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Properties of the isoperimetric profile IC

Summary of part I

Remember we have proven so far

Existence of isoperimetric regions in C

Continuity of IC

Symmetry of IC (w.r.t. |C |/2)

Continuous extension to v = 0, |C |
Positivity of IC
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Properties of the isoperimetric profile IC

Define the normalized isoperimetric profile JC : (0, 1)→ R+ by
JC (λ) := IC (λ|C |)

Theorem

Let (Ci )i∈N be a sequence of convex bodies converging in Hausdorff
distance to a convex body C . Then (JCi

)i converges pointwise to JC .

Proof

Similar to the continuity of the isoperimetric profile.
Fix some λ ∈ (0, 1), and take isoperimetric regions Ei ⊂ Ci of volumes
λ|Ci |. As the perimeters of the sets Ei are uniformly bounded, we can
extract a subsequence converging in L1 topology to some set E ⊂ C of
volume λ|C |. We have

JC (λ) ≤ PC (E ) ≤ lim inf
i→∞

PCi
(Ei ) = lim inf

i→∞
JCi

(λ).
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M. Ritoré Isoperimetric inequalities in convex sets 3 / 12



Properties of the isoperimetric profile IC

Proof (continuation)

Now we apply the following construction: as Ci → C in Hausdorff
distance, possibly after a translation so that 0 is an interior point for
almost all i , we can take a sequence µi converging to 1 so that Ci ⊂ µiC .
Fix an isoperimetric region E ⊂ C of volume λ|C | and consider the sets
µiE ⊂ µiC , we restrict them to Ci and we add or remove a small ball Bi

so that we get a set E ∗i ⊂ Ci with volume λ|Ci |. Then we have

lim sup
i→∞

JCi
(λ) ≤ lim sup

i→∞
PCi

(E ∗i ) ≤ lim sup
i→∞

PCi
(µiE ) + P(Bi )

≤ lim sup
i→∞

(
PµiC (µiE ) + P(Bi )

)
= lim sup

i→∞

(
µn−1
i PC (E ) + P(Bi )

)
= PC (E ) = JC (λ)
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Properties of the isoperimetric profile

We prove now the fundamental property

Theorem

Let C ⊂ Rn be a convex body with smooth boundary (C 2,α is enough).

Then I
n/(n−1)
C is a concave function.

We shall make use of the following elementary Lemma

Lemma

Let f : (a, b)→ R be a continuous function. Assume that, for all
x ∈ (a, b), there is a smooth function fx , defined on a neighborhood of x
such that f (z) ≤ fx(z), f (x) = fx(x), and f ′′x (x) ≤ 0. Then f is a concave
function.
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Properties of the isoperimetric profile

Proof (of Theorem)

We follow an argument by Kuwert.
Assume first that isoperimetric regions have smooth boundaries.
Fix v0 ∈ (0, |C |). Let E be an isoperimetric region of volume v0, and S the
closure of ∂E ∩ int(C ). By hypothesis S is a smooth hypersurface meeting
orthogonally the boundary of C . Take a vector field X in Rn with compact
support so that it is tangent to ∂C , and so that 〈X ,N〉 = 1. Let {ϕt}t∈R
be the flow associated to X . Since

d

dt

∣∣∣∣
t=0

|ϕt(E )| =

∫
S
〈X ,N〉 = A(S) > 0,

we can describe the deformation using the volume as a parameter near v0.
Let A(v) be the function describing the perimeter of ϕt(v)(E ) as a
function of v .
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Properties of the isoperimetric profile

Proof of Theorem (continuation)

The second variation formulas for the perimeter and the volume yield

d2An/(n−1)

dv2
=

1

A2

n

n − 1
A1/(n−1)

(
−
∫
S

(
|σ|2 − H2

n − 1

)
−
∫
∂S

II∂C (N,N)

)
where |σ|2 =

∑n−1
i=1 k2

i , H is the mean curvature of S , and II∂C is the
second fundamental form of ∂C . The above quantity is less than or equal
to 0 (since II∂C ≥ 0 by the convexity of C and |σ|2 − H2/(n − 1) ≥ 0 by
the arithmetic-geometric inequality).
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Properties of the isoperimetric profile

Proof of Theorem (final)

In the general case (no regularity assumed), we need to use vector fields
Xε so that 〈Xε,N〉 = ϕε, a family of functions approximating the function
1 in the Sobolev space of the regular part of ∂E . In the Lemma the
function fx must be replaced by a sequence of functions (fx)i satisfying
lim supi→∞(fx)′′i (x) ≤ 0. The proof runs without changes.
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Concavity of I
n/(n−1)
C for general convex sets

This result was first proved by E. Milman

Theorem

Let C ⊂ Rn be a convex body. Then I
n/(n−1)
C is a concave function.

Proof

It follows from approximation by convex sets with smooth boundary and
the convergence of isoperimetric profiles in Hausdorff distance.

Remark

In particular, IC is strictly concave, absolutely continuous, smooth almost
everywhere and possesses left and right derivatives everywhere.
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Consequences

Theorem

Let C ⊂ Rn be a convex body and E ⊂ C an isoperimetric region. Then E
and C \ E are connected.

Proof (Bayle)

Assume that E can be separated into two sets E1, E2 of volumes
v1 + v2 = v . Then we have

IC (v) = PC (E ) = PC (E1) + PC (E2) ≥ IC (v1) + IC (v2).

But, since IC is an strictly concave function with IC (0) = 0, we have

IC (v) < IC (v1) + IC (v2),

yielding a contradiction.
The second property follows since C \ E is also an isoperimetric region.
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Theorem

Let C ⊂ Rn be a convex body and E ⊂ C an isoperimetric region. Assume
that ∂E ∩ int(C ) is smooth. Then ∂E ∩ int(C ) is connected.

Proof

We closely follow an argument by Samelson.
Let S := ∂E ∩ int(C ). Take two points p, q ∈ S . As the boundary of E
separates C , and E , C \ E are connected, we can find a closed smooth
curve meeting S only at p, q. We can find a smooth homothopy
contracting this curve to a point and so we can find a C∞ map of the disc
meeting S transversally. By trivial topological arguments, p, q must be
connected by a curve contained in S .
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Thanks for your attention
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