Isoperimetric inequalities in convex sets

(Part II)

Manuel Ritoré
Departamento de Geometría y Topología
Facultad de Ciencias
Universidad de Granada
E-18071 Granada (Spain)
email: ritore@ugr.es

New Perspectives on Convex Geometry CIEM Castro Urdiales

September, 2018

Properties of the isoperimetric profile I_{C}

Summary of part I

Remember we have proven so far

- Existence of isoperimetric regions in C
- Continuity of I_{C}
- Symmetry of I_{C} (w.r.t. $|C| / 2$)
- Continuous extension to $v=0,|C|$
- Positivity of I_{C}

Properties of the isoperimetric profile I_{C}

Define the normalized isoperimetric profile $J_{C}:(0,1) \rightarrow \mathbb{R}^{+}$by $J_{C}(\lambda):=I_{C}(\lambda|C|)$

Theorem

Let $\left(C_{i}\right)_{i \in \mathbb{N}}$ be a sequence of convex bodies converging in Hausdorff distance to a convex body C. Then $\left(J_{C_{i}}\right)_{i}$ converges pointwise to J_{C}.

Properties of the isoperimetric profile I_{C}

Define the normalized isoperimetric profile $J_{C}:(0,1) \rightarrow \mathbb{R}^{+}$by $J_{C}(\lambda):=I_{C}(\lambda|C|)$

Theorem

Let $\left(C_{i}\right)_{i \in \mathbb{N}}$ be a sequence of convex bodies converging in Hausdorff distance to a convex body C. Then $\left(J_{C_{i}}\right)_{i}$ converges pointwise to J_{C}.

Proof

Similar to the continuity of the isoperimetric profile.
Fix some $\lambda \in(0,1)$, and take isoperimetric regions $E_{i} \subset C_{i}$ of volumes $\lambda\left|C_{i}\right|$. As the perimeters of the sets E_{i} are uniformly bounded, we can extract a subsequence converging in L^{1} topology to some set $E \subset C$ of volume $\lambda|C|$. We have

$$
J_{C}(\lambda) \leq P_{C}(E) \leq \liminf _{i \rightarrow \infty} P_{C_{i}}\left(E_{i}\right)=\liminf _{i \rightarrow \infty} J_{C_{i}}(\lambda) .
$$

Properties of the isoperimetric profile I_{C}

Proof (continuation)

Now we apply the following construction: as $C_{i} \rightarrow C$ in Hausdorff distance, possibly after a translation so that 0 is an interior point for almost all i, we can take a sequence μ_{i} converging to 1 so that $C_{i} \subset \mu_{i} C$. Fix an isoperimetric region $E \subset C$ of volume $\lambda|C|$ and consider the sets $\mu_{i} E \subset \mu_{i} C$, we restrict them to C_{i} and we add or remove a small ball B_{i} so that we get a set $E_{i}^{*} \subset C_{i}$ with volume $\lambda\left|C_{i}\right|$. Then we have

$$
\begin{aligned}
\limsup _{i \rightarrow \infty} J_{C_{i}}(\lambda) \leq \limsup _{i \rightarrow \infty} P_{C_{i}}\left(E_{i}^{*}\right) & \leq \limsup _{i \rightarrow \infty} P_{C_{i}}\left(\mu_{i} E\right)+P\left(B_{i}\right) \\
& \leq \limsup _{i \rightarrow \infty}\left(P_{\mu_{i}} C\left(\mu_{i} E\right)+P\left(B_{i}\right)\right) \\
& =\limsup _{i \rightarrow \infty}\left(\mu_{i}^{n-1} P_{C}(E)+P\left(B_{i}\right)\right) \\
& =P_{C}(E)=J_{C}(\lambda) \square
\end{aligned}
$$

Properties of the isoperimetric profile

We prove now the fundamental property
Theorem
Let $C \subset \mathbb{R}^{n}$ be a convex body with smooth boundary ($C^{2, \alpha}$ is enough). Then $I_{C}^{n /(n-1)}$ is a concave function.

Properties of the isoperimetric profile

We prove now the fundamental property

Theorem

Let $C \subset \mathbb{R}^{n}$ be a convex body with smooth boundary ($C^{2, \alpha}$ is enough). Then $I_{C}^{n /(n-1)}$ is a concave function.

We shall make use of the following elementary Lemma

Lemma

Let $f:(a, b) \rightarrow \mathbb{R}$ be a continuous function. Assume that, for all $x \in(a, b)$, there is a smooth function f_{x}, defined on a neighborhood of x such that $f(z) \leq f_{x}(z), f(x)=f_{x}(x)$, and $f_{x}^{\prime \prime}(x) \leq 0$. Then f is a concave function.

Properties of the isoperimetric profile

Proof (of Theorem)

We follow an argument by Kuwert.
Assume first that isoperimetric regions have smooth boundaries.
Fix $v_{0} \in(0,|C|)$. Let E be an isoperimetric region of volume v_{0}, and S the closure of $\partial E \cap \operatorname{int}(C)$. By hypothesis S is a smooth hypersurface meeting orthogonally the boundary of C. Take a vector field X in \mathbb{R}^{n} with compact support so that it is tangent to ∂C, and so that $\langle X, N\rangle=1$. Let $\left\{\varphi_{t}\right\}_{t \in \mathbb{R}}$ be the flow associated to X. Since

$$
\left.\frac{d}{d t}\right|_{t=0}\left|\varphi_{t}(E)\right|=\int_{S}\langle X, N\rangle=A(S)>0
$$

we can describe the deformation using the volume as a parameter near v_{0}. Let $A(v)$ be the function describing the perimeter of $\varphi_{t(v)}(E)$ as a function of v.

Properties of the isoperimetric profile

Proof of Theorem (continuation)

The second variation formulas for the perimeter and the volume yield
$\frac{d^{2} A^{n /(n-1)}}{d v^{2}}=\frac{1}{A^{2}} \frac{n}{n-1} A^{1 /(n-1)}\left(-\int_{S}\left(|\sigma|^{2}-\frac{H^{2}}{n-1}\right)-\int_{\partial S} \|_{\partial C}(N, N)\right)$
where $|\sigma|^{2}=\sum_{i=1}^{n-1} k_{i}^{2}, H$ is the mean curvature of S, and $I_{\partial C}$ is the second fundamental form of ∂C. The above quantity is less than or equal to 0 (since $I_{\partial C} \geq 0$ by the convexity of C and $|\sigma|^{2}-H^{2} /(n-1) \geq 0$ by the arithmetic-geometric inequality).

Properties of the isoperimetric profile

Proof of Theorem (final)

In the general case (no regularity assumed), we need to use vector fields X_{ε} so that $\left\langle X_{\varepsilon}, N\right\rangle=\varphi_{\varepsilon}$, a family of functions approximating the function 1 in the Sobolev space of the regular part of ∂E. In the Lemma the function f_{x} must be replaced by a sequence of functions $\left(f_{x}\right)_{i}$ satisfying $\lim \sup _{i \rightarrow \infty}\left(f_{x}\right)_{i}^{\prime \prime}(x) \leq 0$. The proof runs without changes.

Concavity of $I_{C}^{n /(n-1)}$ for general convex sets

This result was first proved by E. Milman
Theorem
Let $C \subset \mathbb{R}^{n}$ be a convex body. Then $I_{C}^{n /(n-1)}$ is a concave function.

Concavity of $I_{C}^{n /(n-1)}$ for general convex sets

This result was first proved by E. Milman
Theorem
Let $C \subset \mathbb{R}^{n}$ be a convex body. Then $I_{C}^{n /(n-1)}$ is a concave function.

Proof

It follows from approximation by convex sets with smooth boundary and the convergence of isoperimetric profiles in Hausdorff distance.

Concavity of $I_{C}^{n /(n-1)}$ for general convex sets

This result was first proved by E. Milman
Theorem
Let $C \subset \mathbb{R}^{n}$ be a convex body. Then $I_{C}^{n /(n-1)}$ is a concave function.

Proof

It follows from approximation by convex sets with smooth boundary and the convergence of isoperimetric profiles in Hausdorff distance.

Remark

In particular, I_{C} is strictly concave, absolutely continuous, smooth almost everywhere and possesses left and right derivatives everywhere.

Consequences

Theorem
Let $C \subset \mathbb{R}^{n}$ be a convex body and $E \subset C$ an isoperimetric region. Then E and $C \backslash E$ are connected.

Consequences

Theorem

Let $C \subset \mathbb{R}^{n}$ be a convex body and $E \subset C$ an isoperimetric region. Then E and $C \backslash E$ are connected.

Proof (Bayle)

Assume that E can be separated into two sets E_{1}, E_{2} of volumes $v_{1}+v_{2}=v$. Then we have

$$
I_{C}(v)=P_{C}(E)=P_{C}\left(E_{1}\right)+P_{C}\left(E_{2}\right) \geq I_{C}\left(v_{1}\right)+I_{C}\left(v_{2}\right) .
$$

But, since I_{C} is an strictly concave function with $I_{C}(0)=0$, we have

$$
I_{C}(v)<I_{C}\left(v_{1}\right)+I_{C}\left(v_{2}\right),
$$

yielding a contradiction.
The second property follows since $C \backslash E$ is also an isoperimetric region.

Theorem

Let $C \subset \mathbb{R}^{n}$ be a convex body and $E \subset C$ an isoperimetric region. Assume that $\partial E \cap \operatorname{int}(C)$ is smooth. Then $\partial E \cap \operatorname{int}(C)$ is connected.

Theorem

Let $C \subset \mathbb{R}^{n}$ be a convex body and $E \subset C$ an isoperimetric region. Assume that $\partial E \cap \operatorname{int}(C)$ is smooth. Then $\partial E \cap \operatorname{int}(C)$ is connected.

Proof

We closely follow an argument by Samelson.
Let $S:=\partial E \cap \operatorname{int}(C)$. Take two points $p, q \in S$. As the boundary of E separates C, and $E, C \backslash E$ are connected, we can find a closed smooth curve meeting S only at p, q. We can find a smooth homothopy contracting this curve to a point and so we can find a C^{∞} map of the disc meeting S transversally. By trivial topological arguments, p, q must be connected by a curve contained in S.

Thanks for your attention

