson 2000 $W_d \in O(d^{4/3}\log^9 d)$

Current "guess": $W_d \in O(d)$ (perhaps modulo poly-log factors).

ヘロト ヘ回ト ヘヨト ヘヨト 一日

nan

Flatness 000●00	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 0000000
Flatne	ss lower bo	unds			

W_d ≥ d is trivial (d-th dilation of unimodular simplex is lattice-free).

Flatness 000●00	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration
Flatne	ss lower bo	unds			

- W_d ≥ d is trivial (d-th dilation of unimodular simplex is lattice-free).
- $W_2 = 1 + 2/\sqrt{3} = 2.1547...$ (Hurkens 1990).

Flatness 000€00	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration
Flatne	ss lower ho	unds			

- $W_d \ge d$ is trivial (*d*-th dilation of unimodular simplex is lattice-free).
- $W_2 = 1 + 2/\sqrt{3} = 2.1547...$ (Hurkens 1990).
- W_{d1+d2} ≥ W_{d1} + W_{d2}, via a direct sum argument (Codenotti-Santos?).

Flatness 000●00	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 0000000
Flatne	ss lower bo	unds			

- $W_d \ge d$ is trivial (*d*-th dilation of unimodular simplex is lattice-free).
- $W_2 = 1 + 2/\sqrt{3} = 2.1547...$ (Hurkens 1990).
- W_{d1+d2} ≥ W_{d1} + W_{d2}, via a direct sum argument (Codenotti-Santos?).

The last remark has the following consequences:

Corollary

$$\lim_{d\to\infty} \frac{W_d}{d} = \sup_d \frac{W_d}{d} \ge 1.077\dots$$

(日) (同) (注) (注) (三)

590

Flatness 000€00	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration
Flatne	ss lower bo	unds			

- $W_d \ge d$ is trivial (*d*-th dilation of unimodular simplex is lattice-free).
- $W_2 = 1 + 2/\sqrt{3} = 2.1547...$ (Hurkens 1990).
- W_{d1+d2} ≥ W_{d1} + W_{d2}, via a direct sum argument (Codenotti-Santos?).

The last remark has the following consequences:

Corollary

 $\lim_{d\to\infty} \frac{W_d}{d} = \sup_d \frac{W_d}{d} \ge 1.077\dots$

Moreover, the limit is the same if restricted to lattice polytopes instead of arbitrary convex bodies.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

Flatness 0000€0	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 0000000

Related to the flatness theorem is the fact that lattice-free (d+1)-bodies of width larger than W_d must have bounded volume.

◆□ > ◆□ > ◆臣 > ◆臣 > 三臣 - のへで

Flatness 0000●0	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 0000000

Related to the flatness theorem is the fact that lattice-free (d+1)-bodies of width larger than W_d must have bounded volume.

```
Theorem (Averkov-Wagner 2012)
```

Let K be a lattice-free convex 2-body with w > 1.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

Flatness 0000●0	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration

Related to the flatness theorem is the fact that lattice-free (d+1)-bodies of width larger than W_d must have bounded volume.

Theorem (Averkov-Wagner 2012)

Let K be a lattice-free convex 2-body with w > 1. Then

$$\mathsf{vol}(\mathcal{K}) \leq \begin{cases} \frac{w^2}{2(w-1)} & \text{for } w \in (1,2], \\ \frac{3w^2}{3w+1-\sqrt{1+6w-3w^2}} & \text{for } w \in [2,1+\frac{2}{\sqrt{3}}]. \end{cases}$$

The bound is attained iff K is as follows, respectively:

Flatness 00000●	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 0000000

Theorem (IglesiasValiño-Santos, 2018)

Let K be a lattice-free convex 3-body of lattice width $w > 1 + 2/\sqrt{3} = 2.155$. Then,

These bound are *not* attained.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ へ ○

Flatnes: 00000	Lattice polytopes 00 00000000	Empty 4-simplices:	1) volume 000000	3) infi 0000	nite far 00000	nilies 00	2) e 000	numeration
	Definition							
				0	0	0	0	
	We now concentrate on lattice polytopes. $P :=$		0	0	0	0		
			0	ο	ο	0		
	convex hull of a finite set of points in Λ .			ο	0	0	0	
			0	o	o	0		
			o	ο	0	0		
								20.0

DefinitionWe now concentrate on lattice polytopes. $P :=$ \circ <	Flatness 000000	Lattice polytopes •0000000	Empty 4-simplices:	1) volume 000000	3) infi 0000	inite far	nilies 00	2)	enumerat	ion
DefinitionWe now concentrate on lattice polytopes. $P :=$ convex hull of a finite set of points in Λ . \circ										
We now concentrate on lattice polytopes. $P :=$ convex hull of a finite set of points in Λ .	D	efinition								
We now concentrate on lattice polytopes. $P :=$ convex hull of a finite set of points in Λ .					0	٠	0	0		
We now concentrate on lattice polytopes. $P := 0 0 0 0$ convex hull of a finite set of points in Λ . 0 0 0 0 0 0 0 0 0					0	٠	0	0		
convex hull of a finite set of points in Λ . • • • • • • • • • • • • • • • • • • •	W	We now concentrate on lattice polytopes. $P :=$			ο	ο	0	•		
	co	convex hull of a finite set of points in Λ .				ο	•	0		
					0	0	0	0		
					ο	•	0	0		
										a c

Flatness 000000	Lattice polytopes ●0000000	Empty 4-simplices:	1) volume 000000	3) infinite families 0000000000	2) enumeration 0000000
Def	inition				

We now concentrate on lattice polytopes. P := convex hull of a finite set of points in Λ .

Flatness 000000	Lattice polytopes •0000000	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 0000000

We now concentrate on lattice polytopes. P := convex hull of a finite set of points in Λ .

• *P* is hollow (or lattice-free) if no lattice points in int(*P*)

Flatness 000000	Lattice polytopes ●0000000	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 0000000

We now concentrate on lattice polytopes. P := convex hull of a finite set of points in Λ .

• *P* is hollow (or lattice-free) if no lattice points in int(*P*)

Flatness 000000	Lattice polytopes ●0000000	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 0000000

We now concentrate on lattice polytopes. P := convex hull of a finite set of points in Λ .

- *P* is hollow (or lattice-free) if no lattice points in int(*P*)
- *P* is empty if no lattice points in *P* apart of its vertices.

Flatness 000000	Lattice polytopes ●0000000	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 0000000
_					

We now concentrate on lattice polytopes. P := convex hull of a finite set of points in Λ .

- P is hollow (or lattice-free) if no lattice points in int(P)
- *P* is empty if

no lattice points in P apart of its vertices.

E.g.: empty *d*-simplex \Leftrightarrow lattice *d*-polytope with exacty *d* + 1 lattice points.

Flatness	Lattice polytopes	Empty 4-simplices:	 volume 	infinite families	enumeration
000000	0000000		000000	0000000000	0000000

We would like to understand better (and hopefully, classify exhaustively) hollow polytopes and, especially, empty simplices.

9

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 = のへで

Flatness 000000	Lattice polytopes 0000000	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 0000000

We would like to understand better (and hopefully, classify exhaustively) hollow polytopes and, especially, empty simplices.

- They are the building blocks for lattice polytopes; every lattice polytope can be triangulated into empty simplices.

▲□▶ ▲□▶ ▲ □▶ ▲ □ ▶ ▲ □ ● ● ● ●

Flatness 000000	Lattice polytopes 0000000	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 0000000

We would like to understand better (and hopefully, classify exhaustively) hollow polytopes and, especially, empty simplices.

- They are the building blocks for lattice polytopes; every lattice polytope can be triangulated into empty simplices.
- In particular, sometimes good properties of empty simplices have implications for all lattice polytopes.

Flatness 000000	Lattice polytopes 0000000	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 0000000

We would like to understand better (and hopefully, classify exhaustively) hollow polytopes and, especially, empty simplices.

- They are the building blocks for lattice polytopes; every lattice polytope can be triangulated into empty simplices.
- In particular, sometimes good properties of empty simplices have implications for all lattice polytopes.
- They correspond to *terminal quotient singularities* in the minimal model program.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

Flatness 000000	Lattice polytopes 0000000	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration

We would like to understand better (and hopefully, classify exhaustively) hollow polytopes and, especially, empty simplices.

- They are the building blocks for lattice polytopes; every lattice polytope can be triangulated into empty simplices.
- In particular, sometimes good properties of empty simplices have implications for all lattice polytopes.
- They correspond to *terminal quotient singularities* in the minimal model program.

Classifying is meant modulo unimodular equivalence (lattice-preserving affine isomorphism = $GL(d, \mathbb{Z})$ + integer translations).

Flatness 000000	Lattice polytopes 0000000	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration

We would like to understand better (and hopefully, classify exhaustively) hollow polytopes and, especially, empty simplices.

- They are the building blocks for lattice polytopes; every lattice polytope can be triangulated into empty simplices.
- In particular, sometimes good properties of empty simplices have implications for all lattice polytopes.
- They correspond to *terminal quotient singularities* in the minimal model program.

Classifying is meant modulo unimodular equivalence (lattice-preserving affine isomorphism = $GL(d, \mathbb{Z})$ + integer translations).

Remark

Volume, combinatorial type, hollowness, emptyness, width ... are invariant modulo unimodular equivalence.

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 0000000
$1 \neq 2$					

• **Dimension** 1: the only hollow 1-polytope, in particular the only empty 1-simplex, is the unit segment.

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 0000000
$1 \neq 2$					

- **Dimension** 1: the only hollow 1-polytope, in particular the only empty 1-simplex, is the unit segment.
- **Dimension** 2: infinitely many *hollow* polygons (and triangles), but only one *empty* triangle, the unimodular one (:⇔ vertices are an affine basis for the lattice ⇔ normalized volume = 1).

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 ののの

Flatness 000000	Lattice polytopes 00●00000	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration
$1 \neq 2$					

- **Dimension** 1: the only hollow 1-polytope, in particular the only empty 1-simplex, is the unit segment.
- **Dimension** 2: infinitely many *hollow* polygons (and triangles), but only one *empty* triangle, the unimodular one (:⇔ vertices are an affine basis for the lattice ⇔ normalized volume = 1).

Corollary (Pick's theorem): If *P* is a lattice polygon with *b* and *i* lattice points in its boundary and interior, then $area(P) = \frac{1}{2}(b+2i-2)$.

Flatness 000000	Lattice polytopes 00●00000	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration
$1 \neq 2$					

- **Dimension** 1: the only hollow 1-polytope, in particular the only empty 1-simplex, is the unit segment.
- **Dimension** 2: infinitely many *hollow* polygons (and triangles), but only one *empty* triangle, the unimodular one (:⇔ vertices are an affine basis for the lattice ⇔ normalized volume = 1).

Corollary (Pick's theorem): If *P* is a lattice polygon with *b* and *i* lattice points in its boundary and interior, then $area(P) = \frac{1}{2}(b+2i-2)$.

Theorem (Classification of hollow polygons) The hollow polygons are the polygons of width one and the second dilation of a unimodular triangle.

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration
$1 \neq 2$					

- **Dimension** 1: the only hollow 1-polytope, in particular the only empty 1-simplex, is the unit segment.
- **Dimension** 2: infinitely many *hollow* polygons (and triangles), but only one *empty* triangle, the unimodular one (:⇔ vertices are an affine basis for the lattice ⇔ normalized volume = 1).

Corollary (Pick's theorem): If *P* is a lattice polygon with *b* and *i* lattice points in its boundary and interior, then $area(P) = \frac{1}{2}(b+2i-2)$.

Theorem (Classification of hollow polygons) The hollow polygons are the polygons of width one and the second dilation of a unimodular triangle.

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 0000000
$2 \neq 3$					

Flatness 000000	Lattice polytopes 00000000	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 0000000
$2 \neq 3$					

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 ののの

Flatness 000000	Lattice polytopes 00000000	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration
2 ≠ 3					

Flatness 000000	Lattice polytopes 00000000	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 0000000
0 / 2					
$2 \neq 3$					

Flatness 000000	Lattice polytopes 00000000	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration
$2 \neq 3$					

< □ > < □ > < □ > < □ > < □ > < □ > = □

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 0000000
$2 \neq 3$					

Flatness 000000	Lattice polytopes 00000000	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration
2 ≠ 3					

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration
$2 \neq 3$					

Theorem (White 1964) Every empty tetrahedron has width one.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 0000000
2 ≠ 3					

イロト イヨト イヨト

1

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 0000000
$2 \neq 3$					

That is:

There are infinitely many empty tetrahedra, but they form a *two-parameter family* that we can describe completely.

イロト イヨト イヨト

Э

Flatness	Lattice polytopes	Empty 4-simplices:	1) volume	infinite families	enumeration
000000	00000000		000000	000000000	0000000

What about hollow 3-polytopes?

Theorem

The whole list of hollow 3-polytopes consists of:

- Those of width one.
- **2** Those that project to the dilated unimodular triangle.

Flatness	Lattice polytopes	Empty 4-simplices:	1) volume	infinite families	2) enumeration
000000	00000000		000000	000000000	0000000

What about hollow 3-polytopes?

Theorem

The whole list of hollow 3-polytopes consists of:

- Those of width one.
- **2** Those that project to the dilated unimodular triangle.
- 3 An additional finite list (Treutlein 2008)

Flatness	Lattice polytopes	Empty 4-simplices:	1) volume	infinite families	2) enumeration
000000	00000000		000000	000000000	0000000

What about hollow 3-polytopes?

Theorem

The whole list of hollow 3-polytopes consists of:

- Those of width one.
- 2 Those that project to the dilated unimodular triangle.
- An additional finite list (Treutlein 2008) with only twelve maximal elements (Averkov-Krümpelmann-Weltge, 2016): Seven of width two and five of width three.

Flatness	Lattice polytopes	Empty 4-simplices:	1) volume	infinite families	2) enumeration
000000	00000000		000000	000000000	0000000

What about hollow 3-polytopes?

Theorem

The whole list of hollow 3-polytopes consists of:

- Those of width one.
- 2 Those that project to the dilated unimodular triangle.

An additional finite list (Treutlein 2008) with only twelve maximal elements (Averkov-Krümpelmann-Weltge, 2016): Seven of width two and five of width three.

Remark

The three cases (1), (2) and (3) correspond to what is the minimal dimension of a lattice projection of P that is still hollow.

Flatness	Lattice polytopes	Empty 4-simplices:	1) volume	infinite families	2) enumerati
000000	00000000		000000	000000000	0000000

The maximal hollow 3-polytopes (d'après AKW2016)

Flatness	Lattice polytopes	Empty 4-simplices:	1) volume	3) infinite families	2) enumeration
000000	00000000		000000	000000000	0000000

Finiteness of the number of hollow 3-polytopes that *do not project* to lower dimensions is a general fact:

Theorem (Nill-Ziegler 2011, also Lawrence 1991)

For each d, all except finitely many hollow d-polytopes (in particular, empty d-simplices) project to hollow polytopes of dimension < d.

(日) (四) (王) (王) (王)

Flatness	Lattice polytopes	Empty 4-simplices:	1) volume	3) infinite families	2) enumeration
000000	00000000		000000	000000000	0000000

Finiteness of the number of hollow 3-polytopes that *do not project* to lower dimensions is a general fact:

Theorem (Nill-Ziegler 2011, also Lawrence 1991)

For each d, all except finitely many hollow d-polytopes (in particular, empty d-simplices) project to hollow polytopes of dimension < d.

... and this result gives a first step towards a classification of empty (or hollow) *d*-polytopes. To each hollow (or empty) *d*-polytope *P* we assign a number $k \le d$ and a hollow *k*-polytope *Q* such that *P* projects to *Q* but *Q* does not project further.

(日) (同) (三) (三) (三)

Flatness	Lattice polytopes	Empty 4-simplices:	1) volume	3) infinite families	2) enumeration
000000	00000000		000000	000000000	0000000

Finiteness of the number of hollow 3-polytopes that *do not project* to lower dimensions is a general fact:

Theorem (Nill-Ziegler 2011, also Lawrence 1991)

For each d, all except finitely many hollow d-polytopes (in particular, empty d-simplices) project to hollow polytopes of dimension < d.

... and this result gives a first step towards a classification of empty (or hollow) *d*-polytopes. To each hollow (or empty) *d*-polytope *P* we assign a number $k \le d$ and a hollow *k*-polytope *Q* such that *P* projects to *Q* but *Q* does not project further. The above theorem says that there are finitely many *Q*'s for each *k*, hence for each *d*.

(日) (同) (注) (注) (三)

Flatness	Lattice polytopes	Empty 4-simplices:	1) volume	3) infinite families	2) enumeration
000000	00000000		000000	000000000	0000000

Finiteness of the number of hollow 3-polytopes that *do not project* to lower dimensions is a general fact:

Theorem (Nill-Ziegler 2011, also Lawrence 1991)

For each d, all except finitely many hollow d-polytopes (in particular, empty d-simplices) project to hollow polytopes of dimension < d.

... and this result gives a first step towards a classification of empty (or hollow) *d*-polytopes. To each hollow (or empty) *d*-polytope *P* we assign a number $k \leq d$ and a hollow *k*-polytope *Q* such that *P* projects to *Q* but *Q* does not project further. The above theorem says that there are finitely many *Q*'s for each *k*, hence for each *d*.

Examples

P projects to a hollow 1-polytope \Leftrightarrow *P* has width one.

P projects to a hollow 2-polytope \Leftrightarrow *P* either has width one or projects to the second dilation of a unimodular triangle.

DQA

Flatness 000000	Lattice polytopes 0000000●	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration
$3 \neq 4$					

In dimension 4, Haase and Ziegler (2000) experimentally found that:

Flatness 000000	Lattice polytopes 0000000●	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 0000000
2 / 1					

3 *≠* 4

In dimension 4, Haase and Ziegler (2000) experimentally found that:

- There are infinitely many empty 4-simplices of width two (e. g., conv(e₁,..., e₄, v), where v = (2, 2, 3, D 6) and gcd(D, 6) = 1).
- Among the empty 4-simplices of determinant up to 1000 those of width larger than two have determinant \leq 179. (There are 178 of width three plus one of width 4 and determinant 101).

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○
Flatness 000000	Lattice polytopes 0000000●	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 0000000
2 / 1					

In dimension 4, Haase and Ziegler (2000) experimentally found that:

- There are infinitely many empty 4-simplices of width two (e. g., conv(e₁,..., e₄, v), where v = (2, 2, 3, D 6) and gcd(D, 6) = 1).
- Among the empty 4-simplices of determinant up to 1000 those of width larger than two have determinant \leq 179. (There are 178 of width three plus one of width 4 and determinant 101).

Conjecture (H-Z, 2000)

These 179 are the only empty 4-simplices of width > 2.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

Flatness 000000	Lattice polytopes 0000000●	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 0000000
2 / 1					

In dimension 4, Haase and Ziegler (2000) experimentally found that:

- There are infinitely many empty 4-simplices of width two (e. g., conv(e₁,..., e₄, v), where v = (2, 2, 3, D 6) and gcd(D, 6) = 1).
- Among the empty 4-simplices of determinant up to 1000 those of width larger than two have determinant \leq 179. (There are 178 of width three plus one of width 4 and determinant 101).

Conjecture (H-Z, 2000)

These 179 are the only empty 4-simplices of width > 2.

On the positive side: Every empty 4-simplex is cyclic (Barile et al. 2011).

Flatness 000000	Lattice polytopes 0000000●	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 0000000
2/4					

In dimension 4, Haase and Ziegler (2000) experimentally found that:

- There are infinitely many empty 4-simplices of width two (e. g., conv(e₁,..., e₄, v), where v = (2, 2, 3, D 6) and gcd(D, 6) = 1).
- Among the empty 4-simplices of determinant up to 1000 those of width larger than two have determinant \leq 179. (There are 178 of width three plus one of width 4 and determinant 101).

Conjecture (H-Z, 2000)

These 179 are the only empty 4-simplices of width > 2.

On the positive side: Every empty 4-simplex is *cyclic* (Barile et al. 2011). Here, a simplex Δ is called *cyclic* if the quotient group $\Lambda/L(\Delta)$ is cyclic, where $L(\Delta)$ is the lattice spanned by the vertices of Δ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

Flatness 000000	Lattice polytopes 0000000●	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 0000000
2/4					

In dimension 4, Haase and Ziegler (2000) experimentally found that:

- There are infinitely many empty 4-simplices of width two (e. g., conv(e₁,..., e₄, v), where v = (2, 2, 3, D 6) and gcd(D, 6) = 1).
- Among the empty 4-simplices of determinant up to 1000 those of width larger than two have determinant \leq 179. (There are 178 of width three plus one of width 4 and determinant 101).

Conjecture (H-Z, 2000)

These 179 are the only empty 4-simplices of width > 2.

On the positive side: Every empty 4-simplex is *cyclic* (Barile et al. 2011). Here, a simplex Δ is called *cyclic* if the quotient group $\Lambda/L(\Delta)$ is cyclic, where $L(\Delta)$ is the lattice spanned by the vertices of Δ .

Observe that $|\mathbb{Z}^d/L(\Delta)|$ equals the normalized volume (= the determinant) of Δ .

Flatness 000000	Lattice polytopes 0000000●	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration
0 / 4					
$3 \neq 4$					

,

In dimension 4, Haase and Ziegler (2000) experimentally found that:

- There are infinitely many empty 4-simplices of width two (e. g., conv(e₁,..., e₄, v), where v = (2, 2, 3, D 6) and gcd(D, 6) = 1).
- Among the empty 4-simplices of determinant up to 1000 those of width larger than two have determinant \leq 179. (There are 178 of width three plus one of width 4 and determinant 101).

Conjecture (H-Z, 2000)

These 179 are the only empty 4-simplices of width > 2.

On the positive side: Every empty 4-simplex is *cyclic* (Barile et al. 2011). Here, a simplex Δ is called *cyclic* if the quotient group $\Lambda/L(\Delta)$ is cyclic, where $L(\Delta)$ is the lattice spanned by the vertices of Δ .

Observe that $|\mathbb{Z}^d/L(\Delta)|$ equals the normalized volume (= the determinant) of Δ .

 $4 \neq 5$: In dimension ≥ 5 there are non-cyclic empty simplices \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow

Flatness 000000 attice polytopes

Empty 4-simplices:

1) volume

3) infinite families

2) enumeration

The complete classification of empty 4-simplices (lglesias-S., 2018+)

Flatness	
000000	

3) infinite families

2) enumeration

The complete classification of empty 4-simplices (Iglesias-S., 2018+)

Theorem 1 (volume bound)

All empty 4-simplices that do not project to a hollow 3-polytope have determinant \leq 7600.

500

The complete classification of empty 4-simplices (Iglesias-S., 2018+)

Theorem 1 (volume bound)

All empty 4-simplices that do not project to a hollow 3-polytope have determinant \leq 7600.

Theorem 2 (enumeration)

There are 2461 of them. Their determinants range from 24 to 419. There is one of width 4 (determinant=101), 178 of width three (dets. \in [49, 179]), and the rest have width two (as predicted by Haase-Ziegler).

The complete classification of empty 4-simplices (Iglesias-S., 2018+)

Theorem 1 (volume bound)

All empty 4-simplices that do not project to a hollow 3-polytope have determinant \leq 7600.

Theorem 2 (enumeration)

There are 2461 of them. Their determinants range from 24 to 419. There is one of width 4 (determinant=101), 178 of width three (dets. \in [49, 179]), and the rest have width two (as predicted by Haase-Ziegler).

Theorem 3 (infinite families)

All empty 4-simplices that project to hollow 3-polytopes belong to 1 + 3 + 52 families with 3, 2 and 1 parameters respectively.

90

The complete classification of empty 4-simplices (Iglesias-S., 2018+)

Theorem 1 (volume bound)

All empty 4-simplices that do not project to a hollow 3-polytope have determinant \leq 7600.

Theorem 2 (enumeration)

There are 2461 of them. Their determinants range from 24 to 419. There is one of width 4 (determinant=101), 178 of width three (dets. \in [49, 179]), and the rest have width two (as predicted by Haase-Ziegler).

Theorem 3 (infinite families)

All empty 4-simplices that project to hollow 3-polytopes belong to 1+3+52 families with 3, 2 and 1 parameters respectively. All of them have width one or two.

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume ●00000	3) infinite families	2) enumeration 0000000
Theore	em 1				

Although we are interested only in *empty* ones, the first theorem holds for all *hollow* simplices:

Theorem 1

All *hollow* 4-simplices that do not project to a hollow 3-polytope have (normalized) volume \leq 7600.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume ●00000	3) infinite families	2) enumeration 0000000
Theore	em 1				

Although we are interested only in *empty* ones, the first theorem holds for all *hollow* simplices:

Theorem 1

All *hollow* 4-simplices that do not project to a hollow 3-polytope have (normalized) volume \leq 7600.

We prove this in two parts:

- The case of width at least three.
- 2 The case of width two.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume ○●○○○○	3) infinite families	2) enumeration
Idea of	f proof for	width > 3			

◆□ > ◆□ > ◆臣 > ◆臣 > 三臣 - のへで

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume ○●○○○○	3) infinite families	2) enumeration
ldea o	f proof for	width> 3			

Consider the lattice projection $\pi: P \to Q$ along the direction where the *rational diameter* of P is attained. Q is not hollow, but still has width ≥ 3 .

We call rational diameter $\delta(P)$ of P the maximum length (w.r.t. the lattice) of a rational segment contained in P. It equals $\lambda_1^{-1}(P - P)$, where $\lambda_1(C) \equiv$ first successive minimum of C.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume ○●○○○○	3) infinite families	2) enumeration
Idea o	f proof for v	width > 3			

Consider the lattice projection $\pi: P \to Q$ along the direction where the *rational diameter* of P is attained. Q is not hollow, but still has width ≥ 3 .

We call rational diameter $\delta(P)$ of P the maximum length (w.r.t. the lattice) of a rational segment contained in P. It equals $\lambda_1^{-1}(P - P)$, where $\lambda_1(C) \equiv$ first successive minimum of C.

Minkowski's first theorem

 $\operatorname{Vol}(P) \leq \frac{\operatorname{Vol}(P-P)}{2^d} \leq d! \delta(P)^d.$

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume ○●○○○○	3) infinite families	2) enumeration
Idea of	f proof for v	width> 3			

Consider the lattice projection $\pi: P \to Q$ along the direction where the *rational diameter* of P is attained. Q is not hollow, but still has width ≥ 3 .

We call rational diameter $\delta(P)$ of P the maximum length (w.r.t. the lattice) of a rational segment contained in P. It equals $\lambda_1^{-1}(P - P)$, where $\lambda_1(C) \equiv$ first successive minimum of C.

Minkowski's first theorem

 $\operatorname{Vol}(P) \leq \frac{\operatorname{Vol}(P-P)}{2^d} \leq d! \delta(P)^d.$

If P is a simplex this can be improved to

$$\mathsf{Vol}(P) \leq rac{2^d d!}{\binom{2d}{d}} \delta(P)^d$$

Flatness	Lattice polytopes	Empty 4-simplices:	 volume 	infinite families	enumeration
000000	0000000		00000	000000000	0000000

Bounding Vol(P) from Vol(Q)

Lemma

Let $\pi : P \to Q$ be an integer projection of a hollow *d*-simplex *P* onto a non-hollow (d-1)-polytope *Q*. Let:

- $x \in Q$ be the Radon point of the projection.
- δ be the length of $\pi^{-1}(x)$.
- 0 < r < 1 be the maximum dilation factor such that Q_r := x + r(Q − x) is hollow.

Then:

 $I \quad \mathsf{Vol}(P) = \delta \, \mathsf{Vol}(Q).$

2
$$\delta^{-1} \ge 1 - r$$
.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

Flatness	Lattice polytopes	Empty 4-simplices:	 volume 	infinite families	enumeration
000000	0000000		00000	000000000	0000000

Bounding Vol(P) from Vol(Q)

Lemma

Let $\pi: P \to Q$ be an integer projection of a hollow *d*-simplex *P* onto a non-hollow (d-1)-polytope *Q*. Let:

- $x \in Q$ be the Radon point of the projection.
- δ be the length of $\pi^{-1}(x)$.
- 0 < r < 1 be the maximum dilation factor such that $Q_r := x + r(Q x)$ is hollow.

Then:

• $\operatorname{Vol}(P) = \delta \operatorname{Vol}(Q).$

2 $\delta^{-1} \ge 1 - r$.

- In what follows we project along the direction with $\delta = \text{diameter}(P)$.
- r measures whether Q is "close to hollow" $(r \simeq 1)$ or "far from hollow" $(r \simeq 0)$

Flatness	Lattice polytopes	Empty 4-simplices:	1) volume	3) infinite families	2) enumeration
000000	0000000		000000	000000000	0000000

Now, suppose that $\pi : P \to Q$ is the projection along the direction giving the rational diameter of P, so that the δ in the theorem equals the rational diameter of P. We have a dichotomy:

Flatness	Lattice polytopes	Empty 4-simplices:	1) volume	infinite families	2) enumeration
000000	0000000		000000	000000000	0000000

Now, suppose that $\pi : P \to Q$ is the projection along the direction giving the rational diameter of P, so that the δ in the theorem equals the rational diameter of P. We have a dichotomy:

• If <u>Q</u> is "far from hollow" then we use Minkowski's inequality $\operatorname{vol}(P - P) \leq 2^d \delta^d$. Together with $\operatorname{Vol}(P - P) = \binom{2d}{d} \operatorname{Vol}(P)$ (Rogers-Shephard for a simplex):

$$\mathsf{Vol}(P) = \frac{\mathsf{Vol}(P-P)}{\binom{8}{4}} = \frac{24\,\mathsf{vol}(P-P)}{\binom{8}{4}} \le \frac{24\cdot16}{\binom{8}{4}}\delta^4 = 5.48\delta^4.$$

Flatness	Lattice polytopes	Empty 4-simplices:	1) volume	3) infinite families	2) enumeration
000000	0000000		000000	000000000	0000000

Now, suppose that $\pi : P \to Q$ is the projection along the direction giving the rational diameter of P, so that the δ in the theorem equals the rational diameter of P. We have a dichotomy:

• If <u>Q</u> is "far from hollow" then we use Minkowski's inequality $\operatorname{vol}(P - P) \leq 2^d \delta^d$. Together with $\operatorname{Vol}(P - P) = \binom{2d}{d} \operatorname{Vol}(P)$ (Rogers-Shephard for a simplex):

$$\mathsf{Vol}(P) = \frac{\mathsf{Vol}(P-P)}{\binom{8}{4}} = \frac{24\,\mathsf{vol}(P-P)}{\binom{8}{4}} \le \frac{24\cdot16}{\binom{8}{4}}\delta^4 = 5.48\delta^4.$$

E.g., whenever $r \leq 0.81$ we have $\delta \leq 1/0.19$ and

$$Vol(P) \le \frac{5.48}{0.19^4} = 4210.$$

Flatness	Lattice polytopes	Empty 4-simplices:	1) volume	infinite families	2) enumeration
000000	0000000		000000	000000000	0000000

Now, suppose that $\pi : P \to Q$ is the projection along the direction giving the rational diameter of P, so that the δ in the theorem equals the rational diameter of P. We have a dichotomy:

• If Q is "close to hollow" then we use the Lemma:

$$\operatorname{Vol}(P) = \delta \operatorname{Vol}(Q) = \frac{\delta}{r^3} \operatorname{Vol}(Q_r), \text{ where }:$$

Flatness	Lattice polytopes	Empty 4-simplices:	1) volume	infinite families	2) enumeration
000000	0000000		000000	000000000	0000000

Now, suppose that $\pi : P \to Q$ is the projection along the direction giving the rational diameter of P, so that the δ in the theorem equals the rational diameter of P. We have a dichotomy:

• If Q is "close to hollow" then we use the Lemma:

$$\operatorname{Vol}(P) = \delta \operatorname{Vol}(Q) = \frac{\delta}{r^3} \operatorname{Vol}(Q_r), \text{ where }:$$

•
$$\delta \leq$$
 42 (we skip details).

Flatness	Lattice polytopes	Empty 4-simplices:	1) volume	infinite families	2) enumeration
000000	0000000		000000	000000000	0000000

Now, suppose that $\pi : P \to Q$ is the projection along the direction giving the rational diameter of P, so that the δ in the theorem equals the rational diameter of P. We have a dichotomy:

• If Q is "close to hollow" then we use the Lemma:

$$\operatorname{Vol}(P) = \delta \operatorname{Vol}(Q) = \frac{\delta}{r^3} \operatorname{Vol}(Q_r), \quad \text{where}:$$

- $\delta \leq$ 42 (we skip details).
- r is bounded away from 0 (by the previous case we can assume $r \ge .81$).

Flatness	Lattice polytopes	Empty 4-simplices:	1) volume	3) infinite families	2) enumeration
000000	0000000		000000	000000000	0000000

Now, suppose that $\pi : P \to Q$ is the projection along the direction giving the rational diameter of P, so that the δ in the theorem equals the rational diameter of P. We have a dichotomy:

• If Q is "close to hollow" then we use the Lemma:

$$\operatorname{Vol}(P) = \delta \operatorname{Vol}(Q) = \frac{\delta}{r^3} \operatorname{Vol}(Q_r), \quad \text{where}:$$

- $\delta \leq$ 42 (we skip details).
- r is bounded away from 0 (by the previous case we can assume $r \ge .81$).

 Q_r is a lattice-free 3-polytope of width at least 3r ≥ 2.43, which gives an upper bound for Vol(Q_r).

Flatness	Lattice polytopes	Empty 4-simplices:	1) volume	3) infinite families	2) enumeration
000000	0000000		000000	000000000	0000000

Now, suppose that $\pi : P \to Q$ is the projection along the direction giving the rational diameter of P, so that the δ in the theorem equals the rational diameter of P. We have a dichotomy:

• If Q is "close to hollow" then we use the Lemma:

$$\operatorname{Vol}(P) = \delta \operatorname{Vol}(Q) = \frac{\delta}{r^3} \operatorname{Vol}(Q_r), \quad \text{where}:$$

- $\delta \leq$ 42 (we skip details).
- r is bounded away from 0 (by the previous case we can assume $r \ge .81$).
- Q_r is a lattice-free 3-polytope of width at least $3r \ge 2.43$, which gives an upper bound for $Vol(Q_r)$.

Putting this together we get "Theorem 2":

$$\operatorname{Vol}(P) \leq rac{\delta}{r^3} \operatorname{Vol}(Q_r) \leq \cdots \leq 7600$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Flatness	Lattice polytopes	Empty 4-simplices:	 volume 	infinite families	2) enumeration
000000	0000000		000000	000000000	0000000

A bound on the volume of wide 3-polytopes

Lemma (Iglesias-S. 2017+, inspired in AKW 2016)

Let K be a hollow convex 3-body of width $w > 1 + \frac{2}{\sqrt{3}} = 2.155$. Then,

$$\mathsf{vol}(\mathcal{K}) \leq \begin{cases} 8w^3/(w-1)^3, & \text{if } w \geq \frac{2}{\sqrt{3}}(\sqrt{5}-1) + 1 = 2.427, \\ 3w^3/4(w-(1+2/\sqrt{3})), & \text{if } w \leq 2.427. \end{cases}$$

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume 00000●	3) infinite families	2) enumeration

Let P be a hollow lattice 4-simplex of width = 2 that *does not project to a hollow* 3-*polytope*.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 ののの

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume 00000●	3) infinite families	2) enumeration

Let P be a hollow lattice 4-simplex of width = 2 that *does not project to a hollow* 3-*polytope*.

W.l.o.g. suppose $P \subset [-1,1] \times \mathbb{R}^3$, and let $Q = P \cap (\{0\} \times \mathbb{R}^3)$. Then, by Schwarz symmetrization:

 $\operatorname{Vol}(P) \leq 2^4 \operatorname{Vol}(Q).$

Hence, it suffices to show that $Vol(Q) \le 7600/16 = 475$.

Flatness	Lattice polytopes	Empty 4-simplices:	 volume 	infinite families	enumeration
000000	0000000		000000	000000000	0000000

Let P be a hollow lattice 4-simplex of width = 2 that *does not project to a hollow* 3-*polytope*.

W.l.o.g. suppose $P \subset [-1,1] \times \mathbb{R}^3$, and let $Q = P \cap (\{0\} \times \mathbb{R}^3)$. Then, by Schwarz symmetrization:

 $\operatorname{Vol}(P) \leq 2^4 \operatorname{Vol}(Q).$

Hence, it suffices to show that $Vol(Q) \le 7600/16 = 475$. Observe Q is half-integer. Two cases:

• width(Q) $\geq 5/2 \Rightarrow$ since Q is hollow,

$$Vol(Q) = 6 \text{ vol } Q \le 6 \frac{8(5/2)^3}{(3/2)^3} = 222.2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

Flatness	Lattice polytopes	Empty 4-simplices:	 volume 	infinite families	enumeration
000000	0000000		000000	000000000	0000000

Let P be a hollow lattice 4-simplex of width = 2 that *does not project to a hollow* 3-*polytope*.

W.l.o.g. suppose $P \subset [-1,1] \times \mathbb{R}^3$, and let $Q = P \cap (\{0\} \times \mathbb{R}^3)$. Then, by Schwarz symmetrization:

 $\operatorname{Vol}(P) \leq 2^4 \operatorname{Vol}(Q).$

Hence, it suffices to show that $Vol(Q) \le 7600/16 = 475$. Observe Q is half-integer. Two cases:

• width(Q) $\geq 5/2 \Rightarrow$ since Q is hollow,

$$Vol(Q) = 6 \text{ vol } Q \le 6 \frac{8(5/2)^3}{(3/2)^3} = 222.2$$

Width(Q) ≤ 2 ⇒ we apply to the middle slice of Q (call it R) the same ideas: R is a lattice-free polygon which does not project to dimension 1 ⇒ (we skip details...) Vol(Q) ≤ 324

▲□▶ ▲□▶ ★□▶ ★□▶ □ ● ● ●

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families●○○○○○○○○○	2) enumeration 0000000

Motivated by their equivalence to *terminal quotient singularities*, Mori, Morrison and Morrison (1989) studied empty 4-simplices of *prime determinant* and found that:

- There are 1+1+29 infinite families with three, two, and one parameters respectively.
- Up to determinant 419 there are some 4-simplices not in those families, but between 420 and 1600 there are none.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families •000000000	2) enumeration 0000000

Motivated by their equivalence to *terminal quotient singularities*, Mori, Morrison and Morrison (1989) studied empty 4-simplices of *prime determinant* and found that:

- There are 1+1+29 infinite families with three, two, and one parameters respectively.
- Op to determinant 419 there are some 4-simplices not in those families, but between 420 and 1600 there are none.

CONJECTURE 1.4 (four-dimensional terminal lemma). Fix $p \ge 421$. Up to the actions of $(\mathbb{Z}/p\mathbb{Z})^*$ and \mathbb{S}^4 , each isolated four-dimensional terminal $\mathbb{Z}/p\mathbb{Z}$ -quotient singularity of index p is associated with one of the p-terminal quintuples given in Theorem 1.3.

This conjecture was proved (modulo the "finitely many exceptions") by Bover (2009) (partially by Sankaran 1990)

▲□▶ ▲□▶ ★□▶ ★□▶ □ ● ● ●

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families •000000000	2) enumeration 0000000

Motivated by their equivalence to *terminal quotient singularities*, Mori, Morrison and Morrison (1989) studied empty 4-simplices of *prime determinant* and found that:

- There are 1+1+29 infinite families with three, two, and one parameters respectively.
- Op to determinant 419 there are some 4-simplices not in those families, but between 420 and 1600 there are none.

CONJECTURE 1.4 (four-dimensional terminal lemma). Fix $p \ge 421$. Up to the actions of $(\mathbb{Z}/p\mathbb{Z})^*$ and \mathbb{S}^4 , each isolated four-dimensional terminal $\mathbb{Z}/p\mathbb{Z}$ -quotient singularity of index p is associated with one of the p-terminal quintuples given in Theorem 1.3.

This conjecture was proved (modulo the "finitely many exceptions") by Bover (2009) (partially by Sankaran 1990) \Rightarrow Complete classification of empty simplices of prime volume.

Flatness	Lattice polytopes	Empty 4-simplices:	1) volume	infinite families	2) enumeration
000000	0000000		000000	00000000	0000000

THEOREM 1.3. Let Q be a quintuple of integers summing to zero, and let p be a prime number. Suppose that either

(a)
$$Q = (\alpha, -\alpha, \beta, \gamma, -\beta - \gamma)$$
 with $0 < |\alpha|, |\beta|, |\gamma| < p/2$, and $\beta + \gamma \neq 0$, or

(b)
$$Q = (\alpha, -2\alpha, \beta, -2\beta, \alpha + \beta)$$
 with $0 < |\alpha|, |\beta| < p/2$, and $\alpha + \beta \neq 0$, or

(c) Q is one of the 29 quintuples listed in Table 1.9 and $p > M_Q$.

Then Q is p-terminal.

TABLE 1.9	(6, 4, 3, -1, -12)	02221, 20001
	(7, 5, 3, -1, -14)	02221 20001

DQC

			,	
$Stable \ Quintuple$	Linear Relations	(9, 7, 1, -3, -14)	02001, 20221	
$\left(9,1,-2,-3,-5\right)$	02100, 11002, 20122	(15, 7, -3, -5, -14)	02001, 20221	
(9, 2, -1, -4, -6)	01200, 02010, 20212	(8, 5, 3, -1, -15)	02211, 20011	
(12, 3, -4, -5, -6)	02001, 10002, 12220	(10, 6, 1, -2, -15)	00210, 22012	
$\left(12,2,-3,-4,-7\right)$	02010, 11002, 20212	(12, 5, 2, -4, -15)	00210, 22012	
$\left(9,4,-2,-3,-8\right)$	01200, 02001, 20221	(9, 6, 4, -1, -18)	02221, 20001	
$\left(12,1,-2,-3,-8\right)$	02100, 12021, 20122	(9, 6, 5, -2, -18)	02221, 20001	
(12, 3, -1, -6, -8)	02010, 10020, 12202	(12, 9, 1, -4, -18)	02001, 20221	
$\left(15,4,-5,-6,-8\right)$	02001, 20221	(10, 7, 4, -1, -20)	02221, 20001	
(12, 2, -1, -4, -9)	01200, 02010, 20212	(10, 8, 3, -1, -20)	02221, 20001	
$\left(10,6,-2,-5,-9\right)$	02120, 10020, 12202	(10, 9, 4, -3, -20)	02221, 20001	
$\left(15,1,-2,-5,-9\right)$	02100, 20122	(12, 10, 1, -3, -20)	02001, 20221	
(12, 5, -3, -4, -10)	02001, 02210, 20221	(12, 8, 5, -1, -24)	02221, 20001	
$\left(15,2,-3,-4,-10\right)$	02010, 20212	(15, 10, 6, -1, -30)	02221, 20001	
		Image: A mathematical states and a math a mathematical states and a		3

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 0000000
Theor	em 3				

(Almost) Theorem 3 (Barile, Bernardi, Borisov and Kantor, 2011)

All but finitely many empty 4-simplices belong to the 29 + 1 + 1 families of Mori-Morrison-Morrison (1988), all of which have width one or two.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで
Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 0000000
Theor	rem 3				

(Almost) Theorem 3 (Barile, Bernardi, Borisov and Kantor, 2011)

All but finitely many empty 4-simplices belong to the 29 + 1 + 1 families of Mori-Morrison-Morrison (1988), all of which have width one or two.

This is only true for 4-simplices of *prime* volume.

(日) (同) (注) (注) (三)

DQA

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	 3) infinite families ○○●○○○○○○○○ 	2) enumeration 0000000

Theorem 3

(Almost) Theorem 3 (Barile, Bernardi, Borisov and Kantor, 2011)

All but finitely many empty 4-simplices belong to the 29 + 1 + 1 families of Mori-Morrison-Morrison (1988), all of which have width one or two.

This is only true for 4-simplices of prime volume.

The correct version is:

Theorem 3 (Iglesias, Santos, 2018+)

All empty 4-simplices that project to hollow 3-polytopes belong to:

- **1** The 3-parameter family with quintuple (a, -a, b, c, -b c).
- One of the two 2-parameter families with quintuples (a, -2a, b, -2b, a + b) and (a, -2a, b, -2b, a + b).
- One of the 29 + 23 one-parameter families given by the 29 quintuples of Mori, Morrison and Morrison (1988) or the new 23 non-primitive quintuples.

Flatness	Lattice polytop
000000	00000000

1) volume

3) infinite families

2) enumeration 0000000

Cyclic simplices represented as (d + 1)-tuples

Flatness	Lattice polytop
000000	00000000

1) volume 000000 3) infinite families

2) enumeration 0000000

590

Cyclic simplices represented as (d + 1)-tuples

What are these "quintuples"

For each choice of $D \in \mathbb{N}$, a quintuple $v = (v_0, v_1, v_2, v_3, v_4)$ represents "the" cyclic simplex Δ in which v/D are the barycentric coordinates for a generator of $\mathbb{Z}^4/\Lambda(D)$.

Flatness	Lattice polytopes
000000	0000000

1) volume 000000 3) infinite families

2) enumeration 0000000

Cyclic simplices represented as (d + 1)-tuples

What are these "quintuples"

For each choice of $D \in \mathbb{N}$, a quintuple $v = (v_0, v_1, v_2, v_3, v_4)$ represents "the" cyclic simplex Δ in which v/D are the barycentric coordinates for a generator of $\mathbb{Z}^4/\Lambda(D)$.

Remarks:

• All empty 4-simplces are cyclic (Barile et al 2011), so they can be represented in this way.

Flatness	Lattice polytopes
000000	0000000

1) volume 000000 3) infinite families

2) enumeration 0000000

Cyclic simplices represented as (d + 1)-tuples

What are these "quintuples"

For each choice of $D \in \mathbb{N}$, a quintuple $v = (v_0, v_1, v_2, v_3, v_4)$ represents "the" cyclic simplex Δ in which v/D are the barycentric coordinates for a generator of $\mathbb{Z}^4/\Lambda(D)$.

Remarks:

- All empty 4-simplces are cyclic (Barile et al 2011), so they can be represented in this way.
- D equals the determinant of Δ .

Flatness	Lattice polytopes
000000	0000000

1) volume 000000 3) infinite families

2) enumeration 0000000

San

Cyclic simplices represented as (d + 1)-tuples

What are these "quintuples"

For each choice of $D \in \mathbb{N}$, a quintuple $v = (v_0, v_1, v_2, v_3, v_4)$ represents "the" cyclic simplex Δ in which v/D are the barycentric coordinates for a generator of $\mathbb{Z}^4/\Lambda(D)$.

Remarks:

- All empty 4-simplces are cyclic (Barile et al 2011), so they can be represented in this way.
- D equals the determinant of Δ .
- the v_i 's are integers, and they are important only modulo D.

latness	Lattice polytope
000000	00000000

1) volume 000000 3) infinite families

2) enumeration

Cyclic simplices represented as (d + 1)-tuples

What are these "quintuples"

For each choice of $D \in \mathbb{N}$, a quintuple $v = (v_0, v_1, v_2, v_3, v_4)$ represents "the" cyclic simplex Δ in which v/D are the barycentric coordinates for a generator of $\mathbb{Z}^4/\Lambda(D)$.

Remarks:

- All empty 4-simplces are cyclic (Barile et al 2011), so they can be represented in this way.
- D equals the determinant of Δ .
- the v_i 's are integers, and they are important only modulo D.
- if we choose ∑ v_i = 0 and do not specify D, then a quintuple (v₀, v₁, v₂, v₃, v₄) represents an infinite family of simplices, one for each D.

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration

Each quintuple is a 1-parameter family of empty 4-simplices that project to a particular hollow 3-polytope.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 ののの

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 0000000

Each quintuple is a 1-parameter family of empty 4-simplices that project to a particular hollow 3-polytope. We get one simplex of determinant D for each choice of $D \in \mathbb{N}$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families 0000●00000	2) enumeration
Interp	retation of	the quintuple	es		

Each quintuple is a 1-parameter family of empty 4-simplices that project to a particular hollow 3-polytope. We get one simpley of determinant D

to a particular hollow 3-polytope. We get one simplex of determinant D for each choice of $D \in \mathbb{N}$. The entries in a quintuple can be interpreted as:

 Divided by D, they are barycentric coordinates for a generator of the (cyclic) group Z⁴/L(Δ).

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families 0000●00000	2) enumeration
Inter	pretation of	the quintuple	es		

Each quintuple is a 1-parameter family of empty 4-simplices that project to a particular hollow 3-polytope. We get one simplex of determinant D for each choice of $D \in \mathbb{N}$. The entries in a quintuple can be interpreted as:

- Divided by D, they are barycentric coordinates for a generator of the (cyclic) group Z⁴/L(Δ).
- They are homogeneous coordinates for a line
 ℓ ∈ {x ∈ ℝ⁵ : ∑x_i = 1} ≅ ℝ⁴ passing through the origin (assumed to be a vertex of Δ). This line gives the projection direction, and has the property that the projection of Δ is hollow.

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families 0000●00000	2) enumeration 0000000
1 .	·				

Each quintuple is a 1-parameter family of empty 4-simplices that project to a particular hollow 3-polytope. We get one simplex of determinant D for each choice of $D \in \mathbb{N}$. The entries in a quintuple can be interpreted as:

- Divided by D, they are barycentric coordinates for a generator of the (cyclic) group Z⁴/L(Δ).
- They are homogeneous coordinates for a line
 ℓ ∈ {x ∈ ℝ⁵ : ∑x_i = 1} ≅ ℝ⁴ passing through the origin (assumed to be a vertex of Δ). This line gives the projection direction, and has the property that the projection of Δ is hollow.
- It gives the (unique) affine dependence among the projection of the vertices of Δ in the direction of the line ℓ .

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration

More generally: a *k*-parameter family corresponds to the set of all *d*-dimensional lifts of a certain configuration of d + 1 points in dimension d - k. The "*k*-parameter (d + 1)-tuple" parametrizes the affine dependences among the d + 1 points in \mathbb{R}^k .

In particular, the Nill-Ziegler result ("all except finitely many hollow d-polytopes project to a hollow < d-polytope") implies:

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families 00000●0000	2) enumeration 0000000

More generally: a *k*-parameter family corresponds to the set of all *d*-dimensional lifts of a certain configuration of d + 1 points in dimension d - k. The "*k*-parameter (d + 1)-tuple" parametrizes the affine dependences among the d + 1 points in \mathbb{R}^k .

In particular, the Nill-Ziegler result ("all except finitely many hollow d-polytopes project to a hollow < d-polytope") implies:

Corollary

In any fixed dimension d, the set of all hollow d-simplices can be stratified "à la Mori et al." into a finite number of "families". Each family is represented as a k-dimensional rational linear subspace of \mathbb{R}^{d+1} $(k \in \{0, ..., d-1\})$. A k-parameter family corresponds to simplices projecting to a particular configuration A of d + 1 points in \mathbb{R}^k such that conv(A) is hollow but does not project to dimension < d - k.

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 0000000
Proof	of Theorem	13			

The list in the statement corresponds to empty 4-simplices projectiong to lower dimensional hollow polytopes:

• Simplices projecting to dim 1 (that is, of width one) can a priori project in two ways: "4 + 1" or "3 + 2". But the classification of 3-dimensional empty simplices implies that the former is a special case of the latter. Affine dependences in the latter are parametrized by (a, -a, b, c, -b - c) (the 3-parameter family of MMM).

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families 000000●000	2) enumeration
Dreaf	of Theorem	. 2			
Proot	or ineorem	13			

The list in the statement corresponds to empty 4-simplices projectiong to lower dimensional hollow polytopes:

- Simplices projecting to dim 1 (that is, of width one) can a priori project in two ways: "4 + 1" or "3 + 2". But the classification of 3-dimensional empty simplices implies that the former is a special case of the latter. Affine dependences in the latter are parametrized by (a, -a, b, c, -b c) (the 3-parameter family of MMM).
- A lattice 4-simplex Δ projecting to dim 2 must project to the second dilation of a unimodular triangle. For Δ to be empty one needs the vertices to project to one of the following configurations:

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families 0000000●00	2) enumeration 0000000
Proof	of Theorem	n 3 (cont.)			

• Lattice 4-simplices projecting to dim. 3 can be exhaustively described via the (finite) classification of hollow 3-polytopes with at most 5 vertices and not projecting to dim two (Averkov et al. 2016).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families 0000000●00	2) enumeration 0000000
Proof	of Theorem	n 3 (cont.)			

 Lattice 4-simplices projecting to dim. 3 can be exhaustively described via the (finite) classification of hollow 3-polytopes with at most 5 vertices and not projecting to dim two (Averkov et al. 2016).

To narrow the search we use that, of the three types of 3-polytopes with \leq 5 vertices (tetrahedron, sq. pyramid, triang. bipyramid) only the latter can possibly produce infinitely many hollow 4-dimensional lifts (Blanco-Haase-Hofmann-S. 2016).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families 0000000€00	2) enumeration
Proof	of Theorem	3(cont)			

Proof of Theorem 3 (cont.)

• Lattice 4-simplices projecting to dim. 3 can be exhaustively described via the (finite) classification of hollow 3-polytopes with at most 5 vertices and not projecting to dim two (Averkov et al. 2016).

To narrow the search we use that, of the three types of 3-polytopes with \leq 5 vertices (tetrahedron, sq. pyramid, triang. bipyramid) only the latter can possibly produce infinitely many hollow 4-dimensional lifts (Blanco-Haase-Hofmann-S. 2016).

In this way we recover the 29 quintuples of Mori-Morrison-Morrison 1988, plus 23 additional "non-primitive quintuples".

▲□▶ ▲□▶ ★□▶ ★□▶ □ ● ● ●

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	 3) infinite families 0000000●0 	2) enumeration 0000000
The 20	9 auintuple	5			

The 29 quintuples of Mori-Morrison-Morrison. Each represents (the rational points in) a line through the origin, in the 4-torus $\mathbb{R}^4/L(\Delta)$.

・ロト・日本・モン・モン・モー うへぐ

Flatness	Lattice polytopes	Empty 4-simplices:	1) volume	infinite families	2) enumeration
000000	0000000		000000	00000000	0000000

The 23 "non-primitive quintuples"

$(0, 0, \frac{1}{2}, \frac{1}{2}, 0)$	+	$\mathbb{Q}\{(6,-2,-12,4,4)\}$	$(0, 0, \frac{2}{3}, \frac{1}{3}, 0)$	+	$\mathbb{Q}\{(-9,6,3,3,-3)\}$
$(\frac{1}{2}, 0, 0, 0, \frac{1}{2})$	$^+$	$\mathbb{Q}\{(8,-6,2,-8,4)\}$	$(\frac{1}{3}, 0, \frac{2}{3}, 0, 0)$	$^+$	$\mathbb{Q}\{(9,-9,3,-6,3)\}$
$(0, 0, \frac{1}{2}, 0, \frac{1}{2})$	$^+$	$\mathbb{Q}\{(8,-4,-12,6,2)\}$	$(0, 0, \frac{1}{3}, \frac{2}{3}, 0)$	$^+$	$\mathbb{Q}\{(-9,3,6,6,-6)\}$
$(\frac{1}{2}, 0, 0, 0, \frac{1}{2})$	$^+$	$\mathbb{Q}\{(4,6,-2,-16,8)\}$	$(0, 0, \frac{1}{3}, \frac{2}{3}, 0)$	$^+$	$\mathbb{Q}\{(12,-6,-12,3,3)\}$
$(0, \frac{1}{2}, \frac{1}{2}, 0, 0)$	$^+$	$\mathbb{Q}\{(2,-12,4,12,-6)\}$	$(\frac{1}{3}, 0, \frac{2}{3}, 0, 0)$	$^+$	$\mathbb{Q}\{(9,-18,6,6,-3)\}$
$(\frac{1}{2}, 0, \frac{1}{2}, 0, 0)$	$^+$	$\mathbb{Q}\{(12,-16,8,-6,2)\}$	$(\frac{1}{3}, 0, \frac{2}{3}, 0, 0)$	$^+$	$\mathbb{Q}\{(12,-18,3,6,-3)\}$
$(0, \frac{1}{2}, 0, 0, \frac{1}{2})$	$^+$	$\mathbb{Q}\{(2,12,-8,-12,6)\}$	$(\frac{1}{3}, 0, \frac{2}{3}, 0, 0)$	$^+$	$\mathbb{Q}\{(12,-9,3,-12,6)\}$
$(\frac{1}{2}, 0, 0, 0, \frac{1}{2})$	$^+$	$\mathbb{Q}\{(8,6,-2,-24,12)\}$	$(\frac{1}{3}, 0, \frac{2}{3}, 0, 0)$	$^+$	$\mathbb{Q}\{(6,-3,6,-18,9)\}$
$(0, \frac{1}{2}, 0, 0, \frac{1}{2})$	+	$\mathbb{Q}\{(6,-2,8,-24,12)\}$	$(0, 0, \frac{1}{3}, \frac{1}{3}, \frac{1}{3})$	+	$\mathbb{Q}\{(3,-18,6,18,-9)\}$
(1 1 1 0 0)			$(1 \circ \circ 2 \cdot 1)$		
$(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}, 0, 0)$	+	$\mathbb{Q}\{(12, -12, 4, -8, 4)\}$	(青,0,0,壹,青)	+	$\mathbb{Q}\{(6, -18, 6, 12, -6)\}$
$(0, \frac{1}{4}, \frac{1}{4}, 0, \frac{1}{2})$	+	$\mathbb{Q}\{(4,8,-4,-16,8)\}$			
$(0, 0, \frac{1}{4}, \frac{1}{2}, \frac{1}{4})$	$^+$	$\mathbb{Q}\{(4,-16,4,16,-8)\}$			
$(0\frac{1}{4}, \frac{1}{4}, 0, \frac{1}{2})$	+	$\mathbb{Q}\{(4, 12, -4, -24, 12)\}$			

The 23 non-primitive quintuples. Each represents (the rational points in) a line in $\mathbb{R}^4/\Lambda(\Delta)$ not passing through the origin.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 ののの

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration •000000

Theorem 2 (enumeration)

Theorem 2 (Iglesias-S., 2017+)

With determinant \leq 7600 there are 2461 empty 4-simplices that do not project to hollow 3-polytopes. Their determinants range from 24 to 419.

DQA

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration •000000

Theorem 2 (enumeration)

Theorem 2 (Iglesias-S., 2017+)

With determinant \leq 7600 there are 2461 empty 4-simplices that do not project to hollow 3-polytopes. Their determinants range from 24 to 419.

The proof is via an exhaustive computer enumeration.

nan

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration •000000

Theorem 2 (enumeration)

Theorem 2 (Iglesias-S., 2017+)

With determinant \leq 7600 there are 2461 empty 4-simplices that do not project to hollow 3-polytopes. Their determinants range from 24 to 419.

The proof is via an exhaustive computer enumeration.

Note: It is easy to prove (by induction on the dimension) that there are finitely many lattice polytopes of a given dimension d and with normalized volume bounded by D, for every $d, D \in \mathbb{N}$ (e.g., Lagarias-Ziegler, 1991).

The algorithm implicit in the general proof is impracticable, but for the case of simplices another methods can be used.

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	 enumeration ○●○○○○○

Enumeration algorithms

To enumerate all empty 4-simplices of a given volume D we use one of two algorithms:

◆□ > ◆□ > ◆臣 > ◆臣 > 三臣 - のへで

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	 enumeration ○●○○○○○

Enumeration algorithms

To enumerate all empty 4-simplices of a given volume D we use one of two algorithms:

 Algorithm 1: If D has less than 5 prime factors, then every empty 4-simplex Δ of volume D has a unimodular facet (because Δ is cyclic, by Barile et al. 2011, which implies the volumes of facets are relatively prime). Thus, Δ is equivalent to

 $\mathsf{conv}\{\mathit{e}_1, \mathit{e}_2, \mathit{e}_3, \mathit{e}_4, \mathit{v}\},$

for some $v = (v_1, v_2, v_3, v_4) \in \mathbb{Z}^4$ with $\sum v_i = D + 1$. Moreover, v needs only to be considered modulo D, which gives a priori D^3 possibilities.

Flatness 000000	Lattice polytopes 00000000	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 0●00000

Enumeration algorithms

To enumerate all empty 4-simplices of a given volume D we use one of two algorithms:

 Algorithm 1: If D has less than 5 prime factors, then every empty 4-simplex Δ of volume D has a unimodular facet (because Δ is cyclic, by Barile et al. 2011, which implies the volumes of facets are relatively prime). Thus, Δ is equivalent to

$$\operatorname{conv}\{e_1, e_2, e_3, e_4, v\},\$$

for some $v = (v_1, v_2, v_3, v_4) \in \mathbb{Z}^4$ with $\sum v_i = D + 1$. Moreover, v needs only to be considered modulo D, which gives a priori D^3 possibilities.

• Algorithm 2: If *D* has at least 2 prime factors, then we can decompose D = pq with *p* and *q* relatively prime. Every 4-simplex Δ_D of volume *D* can be obtained by "merging" simplices Δ_p and Δ_q of volumes *p* and *q*.

・ロト ・ 日 ・ モー・ モー・ うへぐ

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	 enumeration oo●oooo

Computational performance data

More than 10000 hours of computation have been used.

Flatness 000000	Lattice polytopes 00000000	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 00●0000

Computational performance data

More than 10000 hours of computation have been used. Algorithm 2 is much slower than Algorithm 1 if $p \ll q$, and slightly faster than Algorithm 1 if $p \simeq q$.

empty lattice 4-simplices of a given volume

(4月) (1日) (日)

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 000●000
The "	finitely man	ly exceptions	;"		

The enumeration gives us the 2461 empty 4-simplices that do not belong to the infinite families of Theorem 3. Their determinants range from 24 to 419.

Those of width \geq 3 coincide with the list computed by Haase and Ziegler (2000): there are 178 of width three (with determinants in [49, 179] and exactly one of width 4 (with determinant 101 and quintuple (-1, 6, 14, 17, 65)).

▲□▶ ▲□▶ ▲ □▶ ▲ □ ▶ ▲ □ ● ● ● ●

Flatness

Lattice polytopes

Empty 4-simplices:

1) volume 000000 3) infinite families

2) enumeration

Nbr. of sporadic 4-simplices (part 1 of 2)

V = 24:	1	V = 53:	38	V = 78:	3	V = 103:	51	V = 129:	17
V = 27:	1	V = 54:	11	V = 79 :	55	V = 104:	8	V = 130:	2
V = 29 :	3	V = 55:	20	V = 80 :	7	V = 105:	7	V = 131:	29
V = 30 :	2	V = 56:	3	V = 81:	18	V = 106:	8	V = 132 :	5
V = 31:	2	V = 57:	16	V = 82:	13	V = 107:	54	V = 133 :	14
V = 32:	3	V = 58:	13	V = 83 :	60	V = 108 :	5	V = 134 :	8
V = 33 :	4	V = 59:	51	V = 84 :	7	V = 109:	44	V = 135:	6
V = 34:	5	V = 60 :	4	V = 85:	27	V = 110:	5	V = 136 :	6
V = 35:	3	V = 61:	38	V = 86 :	11	V = 111:	13	V = 137:	28
V = 37:	6	V = 62 :	26	V = 87:	24	V = 112 :	2	V = 138 :	2
V = 38 :	8	V = 63 :	17	V = 88 :	5	V = 113:	40	V = 139:	37
V = 39:	9	V = 64 :	9	V = 89 :	55	V = 114 :	4	V = 140 :	5
V = 40 :	1	V = 65:	27	V = 90:	6	V = 115:	21	V = 141:	6
V = 41:	14	V = 66 :	3	V = 91 :	18	V = 116:	11	V = 142 :	9
V = 42:	5	V = 67:	41	V = 92:	9	V = 117:	10	V = 143:	13
V = 43:	20	V = 68 :	13	V = 93 :	17	V = 118:	9	V = 144:	1
V = 44 :	8	V = 69:	26	V = 94:	12	V = 119:	22	V = 145:	14
V = 45:	6	V = 70:	4	V = 95:	35	V = 120:	3	V = 146 :	5
V = 46 :	7	V = 71:	50	V = 96:	3	V = 121 :	18	V = 147:	10
V = 47:	30	V = 72:	3	V = 97:	46	V = 122 :	9	V = 148 :	7
V = 48 :	5	V = 73:	44	V = 98 :	9	V = 123:	17	V = 149:	26
V = 49:	17	V = 74:	18	V = 99:	13	V = 124 :	8	V = 150:	2
V = 50:	8	V = 75:	22	V = 100:	8	V = 125:	25	V = 151:	19
V = 51 :	16	V = 76:	14	V = 101 :	41	V = 127 :	24	V = 152 :	6
V = 52:	6	V = 77:	19	V = 102:	3	V = 128:	9	V = 153:	9

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

Flatness

Lattice polytopes 00000000 Empty 4-simplices:

1) volum 000000 3) infinite families

2) enumeration

Nbr. of sporadic 4-simplices (part 2 of 2)

$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{c} V = 181: \\ V = 182: \\ V = 183: \\ V = 183: \\ V = 184: \\ V = 185: \\ V = 186: \\ V = 187: \\ V = 187: \\ V = 187: \\ V = 190: \\ V = 190: \\ V = 191: \\ V = 192: \\ V = 191: \\ V = 192: \\ V = 194: \\ V = 194: \\ V = 196: \\ V = 194: \\ V = 196: \\ V = 200: \\ V = 201: \\ V = 200: \\ V = 201: \\ V = 202: \\ V = 201: \\ V = 202: \\ V = 202: \\ V = 204: \\ V = 204: \\ V = 204: \\ V = 206: \\ V = 208: \\ V = 209: \\ \end{array} $	13 5 5 7 2 7 5 2 2 8 1 12 3 4 13 11 4 3 2 7 1 4 4 2 1 10	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{l} V = 245:\\ V = 247:\\ V = 248:\\ V = 249:\\ V = 250:\\ V = 250:\\ V = 255:\\ V = 257:\\ V = 256:\\ V = 257:\\ V = 263:\\ V = 263:\\ V = 263:\\ V = 263:\\ V = 265:\\ V = 266:\\ V = 268:\\ V = 268:\\ V = 271:\\ V = 272:\\ V = 272:\\ V = 274:\\ V = 275:\\ V = 278:\\ V = 283:\\ V = 289:\\ V = 290:\\ V = 291:\\ V = 291:\\ V = 292:\\ \end{array}$	3 3 2 1 5 1 2 3 2 1 7 1 1 2 2 1 7 1 1 2 2 1 4 1 1 2 2 1 4 1 1 1 2 2 1 5 1 2 3 2 1 5 1 2 3 2 1 5 1 2 1 5 1 2 1 5 1 2 1 5 1 2 1 5 1 5	$\begin{array}{c} V = 293:\\ V = 299:\\ V = 304:\\ V = 308:\\ V = 310:\\ V = 311:\\ V = 313:\\ V = 313:\\ V = 317:\\ V = 317:\\ V = 317:\\ V = 321:\\ V = 321:\\ V = 323:\\ V = 334:\\ V = 332:\\ V = 334:\\ V = 335:\\ V = 347:\\ V = 349:\\ V = 355:\\ V = 355:\\ V = 355:\\ V = 355:\\ V = 356:\\ V = 376:\\ V = 377:\\ V = 398:\\ V = 398:\\ V = 419:\\ \end{array}$	5 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
---	--	---	--	--	--	--	---

tness	Lattice polytopes	Empty
0000	0000000	

1) volume

3) infinite families

2) enumeration

Nbr. of sporadic t.q.s. of prime volume (MMM vs. us)

TABLE 1.14

р	S_p	p	S_p	p	S_p	р	S_p	V = 29 :	15	V = 113:	200	V = 229:	30
2	0	73	220	179	105	283	10	V = 31:	10	V = 127 :	120	V = 233 :	45
3	0	79	275	181	65	293	25	V = 37:	30	V = 131 :	145	V = 239 :	15
5	0	83	300	191	40	307	0	V = 41:	66	V = 137:	140	V = 241:	30
7	0	89	275	193	60	311	5	V = 43:	100	V = 139 :	185	V = 251 :	25
11	0	97	230	197	65	313	5	V = 47:	150	V = 149 :	130	V = 257 :	15
13	0	101	201	199	55	317	5	V = 53 :	190	V = 151 :	95	V = 263 :	35
17	å	103	255	211	20	331	5	V = 59:	255	V = 157 :	55	V = 269 :	10
10	13	107	270	223	35	337	0	V = 61:	186	V = 163 :	85	V = 271 :	20
23	28	100	220	220	45	347	5	V = 67 :	205	V = 167 :	90	V = 283 :	10
20	20	112	220	221	30	340	10	V = 71:	250	V = 173 :	75	V = 293 :	25
23	20	107	1200	223	45	252	5	V = 73:	220	V = 179 :	105	V = 311 :	5
07	50	127	145	200	40	303	0	V = 79:	275	V = 181 :	65	V = 313:	5
37	50 70	131	140	239	10	309	0	V = 83:	300	V = 191 :	40	V = 317 :	5
41	10	137	140	241	30	307	0	V = 89:	275	V = 193 :	60	V = 331 :	5
43	110	139	185	251	25	3/3	0	V = 97:	230	V = 197 :	65	V = 347 :	5
47	100	149	130	257	15	379	0	V = 101 :	201	V = 199:	55	V = 349:	10
53	195	151	95	263	35	383	0	V = 103 :	255	V = 211 :	20	V = 353 :	5
59	260	157	55	269	10	389	0	V = 107:	270	V = 223:	35	V = 397:	5
61	186	163	85	271	20	397	5	V = 109:	220	V = 227 :	45	V = 419:	5
67	205	167	90	277	0	409	0						
71	250	173	75	281	0	419	5						

Flatness 000000	Lattice polytopes	Empty 4-simplices:	1) volume 000000	3) infinite families	2) enumeration 0000000

Thank you for your attention

http://personales.unican.es/santosf

◆□ > ◆□ > ◆臣 > ◆臣 > 三臣 - のへで