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Banach-Mazur distance to the cube

We shall discuss the radius of Bn with respect to `n∞, defined by

Rn
∞ = max{d(X , `n∞) : X ∈ Bn}.

Pe lczynski

What is the asymptotic behavior of Rn
∞ as n tends to infinity?

One clearly has Rn
∞ 6 diam(Bn) 6 n and the fact that d(`n∞, `

n
2) =

√
n shows that

√
n 6 Rn

∞ 6 n.

Lower bounds: Szarek, using random spaces of Gluskin type, proved that

Rn
∞ > c

√
n log n.
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Szarek’s theorem

It is more convenient to work with the dual quantity

Rn
1 = max{d(X , `n1) : X ∈ Bn}.

Since d(X ∗,Y ∗) = d(X ,Y ) we see that Rn
∞ = Rn

1.

Let G1, . . . ,Gm be independent standard Gaussian vectors in Rn:

P(Gi ∈ B) = γn(B) =
1

(2π)n/2

∫
B

e−|x|
2/2dx .

We define the symmetric random polytope

Gm = conv{±G1, . . . ,±Gm}.

Szarek, 1990

Let δ > 0 and m = bn1+δc. With positive probability, d(XGm , `
n
1) > c(δ)

√
n log n.

The proof involves a precise distributional inequality on the s-numbers of random
Gaussian matrices, which is a quantitative finite version of Wigner’s semicircle law:
if G(ω) is an n × n matrix with independent N(0, 1/n) Gaussian entries, then

P (ω : c1k/n 6 sn−k(G(ω)) 6 c2k/n) > 1− c3 exp(−c4k
2),

for all k 6 n/2, where the ci ’s are absolute positive constants.
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Lower bound for Rn
∞

Tikhomirov, 2018

There exist absolute constants c, b > 0 such that, for any n > 2,

Rn
1 > cn5/9 log−b n.

The space X with d(X , `n1) > cn5/9 log−b n is, as in Szarek’s theorem, a Gluskin
space.

Let G1, . . . ,Gm be independent standard Gaussian vectors in Rn. We define the
symmetric random polytope

Gm = conv{±G1, . . . ,±Gm}.

We also consider the n ×m Gaussian random matrix Γ with columns G1, . . . ,Gm.

In order to show that Rn
1 > % for some % > 1 it is enough to show that

P
(

there exists a cross-polytope P such that %Gm ⊇ %P ⊇ Gm
)
< 1.
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Discretization

Assume that G1, . . . ,Gm are defined on the probability space Ω. For a given ω ∈ Ω,
if a cross-polytope P is contained in Gm(ω) then, by Carathéodory’s theorem, its
vertices are convex combinations of at most n of the vectors ±Gi , and hence

P = Γ(ω)A(Bn
1 )

for some m × n matrix A with the property that the support of every column of A
has cardinality at most n and that every column of A has `n1-norm at most 1.

We consider the class Am,n of all m × n matrices that satisfy these conditions:

|supp coli (A)| 6 n and ‖coli (A)‖1 6 1.

Then, in order to show that Rn
1 > % for some % > 1 it is enough to show that the

event
E1 := there exists A ∈ Am,n such that %ΓA(Bn

1 ) ⊇ Gm
has probability P(E1) < 1.
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Discretization

Let N be the set of all matrices A = (aij) in Am,n with the property that aij ∈ εZ
(for some small ε > 0 to be determined).

One can check that for every A = (aij) in Am,n we may find A′ = (a′ij) in N such
that |aij − a′ij | 6 ε for all i , j .

Reduction

Assume that m 6 n10 and ε%n2 6 1. If E2 is the event

E2 := there exists A ∈ N such that 2%ΓA(Bn
1 ) ⊇ Gm,

then
P(E1) 6 P(E2) + 2−n.
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Strategy of the proof

A standard net argument cannot give a large value for %; the cardinality of N is

greater than 2n2

.

Crucial observation

Let α ∈ (0, 1). Every y ∈ Rn with ‖y‖1 6 1 can be written as a sum y = z + w , where
|supp(z)| 6 1/α and ‖w‖2 6

√
α.

Proof: Set z = (1|yk |>αyk)nk=1 and w = (1|yk |<αyk)nk=1.

Using this observation we shall partition every matrix A from N into a matrix with
“sparse” columns and a matrix of whose columns have small Euclidean norm.

This will imply that every point of ΓA(Bn
1 ) is a convex combination of random

vectors of two types: vectors that are sparse linear combinations of Gi ’s and vectors
whose expected Euclidean norm is small.

The set of the first ones has small cardinality and allows a net argument, the vectors
of the second type are easier to handle because they are “short”.
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Strategy of the proof

We define F1,F2 : N → N as follows. If A = (aij) ∈ N then F1(A) is the m × n
matrix with entries 1|aij |>αaij and F2(A) is the m × n matrix with entries 1|aij |<αaij .

Then, we consider the m × 2n matrix

F(A) :=
[
F1(A) | F2(A)

]
.

Simple lemma

For any A ∈ N we have
A(Bn

1 ) ⊂ [F(A)](2B2n
1 ).

This is because A(ej) = F(A)(ej , ej) for all j = 1, . . . , n.

Clearly, Γ(ω)A(Bn
1 ) ⊂ 2Γ(ω)F(A)(B2n

1 ).
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F(A) :=
[
F1(A) | F2(A)

]
.

Simple lemma

For any A ∈ N we have
A(Bn

1 ) ⊂ [F(A)](2B2n
1 ).

This is because A(ej) = F(A)(ej , ej) for all j = 1, . . . , n.

Clearly, Γ(ω)A(Bn
1 ) ⊂ 2Γ(ω)F(A)(B2n

1 ).
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Strategy of the proof

Proposition

Let E =
⋂

A∈N
EA, where EA is an event which is measurable with respect to the σ-algebra

generated by the vectors Gj with j ∈ θ(A) =
n⋃

i=1

supp coli (A).

If G is a standard Gaussian vector which is independent from Γ then

P(E2 ∩ E) 6 |N | ·max
A∈N

sup
ω∈EA

[P(ω)]m−n2

,

where

P(ω) := P({ω′ : there exists I ⊂ [2n] with |I | = n such that

G(ω′) ∈ 4% conv{±coli (Γ(ω)F(A)), i ∈ I}).
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Proof of the Proposition

Let ω ∈ E2 ∩ E . Since ω ∈ E2 there exists A = A(ω) ∈ N such that

Gj(ω) ∈ 2% Γ(ω)A(Bn
1 ) ⊆ 4% Γ(ω)F(A)(B2n

1 ), 1 6 j 6 m.

By Carathéodory’s theorem, for every j = 1, . . . ,m there exists I = I (ω, j) ⊂ [2n]
with |I | = n such that

Gj(ω) ∈ 4% conv{±coli (Γ(ω)F(A)), i ∈ I}.

Considering only j /∈ θ(A) we have

E2 ∩ E 6
⋃
A∈N

⋂
j /∈θ(A)

⋃
|I |=n

(
E ∩ {Gj(ω) ∈ 4% conv{±coli (Γ(ω)F(A)), i ∈ I}

)
.

Therefore,

P(E2 ∩ E)

6 |N | ·max
A∈N

P
( ⋂

j /∈θ(A)

⋃
|I |=n

(
EA ∩ {Gj(ω) ∈ 4% conv{±coli (Γ(ω)F(A)), i ∈ I}

)
6 |N | ·max

A∈N

[
sup
ω∈EA

P
( ⋃
|I |=n

{G(ω′) ∈ 4% conv{±coli (Γ(ω)F(A)), i ∈ I}
)]m−|θ(A)|

.
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Strategy of the proof

We shall define events EA measurable with respect to the σ-algebra generated by the
vectors Gj with j ∈ θ(A), so that E =

⋂
A∈N
EA satisfies

P(E) > 1− 2

n
.

On the other hand, we will have

sup
ω∈EA

P(ω) = sup
ω∈EA

P
( ⋃
|I |=n

{G(ω′) ∈ 4% conv{±coli (Γ(ω)F(A)), i ∈ I}}
)
<

1

2
.

By the Proposition,

P(E2 ∩ E) 6 |N | ·
(

1

2

)m−n2

.

If m is chosen large (e.g. m = n3) then P(E2 ∩ E) will be very small, and hence

P(E2) 6 P(E2 ∩ E) + P(Ω \ E) 6 P(E2 ∩ E) +
2

n

will be also small.
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The event EA

Parameters to be chosen:

m, ε, α, δ, τ , s and q.

Conditions: m/ε 6 n10, 1
log n

6 δ < 1, n > s > 4q > 4 log2 n, q2α
n

> C1 log n, τ > C2,
and

min
(τ 2δq2α

n
,
τ 2δq

n

)
> C3 log n.

We have ω ∈ EA if:
1 For every I ⊂ [2n] with |I | = n the vectors coli (Γ(ω)F(A)), i ∈ I , are linearly

independent.
2 For every I ⊂ [2n] with |I | = n and |I ∩ [n]| > n− q we have that if we write x1, . . . , xn

for the vectors coli (Γ(ω)F(A)) in any order, then

|{i : n − s + 1 6 i 6 n and dist(xi , span{xj : j < i}) 6
√
s}| >

s

4
.

3 For every I ⊂ [2n] with |I | = n and |I ∩ [n]| < n − q we have that

|{i ∈ I \ [n] : dist(coli (Γ(ω)F(A)), span{colj (Γ(ω)F(A)) : j < i}) 6 τ
√
α|I \ [n]|}|

> (1− δ)|I \ [n]|.
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independent.
2 For every I ⊂ [2n] with |I | = n and |I ∩ [n]| > n− q we have that if we write x1, . . . , xn

for the vectors coli (Γ(ω)F(A)) in any order, then

|{i : n − s + 1 6 i 6 n and dist(xi , span{xj : j < i}) 6
√
s}| >

s

4
.

3 For every I ⊂ [2n] with |I | = n and |I ∩ [n]| < n − q we have that

|{i ∈ I \ [n] : dist(coli (Γ(ω)F(A)), span{colj (Γ(ω)F(A)) : j < i}) 6 τ
√
α|I \ [n]|}|

> (1− δ)|I \ [n]|.
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An auxiliary result

The proof of the inequality P
( ⋂

A∈N
EA
)
> 1− 2

n
is based on the next proposition:

Distances to linear spans

Assume that n/2 6 s 6 n, 1 6 k 6 s/2, τ > C1 and 1
k
< δ 6 1.

Let B be an m × s matrix, of rank s, with the property that each column of B has
Euclidean norm at most 1.

Define Hi = Γ(coli (B)), 1 6 i 6 s.

For any permutation σ of [s], let Eσ be the event that

|{i : s − k + 1 6 i 6 s : dist(Hσ(i), span{Hσ(j) : j < i} 6 τ
√
n − s + k| > (1− δ)k.

Then, P(Eσ) > 1− e−c2τ
2δ(n−s+k)k and

P
(⋂

σ

Eσ
)
> 1− ske−c2τ

2δ(n−s+k)k .
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Starting the proof of the theorem

It is easy to check that |N | 6 eCn
2 log n.

Assume that we remember the definition of EA.

For every p = 0, 1, . . . , n there are
(
n
p

)2
ways to choose I ⊂ [2n] with |I | = n and

|I ∩ [n]| = p.

If ω ∈ EA then we have

P(ω) = P
( ⋃
|I |=n

{G(ω′) ∈ 4% conv{±coli (Γ(ω)F(A)), i ∈ I}}
)

6
n−q−1∑
p=0

(
n

p

)2

sup
P
γn(4%P) +

n∑
p=n−q

(
n

p

)2

sup
Q
γn(4%Q),

where P = conv{±x1, . . . ,±xn} with the property that

|{i : p + 1 6 i 6 n and dist(xi , span{xj : j < i} 6 τ
√
α(n − p))}| > (1− δ)(n − p)

and Q = conv{±x1, . . . ,±xn} with the property that for every permutation σ of [n]

|{i : n − s + 1 6 i 6 n and dist(xσ(i), span{xσ(j) : j < i} 6
√
s)}| > s

4
.
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Gaussian measure of cross-polytopes

The last thing that one has to estimate is the Gaussian measure of cross-polytopes of
“type P” and “type Q”. The starting point is the next lemma.

Lemma 1

Let P = conv{±x1, . . . ,±xn} be a cross-polytope and set

di = dist(xi , span{xj : j < i}), 2 6 i 6 n.

Let 1 6 r 6 n and consider the cross-polytope P ′ = conv{±y1, . . . ,±yn}, where yi = xi
if 1 6 i 6 r and yr+1, . . . , yn are mutually orthogonal vectors with |yi | = di , which are
also orthogonal to span{xi : i 6 r}. Then,

γn(P) 6 γn(P ′).
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Gaussian measure of cross-polytopes

Lemma 2

Let P = conv{±x1, . . . ,±xn} be a cross-polytope such that, for some 1 6 r < n and
h > 0,

dist(xi , span{xj : j < i}) 6 h, i = r + 1, . . . , n.

Then, γn(P) 6
(

eh
n−r

)n−r

.

Proof. By Lemma 1 we may assume that span{x1, . . . , xr} = span{e1, . . . , er} and
xi = hei for all i > r .

If G = (g1, . . . , gn) is a Gaussian vector, then G ∈ P implies that

n∑
i=r+1

|gi | 6 h.

Therefore,

γn(P) = P(G ∈ P) 6
1

(2π)
n−r

2

(2h)n−r

(n − r)!
6

(
eh

n − r

)n−r

.
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Gaussian measure of cross-polytopes

Lemma 3

Let P = conv{±x1, . . . ,±xn} be a symmetric cross-polytope with the property that, for
some 1 6 p < n, δ ∈ (0, 1/2) and h > 0,

|{i : p + 1 6 i 6 n and dist(xi , span{xj : j < i} 6 h)}| > (1− δ)(n − p).

Then,

γn(P) 6

(
2eh

n − p

)(1−δ)(n−p)

.

Lemma 4

Let Q = conv{±x1, . . . ,±xn} be a symmetric cross-polytope with the property that, for
some 1� s 6 n and for every permutation σ of [n]

|{i : n − s + 1 6 i 6 n and dist(xσ(i), span{xσ(j) : j < i} 6
√
s)}| > s

4
.

Then,
γn(Q) 6 2e−cs .
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Finishing the proof of the theorem

Parameters to be chosen: m, ε, α, δ, τ , s and q.

Initial conditions: m/ε 6 n10, 1
log n

6 δ < 1, n > s > 4q > 4 log2 n, q2α
n

> C1 log n,
τ > C2, and

min
(τ 2δq2α

n
,
τ 2δq

n

)
> C3 log n.

Recall that we want to have P(ω) < 1
2

and

P(ω) = P
( ⋃
|I |=n

{G(ω′) ∈ 4% conv{±coli (Γ(ω)F(A)), i ∈ I}}
)

6
n−q−1∑
p=0

(
n

p

)2

sup
P
γn(4%P) +

n∑
p=n−q

(
n

p

)2

sup
Q
γn(4%Q),

and now we have upper bounds for γn(4%P) and γn(4%Q), which however depend on
%; this will give additional restrictions, involving %, so that we will get P(ω) < 1

2
.
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Finishing the proof of the theorem

We choose δ = 1
log n

. After the computations we have additional restrictions with %:
roughly,

s > q log n, %
√
s 6 n, n2%τ

√
α 6 q5/2.

We choose τ ' log n ·max{
√

n/q,
√

n/(q2α)} and

% = min
( n√

s
,

1

log n

q2

n5/2
√
α
,

1

log n

q7/2

n5/2

)
.

Finally, we choose α = n log n
q2 and s, q ' n8/9 up to some power of log n.

This choice gives % > n5/9 log−b n.
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