Banach-Mazur distance to the cube

Apostolos Giannopoulos

National and Kapodistrian University of Athens

September 7, 2018

$$\mathcal{R}_{\infty}^{n} = \max\{d(X, \ell_{\infty}^{n}) : X \in \mathcal{B}_{n}\}.$$

$$\mathcal{R}_{\infty}^{n} = \max\{d(X, \ell_{\infty}^{n}) : X \in \mathcal{B}_{n}\}.$$

Pełczynski

What is the asymptotic behavior of \mathcal{R}_{∞}^{n} as *n* tends to infinity?

$$\mathcal{R}_{\infty}^{n} = \max\{d(X, \ell_{\infty}^{n}) : X \in \mathcal{B}_{n}\}.$$

Pełczynski

What is the asymptotic behavior of \mathcal{R}_{∞}^{n} as *n* tends to infinity?

• One clearly has $\mathcal{R}_{\infty}^n \leqslant \operatorname{diam}(\mathcal{B}_n) \leqslant n$ and the fact that $d(\ell_{\infty}^n, \ell_2^n) = \sqrt{n}$ shows that

 $\sqrt{n} \leqslant \mathcal{R}_{\infty}^{n} \leqslant n.$

$$\mathcal{R}_{\infty}^{n} = \max\{d(X, \ell_{\infty}^{n}) : X \in \mathcal{B}_{n}\}.$$

Pełczynski

What is the asymptotic behavior of \mathcal{R}_{∞}^{n} as *n* tends to infinity?

• One clearly has $\mathcal{R}_{\infty}^n \leqslant \operatorname{diam}(\mathcal{B}_n) \leqslant n$ and the fact that $d(\ell_{\infty}^n, \ell_2^n) = \sqrt{n}$ shows that

$$\sqrt{n} \leqslant \mathcal{R}_{\infty}^n \leqslant n.$$

• Lower bounds: Szarek, using random spaces of Gluskin type, proved that

$$\mathcal{R}_{\infty}^{n} \geqslant c\sqrt{n}\log n.$$

• It is more convenient to work with the dual quantity

$$\mathcal{R}_1^n = \max\{d(X,\ell_1^n): X\in \mathcal{B}_n\}.$$

Since $d(X^*, Y^*) = d(X, Y)$ we see that $\mathcal{R}_{\infty}^n = \mathcal{R}_1^n$.

• It is more convenient to work with the dual quantity

$$\mathcal{R}_1^n = \max\{d(X, \ell_1^n) : X \in \mathcal{B}_n\}.$$

Since $d(X^*, Y^*) = d(X, Y)$ we see that $\mathcal{R}_{\infty}^n = \mathcal{R}_1^n$.

• Let G_1, \ldots, G_m be independent standard Gaussian vectors in \mathbb{R}^n :

$$\mathbb{P}(G_i \in B) = \gamma_n(B) = \frac{1}{(2\pi)^{n/2}} \int_B e^{-|x|^2/2} dx.$$

• It is more convenient to work with the dual quantity

$$\mathcal{R}_1^n = \max\{d(X,\ell_1^n): X\in \mathcal{B}_n\}.$$

Since $d(X^*, Y^*) = d(X, Y)$ we see that $\mathcal{R}_{\infty}^n = \mathcal{R}_1^n$.

• Let G_1, \ldots, G_m be independent standard Gaussian vectors in \mathbb{R}^n :

$$\mathbb{P}(G_i \in B) = \gamma_n(B) = \frac{1}{(2\pi)^{n/2}} \int_B e^{-|x|^2/2} dx.$$

• We define the symmetric random polytope

$$\mathcal{G}_m = \operatorname{conv}\{\pm G_1, \ldots, \pm G_m\}.$$

• It is more convenient to work with the dual quantity

$$\mathcal{R}_1^n = \max\{d(X, \ell_1^n) : X \in \mathcal{B}_n\}.$$

Since $d(X^*, Y^*) = d(X, Y)$ we see that $\mathcal{R}_{\infty}^n = \mathcal{R}_1^n$.

• Let G_1, \ldots, G_m be independent standard Gaussian vectors in \mathbb{R}^n :

$$\mathbb{P}(G_i \in B) = \gamma_n(B) = \frac{1}{(2\pi)^{n/2}} \int_B e^{-|x|^2/2} dx.$$

• We define the symmetric random polytope

$$\mathcal{G}_m = \operatorname{conv}\{\pm G_1, \ldots, \pm G_m\}.$$

Szarek, 1990

Let $\delta > 0$ and $m = \lfloor n^{1+\delta} \rfloor$. With positive probability, $d(X_{\mathcal{G}_m}, \ell_1^n) \ge c(\delta)\sqrt{n} \log n$.

• It is more convenient to work with the dual quantity

$$\mathcal{R}_1^n = \max\{d(X, \ell_1^n) : X \in \mathcal{B}_n\}.$$

Since $d(X^*, Y^*) = d(X, Y)$ we see that $\mathcal{R}_{\infty}^n = \mathcal{R}_1^n$.

• Let G_1, \ldots, G_m be independent standard Gaussian vectors in \mathbb{R}^n :

$$\mathbb{P}(G_i \in B) = \gamma_n(B) = \frac{1}{(2\pi)^{n/2}} \int_B e^{-|x|^2/2} dx.$$

• We define the symmetric random polytope

$$\mathcal{G}_m = \operatorname{conv}\{\pm G_1, \ldots, \pm G_m\}.$$

Szarek, 1990

Let $\delta > 0$ and $m = \lfloor n^{1+\delta} \rfloor$. With positive probability, $d(X_{\mathcal{G}_m}, \ell_1^n) \ge c(\delta)\sqrt{n} \log n$.

• The proof involves a precise distributional inequality on the *s*-numbers of random Gaussian matrices, which is a quantitative finite version of Wigner's semicircle law: if $G(\omega)$ is an $n \times n$ matrix with independent N(0, 1/n) Gaussian entries, then

$$\mathbb{P}\left(\omega:c_1k/n\leqslant s_{n-k}(G(\omega))\leqslant c_2k/n\right)>1-c_3\exp(-c_4k^2),$$

for all $k \leq n/2$, where the c_i 's are absolute positive constants.

There exist absolute constants c, b > 0 such that, for any $n \ge 2$,

 $\mathcal{R}_1^n \geqslant cn^{5/9} \log^{-b} n.$

There exist absolute constants c, b > 0 such that, for any $n \ge 2$,

 $\mathcal{R}_1^n \geqslant cn^{5/9} \log^{-b} n.$

• The space X with $d(X, \ell_1^n) \ge c n^{5/9} \log^{-b} n$ is, as in Szarek's theorem, a Gluskin space.

There exist absolute constants c, b > 0 such that, for any $n \ge 2$,

 $\mathcal{R}_1^n \geqslant cn^{5/9} \log^{-b} n.$

- The space X with $d(X, \ell_1^n) \ge cn^{5/9} \log^{-b} n$ is, as in Szarek's theorem, a Gluskin space.
- Let G_1, \ldots, G_m be independent standard Gaussian vectors in \mathbb{R}^n . We define the symmetric random polytope

$$\mathcal{G}_m = \operatorname{conv}\{\pm G_1, \ldots, \pm G_m\}.$$

There exist absolute constants c, b > 0 such that, for any $n \ge 2$,

 $\mathcal{R}_1^n \geqslant cn^{5/9} \log^{-b} n.$

- The space X with $d(X, \ell_1^n) \ge cn^{5/9} \log^{-b} n$ is, as in Szarek's theorem, a Gluskin space.
- Let G_1, \ldots, G_m be independent standard Gaussian vectors in \mathbb{R}^n . We define the symmetric random polytope

$$\mathcal{G}_m = \operatorname{conv}\{\pm G_1, \ldots, \pm G_m\}.$$

• We also consider the $n \times m$ Gaussian random matrix Γ with columns G_1, \ldots, G_m .

There exist absolute constants c, b > 0 such that, for any $n \ge 2$,

 $\mathcal{R}_1^n \geqslant cn^{5/9} \log^{-b} n.$

- The space X with $d(X, \ell_1^n) \ge cn^{5/9} \log^{-b} n$ is, as in Szarek's theorem, a Gluskin space.
- Let G_1, \ldots, G_m be independent standard Gaussian vectors in \mathbb{R}^n . We define the symmetric random polytope

$$\mathcal{G}_m = \operatorname{conv}\{\pm G_1, \ldots, \pm G_m\}.$$

- We also consider the $n \times m$ Gaussian random matrix Γ with columns G_1, \ldots, G_m .
- In order to show that $\mathcal{R}_1^n \geqslant \varrho$ for some $\varrho > 1$ it is enough to show that

 $\mathbb{P}\Big(\text{there exists a cross-polytope }P\text{ such that }\varrho\mathcal{G}_m\supseteq \varrho P\supseteq \mathcal{G}_m\Big)<1.$

• Assume that G_1, \ldots, G_m are defined on the probability space Ω . For a given $\omega \in \Omega$, if a cross-polytope P is contained in $\mathcal{G}_m(\omega)$ then, by Carathéodory's theorem, its vertices are convex combinations of at most n of the vectors $\pm G_i$, and hence

$$P = \Gamma(\omega)A(B_1^n)$$

for some $m \times n$ matrix A with the property that the support of every column of A has cardinality at most n and that every column of A has ℓ_1^n -norm at most 1.

• Assume that G_1, \ldots, G_m are defined on the probability space Ω . For a given $\omega \in \Omega$, if a cross-polytope P is contained in $\mathcal{G}_m(\omega)$ then, by Carathéodory's theorem, its vertices are convex combinations of at most n of the vectors $\pm G_i$, and hence

$$P = \Gamma(\omega)A(B_1^n)$$

for some $m \times n$ matrix A with the property that the support of every column of A has cardinality at most n and that every column of A has ℓ_1^n -norm at most 1.

• We consider the class $\mathcal{A}_{m,n}$ of all $m \times n$ matrices that satisfy these conditions:

 $|\operatorname{supp}\operatorname{col}_i(A)| \leqslant n$ and $\|\operatorname{col}_i(A)\|_1 \leqslant 1$.

• Assume that G_1, \ldots, G_m are defined on the probability space Ω . For a given $\omega \in \Omega$, if a cross-polytope P is contained in $\mathcal{G}_m(\omega)$ then, by Carathéodory's theorem, its vertices are convex combinations of at most n of the vectors $\pm G_i$, and hence

$$P = \Gamma(\omega)A(B_1^n)$$

for some $m \times n$ matrix A with the property that the support of every column of A has cardinality at most n and that every column of A has ℓ_1^n -norm at most 1.

• We consider the class $\mathcal{A}_{m,n}$ of all $m \times n$ matrices that satisfy these conditions:

 $|\operatorname{supp}\operatorname{col}_i(A)| \leqslant n$ and $\|\operatorname{col}_i(A)\|_1 \leqslant 1$.

• Then, in order to show that $\mathcal{R}_1^n \geqslant \varrho$ for some $\varrho > 1$ it is enough to show that the event

$$\mathcal{E}_1:= ext{there exists } A \in \mathcal{A}_{m,n} ext{ such that } arrho extsf{A}(B_1^n) \supseteq \mathcal{G}_m$$

has probability $\mathbb{P}(\mathcal{E}_1) < 1$.

Let N be the set of all matrices A = (a_{ij}) in A_{m,n} with the property that a_{ij} ∈ εZ (for some small ε > 0 to be determined).

- Let \mathcal{N} be the set of all matrices $A = (a_{ij})$ in $\mathcal{A}_{m,n}$ with the property that $a_{ij} \in \epsilon \mathbb{Z}$ (for some small $\epsilon > 0$ to be determined).
- One can check that for every $A = (a_{ij})$ in $\mathcal{A}_{m,n}$ we may find $A' = (a'_{ij})$ in \mathcal{N} such that $|a_{ij} a'_{ij}| \leq \epsilon$ for all i, j.

- Let N be the set of all matrices A = (a_{ij}) in A_{m,n} with the property that a_{ij} ∈ ϵZ (for some small ϵ > 0 to be determined).
- One can check that for every $A = (a_{ij})$ in $\mathcal{A}_{m,n}$ we may find $A' = (a'_{ij})$ in \mathcal{N} such that $|a_{ij} a'_{ij}| \leq \epsilon$ for all i, j.

Reduction

Assume that $m \leqslant n^{10}$ and $\epsilon \varrho n^2 \leqslant 1$. If \mathcal{E}_2 is the event

```
\mathcal{E}_2 := there exists A \in \mathcal{N} such that 2\varrho \Gamma A(B_1^n) \supseteq \mathcal{G}_m,
```

then

$$\mathbb{P}(\mathcal{E}_1) \leqslant \mathbb{P}(\mathcal{E}_2) + 2^{-n}.$$

Crucial observation

Let $\alpha \in (0, 1)$. Every $y \in \mathbb{R}^n$ with $||y||_1 \leq 1$ can be written as a sum y = z + w, where $|\operatorname{supp}(z)| \leq 1/\alpha$ and $||w||_2 \leq \sqrt{\alpha}$.

Crucial observation

Let $\alpha \in (0, 1)$. Every $y \in \mathbb{R}^n$ with $||y||_1 \leq 1$ can be written as a sum y = z + w, where $|\operatorname{supp}(z)| \leq 1/\alpha$ and $||w||_2 \leq \sqrt{\alpha}$.

Proof: Set $z = (\mathbf{1}_{|y_k| \ge \alpha} y_k)_{k=1}^n$ and $w = (\mathbf{1}_{|y_k| < \alpha} y_k)_{k=1}^n$.

Crucial observation

Let $\alpha \in (0, 1)$. Every $y \in \mathbb{R}^n$ with $||y||_1 \leq 1$ can be written as a sum y = z + w, where $|\operatorname{supp}(z)| \leq 1/\alpha$ and $||w||_2 \leq \sqrt{\alpha}$.

Proof: Set $z = (\mathbf{1}_{|y_k| \ge \alpha} y_k)_{k=1}^n$ and $w = (\mathbf{1}_{|y_k| < \alpha} y_k)_{k=1}^n$.

• Using this observation we shall partition every matrix A from N into a matrix with "sparse" columns and a matrix of whose columns have small Euclidean norm.

Crucial observation

Let $\alpha \in (0, 1)$. Every $y \in \mathbb{R}^n$ with $||y||_1 \leq 1$ can be written as a sum y = z + w, where $|\operatorname{supp}(z)| \leq 1/\alpha$ and $||w||_2 \leq \sqrt{\alpha}$.

Proof: Set $z = (\mathbf{1}_{|y_k| \ge \alpha} y_k)_{k=1}^n$ and $w = (\mathbf{1}_{|y_k| < \alpha} y_k)_{k=1}^n$.

- Using this observation we shall partition every matrix A from N into a matrix with "sparse" columns and a matrix of whose columns have small Euclidean norm.
- This will imply that every point of $\Gamma A(B_1^n)$ is a convex combination of random vectors of two types: vectors that are sparse linear combinations of G_i 's and vectors whose expected Euclidean norm is small.

Crucial observation

Let $\alpha \in (0, 1)$. Every $y \in \mathbb{R}^n$ with $||y||_1 \leq 1$ can be written as a sum y = z + w, where $|\operatorname{supp}(z)| \leq 1/\alpha$ and $||w||_2 \leq \sqrt{\alpha}$.

Proof: Set $z = (\mathbf{1}_{|y_k| \ge \alpha} y_k)_{k=1}^n$ and $w = (\mathbf{1}_{|y_k| < \alpha} y_k)_{k=1}^n$.

- Using this observation we shall partition every matrix A from N into a matrix with "sparse" columns and a matrix of whose columns have small Euclidean norm.
- This will imply that every point of $\Gamma A(B_1^n)$ is a convex combination of random vectors of two types: vectors that are sparse linear combinations of G_i 's and vectors whose expected Euclidean norm is small.
- The set of the first ones has small cardinality and allows a net argument, the vectors of the second type are easier to handle because they are "short".

We define *F*₁, *F*₂ : *N* → *N* as follows. If *A* = (*a_{ij}*) ∈ *N* then *F*₁(*A*) is the *m* × *n* matrix with entries 1<sub>|*a_{ii}*|≥α *a_{ij}* and *F*₂(*A*) is the *m* × *n* matrix with entries 1<sub>|*a_{ii}*|<α *a_{ij}*.
</sub></sub>

- We define *F*₁, *F*₂ : *N* → *N* as follows. If *A* = (*a_{ij}*) ∈ *N* then *F*₁(*A*) is the *m* × *n* matrix with entries 1<sub>|*a_{ij}*|≥α *a_{ij}* and *F*₂(*A*) is the *m* × *n* matrix with entries 1<sub>|*a_{ij}*|<α *a_{ij}*.
 </sub></sub>
- Then, we consider the $m \times 2n$ matrix

$$\mathcal{F}(A) := [\mathcal{F}_1(A) \mid \mathcal{F}_2(A)].$$

- We define *F*₁, *F*₂ : *N* → *N* as follows. If *A* = (*a_{ij}*) ∈ *N* then *F*₁(*A*) is the *m* × *n* matrix with entries 1<sub>|*a_{ij}*|≥α *a_{ij}* and *F*₂(*A*) is the *m* × *n* matrix with entries 1<sub>|*a_{ij}*|<α *a_{ij}*.
 </sub></sub>
- Then, we consider the $m \times 2n$ matrix

$$\mathcal{F}(A) := [\mathcal{F}_1(A) \mid \mathcal{F}_2(A)].$$

Simple lemma

For any $A \in \mathcal{N}$ we have

 $A(B_1^n) \subset [\mathcal{F}(A)](2B_1^{2n}).$

- We define *F*₁, *F*₂ : *N* → *N* as follows. If *A* = (*a_{ij}*) ∈ *N* then *F*₁(*A*) is the *m* × *n* matrix with entries **1**<sub>|*a_{ij}*| ≥ α *a_{ij}* and *F*₂(*A*) is the *m* × *n* matrix with entries **1**<sub>|*a_{ij}*| < α *a_{ij}*.
 </sub></sub>
- Then, we consider the $m \times 2n$ matrix

$$\mathcal{F}(A) := [\mathcal{F}_1(A) \mid \mathcal{F}_2(A)].$$

Simple lemma

For any $A \in \mathcal{N}$ we have

```
A(B_1^n) \subset [\mathcal{F}(A)](2B_1^{2n}).
```

• This is because $A(e_j) = \mathcal{F}(A)(e_j, e_j)$ for all j = 1, ..., n.

- We define *F*₁, *F*₂ : *N* → *N* as follows. If *A* = (*a_{ij}*) ∈ *N* then *F*₁(*A*) is the *m* × *n* matrix with entries **1**<sub>|*a_{ij}*| ≥ α *a_{ij}* and *F*₂(*A*) is the *m* × *n* matrix with entries **1**<sub>|*a_{ij}*| < α *a_{ij}*.
 </sub></sub>
- Then, we consider the $m \times 2n$ matrix

$$\mathcal{F}(A) := [\mathcal{F}_1(A) \mid \mathcal{F}_2(A)].$$

Simple lemma

For any $A \in \mathcal{N}$ we have

```
A(B_1^n) \subset [\mathcal{F}(A)](2B_1^{2n}).
```

- This is because $A(e_j) = \mathcal{F}(A)(e_j, e_j)$ for all j = 1, ..., n.
- Clearly, $\Gamma(\omega)A(B_1^n) \subset 2\Gamma(\omega)\mathcal{F}(A)(B_1^{2n}).$

Proposition

Let $\mathcal{E} = \bigcap_{A \in \mathcal{N}} \mathcal{E}_A$, where \mathcal{E}_A is an event which is measurable with respect to the σ -algebra generated by the vectors G_j with $j \in \theta(A) = \bigcup_{i=1}^n \operatorname{supp} \operatorname{col}_i(A)$. If G is a standard Gaussian vector which is independent from Γ then $\mathbb{P}(\mathcal{E}_2 \cap \mathcal{E}) \leq |\mathcal{N}| \cdot \max_{A \in \mathcal{N}} \sup_{\omega \in \mathcal{E}_A} [\mathbb{P}(\omega)]^{m-n^2}$, where

$$\begin{split} \mathbb{P}(\omega) &:= \mathbb{P}(\{\omega': \text{there exists } I \subset [2n] \text{ with } |I| = n \text{ such that} \\ G(\omega') &\in 4\varrho \operatorname{conv}\{\pm \operatorname{col}_i(\Gamma(\omega)\mathcal{F}(A)), i \in I\}). \end{split}$$

Proof of the Proposition

• Let $\omega \in \mathcal{E}_2 \cap \mathcal{E}$. Since $\omega \in \mathcal{E}_2$ there exists $A = A(\omega) \in \mathcal{N}$ such that

 $G_j(\omega) \in 2\varrho \, \Gamma(\omega) \mathcal{A}(B_1^n) \subseteq 4\varrho \, \Gamma(\omega) \mathcal{F}(\mathcal{A})(B_1^{2n}), \qquad 1 \leqslant j \leqslant m.$

Proof of the Proposition

• Let $\omega \in \mathcal{E}_2 \cap \mathcal{E}$. Since $\omega \in \mathcal{E}_2$ there exists $A = A(\omega) \in \mathcal{N}$ such that

$$G_j(\omega) \in 2\varrho \, \Gamma(\omega) A(B_1^n) \subseteq 4\varrho \, \Gamma(\omega) \mathcal{F}(A)(B_1^{2n}), \qquad 1 \leqslant j \leqslant m.$$

• By Carathéodory's theorem, for every j = 1, ..., m there exists $I = I(\omega, j) \subset [2n]$ with |I| = n such that

$$G_{j}(\omega) \in 4\varrho \operatorname{conv} \{ \pm \operatorname{col}_{i}(\Gamma(\omega)\mathcal{F}(A)), i \in I \}.$$

Proof of the Proposition

• Let $\omega \in \mathcal{E}_2 \cap \mathcal{E}$. Since $\omega \in \mathcal{E}_2$ there exists $A = A(\omega) \in \mathcal{N}$ such that

$$G_j(\omega) \in 2\varrho \, \Gamma(\omega) A(B_1^n) \subseteq 4\varrho \, \Gamma(\omega) \mathcal{F}(A)(B_1^{2n}), \qquad 1 \leqslant j \leqslant m.$$

• By Carathéodory's theorem, for every j = 1, ..., m there exists $I = I(\omega, j) \subset [2n]$ with |I| = n such that

$$G_{i}(\omega) \in 4\varrho \operatorname{conv} \{ \pm \operatorname{col}_{i}(\Gamma(\omega)\mathcal{F}(A)), i \in I \}.$$

• Considering only $j \notin \theta(A)$ we have

$$\mathcal{E}_2 \cap \mathcal{E} \leqslant \bigcup_{A \in \mathcal{N}} \bigcap_{j \notin \theta(A)} \bigcup_{|I|=n} \Big(\mathcal{E} \cap \{G_j(\omega) \in 4\varrho \operatorname{conv}\{\pm \operatorname{col}_i(\Gamma(\omega)\mathcal{F}(A)), i \in I\} \Big).$$

Proof of the Proposition

• Let $\omega \in \mathcal{E}_2 \cap \mathcal{E}$. Since $\omega \in \mathcal{E}_2$ there exists $A = A(\omega) \in \mathcal{N}$ such that

$$G_j(\omega) \in 2\varrho \, \Gamma(\omega) A(B_1^n) \subseteq 4\varrho \, \Gamma(\omega) \mathcal{F}(A)(B_1^{2n}), \qquad 1 \leqslant j \leqslant m.$$

• By Carathéodory's theorem, for every j = 1, ..., m there exists $I = I(\omega, j) \subset [2n]$ with |I| = n such that

$$G_{i}(\omega) \in 4\varrho \operatorname{conv} \{ \pm \operatorname{col}_{i}(\Gamma(\omega)\mathcal{F}(A)), i \in I \}.$$

• Considering only $j \notin \theta(A)$ we have

$$\mathcal{E}_2 \cap \mathcal{E} \leqslant igcup_{A \in \mathcal{N}} igcap_{j \notin heta(A)} igcup_{|I|=n} \Big(\mathcal{E} \cap \{ \mathcal{G}_j(\omega) \in 4 \varrho \operatorname{conv}\{ \pm \operatorname{col}_i(\Gamma(\omega) \mathcal{F}(A)), i \in I \} \Big).$$

• Therefore,

$$\mathbb{P}(\mathcal{E}_{2} \cap \mathcal{E})$$

$$\leq |\mathcal{N}| \cdot \max_{A \in \mathcal{N}} \mathbb{P}\Big(\bigcap_{j \notin \theta(A)} \bigcup_{|I|=n} \Big(\mathcal{E}_{A} \cap \{G_{j}(\omega) \in 4\varrho \operatorname{conv}\{\pm \operatorname{col}_{i}(\Gamma(\omega)\mathcal{F}(A)), i \in I\}\Big)$$

$$\leq |\mathcal{N}| \cdot \max_{A \in \mathcal{N}} \Big[\sup_{\omega \in \mathcal{E}_{A}} \mathbb{P}\Big(\bigcup_{|I|=n} \{G(\omega') \in 4\varrho \operatorname{conv}\{\pm \operatorname{col}_{i}(\Gamma(\omega)\mathcal{F}(A)), i \in I\}\Big)\Big]^{m-|\theta(A)|}.$$

• We shall define events \mathcal{E}_A measurable with respect to the σ -algebra generated by the vectors G_j with $j \in \theta(A)$, so that $\mathcal{E} = \bigcap_{A \in \mathcal{N}} \mathcal{E}_A$ satisfies

$$\mathbb{P}(\mathcal{E}) \geqslant 1 - \frac{2}{n}$$

• We shall define events \mathcal{E}_A measurable with respect to the σ -algebra generated by the vectors G_j with $j \in \theta(A)$, so that $\mathcal{E} = \bigcap_{A \in \mathcal{N}} \mathcal{E}_A$ satisfies

$$\mathbb{P}(\mathcal{E}) \geqslant 1 - \frac{2}{n}.$$

• On the other hand, we will have

$$\sup_{\omega\in\mathcal{E}_{A}}\mathbb{P}(\omega)=\sup_{\omega\in\mathcal{E}_{A}}\mathbb{P}\Big(\bigcup_{|I|=n}\{G(\omega')\in4\varrho\operatorname{conv}\{\pm\operatorname{col}_{i}(\Gamma(\omega)\mathcal{F}(A)),i\in I\}\}\Big)<\frac{1}{2}$$

• We shall define events \mathcal{E}_A measurable with respect to the σ -algebra generated by the vectors G_j with $j \in \theta(A)$, so that $\mathcal{E} = \bigcap_{A \in \mathcal{N}} \mathcal{E}_A$ satisfies

$$\mathbb{P}(\mathcal{E}) \geqslant 1 - \frac{2}{n}.$$

• On the other hand, we will have

$$\sup_{\omega\in\mathcal{E}_{A}}\mathbb{P}(\omega)=\sup_{\omega\in\mathcal{E}_{A}}\mathbb{P}\Big(\bigcup_{|I|=n}\{G(\omega')\in4\varrho\operatorname{conv}\{\pm\operatorname{col}_{i}(\Gamma(\omega)\mathcal{F}(A)),i\in I\}\}\Big)<\frac{1}{2}$$

• By the Proposition,

$$\mathbb{P}(\mathcal{E}_2 \cap \mathcal{E}) \leqslant |\mathcal{N}| \cdot \left(rac{1}{2}
ight)^{m-n^2}$$

٠

• We shall define events \mathcal{E}_A measurable with respect to the σ -algebra generated by the vectors G_j with $j \in \theta(A)$, so that $\mathcal{E} = \bigcap_{A \in \mathcal{N}} \mathcal{E}_A$ satisfies

$$\mathbb{P}(\mathcal{E}) \geqslant 1 - \frac{2}{n}$$

• On the other hand, we will have

$$\sup_{\omega\in\mathcal{E}_{A}}\mathbb{P}(\omega)=\sup_{\omega\in\mathcal{E}_{A}}\mathbb{P}\Big(\bigcup_{|I|=n}\{G(\omega')\in 4\varrho\operatorname{conv}\{\pm\operatorname{col}_{i}(\Gamma(\omega)\mathcal{F}(A)), i\in I\}\}\Big)<\frac{1}{2}$$

• By the Proposition,

$$\mathbb{P}(\mathcal{E}_2 \cap \mathcal{E}) \leqslant |\mathcal{N}| \cdot \left(rac{1}{2}
ight)^{m-n^2}.$$

• If m is chosen large (e.g. $m = n^3$) then $\mathbb{P}(\mathcal{E}_2 \cap \mathcal{E})$ will be very small, and hence

$$\mathbb{P}(\mathcal{E}_2) \leqslant \mathbb{P}(\mathcal{E}_2 \cap \mathcal{E}) + \mathbb{P}(\Omega \setminus \mathcal{E}) \leqslant \mathbb{P}(\mathcal{E}_2 \cap \mathcal{E}) + \frac{2}{n}$$

will be also small.

• Parameters to be chosen:

• Parameters to be chosen: m, ϵ , α , δ , τ , s and q.

- Parameters to be chosen: m, ϵ , α , δ , τ , s and q.
- Conditions: $m/\epsilon \leq n^{10}$,

- Parameters to be chosen: m, ϵ , α , δ , τ , s and q.
- Conditions: $m/\epsilon \leq n^{10}$, $\frac{1}{\log n} \leq \delta < 1$,

- Parameters to be chosen: m, ϵ , α , δ , τ , s and q.
- Conditions: $m/\epsilon \leqslant n^{10}$, $\frac{1}{\log n} \leqslant \delta < 1$, $n \geqslant s \geqslant 4q \geqslant 4\log^2 n$,

- Parameters to be chosen: m, ϵ , α , δ , τ , s and q.
- Conditions: $m/\epsilon \leq n^{10}$, $\frac{1}{\log n} \leq \delta < 1$, $n \geq s \geq 4q \geq 4\log^2 n$, $\frac{q^2\alpha}{n} \geq C_1\log n$,

- Parameters to be chosen: *m*, ϵ , α , δ , τ , *s* and *q*.
- Conditions: $m/\epsilon \leqslant n^{10}$, $\frac{1}{\log n} \leqslant \delta < 1$, $n \geqslant s \geqslant 4q \geqslant 4\log^2 n$, $\frac{q^2\alpha}{n} \geqslant C_1\log n$, $\tau \geqslant C_2$,

- Parameters to be chosen: m, ϵ , α , δ , τ , s and q.
- Conditions: $m/\epsilon \leq n^{10}$, $\frac{1}{\log n} \leq \delta < 1$, $n \geq s \geq 4q \geq 4\log^2 n$, $\frac{q^2\alpha}{n} \geq C_1\log n$, $\tau \geq C_2$, and

$$\min\left(\frac{\tau^2\delta q^2\alpha}{n},\frac{\tau^2\delta q}{n}\right) \geqslant C_3\log n.$$

- Parameters to be chosen: m, ϵ , α , δ , τ , s and q.
- Conditions: $m/\epsilon \leq n^{10}$, $\frac{1}{\log n} \leq \delta < 1$, $n \geq s \geq 4q \geq 4\log^2 n$, $\frac{q^2\alpha}{n} \geq C_1\log n$, $\tau \geq C_2$, and $(\tau^2 \delta q^2 \alpha, \tau^2 \delta q) \leq c$

$$\min\left(\frac{\tau^{-}\delta q^{-}\alpha}{n},\frac{\tau^{-}\delta q}{n}\right) \geqslant C_{3}\log n.$$

• We have $\omega \in \mathcal{E}_A$ if:

● For every $I \subset [2n]$ with |I| = n the vectors $col_i(\Gamma(\omega)\mathcal{F}(A))$, $i \in I$, are linearly independent.

- Parameters to be chosen: m, ϵ , α , δ , τ , s and q.
- Conditions: $m/\epsilon \leq n^{10}$, $\frac{1}{\log n} \leq \delta < 1$, $n \geq s \geq 4q \geq 4\log^2 n$, $\frac{q^2\alpha}{n} \geq C_1\log n$, $\tau \geq C_2$, and

$$\min\left(\frac{\tau^2\delta q^2\alpha}{n},\frac{\tau^2\delta q}{n}\right) \geqslant C_3\log n.$$

- We have $\omega \in \mathcal{E}_A$ if:
 - **④** For every $I \subset [2n]$ with |I| = n the vectors $col_i(\Gamma(\omega)\mathcal{F}(A))$, *i* ∈ *I*, are linearly independent.
 - **②** For every $I \subset [2n]$ with |I| = n and $|I \cap [n]| \ge n q$ we have that if we write x_1, \ldots, x_n for the vectors $\operatorname{col}_i(\Gamma(\omega)\mathcal{F}(A))$ in any order, then

$$|\{i: n-s+1 \leq i \leq n \text{ and } \operatorname{dist}(x_i, \operatorname{span}\{x_j: j < i\}) \leq \sqrt{s}\}| \geq \frac{s}{4}$$

- Parameters to be chosen: m, ϵ , α , δ , τ , s and q.
- Conditions: $m/\epsilon \leq n^{10}$, $\frac{1}{\log n} \leq \delta < 1$, $n \geq s \geq 4q \geq 4\log^2 n$, $\frac{q^2\alpha}{n} \geq C_1\log n$, $\tau \geq C_2$, and

$$\min\left(\frac{\tau^2\delta q^2\alpha}{n},\frac{\tau^2\delta q}{n}\right) \geqslant C_3\log n.$$

- We have $\omega \in \mathcal{E}_A$ if:
 - **●** For every $I \subset [2n]$ with |I| = n the vectors $col_i(\Gamma(\omega)\mathcal{F}(A))$, $i \in I$, are linearly independent.
 - **2** For every $I \subset [2n]$ with |I| = n and $|I \cap [n]| \ge n q$ we have that if we write x_1, \ldots, x_n for the vectors $\operatorname{col}_i(\Gamma(\omega)\mathcal{F}(A))$ in any order, then

$$|\{i: n-s+1 \leqslant i \leqslant n \text{ and } \operatorname{dist}(x_i, \operatorname{span}\{x_j: j < i\}) \leqslant \sqrt{s}\}| \ge \frac{s}{4}.$$

③ For every $I \subset [2n]$ with |I| = n and $|I \cap [n]| < n - q$ we have that

 $\begin{aligned} |\{i \in I \setminus [n] : \operatorname{dist}(\operatorname{col}_{i}(\Gamma(\omega)\mathcal{F}(A)), \operatorname{span}\{\operatorname{col}_{j}(\Gamma(\omega)\mathcal{F}(A)) : j < i\}) &\leq \tau \sqrt{\alpha |I \setminus [n]|} \} |\\ &\geq (1 - \delta)|I \setminus [n]|. \end{aligned}$

The proof of the inequality $\mathbb{P}\Big(\bigcap_{A \in \mathcal{N}} \mathcal{E}_A\Big) \ge 1 - \frac{2}{n}$ is based on the next proposition:

Distances to linear spans

Assume that $n/2 \leq s \leq n$, $1 \leq k \leq s/2$, $\tau \geq C_1$ and $\frac{1}{k} < \delta \leq 1$.

Let B be an $m \times s$ matrix, of rank s, with the property that each column of B has Euclidean norm at most 1.

Define $H_i = \Gamma(\operatorname{col}_i(B)), \ 1 \leq i \leq s$.

For any permutation σ of [s], let \mathcal{E}_{σ} be the event that

$$|\{i: s-k+1\leqslant i\leqslant s: \mathrm{dist}(H_{\sigma(i)}, \mathrm{span}\{H_{\sigma(j)}: j< i\}\leqslant \tau\sqrt{n-s+k}|\geqslant (1-\delta)k.$$

Then, $\mathbb{P}(\mathcal{E}_{\sigma}) \geqslant 1 - e^{-c_2 \tau^2 \delta(n-s+k)k}$ and

$$\mathbb{P}\Big(\bigcap_{\sigma}\mathcal{E}_{\sigma}\Big) \geqslant 1 - s^k e^{-c_2 \tau^2 \delta(n-s+k)k}.$$

• It is easy to check that $|\mathcal{N}| \leq e^{Cn^2 \log n}$.

- It is easy to check that $|\mathcal{N}| \leq e^{Cn^2 \log n}$.
- Assume that we remember the definition of \mathcal{E}_A .

• It is easy to check that $|\mathcal{N}| \leq e^{Cn^2 \log n}$.

- Assume that we remember the definition of \mathcal{E}_A .
- For every p = 0, 1, ..., n there are $\binom{n}{p}^2$ ways to choose $I \subset [2n]$ with |I| = n and $|I \cap [n]| = p$.

• It is easy to check that $|\mathcal{N}| \leqslant e^{Cn^2 \log n}$.

- Assume that we remember the definition of \mathcal{E}_A .
- For every p = 0, 1, ..., n there are $\binom{n}{p}^2$ ways to choose $I \subset [2n]$ with |I| = n and $|I \cap [n]| = p$.
- If $\omega \in \mathcal{E}_A$ then we have

$$\mathbb{P}(\omega) = \mathbb{P}\Big(\bigcup_{|I|=n} \{G(\omega') \in 4\varrho \operatorname{conv}\{\pm \operatorname{col}_i(\Gamma(\omega)\mathcal{F}(A)), i \in I\}\}\Big)$$
$$\leq \sum_{p=0}^{n-q-1} \binom{n}{p}^2 \sup_P \gamma_n(4\varrho P) + \sum_{p=n-q}^n \binom{n}{p}^2 \sup_Q \gamma_n(4\varrho Q),$$

where $P = \operatorname{conv}\{\pm x_1, \dots, \pm x_n\}$ with the property that

 $|\{i: p+1 \leqslant i \leqslant n \text{ and } \operatorname{dist}(x_i, \operatorname{span}\{x_j: j < i\} \leqslant \tau \sqrt{\alpha(n-p)})\}| \ge (1-\delta)(n-p)$

and $Q = \operatorname{conv}\{\pm x_1, \ldots, \pm x_n\}$ with the property that for every permutation σ of [n]

$$|\{i: n-s+1 \leqslant i \leqslant n \text{ and } \operatorname{dist}(x_{\sigma(i)}, \operatorname{span}\{x_{\sigma(j)}: j < i\} \leqslant \sqrt{s})\}| \ge \frac{s}{4}$$

The last thing that one has to estimate is the Gaussian measure of cross-polytopes of "type P" and "type Q". The starting point is the next lemma.

Lemma 1

Let $P = \operatorname{conv}\{\pm x_1, \ldots, \pm x_n\}$ be a cross-polytope and set

$$d_i = \operatorname{dist}(x_i, \operatorname{span}\{x_j : j < i\}), \qquad 2 \leqslant i \leqslant n.$$

Let $1 \le r \le n$ and consider the cross-polytope $P' = \operatorname{conv}\{\pm y_1, \ldots, \pm y_n\}$, where $y_i = x_i$ if $1 \le i \le r$ and y_{r+1}, \ldots, y_n are mutually orthogonal vectors with $|y_i| = d_i$, which are also orthogonal to $\operatorname{span}\{x_i : i \le r\}$. Then,

$$\gamma_n(P) \leqslant \gamma_n(P').$$

Let $P = \operatorname{conv}\{\pm x_1, \dots, \pm x_n\}$ be a cross-polytope such that, for some $1 \leq r < n$ and h > 0, $\operatorname{dist}(x_i, \operatorname{span}\{x_j : j < i\}) \leq h$, $i = r + 1, \dots, n$. Then, $\gamma_n(P) \leq \left(\frac{eh}{n-r}\right)^{n-r}$.

Let $P = \operatorname{conv}\{\pm x_1, \dots, \pm x_n\}$ be a cross-polytope such that, for some $1 \leq r < n$ and h > 0, $\operatorname{dist}(x_i, \operatorname{span}\{x_j : j < i\}) \leq h$, $i = r + 1, \dots, n$. Then, $\gamma_n(P) \leq \left(\frac{eh}{n-r}\right)^{n-r}$.

• **Proof.** By Lemma 1 we may assume that $\operatorname{span}\{x_1, \ldots, x_r\} = \operatorname{span}\{e_1, \ldots, e_r\}$ and $x_i = he_i$ for all i > r.

Let $P = \operatorname{conv}\{\pm x_1, \dots, \pm x_n\}$ be a cross-polytope such that, for some $1 \leq r < n$ and h > 0, $\operatorname{dist}(x_i, \operatorname{span}\{x_j : j < i\}) \leq h, \qquad i = r + 1, \dots, n.$ Then, $\gamma_n(P) \leq \left(\frac{eh}{n-r}\right)^{n-r}$.

- **Proof.** By Lemma 1 we may assume that $\operatorname{span}\{x_1, \ldots, x_r\} = \operatorname{span}\{e_1, \ldots, e_r\}$ and $x_i = he_i$ for all i > r.
- If $G = (g_1, \ldots, g_n)$ is a Gaussian vector, then $G \in P$ implies that

$$\sum_{i=r+1}^n |g_i| \leqslant h.$$

Let $P = \operatorname{conv}\{\pm x_1, \dots, \pm x_n\}$ be a cross-polytope such that, for some $1 \leq r < n$ and h > 0, $\operatorname{dist}(x_i, \operatorname{span}\{x_j : j < i\}) \leq h$, $i = r + 1, \dots, n$. Then, $\gamma_n(P) \leq \left(\frac{eh}{n-r}\right)^{n-r}$.

- **Proof.** By Lemma 1 we may assume that $\operatorname{span}\{x_1, \ldots, x_r\} = \operatorname{span}\{e_1, \ldots, e_r\}$ and $x_i = he_i$ for all i > r.
- If $G = (g_1, \ldots, g_n)$ is a Gaussian vector, then $G \in P$ implies that

$$\sum_{i=r+1}^n |g_i| \leqslant h$$

• Therefore,

$$\gamma_n(P) = \mathbb{P}(G \in P) \leqslant \frac{1}{(2\pi)^{\frac{n-r}{2}}} \frac{(2h)^{n-r}}{(n-r)!} \leqslant \left(\frac{eh}{n-r}\right)^{n-r}$$

Let $P = \operatorname{conv}\{\pm x_1, \ldots, \pm x_n\}$ be a symmetric cross-polytope with the property that, for some $1 \leq p < n, \ \delta \in (0, 1/2)$ and h > 0,

 $|\{i: p+1 \leqslant i \leqslant n \text{ and } \operatorname{dist}(x_i, \operatorname{span}\{x_j: j < i\} \leqslant h)\}| \ge (1-\delta)(n-p).$

Then,

$$\gamma_n(P) \leqslant \left(\frac{2eh}{n-p}\right)^{(1-\delta)(n-p)}$$

Let $P = \operatorname{conv}\{\pm x_1, \ldots, \pm x_n\}$ be a symmetric cross-polytope with the property that, for some $1 \leq p < n, \ \delta \in (0, 1/2)$ and h > 0,

 $|\{i: p+1 \leqslant i \leqslant n \text{ and } \operatorname{dist}(x_i, \operatorname{span}\{x_j: j < i\} \leqslant h)\}| \ge (1-\delta)(n-p).$

Then,

$$\gamma_n(P) \leqslant \left(\frac{2eh}{n-p}\right)^{(1-\delta)(n-p)}$$

Lemma 4

Let $Q = \operatorname{conv}\{\pm x_1, \ldots, \pm x_n\}$ be a symmetric cross-polytope with the property that, for some $1 \ll s \leqslant n$ and for every permutation σ of [n]

$$|\{i: n-s+1 \leqslant i \leqslant n \text{ and } \operatorname{dist}(x_{\sigma(i)}, \operatorname{span}\{x_{\sigma(j)}: j < i\} \leqslant \sqrt{s})\}| \ge \frac{s}{4}$$

Then,

$$\gamma_n(Q) \leqslant 2e^{-cs}.$$

• Parameters to be chosen: m, ϵ , α , δ , τ , s and q.

Finishing the proof of the theorem

- Parameters to be chosen: m, ϵ , α , δ , τ , s and q.
- Initial conditions: $m/\epsilon \leq n^{10}$, $\frac{1}{\log n} \leq \delta < 1$, $n \geq s \geq 4q \geq 4\log^2 n$, $\frac{q^2\alpha}{n} \geq C_1\log n$, $\tau \geq C_2$, and

$$\min\left(\frac{\tau^2\delta q^2\alpha}{n},\frac{\tau^2\delta q}{n}\right) \geqslant C_3\log n.$$

Finishing the proof of the theorem

- Parameters to be chosen: $m, \epsilon, \alpha, \delta, \tau, s$ and q.
- Initial conditions: $m/\epsilon \leq n^{10}$, $\frac{1}{\log n} \leq \delta < 1$, $n \geq s \geq 4q \geq 4\log^2 n$, $\frac{q^2\alpha}{n} \geq C_1\log n$, $\tau \geq C_2$, and

$$\min\left(\frac{\tau^2\delta q^2\alpha}{n},\frac{\tau^2\delta q}{n}\right) \ge C_3\log n.$$

• Recall that we want to have $\mathbb{P}(\omega) < rac{1}{2}$ and

$$\mathbb{P}(\omega) = \mathbb{P}\Big(\bigcup_{|I|=n} \{G(\omega') \in 4\varrho \operatorname{conv}\{\pm \operatorname{col}_i(\Gamma(\omega)\mathcal{F}(A)), i \in I\}\}\Big)$$

$$\leqslant \sum_{p=0}^{n-q-1} \binom{n}{p}^2 \sup_{P} \gamma_n(4\varrho P) + \sum_{p=n-q}^n \binom{n}{p}^2 \sup_{Q} \gamma_n(4\varrho Q),$$

and now we have upper bounds for $\gamma_n(4\varrho P)$ and $\gamma_n(4\varrho Q)$, which however depend on ϱ ; this will give additional restrictions, involving ϱ , so that we will get $\mathbb{P}(\omega) < \frac{1}{2}$.

 $s \ge q \log n$, $\varrho \sqrt{s} \le n$, $n^2 \varrho \tau \sqrt{\alpha} \le q^{5/2}$.

 $s \ge q \log n, \qquad \varrho \sqrt{s} \leqslant n, \qquad n^2 \varrho \tau \sqrt{\alpha} \leqslant q^{5/2}.$

• We choose $\tau \simeq \log n \cdot \max\{\sqrt{n/q}, \sqrt{n/(q^2\alpha)}\}$ and

$$\varrho = \min\left(\frac{n}{\sqrt{s}}, \frac{1}{\log n} \frac{q^2}{n^{5/2} \sqrt{\alpha}}, \frac{1}{\log n} \frac{q^{7/2}}{n^{5/2}}\right).$$

 $s \ge q \log n$, $\varrho \sqrt{s} \le n$, $n^2 \varrho \tau \sqrt{\alpha} \le q^{5/2}$.

• We choose $\tau \simeq \log n \cdot \max\{\sqrt{n/q}, \sqrt{n/(q^2\alpha)}\}$ and

$$\varrho = \min\left(\frac{n}{\sqrt{s}}, \frac{1}{\log n} \frac{q^2}{n^{5/2} \sqrt{\alpha}}, \frac{1}{\log n} \frac{q^{7/2}}{n^{5/2}}\right).$$

• Finally, we choose $\alpha = \frac{n \log n}{q^2}$ and $s, q \simeq n^{8/9}$ up to some power of log n.

- $s \ge q \log n$, $\varrho \sqrt{s} \le n$, $n^2 \varrho \tau \sqrt{\alpha} \le q^{5/2}$.
- We choose $\tau \simeq \log n \cdot \max\{\sqrt{n/q}, \sqrt{n/(q^2\alpha)}\}$ and

$$\varrho = \min\left(\frac{n}{\sqrt{s}}, \frac{1}{\log n} \frac{q^2}{n^{5/2}\sqrt{\alpha}}, \frac{1}{\log n} \frac{q^{7/2}}{n^{5/2}}\right).$$

- Finally, we choose $\alpha = \frac{n \log n}{q^2}$ and $s, q \simeq n^{8/9}$ up to some power of log n.
- This choice gives $\varrho \ge n^{5/9} \log^{-b} n$.