Banach-Mazur distance to the cube

Apostolos Giannopoulos

National and Kapodistrian University of Athens

September 7, 2018

Banach-Mazur distance to the cube

- We shall discuss the radius of \mathcal{B}_{n} with respect to ℓ_{∞}^{n}, defined by

$$
\mathcal{R}_{\infty}^{n}=\max \left\{d\left(X, \ell_{\infty}^{n}\right): X \in \mathcal{B}_{n}\right\} .
$$

Banach-Mazur distance to the cube

- We shall discuss the radius of \mathcal{B}_{n} with respect to ℓ_{∞}^{n}, defined by

$$
\mathcal{R}_{\infty}^{n}=\max \left\{d\left(X, \ell_{\infty}^{n}\right): X \in \mathcal{B}_{n}\right\} .
$$

Pełczynski

What is the asymptotic behavior of \mathcal{R}_{∞}^{n} as n tends to infinity?

Banach-Mazur distance to the cube

- We shall discuss the radius of \mathcal{B}_{n} with respect to ℓ_{∞}^{n}, defined by

$$
\mathcal{R}_{\infty}^{n}=\max \left\{d\left(X, \ell_{\infty}^{n}\right): X \in \mathcal{B}_{n}\right\}
$$

Pełczynski

What is the asymptotic behavior of \mathcal{R}_{∞}^{n} as n tends to infinity?

- One clearly has $\mathcal{R}_{\infty}^{n} \leqslant \operatorname{diam}\left(\mathcal{B}_{n}\right) \leqslant n$ and the fact that $d\left(\ell_{\infty}^{n}, \ell_{2}^{n}\right)=\sqrt{n}$ shows that

$$
\sqrt{n} \leqslant \mathcal{R}_{\infty}^{n} \leqslant n
$$

Banach-Mazur distance to the cube

- We shall discuss the radius of \mathcal{B}_{n} with respect to ℓ_{∞}^{n}, defined by

$$
\mathcal{R}_{\infty}^{n}=\max \left\{d\left(X, \ell_{\infty}^{n}\right): X \in \mathcal{B}_{n}\right\}
$$

Pełczynski

What is the asymptotic behavior of \mathcal{R}_{∞}^{n} as n tends to infinity?

- One clearly has $\mathcal{R}_{\infty}^{n} \leqslant \operatorname{diam}\left(\mathcal{B}_{n}\right) \leqslant n$ and the fact that $d\left(\ell_{\infty}^{n}, \ell_{2}^{n}\right)=\sqrt{n}$ shows that

$$
\sqrt{n} \leqslant \mathcal{R}_{\infty}^{n} \leqslant n
$$

- Lower bounds: Szarek, using random spaces of Gluskin type, proved that

$$
\mathcal{R}_{\infty}^{n} \geqslant c \sqrt{n} \log n
$$

Szarek's theorem

- It is more convenient to work with the dual quantity

$$
\mathcal{R}_{1}^{n}=\max \left\{d\left(X, \ell_{1}^{n}\right): X \in \mathcal{B}_{n}\right\}
$$

Since $d\left(X^{*}, Y^{*}\right)=d(X, Y)$ we see that $\mathcal{R}_{\infty}^{n}=\mathcal{R}_{1}^{n}$.

Szarek's theorem

- It is more convenient to work with the dual quantity

$$
\mathcal{R}_{1}^{n}=\max \left\{d\left(X, \ell_{1}^{n}\right): X \in \mathcal{B}_{n}\right\}
$$

Since $d\left(X^{*}, Y^{*}\right)=d(X, Y)$ we see that $\mathcal{R}_{\infty}^{n}=\mathcal{R}_{1}^{n}$.

- Let G_{1}, \ldots, G_{m} be independent standard Gaussian vectors in \mathbb{R}^{n} :

$$
\mathbb{P}\left(G_{i} \in B\right)=\gamma_{n}(B)=\frac{1}{(2 \pi)^{n / 2}} \int_{B} e^{-|x|^{2} / 2} d x
$$

Szarek's theorem

- It is more convenient to work with the dual quantity

$$
\mathcal{R}_{1}^{n}=\max \left\{d\left(X, \ell_{1}^{n}\right): X \in \mathcal{B}_{n}\right\}
$$

Since $d\left(X^{*}, Y^{*}\right)=d(X, Y)$ we see that $\mathcal{R}_{\infty}^{n}=\mathcal{R}_{1}^{n}$.

- Let G_{1}, \ldots, G_{m} be independent standard Gaussian vectors in \mathbb{R}^{n} :

$$
\mathbb{P}\left(G_{i} \in B\right)=\gamma_{n}(B)=\frac{1}{(2 \pi)^{n / 2}} \int_{B} e^{-|x|^{2} / 2} d x
$$

- We define the symmetric random polytope

$$
\mathcal{G}_{m}=\operatorname{conv}\left\{ \pm G_{1}, \ldots, \pm G_{m}\right\}
$$

Szarek's theorem

- It is more convenient to work with the dual quantity

$$
\mathcal{R}_{1}^{n}=\max \left\{d\left(X, \ell_{1}^{n}\right): X \in \mathcal{B}_{n}\right\}
$$

Since $d\left(X^{*}, Y^{*}\right)=d(X, Y)$ we see that $\mathcal{R}_{\infty}^{n}=\mathcal{R}_{1}^{n}$.

- Let G_{1}, \ldots, G_{m} be independent standard Gaussian vectors in \mathbb{R}^{n} :

$$
\mathbb{P}\left(G_{i} \in B\right)=\gamma_{n}(B)=\frac{1}{(2 \pi)^{n / 2}} \int_{B} e^{-|x|^{2} / 2} d x
$$

- We define the symmetric random polytope

$$
\mathcal{G}_{m}=\operatorname{conv}\left\{ \pm G_{1}, \ldots, \pm G_{m}\right\}
$$

Szarek, 1990

Let $\delta>0$ and $m=\left\lfloor n^{1+\delta}\right\rfloor$. With positive probability, $d\left(X_{\mathcal{G}_{m}}, \ell_{1}^{n}\right) \geqslant c(\delta) \sqrt{n} \log n$.

Szarek's theorem

- It is more convenient to work with the dual quantity

$$
\mathcal{R}_{1}^{n}=\max \left\{d\left(X, \ell_{1}^{n}\right): X \in \mathcal{B}_{n}\right\}
$$

Since $d\left(X^{*}, Y^{*}\right)=d(X, Y)$ we see that $\mathcal{R}_{\infty}^{n}=\mathcal{R}_{1}^{n}$.

- Let G_{1}, \ldots, G_{m} be independent standard Gaussian vectors in \mathbb{R}^{n} :

$$
\mathbb{P}\left(G_{i} \in B\right)=\gamma_{n}(B)=\frac{1}{(2 \pi)^{n / 2}} \int_{B} e^{-|x|^{2} / 2} d x
$$

- We define the symmetric random polytope

$$
\mathcal{G}_{m}=\operatorname{conv}\left\{ \pm G_{1}, \ldots, \pm G_{m}\right\}
$$

Szarek, 1990

Let $\delta>0$ and $m=\left\lfloor n^{1+\delta}\right\rfloor$. With positive probability, $d\left(X_{\mathcal{G}_{m}}, \ell_{1}^{n}\right) \geqslant c(\delta) \sqrt{n} \log n$.

- The proof involves a precise distributional inequality on the s-numbers of random Gaussian matrices, which is a quantitative finite version of Wigner's semicircle law: if $G(\omega)$ is an $n \times n$ matrix with independent $N(0,1 / n)$ Gaussian entries, then

$$
\mathbb{P}\left(\omega: c_{1} k / n \leqslant s_{n-k}(G(\omega)) \leqslant c_{2} k / n\right)>1-c_{3} \exp \left(-c_{4} k^{2}\right)
$$

for all $k \leqslant n / 2$, where the c_{i} 's are absolute positive constants.

Lower bound for \mathcal{R}_{∞}^{n}

Tikhomirov, 2018

There exist absolute constants $c, b>0$ such that, for any $n \geqslant 2$,

$$
\mathcal{R}_{1}^{n} \geqslant c n^{5 / 9} \log ^{-b} n .
$$

Lower bound for \mathcal{R}_{∞}^{n}

Tikhomirov, 2018

There exist absolute constants $c, b>0$ such that, for any $n \geqslant 2$,

$$
\mathcal{R}_{1}^{n} \geqslant c n^{5 / 9} \log ^{-b} n .
$$

- The space X with $d\left(X, \ell_{1}^{n}\right) \geqslant c n^{5 / 9} \log ^{-b} n$ is, as in Szarek's theorem, a Gluskin space.

Lower bound for \mathcal{R}_{∞}^{n}

Tikhomirov, 2018

There exist absolute constants $c, b>0$ such that, for any $n \geqslant 2$,

$$
\mathcal{R}_{1}^{n} \geqslant c n^{5 / 9} \log ^{-b} n .
$$

- The space X with $d\left(X, \ell_{1}^{n}\right) \geqslant c n^{5 / 9} \log ^{-b} n$ is, as in Szarek's theorem, a Gluskin space.
- Let G_{1}, \ldots, G_{m} be independent standard Gaussian vectors in \mathbb{R}^{n}. We define the symmetric random polytope

$$
\mathcal{G}_{m}=\operatorname{conv}\left\{ \pm G_{1}, \ldots, \pm G_{m}\right\}
$$

Lower bound for \mathcal{R}_{∞}^{n}

Tikhomirov, 2018

There exist absolute constants $c, b>0$ such that, for any $n \geqslant 2$,

$$
\mathcal{R}_{1}^{n} \geqslant c n^{5 / 9} \log ^{-b} n .
$$

- The space X with $d\left(X, \ell_{1}^{n}\right) \geqslant c n^{5 / 9} \log ^{-b} n$ is, as in Szarek's theorem, a Gluskin space.
- Let G_{1}, \ldots, G_{m} be independent standard Gaussian vectors in \mathbb{R}^{n}. We define the symmetric random polytope

$$
\mathcal{G}_{m}=\operatorname{conv}\left\{ \pm G_{1}, \ldots, \pm G_{m}\right\}
$$

- We also consider the $n \times m$ Gaussian random matrix Γ with columns G_{1}, \ldots, G_{m}.

Lower bound for \mathcal{R}_{∞}^{n}

Tikhomirov, 2018

There exist absolute constants $c, b>0$ such that, for any $n \geqslant 2$,

$$
\mathcal{R}_{1}^{n} \geqslant c n^{5 / 9} \log ^{-b} n .
$$

- The space X with $d\left(X, \ell_{1}^{n}\right) \geqslant c n^{5 / 9} \log ^{-b} n$ is, as in Szarek's theorem, a Gluskin space.
- Let G_{1}, \ldots, G_{m} be independent standard Gaussian vectors in \mathbb{R}^{n}. We define the symmetric random polytope

$$
\mathcal{G}_{m}=\operatorname{conv}\left\{ \pm G_{1}, \ldots, \pm G_{m}\right\}
$$

- We also consider the $n \times m$ Gaussian random matrix Γ with columns G_{1}, \ldots, G_{m}.
- In order to show that $\mathcal{R}_{1}^{n} \geqslant \varrho$ for some $\varrho>1$ it is enough to show that
$\mathbb{P}\left(\right.$ there exists a cross-polytope P such that $\left.\varrho \mathcal{G}_{m} \supseteq \varrho P \supseteq \mathcal{G}_{m}\right)<1$.

Discretization

- Assume that G_{1}, \ldots, G_{m} are defined on the probability space Ω. For a given $\omega \in \Omega$, if a cross-polytope P is contained in $\mathcal{G}_{m}(\omega)$ then, by Carathéodory's theorem, its vertices are convex combinations of at most n of the vectors $\pm G_{i}$, and hence

$$
P=\Gamma(\omega) A\left(B_{1}^{n}\right)
$$

for some $m \times n$ matrix A with the property that the support of every column of A has cardinality at most n and that every column of A has ℓ_{1}^{n}-norm at most 1 .

Discretization

- Assume that G_{1}, \ldots, G_{m} are defined on the probability space Ω. For a given $\omega \in \Omega$, if a cross-polytope P is contained in $\mathcal{G}_{m}(\omega)$ then, by Carathéodory's theorem, its vertices are convex combinations of at most n of the vectors $\pm G_{i}$, and hence

$$
P=\Gamma(\omega) A\left(B_{1}^{n}\right)
$$

for some $m \times n$ matrix A with the property that the support of every column of A has cardinality at most n and that every column of A has ℓ_{1}^{n}-norm at most 1 .

- We consider the class $\mathcal{A}_{m, n}$ of all $m \times n$ matrices that satisfy these conditions:

$$
\left|\operatorname{supp} \operatorname{col}_{i}(A)\right| \leqslant n \quad \text { and } \quad\left\|\operatorname{col}_{i}(A)\right\|_{1} \leqslant 1
$$

Discretization

- Assume that G_{1}, \ldots, G_{m} are defined on the probability space Ω. For a given $\omega \in \Omega$, if a cross-polytope P is contained in $\mathcal{G}_{m}(\omega)$ then, by Carathéodory's theorem, its vertices are convex combinations of at most n of the vectors $\pm G_{i}$, and hence

$$
P=\Gamma(\omega) A\left(B_{1}^{n}\right)
$$

for some $m \times n$ matrix A with the property that the support of every column of A has cardinality at most n and that every column of A has ℓ_{1}^{n}-norm at most 1 .

- We consider the class $\mathcal{A}_{m, n}$ of all $m \times n$ matrices that satisfy these conditions:

$$
\left|\operatorname{supp} \operatorname{col}_{i}(A)\right| \leqslant n \quad \text { and } \quad\left\|\operatorname{col}_{i}(A)\right\|_{1} \leqslant 1
$$

- Then, in order to show that $\mathcal{R}_{1}^{n} \geqslant \varrho$ for some $\varrho>1$ it is enough to show that the event

$$
\mathcal{E}_{1}:=\text { there exists } A \in \mathcal{A}_{m, n} \text { such that } \varrho\left\ulcorner A\left(B_{1}^{n}\right) \supseteq \mathcal{G}_{m}\right.
$$

has probability $\mathbb{P}\left(\mathcal{E}_{1}\right)<1$.

Discretization

- Let \mathcal{N} be the set of all matrices $A=\left(a_{i j}\right)$ in $\mathcal{A}_{m, n}$ with the property that $a_{i j} \in \epsilon \mathbb{Z}$ (for some small $\epsilon>0$ to be determined).

Discretization

- Let \mathcal{N} be the set of all matrices $A=\left(a_{i j}\right)$ in $\mathcal{A}_{m, n}$ with the property that $a_{i j} \in \epsilon \mathbb{Z}$ (for some small $\epsilon>0$ to be determined).
- One can check that for every $A=\left(a_{i j}\right)$ in $\mathcal{A}_{m, n}$ we may find $A^{\prime}=\left(a_{i j}^{\prime}\right)$ in \mathcal{N} such that $\left|a_{i j}-a_{i j}^{\prime}\right| \leqslant \epsilon$ for all i, j.

Discretization

- Let \mathcal{N} be the set of all matrices $A=\left(a_{i j}\right)$ in $\mathcal{A}_{m, n}$ with the property that $a_{i j} \in \epsilon \mathbb{Z}$ (for some small $\epsilon>0$ to be determined).
- One can check that for every $A=\left(a_{i j}\right)$ in $\mathcal{A}_{m, n}$ we may find $A^{\prime}=\left(a_{i j}^{\prime}\right)$ in \mathcal{N} such that $\left|a_{i j}-a_{i j}^{\prime}\right| \leqslant \epsilon$ for all i, j.

Reduction

Assume that $m \leqslant n^{10}$ and $\epsilon \varrho n^{2} \leqslant 1$. If \mathcal{E}_{2} is the event

$$
\mathcal{E}_{2}:=\text { there exists } A \in \mathcal{N} \text { such that } 2 \varrho \Gamma A\left(B_{1}^{n}\right) \supseteq \mathcal{G}_{m},
$$

then

$$
\mathbb{P}\left(\mathcal{E}_{1}\right) \leqslant \mathbb{P}\left(\mathcal{E}_{2}\right)+2^{-n}
$$

Strategy of the proof

- A standard net argument cannot give a large value for ϱ; the cardinality of \mathcal{N} is greater than $2^{n^{2}}$.

Strategy of the proof

- A standard net argument cannot give a large value for ϱ; the cardinality of \mathcal{N} is greater than $2^{n^{2}}$.

Crucial observation

Let $\alpha \in(0,1)$. Every $y \in \mathbb{R}^{n}$ with $\|y\|_{1} \leqslant 1$ can be written as a sum $y=z+w$, where $|\operatorname{supp}(z)| \leqslant 1 / \alpha$ and $\|w\|_{2} \leqslant \sqrt{\alpha}$.

Strategy of the proof

- A standard net argument cannot give a large value for ϱ; the cardinality of \mathcal{N} is greater than $2^{n^{2}}$.

Crucial observation

Let $\alpha \in(0,1)$. Every $y \in \mathbb{R}^{n}$ with $\|y\|_{1} \leqslant 1$ can be written as a sum $y=z+w$, where $|\operatorname{supp}(z)| \leqslant 1 / \alpha$ and $\|w\|_{2} \leqslant \sqrt{\alpha}$.

Proof: Set $z=\left(\mathbf{1}_{\left|y_{k}\right| \geqslant \alpha} y_{k}\right)_{k=1}^{n}$ and $w=\left(\mathbf{1}_{\left|y_{k}\right|<\alpha} y_{k}\right)_{k=1}^{n}$.

Strategy of the proof

- A standard net argument cannot give a large value for ϱ; the cardinality of \mathcal{N} is greater than $2^{n^{2}}$.

Crucial observation

Let $\alpha \in(0,1)$. Every $y \in \mathbb{R}^{n}$ with $\|y\|_{1} \leqslant 1$ can be written as a sum $y=z+w$, where $|\operatorname{supp}(z)| \leqslant 1 / \alpha$ and $\|w\|_{2} \leqslant \sqrt{\alpha}$.

Proof: Set $z=\left(\mathbf{1}_{\left|y_{k}\right| \geqslant \alpha} y_{k}\right)_{k=1}^{n}$ and $w=\left(\mathbf{1}_{\left|y_{k}\right|<\alpha} y_{k}\right)_{k=1}^{n}$.

- Using this observation we shall partition every matrix A from \mathcal{N} into a matrix with "sparse" columns and a matrix of whose columns have small Euclidean norm.

Strategy of the proof

- A standard net argument cannot give a large value for ϱ; the cardinality of \mathcal{N} is greater than $2^{n^{2}}$.

Crucial observation

Let $\alpha \in(0,1)$. Every $y \in \mathbb{R}^{n}$ with $\|y\|_{1} \leqslant 1$ can be written as a sum $y=z+w$, where $|\operatorname{supp}(z)| \leqslant 1 / \alpha$ and $\|w\|_{2} \leqslant \sqrt{\alpha}$.

Proof: Set $z=\left(\mathbf{1}_{\left|y_{k}\right| \geqslant \alpha} y_{k}\right)_{k=1}^{n}$ and $w=\left(\mathbf{1}_{\left|y_{k}\right|<\alpha} y_{k}\right)_{k=1}^{n}$.

- Using this observation we shall partition every matrix A from \mathcal{N} into a matrix with "sparse" columns and a matrix of whose columns have small Euclidean norm.
- This will imply that every point of $\Gamma A\left(B_{1}^{n}\right)$ is a convex combination of random vectors of two types: vectors that are sparse linear combinations of G_{i} 's and vectors whose expected Euclidean norm is small.

Strategy of the proof

- A standard net argument cannot give a large value for ϱ; the cardinality of \mathcal{N} is greater than $2^{n^{2}}$.

Crucial observation

Let $\alpha \in(0,1)$. Every $y \in \mathbb{R}^{n}$ with $\|y\|_{1} \leqslant 1$ can be written as a sum $y=z+w$, where $|\operatorname{supp}(z)| \leqslant 1 / \alpha$ and $\|w\|_{2} \leqslant \sqrt{\alpha}$.

Proof: Set $z=\left(\mathbf{1}_{\left|y_{k}\right| \geqslant \alpha} y_{k}\right)_{k=1}^{n}$ and $w=\left(\mathbf{1}_{\left|y_{k}\right|<\alpha} y_{k}\right)_{k=1}^{n}$.

- Using this observation we shall partition every matrix A from \mathcal{N} into a matrix with "sparse" columns and a matrix of whose columns have small Euclidean norm.
- This will imply that every point of $\Gamma A\left(B_{1}^{n}\right)$ is a convex combination of random vectors of two types: vectors that are sparse linear combinations of G_{i} 's and vectors whose expected Euclidean norm is small.
- The set of the first ones has small cardinality and allows a net argument, the vectors of the second type are easier to handle because they are "short".

Strategy of the proof

- We define $\mathcal{F}_{1}, \mathcal{F}_{2}: \mathcal{N} \rightarrow \mathcal{N}$ as follows. If $A=\left(a_{i j}\right) \in \mathcal{N}$ then $\mathcal{F}_{1}(A)$ is the $m \times n$ matrix with entries $\mathbf{1}_{\left|a_{i j}\right| \geqslant \alpha} a_{i j}$ and $\mathcal{F}_{2}(A)$ is the $m \times n$ matrix with entries $\mathbf{1}_{\left|a_{i j}\right|<\alpha} a_{i j}$.

Strategy of the proof

- We define $\mathcal{F}_{1}, \mathcal{F}_{2}: \mathcal{N} \rightarrow \mathcal{N}$ as follows. If $A=\left(a_{i j}\right) \in \mathcal{N}$ then $\mathcal{F}_{1}(A)$ is the $m \times n$ matrix with entries $\mathbf{1}_{\left|a_{i j}\right| \geqslant \alpha} a_{i j}$ and $\mathcal{F}_{2}(A)$ is the $m \times n$ matrix with entries $\mathbf{1}_{\left|a_{i j}\right|<\alpha} a_{i j}$.
- Then, we consider the $m \times 2 n$ matrix

$$
\mathcal{F}(A):=\left[\mathcal{F}_{1}(A) \mid \mathcal{F}_{2}(A)\right]
$$

Strategy of the proof

- We define $\mathcal{F}_{1}, \mathcal{F}_{2}: \mathcal{N} \rightarrow \mathcal{N}$ as follows. If $A=\left(a_{i j}\right) \in \mathcal{N}$ then $\mathcal{F}_{1}(A)$ is the $m \times n$ matrix with entries $\mathbf{1}_{\left|a_{i j}\right| \geqslant \alpha} a_{i j}$ and $\mathcal{F}_{2}(A)$ is the $m \times n$ matrix with entries $\mathbf{1}_{\left|a_{i j}\right|<\alpha} a_{i j}$.
- Then, we consider the $m \times 2 n$ matrix

$$
\mathcal{F}(A):=\left[\mathcal{F}_{1}(A) \mid \mathcal{F}_{2}(A)\right]
$$

Simple lemma

For any $A \in \mathcal{N}$ we have

$$
A\left(B_{1}^{n}\right) \subset[\mathcal{F}(A)]\left(2 B_{1}^{2 n}\right) .
$$

Strategy of the proof

- We define $\mathcal{F}_{1}, \mathcal{F}_{2}: \mathcal{N} \rightarrow \mathcal{N}$ as follows. If $A=\left(a_{i j}\right) \in \mathcal{N}$ then $\mathcal{F}_{1}(A)$ is the $m \times n$ matrix with entries $\mathbf{1}_{\left|a_{i j}\right| \geqslant \alpha} a_{i j}$ and $\mathcal{F}_{2}(A)$ is the $m \times n$ matrix with entries $\mathbf{1}_{\left|a_{j i}\right|<\alpha} a_{i j}$.
- Then, we consider the $m \times 2 n$ matrix

$$
\mathcal{F}(A):=\left[\mathcal{F}_{1}(A) \mid \mathcal{F}_{2}(A)\right]
$$

Simple lemma

For any $A \in \mathcal{N}$ we have

$$
A\left(B_{1}^{n}\right) \subset[\mathcal{F}(A)]\left(2 B_{1}^{2 n}\right) .
$$

- This is because $A\left(e_{j}\right)=\mathcal{F}(A)\left(e_{j}, e_{j}\right)$ for all $j=1, \ldots, n$.

Strategy of the proof

- We define $\mathcal{F}_{1}, \mathcal{F}_{2}: \mathcal{N} \rightarrow \mathcal{N}$ as follows. If $A=\left(a_{i j}\right) \in \mathcal{N}$ then $\mathcal{F}_{1}(A)$ is the $m \times n$ matrix with entries $\mathbf{1}_{\left|a_{i j}\right| \geqslant \alpha} a_{i j}$ and $\mathcal{F}_{2}(A)$ is the $m \times n$ matrix with entries $\mathbf{1}_{\left|a_{i j}\right|<\alpha} a_{i j}$.
- Then, we consider the $m \times 2 n$ matrix

$$
\mathcal{F}(A):=\left[\mathcal{F}_{1}(A) \mid \mathcal{F}_{2}(A)\right]
$$

Simple lemma

For any $A \in \mathcal{N}$ we have

$$
A\left(B_{1}^{n}\right) \subset[\mathcal{F}(A)]\left(2 B_{1}^{2 n}\right) .
$$

- This is because $A\left(e_{j}\right)=\mathcal{F}(A)\left(e_{j}, e_{j}\right)$ for all $j=1, \ldots, n$.
- Clearly, $\Gamma(\omega) A\left(B_{1}^{n}\right) \subset 2 \Gamma(\omega) \mathcal{F}(A)\left(B_{1}^{2 n}\right)$.

Strategy of the proof

Proposition

Let $\mathcal{E}=\bigcap_{A \in \mathcal{N}} \mathcal{E}_{A}$, where \mathcal{E}_{A} is an event which is measurable with respect to the σ-algebra generated by the vectors G_{j} with $j \in \theta(A)=\bigcup_{i=1}^{n} \operatorname{supp} \operatorname{col}_{i}(A)$.
If G is a standard Gaussian vector which is independent from Γ then

$$
\mathbb{P}\left(\mathcal{E}_{2} \cap \mathcal{E}\right) \leqslant|\mathcal{N}| \cdot \max _{A \in \mathcal{N}} \sup _{\omega \in \mathcal{E}_{A}}[\mathbb{P}(\omega)]^{m-n^{2}}
$$

where

$$
\begin{aligned}
& \mathbb{P}(\omega):=\mathbb{P}\left(\left\{\omega^{\prime}: \text { there exists } I \subset[2 n] \text { with }|I|=n\right.\right. \text { such that } \\
& \left.G\left(\omega^{\prime}\right) \in 4 \varrho \operatorname{conv}\left\{ \pm \operatorname{col}_{i}(\Gamma(\omega) \mathcal{F}(A)), i \in I\right\}\right) .
\end{aligned}
$$

Proof of the Proposition

- Let $\omega \in \mathcal{E}_{2} \cap \mathcal{E}$. Since $\omega \in \mathcal{E}_{2}$ there exists $A=A(\omega) \in \mathcal{N}$ such that

$$
G_{j}(\omega) \in 2 \varrho \Gamma(\omega) A\left(B_{1}^{n}\right) \subseteq 4 \varrho \Gamma(\omega) \mathcal{F}(A)\left(B_{1}^{2 n}\right), \quad 1 \leqslant j \leqslant m .
$$

Proof of the Proposition

- Let $\omega \in \mathcal{E}_{2} \cap \mathcal{E}$. Since $\omega \in \mathcal{E}_{2}$ there exists $A=A(\omega) \in \mathcal{N}$ such that

$$
G_{j}(\omega) \in 2 \varrho \Gamma(\omega) A\left(B_{1}^{n}\right) \subseteq 4 \varrho \Gamma(\omega) \mathcal{F}(A)\left(B_{1}^{2 n}\right), \quad 1 \leqslant j \leqslant m .
$$

- By Carathéodory's theorem, for every $j=1, \ldots, m$ there exists $I=I(\omega, j) \subset[2 n]$ with $|I|=n$ such that

$$
G_{j}(\omega) \in 4 \varrho \operatorname{conv}\left\{ \pm \operatorname{col}_{i}(\Gamma(\omega) \mathcal{F}(A)), i \in I\right\} .
$$

Proof of the Proposition

- Let $\omega \in \mathcal{E}_{2} \cap \mathcal{E}$. Since $\omega \in \mathcal{E}_{2}$ there exists $A=A(\omega) \in \mathcal{N}$ such that

$$
G_{j}(\omega) \in 2 \varrho \Gamma(\omega) A\left(B_{1}^{n}\right) \subseteq 4 \varrho \Gamma(\omega) \mathcal{F}(A)\left(B_{1}^{2 n}\right), \quad 1 \leqslant j \leqslant m
$$

- By Carathéodory's theorem, for every $j=1, \ldots, m$ there exists $I=I(\omega, j) \subset[2 n]$ with $|I|=n$ such that

$$
G_{j}(\omega) \in 4 \varrho \operatorname{conv}\left\{ \pm \operatorname{col}_{i}(\Gamma(\omega) \mathcal{F}(A)), i \in I\right\}
$$

- Considering only $j \notin \theta(A)$ we have

$$
\mathcal{E}_{2} \cap \mathcal{E} \leqslant \bigcup_{A \in \mathcal{N}} \bigcap_{j \notin \theta(A)} \bigcup_{|\Lambda|=n}\left(\mathcal{E} \cap\left\{G_{j}(\omega) \in 4 \varrho \operatorname{conv}\left\{ \pm \operatorname{col}_{i}(\Gamma(\omega) \mathcal{F}(A)), i \in I\right\}\right)\right.
$$

Proof of the Proposition

- Let $\omega \in \mathcal{E}_{2} \cap \mathcal{E}$. Since $\omega \in \mathcal{E}_{2}$ there exists $A=A(\omega) \in \mathcal{N}$ such that

$$
G_{j}(\omega) \in 2 \varrho \Gamma(\omega) A\left(B_{1}^{n}\right) \subseteq 4 \varrho \Gamma(\omega) \mathcal{F}(A)\left(B_{1}^{2 n}\right), \quad 1 \leqslant j \leqslant m
$$

- By Carathéodory's theorem, for every $j=1, \ldots, m$ there exists $I=I(\omega, j) \subset[2 n]$ with $|I|=n$ such that

$$
G_{j}(\omega) \in 4 \varrho \operatorname{conv}\left\{ \pm \operatorname{col}_{i}(\Gamma(\omega) \mathcal{F}(A)), i \in I\right\}
$$

- Considering only $j \notin \theta(A)$ we have

$$
\mathcal{E}_{2} \cap \mathcal{E} \leqslant \bigcup_{A \in \mathcal{N}} \bigcap_{j \notin \theta(A)} \bigcup_{|\Lambda|=n}\left(\mathcal{E} \cap\left\{G_{j}(\omega) \in 4 \varrho \operatorname{conv}\left\{ \pm \operatorname{col}_{i}(\Gamma(\omega) \mathcal{F}(A)), i \in I\right\}\right)\right.
$$

- Therefore,

$$
\begin{aligned}
& \mathbb{P}\left(\mathcal{E}_{2} \cap \mathcal{E}\right) \\
& \leqslant|\mathcal{N}| \cdot \max _{A \in \mathcal{N}} \mathbb{P}\left(\bigcap _ { j \notin \theta (A) } \bigcup _ { | I | = n } \left(\mathcal{E}_{A} \cap\left\{G_{j}(\omega) \in 4 \varrho \operatorname{conv}\left\{ \pm \operatorname{col}_{i}(\Gamma(\omega) \mathcal{F}(A)), i \in I\right\}\right)\right.\right. \\
& \leqslant|\mathcal{N}| \cdot \max _{A \in \mathcal{N}}\left[\sup _{\omega \in \mathcal{E}_{A}} \mathbb{P}\left(\bigcup_{|I|=n}\left\{G\left(\omega^{\prime}\right) \in 4 \varrho \operatorname{conv}\left\{ \pm \operatorname{col}_{i}(\Gamma(\omega) \mathcal{F}(A)), i \in I\right\}\right)\right]^{m-|\theta(A)|} .\right.
\end{aligned}
$$

Strategy of the proof

- We shall define events \mathcal{E}_{A} measurable with respect to the σ-algebra generated by the vectors G_{j} with $j \in \theta(A)$, so that $\mathcal{E}=\bigcap_{A \in \mathcal{N}} \mathcal{E}_{A}$ satisfies

$$
\mathbb{P}(\mathcal{E}) \geqslant 1-\frac{2}{n}
$$

Strategy of the proof

- We shall define events \mathcal{E}_{A} measurable with respect to the σ-algebra generated by the vectors G_{j} with $j \in \theta(A)$, so that $\mathcal{E}=\bigcap_{A \in \mathcal{N}} \mathcal{E}_{A}$ satisfies

$$
\mathbb{P}(\mathcal{E}) \geqslant 1-\frac{2}{n}
$$

- On the other hand, we will have

$$
\sup _{\omega \in \mathcal{E}_{A}} \mathbb{P}(\omega)=\sup _{\omega \in \mathcal{E}_{A}} \mathbb{P}\left(\bigcup_{|\Lambda|=n}\left\{G\left(\omega^{\prime}\right) \in 4 \varrho \operatorname{conv}\left\{ \pm \operatorname{col}_{i}(\Gamma(\omega) \mathcal{F}(A)), i \in I\right\}\right\}\right)<\frac{1}{2}
$$

Strategy of the proof

- We shall define events \mathcal{E}_{A} measurable with respect to the σ-algebra generated by the vectors G_{j} with $j \in \theta(A)$, so that $\mathcal{E}=\bigcap_{A \in \mathcal{N}} \mathcal{E}_{A}$ satisfies

$$
\mathbb{P}(\mathcal{E}) \geqslant 1-\frac{2}{n}
$$

- On the other hand, we will have

$$
\sup _{\omega \in \mathcal{E}_{A}} \mathbb{P}(\omega)=\sup _{\omega \in \mathcal{E}_{A}} \mathbb{P}\left(\bigcup_{|I|=n}\left\{G\left(\omega^{\prime}\right) \in 4 \varrho \operatorname{conv}\left\{ \pm \operatorname{col}_{i}(\Gamma(\omega) \mathcal{F}(A)), i \in I\right\}\right\}\right)<\frac{1}{2}
$$

- By the Proposition,

$$
\mathbb{P}\left(\mathcal{E}_{2} \cap \mathcal{E}\right) \leqslant|\mathcal{N}| \cdot\left(\frac{1}{2}\right)^{m-n^{2}}
$$

Strategy of the proof

- We shall define events \mathcal{E}_{A} measurable with respect to the σ-algebra generated by the vectors G_{j} with $j \in \theta(A)$, so that $\mathcal{E}=\bigcap_{A \in \mathcal{N}} \mathcal{E}_{A}$ satisfies

$$
\mathbb{P}(\mathcal{E}) \geqslant 1-\frac{2}{n}
$$

- On the other hand, we will have

$$
\sup _{\omega \in \mathcal{E}_{A}} \mathbb{P}(\omega)=\sup _{\omega \in \mathcal{E}_{A}} \mathbb{P}\left(\bigcup_{|I|=n}\left\{G\left(\omega^{\prime}\right) \in 4 \varrho \operatorname{conv}\left\{ \pm \operatorname{col}_{i}(\Gamma(\omega) \mathcal{F}(A)), i \in I\right\}\right\}\right)<\frac{1}{2}
$$

- By the Proposition,

$$
\mathbb{P}\left(\mathcal{E}_{2} \cap \mathcal{E}\right) \leqslant|\mathcal{N}| \cdot\left(\frac{1}{2}\right)^{m-n^{2}}
$$

- If m is chosen large (e.g. $\left.m=n^{3}\right)$ then $\mathbb{P}\left(\mathcal{E}_{2} \cap \mathcal{E}\right)$ will be very small, and hence

$$
\mathbb{P}\left(\mathcal{E}_{2}\right) \leqslant \mathbb{P}\left(\mathcal{E}_{2} \cap \mathcal{E}\right)+\mathbb{P}(\Omega \backslash \mathcal{E}) \leqslant \mathbb{P}\left(\mathcal{E}_{2} \cap \mathcal{E}\right)+\frac{2}{n}
$$

will be also small.

The event \mathcal{E}_{A}

- Parameters to be chosen:

The event \mathcal{E}_{A}

- Parameters to be chosen: $m, \epsilon, \alpha, \delta, \tau, s$ and q.

The event \mathcal{E}_{A}

- Parameters to be chosen: $m, \epsilon, \alpha, \delta, \tau, s$ and q.
- Conditions: $m / \epsilon \leqslant n^{10}$,

The event \mathcal{E}_{A}

- Parameters to be chosen: $m, \epsilon, \alpha, \delta, \tau, s$ and q.
- Conditions: $m / \epsilon \leqslant n^{10}, \frac{1}{\log n} \leqslant \delta<1$,

The event \mathcal{E}_{A}

- Parameters to be chosen: $m, \epsilon, \alpha, \delta, \tau, s$ and q.
- Conditions: $m / \epsilon \leqslant n^{10}, \frac{1}{\log n} \leqslant \delta<1, n \geqslant s \geqslant 4 q \geqslant 4 \log ^{2} n$,

The event \mathcal{E}_{A}

- Parameters to be chosen: $m, \epsilon, \alpha, \delta, \tau, s$ and q.
- Conditions: $m / \epsilon \leqslant n^{10}, \frac{1}{\log n} \leqslant \delta<1, n \geqslant s \geqslant 4 q \geqslant 4 \log ^{2} n, \frac{q^{2} \alpha}{n} \geqslant C_{1} \log n$,

The event \mathcal{E}_{A}

- Parameters to be chosen: $m, \epsilon, \alpha, \delta, \tau, s$ and q.
- Conditions: $m / \epsilon \leqslant n^{10}, \frac{1}{\log n} \leqslant \delta<1, n \geqslant s \geqslant 4 q \geqslant 4 \log ^{2} n, \frac{q^{2} \alpha}{n} \geqslant C_{1} \log n, \tau \geqslant C_{2}$,

The event \mathcal{E}_{A}

- Parameters to be chosen: $m, \epsilon, \alpha, \delta, \tau, s$ and q.
- Conditions: $m / \epsilon \leqslant n^{10}, \frac{1}{\log n} \leqslant \delta<1, n \geqslant s \geqslant 4 q \geqslant 4 \log ^{2} n, \frac{q^{2} \alpha}{n} \geqslant C_{1} \log n, \tau \geqslant C_{2}$, and

$$
\min \left(\frac{\tau^{2} \delta q^{2} \alpha}{n}, \frac{\tau^{2} \delta q}{n}\right) \geqslant C_{3} \log n
$$

The event \mathcal{E}_{A}

- Parameters to be chosen: $m, \epsilon, \alpha, \delta, \tau, s$ and q.
- Conditions: $m / \epsilon \leqslant n^{10}, \frac{1}{\log n} \leqslant \delta<1, n \geqslant s \geqslant 4 q \geqslant 4 \log ^{2} n, \frac{q^{2} \alpha}{n} \geqslant C_{1} \log n, \tau \geqslant C_{2}$, and

$$
\min \left(\frac{\tau^{2} \delta q^{2} \alpha}{n}, \frac{\tau^{2} \delta q}{n}\right) \geqslant C_{3} \log n
$$

- We have $\omega \in \mathcal{E}_{A}$ if:
(1) For every $I \subset[2 n]$ with $|I|=n$ the vectors $\operatorname{col}_{i}(\Gamma(\omega) \mathcal{F}(A)), i \in I$, are linearly independent.

The event \mathcal{E}_{A}

- Parameters to be chosen: $m, \epsilon, \alpha, \delta, \tau, s$ and q.
- Conditions: $m / \epsilon \leqslant n^{10}, \frac{1}{\log n} \leqslant \delta<1, n \geqslant s \geqslant 4 q \geqslant 4 \log ^{2} n, \frac{q^{2} \alpha}{n} \geqslant C_{1} \log n, \tau \geqslant C_{2}$, and

$$
\min \left(\frac{\tau^{2} \delta q^{2} \alpha}{n}, \frac{\tau^{2} \delta q}{n}\right) \geqslant C_{3} \log n
$$

- We have $\omega \in \mathcal{E}_{A}$ if:
(1) For every $I \subset[2 n]$ with $|I|=n$ the vectors $\operatorname{col}_{i}(\Gamma(\omega) \mathcal{F}(A)), i \in I$, are linearly independent.
(2) For every $I \subset[2 n]$ with $|I|=n$ and $|I \cap[n]| \geqslant n-q$ we have that if we write x_{1}, \ldots, x_{n} for the vectors $\operatorname{col}_{i}(\Gamma(\omega) \mathcal{F}(A))$ in any order, then

$$
\mid\left\{i: n-s+1 \leqslant i \leqslant n \text { and } \operatorname{dist}\left(x_{i}, \operatorname{span}\left\{x_{j}: j<i\right\}\right) \leqslant \sqrt{s}\right\} \left\lvert\, \geqslant \frac{s}{4}\right.
$$

The event \mathcal{E}_{A}

- Parameters to be chosen: $m, \epsilon, \alpha, \delta, \tau, s$ and q.
- Conditions: $m / \epsilon \leqslant n^{10}, \frac{1}{\log n} \leqslant \delta<1, n \geqslant s \geqslant 4 q \geqslant 4 \log ^{2} n, \frac{q^{2} \alpha}{n} \geqslant C_{1} \log n, \tau \geqslant C_{2}$, and

$$
\min \left(\frac{\tau^{2} \delta q^{2} \alpha}{n}, \frac{\tau^{2} \delta q}{n}\right) \geqslant C_{3} \log n
$$

- We have $\omega \in \mathcal{E}_{A}$ if:
(1) For every $I \subset[2 n]$ with $|I|=n$ the vectors $\operatorname{col}_{i}(\Gamma(\omega) \mathcal{F}(A)), i \in I$, are linearly independent.
(2) For every $I \subset[2 n]$ with $|I|=n$ and $|I \cap[n]| \geqslant n-q$ we have that if we write x_{1}, \ldots, x_{n} for the vectors $\operatorname{col}_{i}(\Gamma(\omega) \mathcal{F}(A))$ in any order, then

$$
\mid\left\{i: n-s+1 \leqslant i \leqslant n \text { and } \operatorname{dist}\left(x_{i}, \operatorname{span}\left\{x_{j}: j<i\right\}\right) \leqslant \sqrt{s}\right\} \left\lvert\, \geqslant \frac{s}{4} .\right.
$$

(3) For every $I \subset[2 n]$ with $|I|=n$ and $|I \cap[n]|<n-q$ we have that

$$
\begin{aligned}
& \left|\left\{i \in I \backslash[n]: \operatorname{dist}\left(\operatorname{col}_{i}(\Gamma(\omega) \mathcal{F}(A)), \operatorname{span}\left\{\operatorname{col}_{j}(\Gamma(\omega) \mathcal{F}(A)): j<i\right\}\right) \leqslant \tau \sqrt{\alpha|I \backslash[n]|}\right\}\right| \\
& \geqslant(1-\delta)|I \backslash[n]|
\end{aligned}
$$

An auxiliary result

The proof of the inequality $\mathbb{P}\left(\bigcap_{A \in \mathcal{N}} \mathcal{E}_{A}\right) \geqslant 1-\frac{2}{n}$ is based on the next proposition:

Distances to linear spans

Assume that $n / 2 \leqslant s \leqslant n, 1 \leqslant k \leqslant s / 2, \tau \geqslant C_{1}$ and $\frac{1}{k}<\delta \leqslant 1$.
Let B be an $m \times s$ matrix, of rank s, with the property that each column of B has
Euclidean norm at most 1.
Define $H_{i}=\Gamma\left(\operatorname{col}_{i}(B)\right), 1 \leqslant i \leqslant s$.
For any permutation σ of $[s]$, let \mathcal{E}_{σ} be the event that

$$
\mid\left\{i: s-k+1 \leqslant i \leqslant s: \operatorname{dist}\left(H_{\sigma(i)}, \operatorname{span}\left\{H_{\sigma(j)}: j<i\right\} \leqslant \tau \sqrt{n-s+k} \mid \geqslant(1-\delta) k\right.\right.
$$

Then, $\mathbb{P}\left(\mathcal{E}_{\sigma}\right) \geqslant 1-e^{-c_{2} \tau^{2} \delta(n-s+k) k}$ and

$$
\mathbb{P}\left(\bigcap_{\sigma} \mathcal{E}_{\sigma}\right) \geqslant 1-s^{k} e^{-c_{2} \tau^{2} \delta(n-s+k) k}
$$

Starting the proof of the theorem

- It is easy to check that $|\mathcal{N}| \leqslant e^{C n^{2} \log n}$.

Starting the proof of the theorem

- It is easy to check that $|\mathcal{N}| \leqslant e^{C n^{2} \log n}$.
- Assume that we remember the definition of \mathcal{E}_{A}.

Starting the proof of the theorem

- It is easy to check that $|\mathcal{N}| \leqslant e^{C n^{2} \log n}$.
- Assume that we remember the definition of \mathcal{E}_{A}.
- For every $p=0,1, \ldots, n$ there are $\binom{n}{p}^{2}$ ways to choose $I \subset[2 n]$ with $|I|=n$ and $|I \cap[n]|=p$.

Starting the proof of the theorem

- It is easy to check that $|\mathcal{N}| \leqslant e^{C n^{2} \log n}$.
- Assume that we remember the definition of \mathcal{E}_{A}.
- For every $p=0,1, \ldots, n$ there are $\binom{n}{p}^{2}$ ways to choose $I \subset[2 n]$ with $|I|=n$ and $|I \cap[n]|=p$.
- If $\omega \in \mathcal{E}_{A}$ then we have

$$
\begin{aligned}
\mathbb{P}(\omega) & =\mathbb{P}\left(\bigcup_{|I|=n}\left\{G\left(\omega^{\prime}\right) \in 4 \varrho \operatorname{conv}\left\{ \pm \operatorname{col}_{i}(\Gamma(\omega) \mathcal{F}(A)), i \in I\right\}\right\}\right) \\
& \leqslant \sum_{p=0}^{n-q-1}\binom{n}{p}^{2} \sup _{P} \gamma_{n}(4 \varrho P)+\sum_{p=n-q}^{n}\binom{n}{p}^{2} \sup _{Q} \gamma_{n}(4 \varrho Q),
\end{aligned}
$$

where $P=\operatorname{conv}\left\{ \pm x_{1}, \ldots, \pm x_{n}\right\}$ with the property that

$$
\mid\left\{i: p+1 \leqslant i \leqslant n \text { and } \operatorname{dist}\left(x_{i}, \operatorname{span}\left\{x_{j}: j<i\right\} \leqslant \tau \sqrt{\alpha(n-p)}\right)\right\} \mid \geqslant(1-\delta)(n-p)
$$

and $Q=\operatorname{conv}\left\{ \pm x_{1}, \ldots, \pm x_{n}\right\}$ with the property that for every permutation σ of $[n]$

$$
\mid\left\{i: n-s+1 \leqslant i \leqslant n \text { and } \operatorname{dist}\left(x_{\sigma(i)}, \operatorname{span}\left\{x_{\sigma(j)}: j<i\right\} \leqslant \sqrt{s}\right)\right\} \left\lvert\, \geqslant \frac{s}{4}\right.
$$

Gaussian measure of cross-polytopes

The last thing that one has to estimate is the Gaussian measure of cross-polytopes of "type P " and "type Q ". The starting point is the next lemma.

Lemma 1

Let $P=\operatorname{conv}\left\{ \pm x_{1}, \ldots, \pm x_{n}\right\}$ be a cross-polytope and set

$$
d_{i}=\operatorname{dist}\left(x_{i}, \operatorname{span}\left\{x_{j}: j<i\right\}\right), \quad 2 \leqslant i \leqslant n .
$$

Let $1 \leqslant r \leqslant n$ and consider the cross-polytope $P^{\prime}=\operatorname{conv}\left\{ \pm y_{1}, \ldots, \pm y_{n}\right\}$, where $y_{i}=x_{i}$ if $1 \leqslant i \leqslant r$ and y_{r+1}, \ldots, y_{n} are mutually orthogonal vectors with $\left|y_{i}\right|=d_{i}$, which are also orthogonal to $\operatorname{span}\left\{x_{i}: i \leqslant r\right\}$. Then,

$$
\gamma_{n}(P) \leqslant \gamma_{n}\left(P^{\prime}\right)
$$

Gaussian measure of cross-polytopes

Lemma 2

Let $P=\operatorname{conv}\left\{ \pm x_{1}, \ldots, \pm x_{n}\right\}$ be a cross-polytope such that, for some $1 \leqslant r<n$ and $h>0$,

$$
\operatorname{dist}\left(x_{i}, \operatorname{span}\left\{x_{j}: j<i\right\}\right) \leqslant h, \quad i=r+1, \ldots, n .
$$

Then, $\gamma_{n}(P) \leqslant\left(\frac{e h}{n-r}\right)^{n-r}$.

Gaussian measure of cross-polytopes

Lemma 2

Let $P=\operatorname{conv}\left\{ \pm x_{1}, \ldots, \pm x_{n}\right\}$ be a cross-polytope such that, for some $1 \leqslant r<n$ and $h>0$,

$$
\operatorname{dist}\left(x_{i}, \operatorname{span}\left\{x_{j}: j<i\right\}\right) \leqslant h, \quad i=r+1, \ldots, n .
$$

Then, $\gamma_{n}(P) \leqslant\left(\frac{e h}{n-r}\right)^{n-r}$.

- Proof. By Lemma 1 we may assume that $\operatorname{span}\left\{x_{1}, \ldots, x_{r}\right\}=\operatorname{span}\left\{e_{1}, \ldots, e_{r}\right\}$ and $x_{i}=h e_{i}$ for all $i>r$.

Gaussian measure of cross-polytopes

Lemma 2

Let $P=\operatorname{conv}\left\{ \pm x_{1}, \ldots, \pm x_{n}\right\}$ be a cross-polytope such that, for some $1 \leqslant r<n$ and $h>0$,

$$
\operatorname{dist}\left(x_{i}, \operatorname{span}\left\{x_{j}: j<i\right\}\right) \leqslant h, \quad i=r+1, \ldots, n .
$$

Then, $\gamma_{n}(P) \leqslant\left(\frac{e h}{n-r}\right)^{n-r}$.

- Proof. By Lemma 1 we may assume that $\operatorname{span}\left\{x_{1}, \ldots, x_{r}\right\}=\operatorname{span}\left\{e_{1}, \ldots, e_{r}\right\}$ and $x_{i}=h e_{i}$ for all $i>r$.
- If $G=\left(g_{1}, \ldots, g_{n}\right)$ is a Gaussian vector, then $G \in P$ implies that

$$
\sum_{i=r+1}^{n}\left|g_{i}\right| \leqslant h
$$

Gaussian measure of cross-polytopes

Lemma 2

Let $P=\operatorname{conv}\left\{ \pm x_{1}, \ldots, \pm x_{n}\right\}$ be a cross-polytope such that, for some $1 \leqslant r<n$ and $h>0$,

$$
\operatorname{dist}\left(x_{i}, \operatorname{span}\left\{x_{j}: j<i\right\}\right) \leqslant h, \quad i=r+1, \ldots, n .
$$

Then, $\gamma_{n}(P) \leqslant\left(\frac{e h}{n-r}\right)^{n-r}$.

- Proof. By Lemma 1 we may assume that $\operatorname{span}\left\{x_{1}, \ldots, x_{r}\right\}=\operatorname{span}\left\{e_{1}, \ldots, e_{r}\right\}$ and $x_{i}=h e_{i}$ for all $i>r$.
- If $G=\left(g_{1}, \ldots, g_{n}\right)$ is a Gaussian vector, then $G \in P$ implies that

$$
\sum_{i=r+1}^{n}\left|g_{i}\right| \leqslant h
$$

- Therefore,

$$
\gamma_{n}(P)=\mathbb{P}(G \in P) \leqslant \frac{1}{(2 \pi)^{\frac{n-r}{2}}} \frac{(2 h)^{n-r}}{(n-r)!} \leqslant\left(\frac{e h}{n-r}\right)^{n-r}
$$

Gaussian measure of cross-polytopes

Lemma 3

Let $P=\operatorname{conv}\left\{ \pm x_{1}, \ldots, \pm x_{n}\right\}$ be a symmetric cross-polytope with the property that, for some $1 \leqslant p<n, \delta \in(0,1 / 2)$ and $h>0$,

$$
\mid\left\{i: p+1 \leqslant i \leqslant n \text { and } \operatorname{dist}\left(x_{i}, \operatorname{span}\left\{x_{j}: j<i\right\} \leqslant h\right)\right\} \mid \geqslant(1-\delta)(n-p)
$$

Then,

$$
\gamma_{n}(P) \leqslant\left(\frac{2 e h}{n-p}\right)^{(1-\delta)(n-p)}
$$

Gaussian measure of cross-polytopes

Lemma 3

Let $P=\operatorname{conv}\left\{ \pm x_{1}, \ldots, \pm x_{n}\right\}$ be a symmetric cross-polytope with the property that, for some $1 \leqslant p<n, \delta \in(0,1 / 2)$ and $h>0$,

$$
\mid\left\{i: p+1 \leqslant i \leqslant n \text { and } \operatorname{dist}\left(x_{i}, \operatorname{span}\left\{x_{j}: j<i\right\} \leqslant h\right)\right\} \mid \geqslant(1-\delta)(n-p)
$$

Then,

$$
\gamma_{n}(P) \leqslant\left(\frac{2 e h}{n-p}\right)^{(1-\delta)(n-p)}
$$

Lemma 4

Let $Q=\operatorname{conv}\left\{ \pm x_{1}, \ldots, \pm x_{n}\right\}$ be a symmetric cross-polytope with the property that, for some $1 \ll s \leqslant n$ and for every permutation σ of [n]

$$
\mid\left\{i: n-s+1 \leqslant i \leqslant n \text { and } \operatorname{dist}\left(x_{\sigma(i)}, \operatorname{span}\left\{x_{\sigma(j)}: j<i\right\} \leqslant \sqrt{s}\right)\right\} \left\lvert\, \geqslant \frac{s}{4}\right.
$$

Then,

$$
\gamma_{n}(Q) \leqslant 2 e^{-c s}
$$

Finishing the proof of the theorem

- Parameters to be chosen: $m, \epsilon, \alpha, \delta, \tau, s$ and q.

Finishing the proof of the theorem

- Parameters to be chosen: $m, \epsilon, \alpha, \delta, \tau, s$ and q.
- Initial conditions: $m / \epsilon \leqslant n^{10}, \frac{1}{\log n} \leqslant \delta<1, n \geqslant s \geqslant 4 q \geqslant 4 \log ^{2} n, \frac{q^{2} \alpha}{n} \geqslant C_{1} \log n$, $\tau \geqslant C_{2}$, and

$$
\min \left(\frac{\tau^{2} \delta q^{2} \alpha}{n}, \frac{\tau^{2} \delta q}{n}\right) \geqslant C_{3} \log n
$$

Finishing the proof of the theorem

- Parameters to be chosen: $m, \epsilon, \alpha, \delta, \tau, s$ and q.
- Initial conditions: $m / \epsilon \leqslant n^{10}, \frac{1}{\log n} \leqslant \delta<1, n \geqslant s \geqslant 4 q \geqslant 4 \log ^{2} n, \frac{q^{2} \alpha}{n} \geqslant C_{1} \log n$, $\tau \geqslant C_{2}$, and

$$
\min \left(\frac{\tau^{2} \delta q^{2} \alpha}{n}, \frac{\tau^{2} \delta q}{n}\right) \geqslant C_{3} \log n
$$

- Recall that we want to have $\mathbb{P}(\omega)<\frac{1}{2}$ and

$$
\begin{aligned}
\mathbb{P}(\omega) & =\mathbb{P}\left(\bigcup_{|I|=n}\left\{G\left(\omega^{\prime}\right) \in 4 \varrho \operatorname{conv}\left\{ \pm \operatorname{col}_{i}(\Gamma(\omega) \mathcal{F}(A)), i \in I\right\}\right\}\right) \\
& \leqslant \sum_{p=0}^{n-q-1}\binom{n}{p}^{2} \sup _{P} \gamma_{n}(4 \varrho P)+\sum_{p=n-q}^{n}\binom{n}{p}^{2} \sup _{Q} \gamma_{n}(4 \varrho Q)
\end{aligned}
$$

and now we have upper bounds for $\gamma_{n}(4 \varrho P)$ and $\gamma_{n}(4 \varrho Q)$, which however depend on ϱ; this will give additional restrictions, involving ϱ, so that we will get $\mathbb{P}(\omega)<\frac{1}{2}$.

Finishing the proof of the theorem

- We choose $\delta=\frac{1}{\log n}$. After the computations we have additional restrictions with ϱ : roughly,

$$
s \geqslant q \log n, \quad \varrho \sqrt{s} \leqslant n, \quad n^{2} \varrho \tau \sqrt{\alpha} \leqslant q^{5 / 2}
$$

Finishing the proof of the theorem

- We choose $\delta=\frac{1}{\log n}$. After the computations we have additional restrictions with ϱ : roughly,

$$
s \geqslant q \log n, \quad \varrho \sqrt{s} \leqslant n, \quad n^{2} \varrho \tau \sqrt{\alpha} \leqslant q^{5 / 2}
$$

- We choose $\tau \simeq \log n \cdot \max \left\{\sqrt{n / q}, \sqrt{n /\left(q^{2} \alpha\right)}\right\}$ and

$$
\varrho=\min \left(\frac{n}{\sqrt{s}}, \frac{1}{\log n} \frac{q^{2}}{n^{5 / 2} \sqrt{\alpha}}, \frac{1}{\log n} \frac{q^{7 / 2}}{n^{5 / 2}}\right) .
$$

Finishing the proof of the theorem

- We choose $\delta=\frac{1}{\log n}$. After the computations we have additional restrictions with ϱ : roughly,

$$
s \geqslant q \log n, \quad \varrho \sqrt{s} \leqslant n, \quad n^{2} \varrho \tau \sqrt{\alpha} \leqslant q^{5 / 2}
$$

- We choose $\tau \simeq \log n \cdot \max \left\{\sqrt{n / q}, \sqrt{n /\left(q^{2} \alpha\right)}\right\}$ and

$$
\varrho=\min \left(\frac{n}{\sqrt{s}}, \frac{1}{\log n} \frac{q^{2}}{n^{5 / 2} \sqrt{\alpha}}, \frac{1}{\log n} \frac{q^{7 / 2}}{n^{5 / 2}}\right) .
$$

- Finally, we choose $\alpha=\frac{n \log n}{q^{2}}$ and $s, q \simeq n^{8 / 9}$ up to some power of $\log n$.

Finishing the proof of the theorem

- We choose $\delta=\frac{1}{\log n}$. After the computations we have additional restrictions with ϱ : roughly,

$$
s \geqslant q \log n, \quad \varrho \sqrt{s} \leqslant n, \quad n^{2} \varrho \tau \sqrt{\alpha} \leqslant q^{5 / 2}
$$

- We choose $\tau \simeq \log n \cdot \max \left\{\sqrt{n / q}, \sqrt{n /\left(q^{2} \alpha\right)}\right\}$ and

$$
\varrho=\min \left(\frac{n}{\sqrt{s}}, \frac{1}{\log n} \frac{q^{2}}{n^{5 / 2} \sqrt{\alpha}}, \frac{1}{\log n} \frac{q^{7 / 2}}{n^{5 / 2}}\right) .
$$

- Finally, we choose $\alpha=\frac{n \log n}{q^{2}}$ and $s, q \simeq n^{8 / 9}$ up to some power of $\log n$.
- This choice gives $\varrho \geqslant n^{5 / 9} \log ^{-b} n$.

