Isoperimetric inequalities in convex sets (Part II)

Manuel Ritoré

Departamento de Geometría y Topología Facultad de Ciencias Universidad de Granada E-18071 Granada (Spain)

email: ritore@ugr.es

New Perspectives on Convex Geometry CIEM Castro Urdiales

September, 2018

(1) マン・ション・

Summary of part I

Remember we have proven so far

- Existence of isoperimetric regions in C
- Continuity of I_C
- Symmetry of I_C (w.r.t. |C|/2)
- Continuous extension to v = 0, |C|
- Positivity of *I_C*

Define the normalized isoperimetric profile $J_C: (0,1) \to \mathbb{R}^+$ by $J_C(\lambda) := I_C(\lambda |C|)$

Theorem

Let $(C_i)_{i \in \mathbb{N}}$ be a sequence of convex bodies converging in Hausdorff distance to a convex body C. Then $(J_{C_i})_i$ converges pointwise to J_C .

Define the normalized isoperimetric profile $J_C: (0,1) \to \mathbb{R}^+$ by $J_C(\lambda) := I_C(\lambda |C|)$

Theorem

Let $(C_i)_{i \in \mathbb{N}}$ be a sequence of convex bodies converging in Hausdorff distance to a convex body C. Then $(J_{C_i})_i$ converges pointwise to J_C .

Proof

Similar to the continuity of the isoperimetric profile. Fix some $\lambda \in (0, 1)$, and take isoperimetric regions $E_i \subset C_i$ of volumes $\lambda |C_i|$. As the perimeters of the sets E_i are uniformly bounded, we can extract a subsequence converging in L^1 topology to some set $E \subset C$ of volume $\lambda |C|$. We have

$$J_{\mathcal{C}}(\lambda) \leq P_{\mathcal{C}}(E) \leq \liminf_{i \to \infty} P_{\mathcal{C}_i}(E_i) = \liminf_{i \to \infty} J_{\mathcal{C}_i}(\lambda).$$

イロト イボト イヨト イヨト

Proof (continuation)

Now we apply the following construction: as $C_i \rightarrow C$ in Hausdorff distance, possibly after a translation so that 0 is an interior point for almost all *i*, we can take a sequence μ_i converging to 1 so that $C_i \subset \mu_i C$. Fix an isoperimetric region $E \subset C$ of volume $\lambda |C|$ and consider the sets $\mu_i E \subset \mu_i C$, we restrict them to C_i and we add or remove a small ball B_i so that we get a set $E_i^* \subset C_i$ with volume $\lambda |C_i|$. Then we have

$$\limsup_{i \to \infty} J_{C_i}(\lambda) \leq \limsup_{i \to \infty} P_{C_i}(E_i^*) \leq \limsup_{i \to \infty} P_{C_i}(\mu_i E) + P(B_i)$$
$$\leq \limsup_{i \to \infty} \left(P_{\mu_i C}(\mu_i E) + P(B_i) \right)$$
$$= \limsup_{i \to \infty} \left(\mu_i^{n-1} P_C(E) + P(B_i) \right)$$
$$= P_C(E) = J_C(\lambda) \quad \Box$$

< □ > < □ > < □ > < □ > < □ > < □ >

We prove now the fundamental property

Theorem

Let $C \subset \mathbb{R}^n$ be a convex body with smooth boundary ($C^{2,\alpha}$ is enough). Then $I_C^{n/(n-1)}$ is a concave function.

We prove now the fundamental property

Theorem

Let $C \subset \mathbb{R}^n$ be a convex body with smooth boundary ($C^{2,\alpha}$ is enough). Then $I_C^{n/(n-1)}$ is a concave function.

We shall make use of the following elementary Lemma

Lemma

Let $f : (a, b) \to \mathbb{R}$ be a continuous function. Assume that, for all $x \in (a, b)$, there is a smooth function f_x , defined on a neighborhood of x such that $f(z) \leq f_x(z)$, $f(x) = f_x(x)$, and $f''_x(x) \leq 0$. Then f is a concave function.

ヘロト 不得 トイヨト イヨト 二日

Proof (of Theorem)

We follow an argument by Kuwert.

Assume first that isoperimetric regions have smooth boundaries.

Fix $v_0 \in (0, |C|)$. Let *E* be an isoperimetric region of volume v_0 , and *S* the closure of $\partial E \cap int(C)$. By hypothesis *S* is a smooth hypersurface meeting orthogonally the boundary of *C*. Take a vector field *X* in \mathbb{R}^n with compact support so that it is tangent to ∂C , and so that $\langle X, N \rangle = 1$. Let $\{\varphi_t\}_{t \in \mathbb{R}}$ be the flow associated to *X*. Since

$$\frac{d}{dt}\Big|_{t=0}|\varphi_t(E)|=\int_{\mathcal{S}}\langle X,N\rangle=A(\mathcal{S})>0,$$

we can describe the deformation using the volume as a parameter near v_0 . Let A(v) be the function describing the perimeter of $\varphi_{t(v)}(E)$ as a function of v.

< □ > < □ > < □ > < □ > < □ > < □ >

Proof of Theorem (continuation)

The second variation formulas for the perimeter and the volume yield

$$\frac{d^2 A^{n/(n-1)}}{dv^2} = \frac{1}{A^2} \frac{n}{n-1} A^{1/(n-1)} \left(-\int_S \left(|\sigma|^2 - \frac{H^2}{n-1} \right) - \int_{\partial S} \mathsf{II}_{\partial C}(N,N) \right)$$

where $|\sigma|^2 = \sum_{i=1}^{n-1} k_i^2$, *H* is the mean curvature of *S*, and $II_{\partial C}$ is the second fundamental form of ∂C . The above quantity is less than or equal to 0 (since $II_{\partial C} \ge 0$ by the convexity of *C* and $|\sigma|^2 - H^2/(n-1) \ge 0$ by the arithmetic-geometric inequality).

く 白 ト く ヨ ト く ヨ ト

Proof of Theorem (final)

In the general case (no regularity assumed), we need to use vector fields X_{ε} so that $\langle X_{\varepsilon}, N \rangle = \varphi_{\varepsilon}$, a family of functions approximating the function 1 in the Sobolev space of the regular part of ∂E . In the Lemma the function f_x must be replaced by a sequence of functions $(f_x)_i$ satisfying $\limsup_{i \to \infty} (f_x)''_i(x) \le 0$. The proof runs without changes.

▲圖 医 ▲ 国 医 ▲ 国 医 …

Concavity of $I_C^{n/(n-1)}$ for general convex sets

This result was first proved by E. Milman

Theorem

Let $C \subset \mathbb{R}^n$ be a convex body. Then $I_C^{n/(n-1)}$ is a concave function.

Concavity of $I_C^{n/(n-1)}$ for general convex sets

This result was first proved by E. Milman

Theorem

Let $C \subset \mathbb{R}^n$ be a convex body. Then $I_C^{n/(n-1)}$ is a concave function.

Proof

It follows from approximation by convex sets with smooth boundary and the convergence of isoperimetric profiles in Hausdorff distance.

Concavity of $I_C^{n/(n-1)}$ for general convex sets

This result was first proved by E. Milman

Theorem

Let $C \subset \mathbb{R}^n$ be a convex body. Then $I_C^{n/(n-1)}$ is a concave function.

Proof

It follows from approximation by convex sets with smooth boundary and the convergence of isoperimetric profiles in Hausdorff distance.

Remark

In particular, I_C is strictly concave, absolutely continuous, smooth almost everywhere and possesses left and right derivatives everywhere.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Consequences

Theorem

Let $C \subset \mathbb{R}^n$ be a convex body and $E \subset C$ an isoperimetric region. Then E and $C \setminus E$ are connected.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Consequences

Theorem

Let $C \subset \mathbb{R}^n$ be a convex body and $E \subset C$ an isoperimetric region. Then E and $C \setminus E$ are connected.

Proof (Bayle)

Assume that *E* can be separated into two sets E_1 , E_2 of volumes $v_1 + v_2 = v$. Then we have

$$I_C(v) = P_C(E) = P_C(E_1) + P_C(E_2) \ge I_C(v_1) + I_C(v_2).$$

But, since I_C is an strictly concave function with $I_C(0) = 0$, we have

$$I_C(v) < I_C(v_1) + I_C(v_2),$$

yielding a contradiction. The second property follows since $C \setminus E$ is also an isoperimetric region.

◆ 白● ▶ ◆ 三 ▶ ◆ 三 ▶

Theorem

Let $C \subset \mathbb{R}^n$ be a convex body and $E \subset C$ an isoperimetric region. Assume that $\partial E \cap int(C)$ is smooth. Then $\partial E \cap int(C)$ is connected.

A (1) < A (2) < A (2) </p>

Theorem

Let $C \subset \mathbb{R}^n$ be a convex body and $E \subset C$ an isoperimetric region. Assume that $\partial E \cap int(C)$ is smooth. Then $\partial E \cap int(C)$ is connected.

Proof

We closely follow an argument by Samelson.

Let $S := \partial E \cap int(C)$. Take two points $p, q \in S$. As the boundary of E separates C, and $E, C \setminus E$ are connected, we can find a closed smooth curve meeting S only at p, q. We can find a smooth homothopy contracting this curve to a point and so we can find a C^{∞} map of the disc meeting S transversally. By trivial topological arguments, p, q must be connected by a curve contained in S.

ヘロト 人間ト ヘヨト ヘヨト

Thanks for your attention

э

イロト イポト イヨト イヨト