Apostolos Giannopoulos

National and Kapodistrian University of Athens

September 6, 2018

• If X and Y are two n-dimensional normed spaces then their Banach-Mazur distance d(X, Y) is defined by

```
d(X, Y) = \min\{||T|| ||T^{-1}|| \mid T : X \to Y \text{ is an isomorphism}\}.
```

• If X and Y are two n-dimensional normed spaces then their Banach-Mazur distance d(X, Y) is defined by

```
d(X,Y) = \min\{||T|| ||T^{-1}|| \mid T : X \to Y \text{ is an isomorphism}\}.
```

Geometric interpretation

Let B_X and B_Y denote the unit balls of X and Y. Then, d(X, Y) is the smallest possible $r \ge 1$ for which there exists an isomorphism $T : X \to Y$ such that

 $B_Y \subseteq T(B_X) \subseteq rB_Y.$

• If X and Y are two *n*-dimensional normed spaces then their Banach-Mazur distance d(X, Y) is defined by

```
d(X,Y) = \min\{||T|| ||T^{-1}|| \mid T : X \to Y \text{ is an isomorphism}\}.
```

Geometric interpretation

Let B_X and B_Y denote the unit balls of X and Y. Then, d(X, Y) is the smallest possible $r \ge 1$ for which there exists an isomorphism $T : X \to Y$ such that

 $B_Y \subseteq T(B_X) \subseteq rB_Y.$

Basic properties

- $d(X, Y) \ge 1$ with equality if and only if X is isometrically isomorphic to Y.
- d(X, Y) = d(Y, X).
- $d(X,Z) \leq d(X,Y)d(Y,Z)$.
- $d(X^*, Y^*) = d(X, Y).$

Banach-Mazur compactum

- The *n*-th Banach-Mazur (or Minkowski) compactum is the set \mathcal{B}_n of all equivalence classes of isometrically isomorphic *n*-dimensional normed spaces.
- \mathcal{B}_n becomes a compact metric space with the metric log d.
- Usually, instead of log d, we consider d as a "multiplicative" distance on \mathcal{B}_n .

Banach-Mazur compactum

- The *n*-th Banach-Mazur (or Minkowski) compactum is the set \mathcal{B}_n of all equivalence classes of isometrically isomorphic *n*-dimensional normed spaces.
- \mathcal{B}_n becomes a compact metric space with the metric log d.
- Usually, instead of log d, we consider d as a "multiplicative" distance on \mathcal{B}_n .

Diameter of the compactum

Banach-Mazur compactum

- The *n*-th Banach-Mazur (or Minkowski) compactum is the set \mathcal{B}_n of all equivalence classes of isometrically isomorphic *n*-dimensional normed spaces.
- \mathcal{B}_n becomes a compact metric space with the metric log d.
- Usually, instead of log d, we consider d as a "multiplicative" distance on \mathcal{B}_n .

Diameter of the compactum

Upper bound: diam $(\mathcal{B}_n) \leq n$.

- The *n*-th Banach-Mazur (or Minkowski) compactum is the set \mathcal{B}_n of all equivalence classes of isometrically isomorphic *n*-dimensional normed spaces.
- \mathcal{B}_n becomes a compact metric space with the metric log d.
- Usually, instead of log d, we consider d as a "multiplicative" distance on \mathcal{B}_n .

Diameter of the compactum

Upper bound: diam $(\mathcal{B}_n) \leq n$.

• This is a consequence of John's theorem which can be stated as follows: for any *n*-dimensional normed space *X*,

$$d(X, \ell_2^n) \leqslant \sqrt{n}.$$

Then, for any X and Y,

$$d(X,Y) \leqslant d(X,\ell_2^n)d(\ell_2^n,Y) \leqslant \sqrt{n} \cdot \sqrt{n} = n.$$

Gluskin's theorem

There exists an absolute constant c > 0 with the following property: for any $n \in \mathbb{N}$ one may find two *n*-dimensional normed spaces X_n , Y_n with $d(X_n, Y_n) \ge cn$. Consequently, diam $(\mathcal{B}_n) \ge cn$.

Gluskin's theorem

There exists an absolute constant c > 0 with the following property: for any $n \in \mathbb{N}$ one may find two *n*-dimensional normed spaces X_n , Y_n with $d(X_n, Y_n) \ge cn$. Consequently, diam $(\mathcal{B}_n) \ge cn$.

• The proof introduces a class of random spaces, sometimes called *Gluskin spaces*. Let x_1, \ldots, x_m be random vectors which are independently and uniformly distributed in the Euclidean unit sphere S^{n-1} . We consider the symmetric random polytope

$$B_m := B_m(x_1,\ldots,x_m) = \operatorname{conv}\{\pm e_1,\pm e_2,\ldots,\pm e_n,\pm x_1,\ldots,\pm x_m\},\$$

where $\{e_i\}_{i \leq n}$ is the standard orthonormal basis of \mathbb{R}^n . The space whose unit ball is B_m is denoted by X_{B_m} . We write \mathcal{A}_m for the set of all these spaces equipped with the probability measure $\mu \equiv \bigotimes_{i=1}^m \sigma$.

Gluskin's theorem

There exists an absolute constant c > 0 with the following property: for any $n \in \mathbb{N}$ one may find two *n*-dimensional normed spaces X_n , Y_n with $d(X_n, Y_n) \ge cn$. Consequently, diam $(\mathcal{B}_n) \ge cn$.

• The proof introduces a class of random spaces, sometimes called *Gluskin spaces*. Let x_1, \ldots, x_m be random vectors which are independently and uniformly distributed in the Euclidean unit sphere S^{n-1} . We consider the symmetric random polytope

$$B_m := B_m(x_1,\ldots,x_m) = \operatorname{conv}\{\pm e_1,\pm e_2,\ldots,\pm e_n,\pm x_1,\ldots,\pm x_m\},\$$

where $\{e_i\}_{i \leq n}$ is the standard orthonormal basis of \mathbb{R}^n . The space whose unit ball is B_m is denoted by X_{B_m} . We write \mathcal{A}_m for the set of all these spaces equipped with the probability measure $\mu \equiv \bigotimes_{i=1}^m \sigma$.

• Gluskin proves that if m = 2n and B'_m is an independent copy of B_m then

$$d(X_{B_m}, X_{B'_m}) \geqslant cn$$

with probability greater than $1 - 2^{-n^2}$.

• Let $X_0 \in \mathcal{B}_n$. We denote by $\mathcal{R}(X_0)$ the "radius" of the Banach-Mazur compactum \mathcal{B}_n with respect to X_0 , defined by

$$\mathcal{R}(X_0) = \max\{d(X, X_0) : X \in \mathcal{B}_n\}.$$

• Let $X_0 \in \mathcal{B}_n$. We denote by $\mathcal{R}(X_0)$ the "radius" of the Banach-Mazur compactum \mathcal{B}_n with respect to X_0 , defined by

$$\mathcal{R}(X_0) = \max\{d(X, X_0) : X \in \mathcal{B}_n\}.$$

• John's theorem implies that $\mathcal{R}(\ell_2^n) = \sqrt{n}$ because one can show that

$$d(\ell_{\infty}^n,\ell_2^n)=d(\ell_1^n,\ell_2^n)=\sqrt{n}.$$

• Let $X_0 \in \mathcal{B}_n$. We denote by $\mathcal{R}(X_0)$ the "radius" of the Banach-Mazur compactum \mathcal{B}_n with respect to X_0 , defined by

$$\mathcal{R}(X_0) = \max\{d(X, X_0) : X \in \mathcal{B}_n\}.$$

• John's theorem implies that $\mathcal{R}(\ell_2^n) = \sqrt{n}$ because one can show that

$$d(\ell_{\infty}^n,\ell_2^n)=d(\ell_1^n,\ell_2^n)=\sqrt{n}.$$

• We shall discuss the radius of \mathcal{B}_n with respect to ℓ_{∞}^n , defined by

$$\mathcal{R}_{\infty}^{n} = \max\{d(X, \ell_{\infty}^{n}) : X \in \mathcal{B}_{n}\}.$$

• Let $X_0 \in \mathcal{B}_n$. We denote by $\mathcal{R}(X_0)$ the "radius" of the Banach-Mazur compactum \mathcal{B}_n with respect to X_0 , defined by

$$\mathcal{R}(X_0) = \max\{d(X, X_0) : X \in \mathcal{B}_n\}.$$

• John's theorem implies that $\mathcal{R}(\ell_2^n) = \sqrt{n}$ because one can show that

$$d(\ell_{\infty}^n,\ell_2^n)=d(\ell_1^n,\ell_2^n)=\sqrt{n}.$$

• We shall discuss the radius of \mathcal{B}_n with respect to ℓ_{∞}^n , defined by

$$\mathcal{R}_{\infty}^{n} = \max\{d(X, \ell_{\infty}^{n}) : X \in \mathcal{B}_{n}\}.$$

Pełczynski

What is the asymptotic behavior of \mathcal{R}_{∞}^{n} as *n* tends to infinity?

• Let $X_0 \in \mathcal{B}_n$. We denote by $\mathcal{R}(X_0)$ the "radius" of the Banach-Mazur compactum \mathcal{B}_n with respect to X_0 , defined by

$$\mathcal{R}(X_0) = \max\{d(X, X_0) : X \in \mathcal{B}_n\}.$$

• John's theorem implies that $\mathcal{R}(\ell_2^n) = \sqrt{n}$ because one can show that

$$d(\ell_{\infty}^n,\ell_2^n)=d(\ell_1^n,\ell_2^n)=\sqrt{n}.$$

• We shall discuss the radius of \mathcal{B}_n with respect to ℓ_{∞}^n , defined by

$$\mathcal{R}_{\infty}^{n} = \max\{d(X, \ell_{\infty}^{n}) : X \in \mathcal{B}_{n}\}.$$

Pełczynski

What is the asymptotic behavior of \mathcal{R}_{∞}^{n} as *n* tends to infinity?

• One clearly has $\mathcal{R}_{\infty}^n \leq \operatorname{diam}(\mathcal{B}_n) \leq n$ and the fact that $d(\ell_{\infty}^n, \ell_2^n) = \sqrt{n}$ shows that

$$\sqrt{n} \leqslant \mathcal{R}_{\infty}^{n} \leqslant n$$

Upper bounds were obtained by:

• Bourgain-Szarek: $\mathcal{R}_{\infty}^{n} \leq n \cdot \exp(-c\sqrt{\log n})$.

Upper bounds were obtained by:

- Bourgain-Szarek: $\mathcal{R}_{\infty}^n \leq n \cdot \exp(-c\sqrt{\log n})$.
- Szarek-Talagrand: $\mathcal{R}_{\infty}^{n} \leq cn^{7/8}$.

Upper bounds were obtained by:

- Bourgain-Szarek: $\mathcal{R}_{\infty}^n \leq n \cdot \exp(-c\sqrt{\log n})$.
- Szarek-Talagrand: $\mathcal{R}_{\infty}^{n} \leq cn^{7/8}$.

G., 1993

There exists an absolute constant c > 0 such that, for any $n \ge 2$,

 $\mathcal{R}_{\infty}^{n} \leqslant cn^{5/6}.$

Upper bounds were obtained by:

- Bourgain-Szarek: $\mathcal{R}_{\infty}^n \leq n \cdot \exp(-c\sqrt{\log n})$.
- Szarek-Talagrand: $\mathcal{R}_{\infty}^{n} \leq cn^{7/8}$.

G., 1993

There exists an absolute constant c > 0 such that, for any $n \ge 2$,

 $\mathcal{R}_{\infty}^{n} \leqslant cn^{5/6}.$

Lower bounds: Szarek, using random spaces of Gluskin type, proved that

 $\mathcal{R}_{\infty}^n \ge c\sqrt{n}\log n.$

Upper bounds were obtained by:

- Bourgain-Szarek: $\mathcal{R}_{\infty}^n \leq n \cdot \exp(-c\sqrt{\log n})$.
- Szarek-Talagrand: $\mathcal{R}_{\infty}^{n} \leq cn^{7/8}$.

G., 1993

There exists an absolute constant c > 0 such that, for any $n \ge 2$,

 $\mathcal{R}_{\infty}^{n} \leqslant cn^{5/6}.$

Lower bounds: Szarek, using random spaces of Gluskin type, proved that

 $\mathcal{R}_{\infty}^n \ge c\sqrt{n}\log n.$

Tikhomirov, 2018

There exist absolute constants c, b > 0 such that, for any $n \ge 2$,

$$\mathcal{R}_{\infty}^{n} \geqslant cn^{5/9} \log^{-b} n.$$

Upper bounds were obtained by:

- Bourgain-Szarek: $\mathcal{R}_{\infty}^n \leq n \cdot \exp(-c\sqrt{\log n})$.
- Szarek-Talagrand: $\mathcal{R}_{\infty}^{n} \leq cn^{7/8}$.

G., 1993

There exists an absolute constant c > 0 such that, for any $n \ge 2$,

 $\mathcal{R}_{\infty}^{n} \leqslant cn^{5/6}.$

Lower bounds: Szarek, using random spaces of Gluskin type, proved that

 $\mathcal{R}_{\infty}^n \ge c\sqrt{n}\log n.$

Tikhomirov, 2018

There exist absolute constants c, b > 0 such that, for any $n \ge 2$,

$$\mathcal{R}_{\infty}^{n} \geqslant cn^{5/9} \log^{-b} n.$$

This means that Rⁿ_∞ has order of growth much larger than √n; in other words, ℓⁿ_∞ is not an asymptotic center of the Banach-Mazur compactum, in a very strong sense.

 $\mathcal{R}_1^n = \max\{d(X, \ell_1^n) : X \in \mathcal{B}_n\}.$

$$\mathcal{R}_1^n = \max\{d(X, \ell_1^n) : X \in \mathcal{B}_n\}.$$

• Since $d(X^*, Y^*) = d(X, Y)$ we see that $\mathcal{R}_{\infty}^n = \mathcal{R}_1^n$.

$$\mathcal{R}_1^n = \max\{d(X, \ell_1^n) : X \in \mathcal{B}_n\}.$$

- Since $d(X^*, Y^*) = d(X, Y)$ we see that $\mathcal{R}_{\infty}^n = \mathcal{R}_1^n$.
- We want an upper bound for d(X, ℓ₁ⁿ) where X = (ℝⁿ, ||·||), and we may also assume that the minimal volume ellipsoid of the unit ball K of X is the Euclidean unit ball B₂ⁿ.

$$\mathcal{R}_1^n = \max\{d(X, \ell_1^n) : X \in \mathcal{B}_n\}.$$

- Since $d(X^*, Y^*) = d(X, Y)$ we see that $\mathcal{R}_{\infty}^n = \mathcal{R}_1^n$.
- We want an upper bound for d(X, ℓ₁ⁿ) where X = (ℝⁿ, || · ||), and we may also assume that the minimal volume ellipsoid of the unit ball K of X is the Euclidean unit ball B₂ⁿ.
- We need to find *n* vectors $u_1, \ldots, u_n \in \mathbb{R}^n$ such that, for all $t_1, \ldots, t_n \in \mathbb{R}$,

$$\frac{1}{cn^{5/6}}\sum_{i=1}^{n}|t_{i}|\leqslant \left\|\sum_{i=1}^{n}t_{i}u_{i}\right\|\leqslant \sum_{i=1}^{n}|t_{i}|.$$

$$\mathcal{R}_1^n = \max\{d(X, \ell_1^n) : X \in \mathcal{B}_n\}.$$

- Since $d(X^*, Y^*) = d(X, Y)$ we see that $\mathcal{R}_{\infty}^n = \mathcal{R}_1^n$.
- We want an upper bound for d(X, ℓ₁ⁿ) where X = (ℝⁿ, || · ||), and we may also assume that the minimal volume ellipsoid of the unit ball K of X is the Euclidean unit ball B₂ⁿ.
- We need to find *n* vectors $u_1, \ldots, u_n \in \mathbb{R}^n$ such that, for all $t_1, \ldots, t_n \in \mathbb{R}$,

$$\frac{1}{cn^{5/6}}\sum_{i=1}^{n}|t_{i}|\leqslant \Big\|\sum_{i=1}^{n}t_{i}u_{i}\Big\|\leqslant \sum_{i=1}^{n}|t_{i}|.$$

• Then, the operator $T : \ell_1^n \to X$ defined by $T(e_i) = u_i$ satisfies $||T|| \leq 1$ and $||T^{-1}|| \leq cn^{5/6}$, which implies the bound

$$d(X, \ell_1^n) \leqslant \|T\| \|T^{-1}\| \leqslant cn^{5/6}.$$

$$\mathcal{R}_1^n = \max\{d(X, \ell_1^n) : X \in \mathcal{B}_n\}.$$

- Since $d(X^*, Y^*) = d(X, Y)$ we see that $\mathcal{R}_{\infty}^n = \mathcal{R}_1^n$.
- We want an upper bound for d(X, ℓ₁ⁿ) where X = (ℝⁿ, || · ||), and we may also assume that the minimal volume ellipsoid of the unit ball K of X is the Euclidean unit ball B₂ⁿ.
- We need to find *n* vectors $u_1, \ldots, u_n \in \mathbb{R}^n$ such that, for all $t_1, \ldots, t_n \in \mathbb{R}$,

$$\frac{1}{cn^{5/6}}\sum_{i=1}^{n}|t_{i}|\leqslant \Big\|\sum_{i=1}^{n}t_{i}u_{i}\Big\|\leqslant \sum_{i=1}^{n}|t_{i}|.$$

• Then, the operator $T : \ell_1^n \to X$ defined by $T(e_i) = u_i$ satisfies $||T|| \leq 1$ and $||T^{-1}|| \leq cn^{5/6}$, which implies the bound

$$d(X,\ell_1^n) \leqslant \|T\| \, \|T^{-1}\| \leqslant cn^{5/6}.$$

• The main ingredients for the proof are the combinatorial Sauer-Shelah lemma and a Dvoretzky-Rogers type lemma of Szarek and Talagrand on the distribution of the contact points of K and B_2^n when K is in Löwner position.

• Recall John's representation of the identity: since B_2^n is the minimal volume ellipsoid of K, there exist contact points x_1, \ldots, x_m of K and B_2^n , and positive real numbers c_1, \ldots, c_m such that

$$x = \sum_{i=1}^{m} c_i \langle x, x_i \rangle x_i \tag{1}$$

for all $x \in \mathbb{R}^n$.

• Recall John's representation of the identity: since B_2^n is the minimal volume ellipsoid of K, there exist contact points x_1, \ldots, x_m of K and B_2^n , and positive real numbers c_1, \ldots, c_m such that

$$x = \sum_{i=1}^{m} c_i \langle x, x_i \rangle x_i \tag{1}$$

for all $x \in \mathbb{R}^n$.

Szarek-Talagrand

Let B_2^n be the minimal volume ellipsoid of K. For every $\epsilon \in (0, 1)$, we can find $k \ge (1 - \epsilon)n$ and contact points y_1, \ldots, y_k of K and B_2^n with the following property: If $j \in \{1, \ldots, k\}$ and $F_j = \operatorname{span}\{y_i : i \ne j\}$, then

 $|P_{F_i^{\perp}}(y_j)| \geqslant \sqrt{\epsilon} \quad ext{for all } 1 \leqslant j \leqslant k.$

• Recall John's representation of the identity: since B_2^n is the minimal volume ellipsoid of K, there exist contact points x_1, \ldots, x_m of K and B_2^n , and positive real numbers c_1, \ldots, c_m such that

$$x = \sum_{i=1}^{m} c_i \langle x, x_i \rangle x_i \tag{1}$$

for all $x \in \mathbb{R}^n$.

Szarek-Talagrand

Let B_2^n be the minimal volume ellipsoid of K. For every $\epsilon \in (0, 1)$, we can find $k \ge (1 - \epsilon)n$ and contact points y_1, \ldots, y_k of K and B_2^n with the following property: If $j \in \{1, \ldots, k\}$ and $F_j = \operatorname{span}\{y_i : i \ne j\}$, then

$$|P_{F_i^{\perp}}(y_j)| \geqslant \sqrt{\epsilon} \quad \text{for all } 1 \leqslant j \leqslant k.$$

• Among all k-sets $\{x_{i_1}, \ldots, x_{i_k}\}$ of contact points in (1) choose one, say $\{y_1, \ldots, y_k\}$, which maximizes $\operatorname{vol}_k(\operatorname{conv}\{\pm x_{i_1}, \ldots, \pm x_{i_k}\})$.

• Recall John's representation of the identity: since B_2^n is the minimal volume ellipsoid of K, there exist contact points x_1, \ldots, x_m of K and B_2^n , and positive real numbers c_1, \ldots, c_m such that

$$x = \sum_{i=1}^{m} c_i \langle x, x_i \rangle x_i \tag{1}$$

for all $x \in \mathbb{R}^n$.

Szarek-Talagrand

Let B_2^n be the minimal volume ellipsoid of K. For every $\epsilon \in (0, 1)$, we can find $k \ge (1 - \epsilon)n$ and contact points y_1, \ldots, y_k of K and B_2^n with the following property: If $j \in \{1, \ldots, k\}$ and $F_j = \operatorname{span}\{y_i : i \ne j\}$, then

$$|P_{F_i^{\perp}}(y_j)| \geqslant \sqrt{\epsilon} \quad \text{for all } 1 \leqslant j \leqslant k.$$

- Among all k-sets $\{x_{i_1}, \ldots, x_{i_k}\}$ of contact points in (1) choose one, say $\{y_1, \ldots, y_k\}$, which maximizes $\operatorname{vol}_k(\operatorname{conv}\{\pm x_{i_1}, \ldots, \pm x_{i_k}\})$.
- Then, for all $1 \leq j \leq k$ and all $1 \leq i \leq m$ we have

$$|P_{F_j^{\perp}}(y_j)| \ge |P_{F_j^{\perp}}(x_i)|.$$

Let B_2^n be the minimal volume ellipsoid of K. For every $\epsilon \in (0, 1)$, we can find $k \ge (1 - \epsilon)n$ and contact points y_1, \ldots, y_k of K and B_2^n with the following property: If $j \in \{1, \ldots, k\}$ and $F_j = \operatorname{span}\{y_i : i \ne j\}$, then $|P_{F_i^{\perp}}(y_j)| \ge \sqrt{\epsilon}$ for all $1 \le j \le k$.

Let B_2^n be the minimal volume ellipsoid of K. For every $\epsilon \in (0, 1)$, we can find $k \ge (1 - \epsilon)n$ and contact points y_1, \ldots, y_k of K and B_2^n with the following property: If $j \in \{1, \ldots, k\}$ and $F_j = \operatorname{span}\{y_i : i \ne j\}$, then $|P_{F_i^{\perp}}(y_j)| \ge \sqrt{\epsilon}$ for all $1 \le j \le k$.

• Among all k-sets $\{x_{i_1}, \ldots, x_{i_k}\}$ of contact points in (1) choose one, say $\{y_1, \ldots, y_k\}$, which maximizes $\operatorname{vol}_k(\operatorname{conv}\{\pm x_{i_1}, \ldots, \pm x_{i_k}\})$.

Let B_2^n be the minimal volume ellipsoid of K. For every $\epsilon \in (0, 1)$, we can find $k \ge (1 - \epsilon)n$ and contact points y_1, \ldots, y_k of K and B_2^n with the following property: If $j \in \{1, \ldots, k\}$ and $F_j = \operatorname{span}\{y_i : i \ne j\}$, then $|P_{F_i^{\perp}}(y_j)| \ge \sqrt{\epsilon}$ for all $1 \le j \le k$.

- Among all k-sets $\{x_{i_1}, \ldots, x_{i_k}\}$ of contact points in (1) choose one, say $\{y_1, \ldots, y_k\}$, which maximizes $\operatorname{vol}_k(\operatorname{conv}\{\pm x_{i_1}, \ldots, \pm x_{i_k}\})$.
- Then, for all $1 \leq j \leq k$ and all $1 \leq i \leq m$ we have $|P_{F_i^{\perp}}(y_j)| \geq |P_{F_i^{\perp}}(x_i)|$.

Let B_2^n be the minimal volume ellipsoid of K. For every $\epsilon \in (0, 1)$, we can find $k \ge (1 - \epsilon)n$ and contact points y_1, \ldots, y_k of K and B_2^n with the following property: If $j \in \{1, \ldots, k\}$ and $F_j = \operatorname{span}\{y_i : i \ne j\}$, then $|P_{F_i^{\perp}}(y_j)| \ge \sqrt{\epsilon}$ for all $1 \le j \le k$.

- Among all k-sets $\{x_{i_1}, \ldots, x_{i_k}\}$ of contact points in (1) choose one, say $\{y_1, \ldots, y_k\}$, which maximizes $\operatorname{vol}_k(\operatorname{conv}\{\pm x_{i_1}, \ldots, \pm x_{i_k}\})$.
- Then, for all $1 \leq j \leq k$ and all $1 \leq i \leq m$ we have $|P_{F_i^{\perp}}(y_j)| \geq |P_{F_i^{\perp}}(x_i)|$.
- Note that $P_{F_j^{\perp}}(x) = \sum_{i=1}^m c_i \langle x, x_i \rangle P_{F_j^{\perp}}(x_i)$. Using this, we see that

$$n-k+1 = \operatorname{tr}(P_{F_j^{\perp}}) = \sum_{i=1}^m c_i \langle x_i, P_{F_j^{\perp}}(x_i) \rangle = \sum_{i=1}^m c_i |P_{F_j^{\perp}}(x_i)|^2,$$

and since $\sum_{i=1}^{m} c_i = n$ there exists x_i such that

$$|P_{F_j^{\perp}}(x_i)|^2 = \langle x_i, P_{F_j^{\perp}}(x_i) \rangle \ge \operatorname{tr}(P_{F_j^{\perp}})/n = (n-k+1)/n.$$
Szarek-Talagrand

Let B_2^n be the minimal volume ellipsoid of K. For every $\epsilon \in (0, 1)$, we can find $k \ge (1 - \epsilon)n$ and contact points y_1, \ldots, y_k of K and B_2^n with the following property: If $j \in \{1, \ldots, k\}$ and $F_j = \operatorname{span}\{y_i : i \ne j\}$, then $|P_{F_i^{\perp}}(y_j)| \ge \sqrt{\epsilon}$ for all $1 \le j \le k$.

- Among all k-sets $\{x_{i_1}, \ldots, x_{i_k}\}$ of contact points in (1) choose one, say $\{y_1, \ldots, y_k\}$, which maximizes $\operatorname{vol}_k(\operatorname{conv}\{\pm x_{i_1}, \ldots, \pm x_{i_k}\})$.
- Then, for all $1 \leq j \leq k$ and all $1 \leq i \leq m$ we have $|P_{F_i^{\perp}}(y_j)| \geq |P_{F_i^{\perp}}(x_i)|$.
- Note that $P_{F_j^{\perp}}(x) = \sum_{i=1}^m c_i \langle x, x_i \rangle P_{F_j^{\perp}}(x_i)$. Using this, we see that

$$n-k+1 = \operatorname{tr}(P_{F_j^{\perp}}) = \sum_{i=1}^m c_i \langle x_i, P_{F_j^{\perp}}(x_i) \rangle = \sum_{i=1}^m c_i |P_{F_j^{\perp}}(x_i)|^2,$$

and since $\sum_{i=1}^{m} c_i = n$ there exists x_i such that

$$|P_{F_j^{\perp}}(x_i)|^2 = \langle x_i, P_{F_j^{\perp}}(x_i) \rangle \ge \operatorname{tr}(P_{F_j^{\perp}})/n = (n-k+1)/n.$$

• Taking $k = \lfloor (1-\epsilon)n \rfloor + 1$, we see that $k \geqslant (1-\epsilon)n$ and, for all $1 \leqslant j \leqslant k$,

$$|P_{F_j^{\perp}}(y_j)| = \max_{i \leqslant m} |P_{F_j^{\perp}}(x_i)| \ge \sqrt{(n-k+1)/n} \ge \sqrt{\epsilon}.$$

The Sauer-Shelah lemma

Sauer-Shelah

Let X be a set with cardinality |X| = n and $1 \le k \le n$. If \mathcal{F} is a family of subsets of X with

$$|\mathcal{F}| > \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{k-1}$$

then we can find $A \subseteq X$ with $|A| \ge k$ and $A \cap \mathcal{F} = \mathcal{P}(A)$, where $\mathcal{P}(A)$ is the family of all subsets of A.

The Sauer-Shelah lemma

Sauer-Shelah

Let X be a set with cardinality |X| = n and $1 \le k \le n$. If \mathcal{F} is a family of subsets of X with

$$|\mathcal{F}| > \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{k-1}$$

then we can find $A \subseteq X$ with $|A| \ge k$ and $A \cap \mathcal{F} = \mathcal{P}(A)$, where $\mathcal{P}(A)$ is the family of all subsets of A.

Consider the discrete cube Eⁿ₂ = {-1,1}ⁿ. For any σ ⊆ [n] we consider the coordinates restriction function P_σ: Eⁿ₂ = {-1,1}ⁿ → {-1,1}^σ with (ε₁,..., ε_n) → (ε_j)_{j∈σ}. Since the map φ : P({1,...,n}) → Eⁿ₂ with φ(σ)_i = 1 if i ∈ σ and φ(σ)_i = -1 if i ∉ σ is a bijection, we can immediate translate the Sauer-Shelah lemma as follows:

The Sauer-Shelah lemma

Sauer-Shelah

Let X be a set with cardinality |X| = n and $1 \le k \le n$. If \mathcal{F} is a family of subsets of X with

$$|\mathcal{F}| > \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{k-1}$$

then we can find $A \subseteq X$ with $|A| \ge k$ and $A \cap \mathcal{F} = \mathcal{P}(A)$, where $\mathcal{P}(A)$ is the family of all subsets of A.

Consider the discrete cube E₂ⁿ = {-1,1}ⁿ. For any σ ⊆ [n] we consider the coordinates restriction function P_σ: E₂ⁿ = {-1,1}ⁿ → {-1,1}^σ with (ε₁,..., ε_n) ↦ (ε_j)_{j∈σ}. Since the map φ : P({1,...,n}) → E₂ⁿ with φ(σ)_i = 1 if i ∈ σ and φ(σ)_i = -1 if i ∉ σ is a bijection, we can immediate translate the Sauer-Shelah lemma as follows:

Sauer-Shelah II

Let A be a subset of $E_2^n = \{-1,1\}^n$ with cardinality $|A| > \binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{k-1}$. There exists $\sigma \subseteq \{1,\ldots,n\}$ with $|\sigma| \ge k$, such that the map P_{σ} is onto. That is,

$$P_{\sigma}(A) = \{-1,1\}^{\sigma}.$$

Let A be a subset of $E_2^n = \{-1,1\}^n$ with cardinality $|A| > \binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{k-1}$. There exists $\sigma \subseteq \{1,\ldots,n\}$ with $|\sigma| \ge k$, such that the map P_{σ} is onto. That is,

 $P_{\sigma}(A) = \{-1,1\}^{\sigma}.$

Let A be a subset of $E_2^n = \{-1, 1\}^n$ with cardinality $|A| > \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{k-1}$. There exists $\sigma \subseteq \{1, \dots, n\}$ with $|\sigma| \ge k$, such that the map P_{σ} is onto. That is,

 $P_{\sigma}(A) = \{-1,1\}^{\sigma}.$

 It is useful to think of the elements of E₂ⁿ as the vertices of the cube Q_n = [−1, 1]ⁿ in ℝⁿ.

Let A be a subset of $E_2^n = \{-1,1\}^n$ with cardinality $|A| > \binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{k-1}$. There exists $\sigma \subseteq \{1,\ldots,n\}$ with $|\sigma| \ge k$, such that the map P_{σ} is onto. That is,

 $P_{\sigma}(A) = \{-1,1\}^{\sigma}.$

- It is useful to think of the elements of E₂ⁿ as the vertices of the cube Q_n = [−1, 1]ⁿ in ℝⁿ.
- Then, the coordinates restriction function P_{σ} is the orthogonal projection onto \mathbb{R}^{σ} .

Let A be a subset of $E_2^n = \{-1,1\}^n$ with cardinality $|A| > \binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{k-1}$. There exists $\sigma \subseteq \{1,\ldots,n\}$ with $|\sigma| \ge k$, such that the map P_{σ} is onto. That is,

 $P_{\sigma}(A) = \{-1,1\}^{\sigma}.$

- It is useful to think of the elements of E₂ⁿ as the vertices of the cube Q_n = [−1, 1]ⁿ in ℝⁿ.
- Then, the coordinates restriction function P_{σ} is the orthogonal projection onto \mathbb{R}^{σ} .
- In this setting, the Sauer-Shelah lemma tells us the following.

Geometric Sauer-Shelah lemma

If $A \subseteq \{-1,1\}^n \subseteq \mathbb{R}^n$, and $|A| > \sum_{i=0}^{k-1} \binom{n}{i}$, then there exists $\sigma \subseteq \{1,\ldots,n\}$ with $|\sigma| \ge k$ such that the orthogonal projection $P_{\sigma}(\operatorname{conv}(A))$ of the convex hull of A onto \mathbb{R}^{σ} is the full unit cube of \mathbb{R}^{σ} :

$$P_{\sigma}(\operatorname{conv}(A)) = Q_{\sigma} := [-1,1]^{\sigma}.$$

Let $u_1, \ldots, u_s \in B_2^n$ and $\mathcal{E} = \left\{ (\delta_j)_{j \leqslant s} \in \mathbb{R}^s : \left| \sum_{j=1}^s \delta_j u_j \right|^2 \leqslant 2s \right\}$. Then, for every $\epsilon \in (0, 1)$ there exists $\sigma \subseteq \{1, \ldots, s\}$ with cardinality $|\sigma| \ge (1 - \epsilon)s$, such that $P_{\sigma}(\mathcal{E}) \supseteq c\sqrt{\epsilon} [-1, 1]^{\sigma}$, where c > 0 is an absolute constant, and P_{σ} is the orthogonal projection onto \mathbb{R}^{σ} .

Let $u_1, \ldots, u_s \in B_2^n$ and $\mathcal{E} = \left\{ (\delta_j)_{j \leq s} \in \mathbb{R}^s : \left| \sum_{j=1}^s \delta_j u_j \right|^2 \leq 2s \right\}$. Then, for every $\epsilon \in (0, 1)$ there exists $\sigma \subseteq \{1, \ldots, s\}$ with cardinality $|\sigma| \ge (1 - \epsilon)s$, such that $P_{\sigma}(\mathcal{E}) \supseteq c\sqrt{\epsilon} [-1, 1]^{\sigma}$, where c > 0 is an absolute constant, and P_{σ} is the orthogonal projection onto \mathbb{R}^{σ} .

• For the proof we use an inductive scheme; first, consider all points of the form $(\delta_j^{(1)})_{j\leqslant s} \in \mathbb{R}^s$, with $\delta_j^{(1)} = \pm 1$. By the parallelogram law,

$$\mathbb{E}_{\delta_j^{(1)}=\pm 1}\Big|\sum_{j=1}^s \delta_j^{(1)} u_j\Big|^2 = \sum_{j=1}^s |u_j|^2 \leqslant s.$$

Let $u_1, \ldots, u_s \in B_2^n$ and $\mathcal{E} = \left\{ (\delta_j)_{j \leq s} \in \mathbb{R}^s : \left| \sum_{j=1}^s \delta_j u_j \right|^2 \leq 2s \right\}$. Then, for every $\epsilon \in (0, 1)$ there exists $\sigma \subseteq \{1, \ldots, s\}$ with cardinality $|\sigma| \ge (1 - \epsilon)s$, such that $P_{\sigma}(\mathcal{E}) \supseteq c\sqrt{\epsilon} [-1, 1]^{\sigma}$, where c > 0 is an absolute constant, and P_{σ} is the orthogonal projection onto \mathbb{R}^{σ} .

• For the proof we use an inductive scheme; first, consider all points of the form $(\delta_j^{(1)})_{j\leqslant s} \in \mathbb{R}^s$, with $\delta_j^{(1)} = \pm 1$. By the parallelogram law,

$$\mathbb{E}_{\delta_{j}^{(1)}=\pm 1}\Big|\sum_{j=1}^{s}\delta_{j}^{(1)}u_{j}\Big|^{2}=\sum_{j=1}^{s}|u_{j}|^{2}\leqslant s.$$

• Using Markov's inequality, we find $M^1 \subseteq \{-1,1\}^s$ with cardinality $|M^1| \ge 2^{s-1}$, such that for every $(\delta_i^{(1)}) \in M^1$,

$$\sum_{j=1}^{s} \delta_j^{(1)} u_j \Big|^2 \leqslant 2s.$$

Let $u_1, \ldots, u_s \in B_2^n$ and $\mathcal{E} = \left\{ (\delta_j)_{j \leq s} \in \mathbb{R}^s : \left| \sum_{j=1}^s \delta_j u_j \right|^2 \leq 2s \right\}$. Then, for every $\epsilon \in (0, 1)$ there exists $\sigma \subseteq \{1, \ldots, s\}$ with cardinality $|\sigma| \ge (1 - \epsilon)s$, such that $P_{\sigma}(\mathcal{E}) \supseteq c\sqrt{\epsilon} [-1, 1]^{\sigma}$, where c > 0 is an absolute constant, and P_{σ} is the orthogonal projection onto \mathbb{R}^{σ} .

• For the proof we use an inductive scheme; first, consider all points of the form $(\delta_j^{(1)})_{j\leqslant s} \in \mathbb{R}^s$, with $\delta_j^{(1)} = \pm 1$. By the parallelogram law,

$$\mathbb{E}_{\delta_{j}^{(1)}=\pm 1}\Big|\sum_{j=1}^{s}\delta_{j}^{(1)}u_{j}\Big|^{2}=\sum_{j=1}^{s}|u_{j}|^{2}\leqslant s.$$

• Using Markov's inequality, we find $M^1 \subseteq \{-1,1\}^s$ with cardinality $|M^1| \ge 2^{s-1}$, such that for every $(\delta_i^{(1)}) \in M^1$,

$$\sum_{j=1}^{s} \delta_j^{(1)} u_j \Big|^2 \leqslant 2s.$$

• Using the geometric Sauer-Shelah lemma we find $\sigma_1 \subseteq S$, with cardinality $|\sigma_1| \ge \frac{s}{2}$, such that $P_{\sigma_1}(M^1) = \{-1, 1\}^{\sigma_1}$. Since $M^1 \subseteq \mathcal{E} \cap Q$ and the last set is convex, we have $Q_{\sigma_1} \subseteq P_{\sigma_1}(\mathcal{E} \cap Q)$.

Let $u_1, \ldots, u_s \in B_2^n$ and $\mathcal{E} = \left\{ (\delta_j)_{j \leqslant s} \in \mathbb{R}^s : \left| \sum_{j=1}^s \delta_j u_j \right|^2 \leqslant 2s \right\}$. Then, for every $\epsilon \in (0, 1)$ there exists $\sigma \subseteq \{1, \ldots, s\}$ with cardinality $|\sigma| \ge (1 - \epsilon)s$, such that $P_{\sigma}(\mathcal{E}) \supseteq c\sqrt{\epsilon} [-1, 1]^{\sigma}$, where c > 0 is an absolute constant, and P_{σ} is the orthogonal projection onto \mathbb{R}^{σ} .

Let $u_1, \ldots, u_s \in B_2^n$ and $\mathcal{E} = \left\{ (\delta_j)_{j \leqslant s} \in \mathbb{R}^s : \left| \sum_{j=1}^s \delta_j u_j \right|^2 \leqslant 2s \right\}$. Then, for every $\epsilon \in (0, 1)$ there exists $\sigma \subseteq \{1, \ldots, s\}$ with cardinality $|\sigma| \ge (1 - \epsilon)s$, such that $P_{\sigma}(\mathcal{E}) \supseteq c\sqrt{\epsilon} [-1, 1]^{\sigma}$, where c > 0 is an absolute constant, and P_{σ} is the orthogonal projection onto \mathbb{R}^{σ} .

We set $S = \{1, \ldots, s\}$, $Q = [-1, 1]^s$, $Q_\tau = [-1, 1]^\tau$ for every $\tau \subseteq S$, and for every $k \ge 1$ we define $\alpha_k = \sum_{r=0}^{k-1} 2^{r/2}$ and $\beta_k = \sum_{r=0}^{k-1} 2^r = 2^k - 1$.

Let $u_1, \ldots, u_s \in B_2^n$ and $\mathcal{E} = \left\{ (\delta_j)_{j \leqslant s} \in \mathbb{R}^s : \left| \sum_{j=1}^s \delta_j u_j \right|^2 \leqslant 2s \right\}$. Then, for every $\epsilon \in (0, 1)$ there exists $\sigma \subseteq \{1, \ldots, s\}$ with cardinality $|\sigma| \ge (1 - \epsilon)s$, such that $P_{\sigma}(\mathcal{E}) \supseteq c\sqrt{\epsilon} [-1, 1]^{\sigma}$, where c > 0 is an absolute constant, and P_{σ} is the orthogonal projection onto \mathbb{R}^{σ} .

We set $S = \{1, \ldots, s\}$, $Q = [-1, 1]^s$, $Q_\tau = [-1, 1]^\tau$ for every $\tau \subseteq S$, and for every $k \ge 1$ we define $\alpha_k = \sum_{r=0}^{k-1} 2^{r/2}$ and $\beta_k = \sum_{r=0}^{k-1} 2^r = 2^k - 1$.

Claim (proved by induction on k)

For every $k \ge 1$ there exists $\sigma_k \subseteq S$ with cardinality $|\sigma_k| \ge (1 - \frac{1}{2^k})s$, such that

 $Q_{\sigma_k} \subseteq P_{\sigma_k}(\alpha_k \mathcal{E} \cap \beta_k Q).$

Let $u_1, \ldots, u_s \in B_2^n$ and $\mathcal{E} = \left\{ (\delta_j)_{j \leqslant s} \in \mathbb{R}^s : \left| \sum_{j=1}^s \delta_j u_j \right|^2 \leqslant 2s \right\}$. Then, for every $\epsilon \in (0, 1)$ there exists $\sigma \subseteq \{1, \ldots, s\}$ with cardinality $|\sigma| \ge (1 - \epsilon)s$, such that $P_{\sigma}(\mathcal{E}) \supseteq c\sqrt{\epsilon} [-1, 1]^{\sigma}$, where c > 0 is an absolute constant, and P_{σ} is the orthogonal projection onto \mathbb{R}^{σ} .

We set $S = \{1, \ldots, s\}$, $Q = [-1, 1]^s$, $Q_\tau = [-1, 1]^\tau$ for every $\tau \subseteq S$, and for every $k \ge 1$ we define $\alpha_k = \sum_{r=0}^{k-1} 2^{r/2}$ and $\beta_k = \sum_{r=0}^{k-1} 2^r = 2^k - 1$.

Claim (proved by induction on k)

For every $k \ge 1$ there exists $\sigma_k \subseteq S$ with cardinality $|\sigma_k| \ge (1 - \frac{1}{2^k})s$, such that

$$Q_{\sigma_k} \subseteq P_{\sigma_k}(\alpha_k \mathcal{E} \cap \beta_k Q).$$

The claim shows that for every k = 1, 2, ..., there exists $\sigma_k \subseteq S$ with $|\sigma_k| \ge (1 - \frac{1}{2^k})s$, such that

$$\mathsf{P}_{\sigma_k}(\mathcal{E})\supseteq \mathsf{c}\,\sqrt{rac{1}{2^k}}\,[-1,1]^{\sigma_k},$$

where $c = \sqrt{2} - 1$. Then, we easily arrive at the statement of the isomorphic Sauer-Shelah lemma with a slightly worse value for the constant c.

• Consider all points of the form $\delta_j^{(k+1)}$, $j \leq s$, where $\delta_j^{(k+1)} = 0$ if $j \in \sigma_k$ and $\delta_i^{(k+1)} = \pm 2^{k/2}$ if $j \notin \sigma_k$.

- Consider all points of the form $\delta_j^{(k+1)}$, $j \leq s$, where $\delta_j^{(k+1)} = 0$ if $j \in \sigma_k$ and $\delta_j^{(k+1)} = \pm 2^{k/2}$ if $j \notin \sigma_k$.
- As in the first step,

$$\mathbb{E}_{(\delta_j^{(k+1)})_{j\leqslant s}}\Big|\sum_{j=1}^s \delta_j^{(k+1)} u_j\Big|^2 = \sum_{j\notin\sigma_k} 2^k |u_j|^2 \leqslant s.$$

Observe that the cardinality of the set of points $(\delta_j^{(k+1)})_{j \in s}$ is $2^{s-|\sigma_k|}$. From Markov's inequality we may find $M^{k+1} \subseteq [\mathbf{0}_{\sigma_k} \times \{-2^{k/2}, 2^{k/2}\}^{S \setminus \sigma_k}] \cap \mathcal{E}$ with $|M^{k+1}| \ge 2^{s-|\sigma_k|-1}$.

- Consider all points of the form $\delta_j^{(k+1)}$, $j \leq s$, where $\delta_j^{(k+1)} = 0$ if $j \in \sigma_k$ and $\delta_j^{(k+1)} = \pm 2^{k/2}$ if $j \notin \sigma_k$.
- As in the first step,

$$\mathbb{E}_{(\delta_j^{(k+1)})_{j\leqslant s}}\Big|\sum_{j=1}^s \delta_j^{(k+1)} u_j\Big|^2 = \sum_{j\notin\sigma_k} 2^k |u_j|^2 \leqslant s.$$

Observe that the cardinality of the set of points $(\delta_j^{(k+1)})_{j \in s}$ is $2^{s-|\sigma_k|}$. From Markov's inequality we may find $M^{k+1} \subseteq [\mathbf{0}_{\sigma_k} \times \{-2^{k/2}, 2^{k/2}\}^{S \setminus \sigma_k}] \cap \mathcal{E}$ with $|M^{k+1}| \ge 2^{s-|\sigma_k|-1}$.

• By the Sauer-Shelah lemma there exists $\sigma_{k+1}^* \subseteq S \setminus \sigma_k$, with cardinality $|\sigma_{k+1}^*| \ge \frac{1}{2}(s - |\sigma_k|)$, such that

$$P_{\sigma_k \cup \sigma_{k+1}^*}(M^{k+1}) = \mathbf{0}_{\sigma_k} \times \{-2^{k/2}, 2^{k/2}\}^{\sigma_{k+1}^*}.$$

- Consider all points of the form $\delta_j^{(k+1)}$, $j \leq s$, where $\delta_j^{(k+1)} = 0$ if $j \in \sigma_k$ and $\delta_j^{(k+1)} = \pm 2^{k/2}$ if $j \notin \sigma_k$.
- As in the first step,

$$\mathbb{E}_{(\delta_j^{(k+1)})_{j\leqslant s}}\Big|\sum_{j=1}^s \delta_j^{(k+1)} u_j\Big|^2 = \sum_{j\notin\sigma_k} 2^k |u_j|^2 \leqslant s.$$

Observe that the cardinality of the set of points $(\delta_j^{(k+1)})_{j \in s}$ is $2^{s-|\sigma_k|}$. From Markov's inequality we may find $M^{k+1} \subseteq [\mathbf{0}_{\sigma_k} \times \{-2^{k/2}, 2^{k/2}\}^{S \setminus \sigma_k}] \cap \mathcal{E}$ with $|M^{k+1}| \ge 2^{s-|\sigma_k|-1}$.

• By the Sauer-Shelah lemma there exists $\sigma_{k+1}^* \subseteq S \setminus \sigma_k$, with cardinality $|\sigma_{k+1}^*| \ge \frac{1}{2}(s - |\sigma_k|)$, such that

$$P_{\sigma_k \cup \sigma_{k+1}^*}(M^{k+1}) = \mathbf{0}_{\sigma_k} \times \{-2^{k/2}, 2^{k/2}\}^{\sigma_{k+1}^*}$$

• Since $M^{k+1} \subseteq \mathcal{E} \cap 2^{k/2}Q$ and the last set is convex, it follows that

$$\mathbf{0}_{\sigma_k} \times 2^k Q_{\sigma_{k+1}^*} \subseteq P_{\sigma_k \cup \sigma_{k+1}^*}(2^{k/2} \mathcal{E} \cap 2^k Q).$$

• We know that $Q_{\sigma_k} \subseteq P_{\sigma_k}(lpha_k \mathcal{E} \cap eta_k Q)$ and

$$\mathbf{0}_{\sigma_k} \times 2^k Q_{\sigma_{k+1}^*} \subseteq P_{\sigma_k \cup \sigma_{k+1}^*}(2^{k/2} \mathcal{E} \cap 2^k Q).$$

• We know that $Q_{\sigma_k} \subseteq P_{\sigma_k}(lpha_k \mathcal{E} \cap eta_k Q)$ and

$$\mathbf{0}_{\sigma_k} \times 2^k Q_{\sigma_{k+1}^*} \subseteq P_{\sigma_k \cup \sigma_{k+1}^*}(2^{k/2} \mathcal{E} \cap 2^k Q).$$

• Suppose that $a \in Q_{\sigma_k}$ and $b \in Q_{\sigma_{k+1}^*}$. By the inductive hypothesis, we can find $w_a \in \beta_k Q_{\sigma_{k+1}^*}$ for which

$$(a, w_a) \in P_{\sigma_k \cup \sigma_{k+1}^*}(\alpha_k \mathcal{E} \cap \beta_k Q).$$

• We know that $\mathcal{Q}_{\sigma_k} \subseteq \mathcal{P}_{\sigma_k}(lpha_k \mathcal{E} \cap eta_k \mathcal{Q})$ and

$$\mathbf{0}_{\sigma_k} \times 2^k Q_{\sigma_{k+1}^*} \subseteq P_{\sigma_k \cup \sigma_{k+1}^*}(2^{k/2} \mathcal{E} \cap 2^k Q).$$

• Suppose that $a \in Q_{\sigma_k}$ and $b \in Q_{\sigma_{k+1}^*}$. By the inductive hypothesis, we can find $w_a \in \beta_k Q_{\sigma_{k+1}^*}$ for which

$$(a, w_a) \in P_{\sigma_k \cup \sigma_{k+1}^*}(\alpha_k \mathcal{E} \cap \beta_k Q).$$

• We define $v_{a,b} = b - w_a$. It is clear that $v_{a,b} \in (\beta_k + 1)Q_{\sigma_{k+1}^*} = 2^k Q_{\sigma_{k+1}^*}$, and hence

$$(\mathbf{0}_{\sigma_k}, \mathsf{v}_{\mathsf{a},b}) \in \mathcal{P}_{\sigma_k \cup \sigma_{k+1}^*}(2^{k/2}\mathcal{E} \cap 2^k Q).$$

• We know that $\mathcal{Q}_{\sigma_k} \subseteq \mathcal{P}_{\sigma_k}(lpha_k \mathcal{E} \cap eta_k \mathcal{Q})$ and

$$\mathbf{0}_{\sigma_k} \times 2^k Q_{\sigma_{k+1}^*} \subseteq P_{\sigma_k \cup \sigma_{k+1}^*}(2^{k/2} \mathcal{E} \cap 2^k Q).$$

• Suppose that $a \in Q_{\sigma_k}$ and $b \in Q_{\sigma_{k+1}^*}$. By the inductive hypothesis, we can find $w_a \in \beta_k Q_{\sigma_{k+1}^*}$ for which

$$(a, w_a) \in P_{\sigma_k \cup \sigma_{k+1}^*}(\alpha_k \mathcal{E} \cap \beta_k Q).$$

• We define $v_{a,b} = b - w_a$. It is clear that $v_{a,b} \in (\beta_k + 1)Q_{\sigma_{k+1}^*} = 2^k Q_{\sigma_{k+1}^*}$, and hence

$$(\mathbf{0}_{\sigma_k}, \mathsf{v}_{\mathsf{a}, \mathsf{b}}) \in \mathsf{P}_{\sigma_k \cup \sigma^*_{k+1}}(2^{k/2}\mathcal{E} \cap 2^k Q).$$

Consequently,

(

$$\begin{aligned} \mathsf{a},\mathsf{b}) &= (\mathsf{a},\mathsf{w}_{\mathsf{a}}) + (\mathbf{0}_{\sigma_{k}},\mathsf{v}_{\mathsf{a},\mathsf{b}}) \in \mathsf{P}_{\sigma_{k}\cup\sigma_{k+1}^{*}}(\alpha_{k}\mathcal{E}\cap\beta_{k}Q) + \mathsf{P}_{\sigma_{k}\cup\sigma_{k+1}^{*}}(2^{k/2}\mathcal{E}\cap2^{k}Q) \\ &\subseteq \mathsf{P}_{\sigma_{k}\cup\sigma_{k+1}^{*}}(\alpha_{k+1}\mathcal{E}\cap\beta_{k+1}Q). \end{aligned}$$

• We know that $\mathcal{Q}_{\sigma_k} \subseteq \mathcal{P}_{\sigma_k}(lpha_k \mathcal{E} \cap eta_k \mathcal{Q})$ and

$$\mathbf{0}_{\sigma_k} \times 2^k Q_{\sigma_{k+1}^*} \subseteq P_{\sigma_k \cup \sigma_{k+1}^*}(2^{k/2} \mathcal{E} \cap 2^k Q).$$

• Suppose that $a \in Q_{\sigma_k}$ and $b \in Q_{\sigma_{k+1}^*}$. By the inductive hypothesis, we can find $w_a \in \beta_k Q_{\sigma_{k+1}^*}$ for which

$$(a, w_a) \in P_{\sigma_k \cup \sigma_{k+1}^*}(\alpha_k \mathcal{E} \cap \beta_k Q).$$

• We define $v_{a,b} = b - w_a$. It is clear that $v_{a,b} \in (\beta_k + 1)Q_{\sigma_{k+1}^*} = 2^k Q_{\sigma_{k+1}^*}$, and hence

$$(\mathbf{0}_{\sigma_k}, \mathsf{v}_{\mathsf{a}, \mathsf{b}}) \in \mathsf{P}_{\sigma_k \cup \sigma^*_{k+1}}(2^{k/2}\mathcal{E} \cap 2^k Q).$$

Consequently,

(

$$\begin{aligned} \mathsf{a}, \mathsf{b}) &= (\mathsf{a}, \mathsf{w}_{\mathsf{a}}) + (\mathbf{0}_{\sigma_{k}}, \mathsf{v}_{\mathsf{a}, \mathsf{b}}) \in \mathsf{P}_{\sigma_{k} \cup \sigma_{k+1}^{*}}(\alpha_{k} \mathcal{E} \cap \beta_{k} Q) + \mathsf{P}_{\sigma_{k} \cup \sigma_{k+1}^{*}}(2^{k/2} \mathcal{E} \cap 2^{k} Q) \\ &\subseteq \mathsf{P}_{\sigma_{k} \cup \sigma_{k+1}^{*}}(\alpha_{k+1} \mathcal{E} \cap \beta_{k+1} Q). \end{aligned}$$

• We have thus proved that

$$Q_{\sigma_k\cup\sigma_{k+1}^*}\subseteq P_{\sigma_k\cup\sigma_{k+1}^*}(\alpha_{k+1}\mathcal{E}\cap\beta_{k+1}Q).$$

We set $\sigma_{k+1} = \sigma_k \cup \sigma_{k+1}^*$ and observe that $|\sigma_{k+1}| \ge (1 - \frac{1}{2^{k+1}})s$.

The main proposition

Let $X = (\mathbb{R}^n, \|\cdot\|)$ be a normed space and let $\epsilon \in (0, 1)$. Assume that the unit ball K of X is in Löwner position. Then, we can find $m \ge (1 - \epsilon)n$ and vectors z_1, \ldots, z_m in X with $\|z_i\| = |z_i| = 1$ so that, for any choice of real numbers t_1, \ldots, t_m ,

$$\sum_{i=1}^{m} t_i z_i \Big| \geqslant c \frac{\epsilon}{\sqrt{n}} \sum_{i=1}^{m} |t_i|.$$

where c > 0 is an absolute constant.

The main proposition

Let $X = (\mathbb{R}^n, \|\cdot\|)$ be a normed space and let $\epsilon \in (0, 1)$. Assume that the unit ball K of X is in Löwner position. Then, we can find $m \ge (1 - \epsilon)n$ and vectors z_1, \ldots, z_m in X with $\|z_i\| = |z_i| = 1$ so that, for any choice of real numbers t_1, \ldots, t_m ,

$$\sum_{i=1}^{m} t_i z_i \Big| \geqslant c \frac{\epsilon}{\sqrt{n}} \sum_{i=1}^{m} |t_i|,$$

where c > 0 is an absolute constant.

Proof:

• We use the lemma of Szarek and Talagrand to choose $x_1, \ldots, x_s \in K$ with $s \ge (1 - \frac{\epsilon}{2})n$, such that $\operatorname{dist}\left(x_i, \operatorname{span}\{x_j, j \neq i\}\right) \ge \sqrt{\epsilon/2}$ for all $i = 1, \ldots, s$.

The main proposition

Let $X = (\mathbb{R}^n, \|\cdot\|)$ be a normed space and let $\epsilon \in (0, 1)$. Assume that the unit ball K of X is in Löwner position. Then, we can find $m \ge (1 - \epsilon)n$ and vectors z_1, \ldots, z_m in X with $||z_i|| = |z_i| = 1$ so that, for any choice of real numbers t_1, \ldots, t_m ,

$$\sum_{i=1}^{m} t_i z_i \Big| \geqslant c \frac{\epsilon}{\sqrt{n}} \sum_{i=1}^{m} |t_i|,$$

where c > 0 is an absolute constant.

Proof:

- We use the lemma of Szarek and Talagrand to choose $x_1, \ldots, x_s \in K$ with $s \ge (1 \frac{\epsilon}{2})n$, such that $\operatorname{dist}\left(x_i, \operatorname{span}\{x_j, j \neq i\}\right) \ge \sqrt{\epsilon/2}$ for all $i = 1, \ldots, s$.
- There exist $v_i \perp \operatorname{span}\{x_j, j \neq i\}$ which form a biorthogonal system with the x_j 's and have length $|v_i| \leq \sqrt{2/\epsilon}$. In other words, we can find $v_1, \ldots, v_s \in \mathbb{R}^n$ such that

$$|v_i|\leqslant \sqrt{2/\epsilon}$$
 and $\langle x_i,v_j
angle=\delta_{ij}$ $i,j=1,\ldots,s.$

Proof (continued):

• We define $u_i = \sqrt{\epsilon/2} v_i$, and applying the isomorphic Sauer-Shelah lemma for the set $\mathcal{E} = \left\{ (\delta_j)_{j \leq s} \in \mathbb{R}^s : \left| \sum_{j=1}^s \delta_j u_j \right|^2 \leq 2s \right\}$ we find $\sigma \subseteq \{1, \ldots, s\}$ of cardinality $|\sigma| \geq (1 - \frac{\epsilon}{2})s$, with $P_{\sigma}(\mathcal{E}) \supseteq c\sqrt{\epsilon} [-1, 1]^{\sigma}$.

Then, $|\sigma| \ge (1-\epsilon)n$.

Proof (continued):

• We define $u_i = \sqrt{\epsilon/2} v_i$, and applying the isomorphic Sauer-Shelah lemma for the set $\mathcal{E} = \left\{ (\delta_j)_{j \leqslant s} \in \mathbb{R}^s : \left| \sum_{j=1}^s \delta_j u_j \right|^2 \leqslant 2s \right\}$ we find $\sigma \subseteq \{1, \ldots, s\}$ of cardinality $|\sigma| \ge (1 - \frac{\epsilon}{2})s$, with $P_{\sigma}(\mathcal{E}) \supseteq c\sqrt{\epsilon} [-1, 1]^{\sigma}$.

Then, $|\sigma| \ge (1-\epsilon)n$.

• Note that for all $(t_i)_{i \in \sigma}$ we have

$$\sum_{i\in\sigma} |t_i| = \Big\langle \sum_{i\in\sigma} t_i x_i, \sum_{j\in\sigma} \operatorname{sign}(t_j) v_j \Big\rangle.$$

Proof (continued):

• We define $u_i = \sqrt{\epsilon/2} v_i$, and applying the isomorphic Sauer-Shelah lemma for the set $\mathcal{E} = \left\{ (\delta_j)_{j \leqslant s} \in \mathbb{R}^s : \left| \sum_{j=1}^s \delta_j u_j \right|^2 \leqslant 2s \right\}$ we find $\sigma \subseteq \{1, \ldots, s\}$ of cardinality $|\sigma| \ge (1 - \frac{\epsilon}{2})s$, with $P_{\sigma}(\mathcal{E}) \supseteq c\sqrt{\epsilon} [-1, 1]^{\sigma}$.

Then, $|\sigma| \ge (1-\epsilon)n$.

Note that for all (t_i)_{i∈σ} we have

$$\sum_{i\in\sigma} |t_i| = \Big\langle \sum_{i\in\sigma} t_i x_i, \sum_{j\in\sigma} \operatorname{sign}(t_j) v_j \Big\rangle.$$

• Since $(c\sqrt{\epsilon}\operatorname{sign}(t_j))_{j\in\sigma} \in P_{\sigma}(\mathcal{E})$, we can find a point $(\delta_j)_{j\leqslant s}$ in \mathcal{E} , such that $\delta_j = c\sqrt{\epsilon}\operatorname{sign}(t_j)$ if $j\in\sigma$. Note that if $i\in\sigma$ and $j\notin\sigma$ then $\langle x_i, v_j \rangle = 0$, and hence

$$\left\langle \sum_{i\in\sigma} t_i x_i, \sum_{j\in\sigma} \operatorname{sign}(t_j) v_j \right\rangle = \frac{1}{c\sqrt{\epsilon}} \left\langle \sum_{i\in\sigma} t_i x_i, \sum_{j=1}^s \delta_j v_j \right\rangle \leq \frac{1}{c\sqrt{\epsilon}} \left| \sum_{i\in\sigma} t_i x_i \right| \sqrt{\frac{2}{\epsilon}} \left| \sum_{j=1}^s \delta_j u_j \right|$$
$$\leq \frac{2\sqrt{s}}{c\epsilon} \left| \sum_{i\in\sigma} t_i x_i \right| \leq \frac{\sqrt{n}}{c_1\epsilon} \left| \sum_{i\in\sigma} t_i x_i \right|.$$

Proof (continued):

• We define $u_i = \sqrt{\epsilon/2} v_i$, and applying the isomorphic Sauer-Shelah lemma for the set $\mathcal{E} = \left\{ (\delta_j)_{j \leqslant s} \in \mathbb{R}^s : \left| \sum_{j=1}^s \delta_j u_j \right|^2 \leqslant 2s \right\}$ we find $\sigma \subseteq \{1, \ldots, s\}$ of cardinality $|\sigma| \ge (1 - \frac{\epsilon}{2})s$, with $P_{\sigma}(\mathcal{E}) \supseteq c\sqrt{\epsilon} [-1, 1]^{\sigma}$.

Then, $|\sigma| \ge (1-\epsilon)n$.

Note that for all (t_i)_{i∈σ} we have

$$\sum_{i\in\sigma} |t_i| = \Big\langle \sum_{i\in\sigma} t_i x_i, \sum_{j\in\sigma} \operatorname{sign}(t_j) v_j \Big\rangle.$$

• Since $(c\sqrt{\epsilon}\operatorname{sign}(t_j))_{j\in\sigma} \in P_{\sigma}(\mathcal{E})$, we can find a point $(\delta_j)_{j\leqslant s}$ in \mathcal{E} , such that $\delta_j = c\sqrt{\epsilon}\operatorname{sign}(t_j)$ if $j\in\sigma$. Note that if $i\in\sigma$ and $j\notin\sigma$ then $\langle x_i, v_j \rangle = 0$, and hence

$$\begin{split} \left\langle \sum_{i\in\sigma} t_i x_i, \sum_{j\in\sigma} \operatorname{sign}(t_j) v_j \right\rangle &= \frac{1}{c\sqrt{\epsilon}} \left\langle \sum_{i\in\sigma} t_i x_i, \sum_{j=1}^s \delta_j v_j \right\rangle \leqslant \frac{1}{c\sqrt{\epsilon}} \left| \sum_{i\in\sigma} t_i x_i \right| \sqrt{\frac{2}{\epsilon}} \left| \sum_{j=1}^s \delta_j u_j \right| \\ &\leqslant \frac{2\sqrt{s}}{c\epsilon} \left| \sum_{i\in\sigma} t_i x_i \right| \leqslant \frac{\sqrt{n}}{c_1\epsilon} \left| \sum_{i\in\sigma} t_i x_i \right|. \end{split}$$

We choose as z_i, i = 1,..., |σ| = m, the x_j's for which j ∈ σ, and the proof is complete.

• Let $X = (\mathbb{R}^n, \|\cdot\|)$ be an *n*-dimensional normed space.

- Let $X = (\mathbb{R}^n, \|\cdot\|)$ be an *n*-dimensional normed space.
- We may assume that the unit ball K of X is in Löwner position. Fix ε ∈ (0, 1). We have found m≥ (1 − ε)n and z₁,..., z_m in X with ||z_i|| = |z_i| = 1 so that, for any choice of real numbers t₁,..., t_m,

$$\sum_{i=1}^{m} t_i z_i \Big| \ge c \frac{\epsilon}{\sqrt{n}} \sum_{i=1}^{m} |t_i|.$$

- Let $X = (\mathbb{R}^n, \|\cdot\|)$ be an *n*-dimensional normed space.
- We may assume that the unit ball K of X is in Löwner position. Fix $\epsilon \in (0, 1)$. We have found $m \ge (1 \epsilon)n$ and z_1, \ldots, z_m in X with $||z_i|| = |z_i| = 1$ so that, for any choice of real numbers t_1, \ldots, t_m ,

$$\left|\sum_{i=1}^{m} t_i z_i\right| \ge c \frac{\epsilon}{\sqrt{n}} \sum_{i=1}^{m} |t_i|.$$

• We define $F = \operatorname{span}\{z_1, \ldots, z_m\}$ and choose any orthonormal basis y_1, \ldots, y_{n-m} of F^{\perp} . By John's theorem, for every $j = 1, \ldots, n-m$ we have

$$|y_j| \leq ||y_j|| \leq \sqrt{n}|y_j| = \sqrt{n}.$$

- Let $X = (\mathbb{R}^n, \|\cdot\|)$ be an *n*-dimensional normed space.
- We may assume that the unit ball K of X is in Löwner position. Fix ε ∈ (0, 1). We have found m≥ (1 − ε)n and z₁,..., z_m in X with ||z_i|| = |z_i| = 1 so that, for any choice of real numbers t₁,..., t_m,

$$\left|\sum_{i=1}^{m} t_i z_i\right| \ge c \frac{\epsilon}{\sqrt{n}} \sum_{i=1}^{m} |t_i|.$$

• We define $F = \operatorname{span}\{z_1, \ldots, z_m\}$ and choose any orthonormal basis y_1, \ldots, y_{n-m} of F^{\perp} . By John's theorem, for every $j = 1, \ldots, n-m$ we have

$$|y_j| \leq ||y_j|| \leq \sqrt{n}|y_j| = \sqrt{n}.$$

• Therefore, if we set $w_j = y_j / ||y_j||$ we have $||w_j|| = 1$ and $|w_j| \ge 1/\sqrt{n}$, $j = 1, \ldots, n - m$.
- Let $X = (\mathbb{R}^n, \|\cdot\|)$ be an *n*-dimensional normed space.
- We may assume that the unit ball K of X is in Löwner position. Fix ε ∈ (0, 1). We have found m≥ (1 − ε)n and z₁,..., z_m in X with ||z_i|| = |z_i| = 1 so that, for any choice of real numbers t₁,..., t_m,

$$\left|\sum_{i=1}^{m} t_i z_i\right| \ge c \frac{\epsilon}{\sqrt{n}} \sum_{i=1}^{m} |t_i|.$$

• We define $F = \operatorname{span}\{z_1, \ldots, z_m\}$ and choose any orthonormal basis y_1, \ldots, y_{n-m} of F^{\perp} . By John's theorem, for every $j = 1, \ldots, n-m$ we have

$$|y_j| \leq ||y_j|| \leq \sqrt{n}|y_j| = \sqrt{n}.$$

- Therefore, if we set $w_j = y_j / ||y_j||$ we have $||w_j|| = 1$ and $|w_j| \ge 1/\sqrt{n}$, j = 1, ..., n m.
- Consider the *n*-tuple of vectors $z_1, \ldots, z_m, w_1, \ldots, w_{n-m}$. Note that $n m \leq \epsilon n$.

Proof of $\mathcal{R}_{\infty}^n \leqslant cn^{5/6}$

• Let $t_1, \ldots, t_m, s_1, \ldots, s_{n-m} \in \mathbb{R}$. Then,

$$\Big|\sum_{i=1}^{m} t_i z_i + \sum_{j=1}^{n-m} s_j w_j\Big| \leqslant \Big\|\sum_{i=1}^{m} t_i z_i + \sum_{j=1}^{n-m} s_j w_j\Big\| \leqslant \sum_{i=1}^{m} |t_i| + \sum_{j=1}^{n-m} |s_j|.$$

Proof of $\mathcal{R}^n_{\infty}\leqslant cn^{5/6}$

• Let $t_1, \ldots, t_m, s_1, \ldots, s_{n-m} \in \mathbb{R}$. Then,

$$\Big|\sum_{i=1}^{m} t_i z_i + \sum_{j=1}^{n-m} s_j w_j\Big| \leqslant \Big\|\sum_{i=1}^{m} t_i z_i + \sum_{j=1}^{n-m} s_j w_j\Big\| \leqslant \sum_{i=1}^{m} |t_i| + \sum_{j=1}^{n-m} |s_j|.$$

• On the other hand, $\sum_i t_i z_i$ is orthogonal to $\sum_j s_j w_j$. It follows that

$$\begin{split} \left| \sum_{i=1}^{m} t_{i} z_{i} + \sum_{j=1}^{n-m} s_{j} w_{j} \right| &= \left(\left| \sum_{i=1}^{m} t_{i} z_{i} \right|^{2} + \left| \sum_{j=1}^{n-m} s_{j} w_{j} \right|^{2} \right)^{1/2} \geqslant \frac{1}{\sqrt{2}} \left(\left| \sum_{i=1}^{m} t_{i} z_{i} \right| + \left| \sum_{j=1}^{n-m} s_{j} w_{j} \right| \right) \\ &= \frac{1}{\sqrt{2}} \left(\left| \sum_{i=1}^{m} t_{i} z_{i} \right| + \left(\sum_{j=1}^{n-m} s_{j}^{2} |w_{j}|^{2} \right)^{1/2} \right) \geqslant \frac{1}{\sqrt{2}} \left(\frac{c\epsilon}{\sqrt{n}} \sum_{i=1}^{m} |t_{i}| + \frac{1}{\sqrt{n}} \frac{1}{\sqrt{n-m}} \sum_{j=1}^{n-m} |s_{j}| \right) \\ &\geqslant \frac{1}{\sqrt{2}} \min \left\{ \frac{c\epsilon}{\sqrt{n}} , \frac{1}{\sqrt{\epsilon n}} \right\} \left(\sum_{i=1}^{m} |t_{i}| + \sum_{j=1}^{n-m} |s_{j}| \right). \end{split}$$

Proof of $\mathcal{R}^{\it n}_{\infty}\leqslant cn^{5/6}$

• Let
$$t_1, \ldots, t_m, s_1, \ldots, s_{n-m} \in \mathbb{R}$$
. Then,

$$\Big|\sum_{i=1}^m t_i z_i + \sum_{j=1}^{n-m} s_j w_j\Big| \leqslant \Big\|\sum_{i=1}^m t_i z_i + \sum_{j=1}^{n-m} s_j w_j\Big\| \leqslant \sum_{i=1}^m |t_i| + \sum_{j=1}^{n-m} |s_j|.$$

• On the other hand, $\sum_i t_i z_i$ is orthogonal to $\sum_j s_j w_j$. It follows that

$$\begin{split} & \left|\sum_{i=1}^{m} t_{i} z_{i} + \sum_{j=1}^{n-m} s_{j} w_{j}\right| = \left(\left|\sum_{i=1}^{m} t_{i} z_{i}\right|^{2} + \left|\sum_{j=1}^{n-m} s_{j} w_{j}\right|^{2}\right)^{1/2} \geqslant \frac{1}{\sqrt{2}} \left(\left|\sum_{i=1}^{m} t_{i} z_{i}\right| + \left|\sum_{j=1}^{n-m} s_{j} w_{j}\right|\right) \\ & = \frac{1}{\sqrt{2}} \left(\left|\sum_{i=1}^{m} t_{i} z_{i}\right| + \left(\sum_{j=1}^{n-m} s_{j}^{2} |w_{j}|^{2}\right)^{1/2}\right) \geqslant \frac{1}{\sqrt{2}} \left(\frac{c\epsilon}{\sqrt{n}} \sum_{i=1}^{m} |t_{i}| + \frac{1}{\sqrt{n}} \frac{1}{\sqrt{n-m}} \sum_{j=1}^{n-m} |s_{j}|\right) \\ & \geqslant \frac{1}{\sqrt{2}} \min\left\{\frac{c\epsilon}{\sqrt{n}}, \frac{1}{\sqrt{\epsilon}n}\right\} \left(\sum_{i=1}^{m} |t_{i}| + \sum_{j=1}^{n-m} |s_{j}|\right). \end{split}$$

• We have thus proved that

$$d(X, \ell_1^n) \leqslant \sqrt{2} \max\left\{\sqrt{n}/c\epsilon, \sqrt{\epsilon}n\right\}$$

for every $\epsilon \in (0, 1)$. The optimal choice of ϵ is $\epsilon \simeq 1/n^{1/3}$. For a value of ϵ of this order we have $d(X, \ell_1^n) \leqslant cn^{5/6}$.

In their study of the radius \mathcal{R}_{∞}^n , Bourgain and Szarek obtained a proportional Dvoretzky-Rogers factorization theorem.

Bourgain-Szarek

Assume that B_2^n is the minimal volume ellipsoid of K, For every $\epsilon \in (0, 1)$ one can find $m \ge (1 - \epsilon)n$ and x_1, \ldots, x_m among the contact points of K and B_2^n , so that for every choice of scalars $(t_i)_{i \le m}$

$$f(\epsilon)\Big(\sum_{i=1}^m t_i^2\Big)^{1/2} \leqslant \Big|\sum_{i=1}^m t_i x_i\Big| \leqslant \Big\|\sum_{i=1}^m t_i x_i\Big\|_{\mathcal{K}} \le \sum_{i=1}^m |t_i|.$$

In their study of the radius \mathcal{R}_{∞}^{n} , Bourgain and Szarek obtained a proportional Dvoretzky-Rogers factorization theorem.

Bourgain-Szarek

Assume that B_2^n is the minimal volume ellipsoid of K. For every $\epsilon \in (0, 1)$ one can find $m \ge (1 - \epsilon)n$ and x_1, \ldots, x_m among the contact points of K and B_2^n , so that for every choice of scalars $(t_i)_{i \le m}$

$$f(\epsilon)\Big(\sum_{i=1}^m t_i^2\Big)^{1/2} \leqslant \Big|\sum_{i=1}^m t_i x_i\Big| \leqslant \Big\|\sum_{i=1}^m t_i x_i\Big\|_{K} \leq \sum_{i=1}^m |t_i|.$$

• The important part in this string of inequalities is the first one; it provides a much-stronger version of the classical Dvoretzky–Rogers Lemma which implied a similar inequality only for $m \leq \sqrt{n}$.

In their study of the radius \mathcal{R}_{∞}^n , Bourgain and Szarek obtained a proportional Dvoretzky-Rogers factorization theorem.

Bourgain-Szarek

Assume that B_2^n is the minimal volume ellipsoid of K. For every $\epsilon \in (0, 1)$ one can find $m \ge (1 - \epsilon)n$ and x_1, \ldots, x_m among the contact points of K and B_2^n , so that for every choice of scalars $(t_i)_{i \le m}$

$$f(\epsilon)\Big(\sum_{i=1}^m t_i^2\Big)^{1/2} \leqslant \Big|\sum_{i=1}^m t_i x_i\Big| \leqslant \Big\|\sum_{i=1}^m t_i x_i\Big\|_K \leq \sum_{i=1}^m |t_i|.$$

- The important part in this string of inequalities is the first one; it provides a much-stronger version of the classical Dvoretzky–Rogers Lemma which implied a similar inequality only for $m \leq \sqrt{n}$.
- Equivalently, it can be stated in the form of a "proportional factorization result":

Proportional Dvoretzky-Rogers factorization

Let X be an *n*-dimensional normed space. For any $\epsilon > 0$ there exists $k \ge (1 - \epsilon)^2 n$ such that the identity operator $i_{2,\infty} : I_2^k \to I_\infty^k$ can be written in the form $i_{2,\infty} = \alpha \circ \beta$, where $\beta : I_2^k \to X$, $\alpha : X \to I_\infty^k$ and $\|\alpha\| \cdot \|\beta\| \le \frac{1}{\epsilon}$.

 The first proof by Bourgain and Szarek gave a weaker dependence on *ε*. The work of Szarek and Talagrand improved the dependence on *ε* to *ε*⁻².

- The first proof by Bourgain and Szarek gave a weaker dependence on *ε*. The work of Szarek and Talagrand improved the dependence on *ε* to *ε*⁻².
- The best known dependence on ϵ is $c(\epsilon) = \frac{c}{\epsilon}$. The tools that are used are factorization arguments related to Grothendieck's inequality and the following stronger version of the isomorphic Sauer-Shelah lemma.

G., 1993

Let
$$u_1, \ldots, u_s \in B_2^n$$
 and define $\mathcal{E} = \left\{ (\delta_j)_{j \leqslant s} \in \mathbb{R}^s : \left| \sum_{j=1}^s \delta_j u_j \right| \leqslant 1 \right\}$. For every $\epsilon \in (0, 1)$ we can find $\sigma \subseteq \{1, \ldots, s\}$ with $|\sigma| \ge (1 - \epsilon)s$ such that

$$P_{\sigma}(\mathcal{E}) \supseteq c\sqrt{\epsilon}B_{\sigma},$$

where B_{σ} is the Euclidean unit ball in \mathbb{R}^{σ} and c > 0 is an absolute constant.

- The first proof by Bourgain and Szarek gave a weaker dependence on *ε*. The work of Szarek and Talagrand improved the dependence on *ε* to *ε*⁻².
- The best known dependence on ϵ is $c(\epsilon) = \frac{c}{\epsilon}$. The tools that are used are factorization arguments related to Grothendieck's inequality and the following stronger version of the isomorphic Sauer-Shelah lemma.

G., 1993

Let
$$u_1, \ldots, u_s \in B_2^n$$
 and define $\mathcal{E} = \left\{ (\delta_j)_{j \leqslant s} \in \mathbb{R}^s : \left| \sum_{j=1}^s \delta_j u_j \right| \leqslant 1 \right\}$. For every $\epsilon \in (0, 1)$ we can find $\sigma \subseteq \{1, \ldots, s\}$ with $|\sigma| \ge (1 - \epsilon)s$ such that

$$P_{\sigma}(\mathcal{E}) \supseteq c\sqrt{\epsilon}B_{\sigma},$$

where B_{σ} is the Euclidean unit ball in \mathbb{R}^{σ} and c > 0 is an absolute constant.

• The $\sqrt{\epsilon}$ -dependence on ϵ in the previous result is best possible.

- The first proof by Bourgain and Szarek gave a weaker dependence on *ε*. The work of Szarek and Talagrand improved the dependence on *ε* to *ε*⁻².
- The best known dependence on ϵ is $c(\epsilon) = \frac{c}{\epsilon}$. The tools that are used are factorization arguments related to Grothendieck's inequality and the following stronger version of the isomorphic Sauer-Shelah lemma.

G., 1993

Let
$$u_1, \ldots, u_s \in B_2^n$$
 and define $\mathcal{E} = \left\{ (\delta_j)_{j \leqslant s} \in \mathbb{R}^s : \left| \sum_{j=1}^s \delta_j u_j \right| \leqslant 1 \right\}$. For every $\epsilon \in (0, 1)$ we can find $\sigma \subseteq \{1, \ldots, s\}$ with $|\sigma| \ge (1 - \epsilon)s$ such that

$$P_{\sigma}(\mathcal{E}) \supseteq c\sqrt{\epsilon}B_{\sigma},$$

where B_{σ} is the Euclidean unit ball in \mathbb{R}^{σ} and c > 0 is an absolute constant.

- The $\sqrt{\epsilon}$ -dependence on ϵ in the previous result is best possible.
- Having the proportional Dvoretzky-Rogers factorization theorem, by an application of the Cauchy-Schwarz inequality we receive the main proposition that we used to prove the estimate $\mathcal{R}_{\infty}^n \leqslant cn^{5/6}$ for the Banach-Mazur distance to the cube.

Asymptotic centers of the Banach-Mazur compactum

• As an application of the proportional Dvoretzky-Rogers factorization theorem, Bourgain and Szarek gave a final answer to the problem of the uniqueness up to constant of the center of the Banach-Mazur compactum.

Question

Does there exist a function $f(\lambda)$, $\lambda \ge 1$, such that for every $X \in \mathcal{B}_n$ with $\mathcal{R}(X) \le \lambda \sqrt{n}$ we must have $d(X, \ell_2^n) \le f(\lambda)$?

Question

Does there exist a function $f(\lambda)$, $\lambda \ge 1$, such that for every $X \in \mathcal{B}_n$ with $\mathcal{R}(X) \le \lambda \sqrt{n}$ we must have $d(X, \ell_2^n) \le f(\lambda)$?

In other words, the question is if all the "asymptotic centers" of the Banach-Mazur compactum are close to Euclidean space.

Question

Does there exist a function $f(\lambda)$, $\lambda \ge 1$, such that for every $X \in \mathcal{B}_n$ with $\mathcal{R}(X) \le \lambda \sqrt{n}$ we must have $d(X, \ell_2^n) \le f(\lambda)$?

In other words, the question is if all the "asymptotic centers" of the Banach-Mazur compactum are close to Euclidean space.

• The answer is negative:

Bourgain-Szarek

Let $X_0 = \ell_2^s \oplus \ell_1^{n-s}$ where $s = \lfloor n/2 \rfloor$. Then $\mathcal{R}(X_0) \leq c\sqrt{n}$ for some absolute constant but $d(X_0, \ell_2^n) \geq \sqrt{n/2}$.

Question

Does there exist a function $f(\lambda)$, $\lambda \ge 1$, such that for every $X \in \mathcal{B}_n$ with $\mathcal{R}(X) \le \lambda \sqrt{n}$ we must have $d(X, \ell_2^n) \le f(\lambda)$?

In other words, the question is if all the "asymptotic centers" of the Banach-Mazur compactum are close to Euclidean space.

• The answer is negative:

Bourgain-Szarek

Let $X_0 = \ell_2^s \oplus \ell_1^{n-s}$ where $s = \lfloor n/2 \rfloor$. Then $\mathcal{R}(X_0) \leq c\sqrt{n}$ for some absolute constant but $d(X_0, \ell_2^n) \geq \sqrt{n/2}$.

• The main tool in the proof is the proportional Dvoretzky-Rogers theorem.

A second proof of the bound $\mathcal{R}_{\infty}^{n}\leqslant cn^{5/6}$

A second proof of the bound $\mathcal{R}_{\infty}^{n}\leqslant cn^{5/6}$

• Next we discuss an alternative proof of the proportional Dvoretzky-Rogers factorization theorem, which is due to P. Youssef.

A second proof of the bound $\mathcal{R}_{\infty}^{\textit{n}} \leqslant \textit{cn}^{5/6}$

- Next we discuss an alternative proof of the proportional Dvoretzky-Rogers factorization theorem, which is due to P. Youssef.
- We have seen that this also implies the upper bound $\mathcal{R}_{\infty}^{n} \leqslant cn^{5/6}$.

A second proof of the bound $\mathcal{R}_{\infty}^{n}\leqslant cn^{5/6}$

- Next we discuss an alternative proof of the proportional Dvoretzky-Rogers factorization theorem, which is due to P. Youssef.
- We have seen that this also implies the upper bound $\mathcal{R}_{\infty}^n \leqslant cn^{5/6}$.
- Youssef exploited the method introduced in previous work of Spielman and Srivastava.

• We start with the work of Batson, Spielman and Srivastava on the question to approximate a graph G = (V, E, w) by a sparse graph G'.

- We start with the work of Batson, Spielman and Srivastava on the question to approximate a graph G = (V, E, w) by a sparse graph G'.
- Recall that the Laplacian matrix L_G of a graph G = (V, E, w) is defined by

$$\langle L_G x, x \rangle = \sum_{(u,v) \in E} w_{u,v} (x_u - x_v)^2.$$

Here, V is the set of vertices of G, E is the set of edges of G, and $w_{u,v}$ is the weight of the edge $(u, v) \in E$.

- We start with the work of Batson, Spielman and Srivastava on the question to approximate a graph G = (V, E, w) by a sparse graph G'.
- Recall that the Laplacian matrix L_G of a graph G = (V, E, w) is defined by

$$\langle L_G x, x \rangle = \sum_{(u,v) \in E} w_{u,v} (x_u - x_v)^2.$$

Here, V is the set of vertices of G, E is the set of edges of G, and $w_{u,v}$ is the weight of the edge $(u, v) \in E$.

• Formally, one says that G' is a γ -approximation of G (for some $\gamma > 1$) if

$$\langle L_G x, x \rangle \leqslant \langle L_{G'} x, x \rangle \leqslant \gamma \langle L_G x, x \rangle$$

for all $x \in \mathbb{R}^V$.

- We start with the work of Batson, Spielman and Srivastava on the question to approximate a graph G = (V, E, w) by a sparse graph G'.
- Recall that the Laplacian matrix L_G of a graph G = (V, E, w) is defined by

$$\langle L_G x, x \rangle = \sum_{(u,v) \in E} w_{u,v} (x_u - x_v)^2.$$

Here, V is the set of vertices of G, E is the set of edges of G, and $w_{u,v}$ is the weight of the edge $(u, v) \in E$.

• Formally, one says that G' is a γ -approximation of G (for some $\gamma > 1$) if

$$\langle L_G x, x \rangle \leqslant \langle L_{G'} x, x \rangle \leqslant \gamma \langle L_G x, x \rangle$$

for all $x \in \mathbb{R}^V$.

• Batson, Spielman and Srivastava developed a method which shows that for every d > 1, every undirected weighted graph G = (V, E, w) with *n* vertices and *m* edges contains a weighted subgraph $G' = (V, F', \tilde{w})$ with $\lceil d(n-1) \rceil$ edges that satisfies

$$\langle L_G x, x \rangle \leqslant \langle L_{G'} x, x \rangle \leqslant \gamma_d \langle L_G x, x \rangle$$

for all $x \in \mathbb{R}^n$, where $\gamma_d := \left(\frac{\sqrt{d}+1}{\sqrt{d}-1}\right)^2$.

- We start with the work of Batson, Spielman and Srivastava on the question to approximate a graph G = (V, E, w) by a sparse graph G'.
- Recall that the Laplacian matrix L_G of a graph G = (V, E, w) is defined by

$$\langle L_G x, x \rangle = \sum_{(u,v) \in E} w_{u,v} (x_u - x_v)^2.$$

Here, V is the set of vertices of G, E is the set of edges of G, and $w_{u,v}$ is the weight of the edge $(u, v) \in E$.

• Formally, one says that G' is a γ -approximation of G (for some $\gamma > 1$) if

$$\langle L_G x, x \rangle \leqslant \langle L_{G'} x, x \rangle \leqslant \gamma \langle L_G x, x \rangle$$

for all $x \in \mathbb{R}^V$.

• Batson, Spielman and Srivastava developed a method which shows that for every d > 1, every undirected weighted graph G = (V, E, w) with *n* vertices and *m* edges contains a weighted subgraph $G' = (V, F', \tilde{w})$ with $\lceil d(n-1) \rceil$ edges that satisfies

$$\langle L_G x, x \rangle \leqslant \langle L_{G'} x, x \rangle \leqslant \gamma_d \langle L_G x, x \rangle$$

for all $x \in \mathbb{R}^n$, where $\gamma_d := \left(\frac{\sqrt{d}+1}{\sqrt{d}-1}\right)^2$.

• The proof also provided a deterministic algorithm for computing the graph G' in time $O(dn^3m)$.

For notational convenience, from now on v denotes a column vector in Rⁿ (an n×1 matrix) and v^T denotes a row vector (a 1×n matrix). We write I for the identity matrix of the appropriate dimension. If A, B are two n×n matrices then the notation A ≤ B means that the matrix B - A is positive semidefinite, while A ≺ B means that B - A is positive definite.

- For notational convenience, from now on v denotes a column vector in ℝⁿ (an n × 1 matrix) and v^T denotes a row vector (a 1 × n matrix). We write I for the identity matrix of the appropriate dimension. If A, B are two n × n matrices then the notation A ≤ B means that the matrix B A is positive semidefinite, while A ≺ B means that B A is positive definite.
- The main technical result of Batson, Spielman and Srivastava is the following purely linear algebraic theorem.

Batson-Spielman-Srivastava, \sim 2009

Let
$$d>1, \ \gamma_d:=\left(rac{\sqrt{d}+1}{\sqrt{d}-1}
ight)^2$$
 and $v_1,\ldots,v_m\in\mathbb{R}^n$ such that

$$I = \sum_{j=1}^m v_j v_j^T.$$

There exist non-negative reals $\{s_j\}_{1\leqslant j\leqslant m}$, with $|\{j:s_j\neq 0\}|\leqslant dn$, such that

$$I \preceq \sum_{j=1}^m s_j v_j v_j^T \preceq \gamma_d I.$$

Geometric applications

• It was soon understood that the theorem of Batson, Spielman and Srivastava is closely related to John decompositions and should have important applications to convex geometry.

- It was soon understood that the theorem of Batson, Spielman and Srivastava is closely related to John decompositions and should have important applications to convex geometry.
- A sample of applications (chronologically the first):

Srivastava, ~ 2010

Let K be a symmetric convex body in \mathbb{R}^n . For any $0 < \epsilon < 1$ there exists a symmetric convex body D in \mathbb{R}^n such that $D \subseteq K \subseteq (1 + \epsilon)D$ and D has at most cn/ϵ^2 contact points with its John ellipsoid, where c > 0 is an absolute constant.

- It was soon understood that the theorem of Batson, Spielman and Srivastava is closely related to John decompositions and should have important applications to convex geometry.
- A sample of applications (chronologically the first):

Srivastava, ~ 2010

Let K be a symmetric convex body in \mathbb{R}^n . For any $0 < \epsilon < 1$ there exists a symmetric convex body D in \mathbb{R}^n such that $D \subseteq K \subseteq (1 + \epsilon)D$ and D has at most cn/ϵ^2 contact points with its John ellipsoid, where c > 0 is an absolute constant.

• Using completely different methods, Rudelson had proved that one can do the same with a convex body D whose number of contact points with its John ellipsoid is less than $Cn \log n/\epsilon^2$.

- It was soon understood that the theorem of Batson, Spielman and Srivastava is closely related to John decompositions and should have important applications to convex geometry.
- A sample of applications (chronologically the first):

Srivastava, ~ 2010

Let K be a symmetric convex body in \mathbb{R}^n . For any $0 < \epsilon < 1$ there exists a symmetric convex body D in \mathbb{R}^n such that $D \subseteq K \subseteq (1 + \epsilon)D$ and D has at most cn/ϵ^2 contact points with its John ellipsoid, where c > 0 is an absolute constant.

- Using completely different methods, Rudelson had proved that one can do the same with a convex body D whose number of contact points with its John ellipsoid is less than $Cn \log n/\epsilon^2$.
- Srivastava also obtained a non-symmetric analogue of this theorem. Later, it took an optimal form:

Friedland-Youssef, ~ 2016

Let K be a convex body in \mathbb{R}^n . For any $0 < \epsilon < 1$ there exists a convex body D in \mathbb{R}^n such that $d(K, D) \leq 1 + \epsilon$ and D has at most cn/ϵ^2 contact points with its John ellipsoid, where c > 0 is an absolute constant.

Let d > 1. If K is a symmetric convex body whose minimal volume ellipsoid is the Euclidean unit ball, then there is a subset $X \subset K \cap S^{n-1}$ of cardinality $card(X) \leq dn$ such that

 $K \subseteq B_2^n \subseteq \gamma_d \sqrt{n} \operatorname{conv}(X).$

Let d > 1. If K is a symmetric convex body whose minimal volume ellipsoid is the Euclidean unit ball, then there is a subset $X \subset K \cap S^{n-1}$ of cardinality $card(X) \leq dn$ such that

 $K \subseteq B_2^n \subseteq \gamma_d \sqrt{n} \operatorname{conv}(X).$

• Barvinok applied this fact to prove that there exist $C, \epsilon_0 > 0$ such that for any $0 < \epsilon < \epsilon_0$ and any symmetric convex body C in \mathbb{R}^n , $n \ge 1$, there exists a symmetric polytope P in \mathbb{R}^d with at most $\left(\frac{C}{\sqrt{\epsilon}} \log \frac{1}{\epsilon}\right)^n$ vertices such that $P \subseteq C \subseteq (1 + \epsilon)P$. One should compare this estimate with the standard bound $(3/\epsilon)^n$ which follows by a simple volumetric argument.

Let d > 1. If K is a symmetric convex body whose minimal volume ellipsoid is the Euclidean unit ball, then there is a subset $X \subset K \cap S^{n-1}$ of cardinality $card(X) \leq dn$ such that

 $K \subseteq B_2^n \subseteq \gamma_d \sqrt{n} \operatorname{conv}(X).$

- Barvinok applied this fact to prove that there exist $C, \epsilon_0 > 0$ such that for any $0 < \epsilon < \epsilon_0$ and any symmetric convex body C in \mathbb{R}^n , $n \ge 1$, there exists a symmetric polytope P in \mathbb{R}^d with at most $\left(\frac{C}{\sqrt{\epsilon}}\log\frac{1}{\epsilon}\right)^n$ vertices such that $P \subseteq C \subseteq (1+\epsilon)P$. One should compare this estimate with the standard bound $(3/\epsilon)^n$ which follows by a simple volumetric argument.
- Gluskin and Litvak applied the same fact to obtain the optimal form of an estimate of Bezdek and Litvak for the vertex index of a convex body, defined by

$$\operatorname{vein}(\mathcal{K}) = \inf \bigg\{ \sum_{j=1}^{N} \|y_j\|_{\mathcal{K}} : \mathcal{K} \subseteq \operatorname{conv}\{y_1, \ldots, y_N\} \bigg\}.$$

Let d > 1. If K is a symmetric convex body whose minimal volume ellipsoid is the Euclidean unit ball, then there is a subset $X \subset K \cap S^{n-1}$ of cardinality $card(X) \leq dn$ such that

 $K \subseteq B_2^n \subseteq \gamma_d \sqrt{n} \operatorname{conv}(X).$

- Barvinok applied this fact to prove that there exist $C, \epsilon_0 > 0$ such that for any $0 < \epsilon < \epsilon_0$ and any symmetric convex body C in \mathbb{R}^n , $n \ge 1$, there exists a symmetric polytope P in \mathbb{R}^d with at most $\left(\frac{C}{\sqrt{\epsilon}}\log\frac{1}{\epsilon}\right)^n$ vertices such that $P \subseteq C \subseteq (1+\epsilon)P$. One should compare this estimate with the standard bound $(3/\epsilon)^n$ which follows by a simple volumetric argument.
- Gluskin and Litvak applied the same fact to obtain the optimal form of an estimate of Bezdek and Litvak for the vertex index of a convex body, defined by

$$\operatorname{vein}(\mathcal{K}) = \inf \bigg\{ \sum_{j=1}^{N} \|y_j\|_{\mathcal{K}} : \mathcal{K} \subseteq \operatorname{conv}\{y_1, \ldots, y_N\} \bigg\}.$$

• They proved that if K is a centrally symmetric convex body in \mathbb{R}^n then $\operatorname{vein}(K) \leq 24n^{3/2}$. The example of the Euclidean ball shows that the bound $O(n^{3/2})$ is optimal.

• The restricted invertibility principle of Bourgain and Tzafriri states that if A is an $n \times n$ matrix whose columns Ae_j have Euclidean norm equal to 1 then there exists $\sigma \subset [n]$ of cardinality $|\sigma| \ge cn/||A||_2^2$ such that the restriction A_{σ} of A to $\operatorname{span}\{e_j : j \in \sigma\}$ is well-invertible.
• The restricted invertibility principle of Bourgain and Tzafriri states that if A is an $n \times n$ matrix whose columns Ae_j have Euclidean norm equal to 1 then there exists $\sigma \subset [n]$ of cardinality $|\sigma| \ge cn/||A||_2^2$ such that the restriction A_{σ} of A to $\operatorname{span}\{e_j : j \in \sigma\}$ is well-invertible.

Bourgain-Tzafriri, 1987

There exist absolute constants $\delta, \kappa > 0$ such that if $A : \ell_2^n \longrightarrow \ell_2^n$ is a linear operator with $|Ae_j| = 1$ for all j = 1, ..., n then one may find a subset $\sigma \subseteq [n]$ of cardinality $|\sigma| \ge \delta n/||A||_2^2$ such that

$$\sum_{j\in\sigma} t_j A e_j \Big|^2 \ge \kappa \sum_{j\in\sigma} |t_j|^2$$
(2)

for any choice of scalars $\{t_j\}_{j \in \sigma}$.

• The restricted invertibility principle of Bourgain and Tzafriri states that if A is an $n \times n$ matrix whose columns Ae_j have Euclidean norm equal to 1 then there exists $\sigma \subset [n]$ of cardinality $|\sigma| \ge cn/||A||_2^2$ such that the restriction A_{σ} of A to $\operatorname{span}\{e_j : j \in \sigma\}$ is well-invertible.

Bourgain-Tzafriri, 1987

There exist absolute constants $\delta, \kappa > 0$ such that if $A : \ell_2^n \longrightarrow \ell_2^n$ is a linear operator with $|Ae_j| = 1$ for all j = 1, ..., n then one may find a subset $\sigma \subseteq [n]$ of cardinality $|\sigma| \ge \delta n/||A||_2^2$ such that

$$\sum_{j\in\sigma} t_j A e_j \Big|^2 \ge \kappa \sum_{j\in\sigma} |t_j|^2$$
(2)

for any choice of scalars $\{t_j\}_{j \in \sigma}$.

• If A_{σ} is the restriction of A to $\operatorname{span}\{e_j : j \in \sigma\}$ then (2) is equivalent to the fact that $s_{\min}(A_{\sigma}) \ge \kappa$, where $s_{\min}(A)$ denotes the smallest singular number of an operator A.

Vershynin generalized the restricted invertibility theorem as follows.

Vershynin, ~ 2000

Let $I = \sum_{j=1}^{m} v_j v_j^T$ is an arbitrary decomposition of the identity and $A : \ell_2^n \to \ell_2^n$ be a linear operator. Then, for any $\epsilon \in (0, 1)$ one can find $\sigma \subset [m]$ of cardinality $|\sigma| \ge (1 - \epsilon) \|A\|_{\mathrm{HS}}^2 / \|A\|_2^2$ such that for any choice of scalars $(t_j)_{j \in \sigma}$,

$$\sum_{j\in\sigma} t_j \frac{Av_j}{|Av_j|} \Big| \ge c(\epsilon) \Big(\sum_{j\in\sigma} t_j^2\Big)^{1/2},\tag{3}$$

where $c(\epsilon) > 0$ is a constant depending only on ϵ .

Vershynin generalized the restricted invertibility theorem as follows.

Vershynin, ~ 2000

Let $I = \sum_{j=1}^{m} v_j v_j^T$ is an arbitrary decomposition of the identity and $A : \ell_2^n \to \ell_2^n$ be a linear operator. Then, for any $\epsilon \in (0, 1)$ one can find $\sigma \subset [m]$ of cardinality $|\sigma| \ge (1 - \epsilon) \|A\|_{\mathrm{HS}}^2 / \|A\|_2^2$ such that for any choice of scalars $(t_j)_{j \in \sigma}$,

$$\sum_{j\in\sigma} t_j \frac{Av_j}{|Av_j|} \Big| \ge c(\epsilon) \Big(\sum_{j\in\sigma} t_j^2\Big)^{1/2},\tag{3}$$

where $c(\epsilon) > 0$ is a constant depending only on ϵ .

Note that if |Ae_j| = 1 for all j then, applying Vershynin's theorem for the standard decomposition I = ∑ⁿ_{j=1} e_je^T_j we recover the theorem of Bourgain and Tzafriri.

Vershynin generalized the restricted invertibility theorem as follows.

Vershynin, ~ 2000

Let $I = \sum_{j=1}^{m} v_j v_j^T$ is an arbitrary decomposition of the identity and $A : \ell_2^n \to \ell_2^n$ be a linear operator. Then, for any $\epsilon \in (0, 1)$ one can find $\sigma \subset [m]$ of cardinality $|\sigma| \ge (1 - \epsilon) \|A\|_{\mathrm{HS}}^2 / \|A\|_2^2$ such that for any choice of scalars $(t_j)_{j \in \sigma}$,

$$\sum_{j\in\sigma} t_j \frac{Av_j}{|Av_j|} \Big| \ge c(\epsilon) \Big(\sum_{j\in\sigma} t_j^2\Big)^{1/2},\tag{3}$$

where $c(\epsilon) > 0$ is a constant depending only on ϵ .

- Note that if |Ae_j| = 1 for all j then, applying Vershynin's theorem for the standard decomposition I = ∑ⁿ_{j=1} e_je^T_j we recover the theorem of Bourgain and Tzafriri.
- Moreover, we may now find $\sigma \subseteq [n]$ of cardinality greater than $(1 \epsilon)n/||A||_2^2$ for any $\epsilon \in (0, 1)$ so that (2) will hold true, of course with a constant $\delta = c(\epsilon)$ depending on ϵ .

Vershynin generalized the restricted invertibility theorem as follows.

Vershynin, ~ 2000

Let $I = \sum_{j=1}^{m} v_j v_j^T$ is an arbitrary decomposition of the identity and $A : \ell_2^n \to \ell_2^n$ be a linear operator. Then, for any $\epsilon \in (0, 1)$ one can find $\sigma \subset [m]$ of cardinality $|\sigma| \ge (1 - \epsilon) \|A\|_{\mathrm{HS}}^2 / \|A\|_2^2$ such that for any choice of scalars $(t_j)_{j \in \sigma}$,

$$\sum_{j\in\sigma} t_j \frac{Av_j}{|Av_j|} \Big| \ge c(\epsilon) \Big(\sum_{j\in\sigma} t_j^2\Big)^{1/2},\tag{3}$$

where $c(\epsilon) > 0$ is a constant depending only on ϵ .

- Note that if $|Ae_j| = 1$ for all *j* then, applying Vershynin's theorem for the standard decomposition $I = \sum_{j=1}^{n} e_j e_j^T$ we recover the theorem of Bourgain and Tzafriri.
- Moreover, we may now find $\sigma \subseteq [n]$ of cardinality greater than $(1 \epsilon)n/||A||_2^2$ for any $\epsilon \in (0, 1)$ so that (2) will hold true, of course with a constant $\delta = c(\epsilon)$ depending on ϵ .
- Vershynin's argument is based on an iteration of the Bourgain-Tzafriri theorem and a result of Kashin-Tzafriri, and this affects the final dependence of $c(\epsilon)$ on ϵ .

• Spielman and Srivastava gave a generalization of the Bourgain-Tzafriri theorem, in the spirit of Vershynin's theorem, with optimal dependence on ϵ , exploiting the method of their previous work with Batson.

 Spielman and Srivastava gave a generalization of the Bourgain-Tzafriri theorem, in the spirit of Vershynin's theorem, with optimal dependence on *ε*, exploiting the method of their previous work with Batson.

Spielman-Srivastava, ~ 2010

Let $\epsilon \in (0, 1)$ and $v_1, \ldots, v_m \in \mathbb{R}^n$ such that $I = \sum_{j=1}^m v_j v_j^T$. Let $A : \ell_2^n \to \ell_2^n$ be a linear operator. We can find $\sigma \subseteq [m]$ of cardinality $|\sigma| \ge \lfloor (1 - \epsilon)^2 \|A\|_{\mathrm{HS}}^2 / \|A\|_2^2 \rfloor$ such that the set $\{Av_j : j \in \sigma\}$ is linearly independent and

$$\lambda_{\min}\Big(\sum_{j\in\sigma}(Av_j)(Av_j)^T\Big) \geqslant \epsilon^2 \frac{\|A\|_{\mathrm{HS}}^2}{m},$$

where the smallest eigenvalue λ_{\min} is computed on the subspace $\operatorname{span}\{Av_j : j \in \sigma\}$.

 Spielman and Srivastava gave a generalization of the Bourgain-Tzafriri theorem, in the spirit of Vershynin's theorem, with optimal dependence on *ε*, exploiting the method of their previous work with Batson.

Spielman-Srivastava, ~ 2010

Let $\epsilon \in (0, 1)$ and $v_1, \ldots, v_m \in \mathbb{R}^n$ such that $I = \sum_{j=1}^m v_j v_j^T$. Let $A : \ell_2^n \to \ell_2^n$ be a linear operator. We can find $\sigma \subseteq [m]$ of cardinality $|\sigma| \ge \lfloor (1 - \epsilon)^2 \|A\|_{\mathrm{HS}}^2 / \|A\|_2^2 \rfloor$ such that the set $\{Av_j : j \in \sigma\}$ is linearly independent and

$$\lambda_{\min}\Big(\sum_{j\in\sigma}(Av_j)(Av_j)^T\Big) \geqslant \epsilon^2 rac{\|A\|_{\mathrm{HS}}^2}{m},$$

where the smallest eigenvalue λ_{\min} is computed on the subspace $\operatorname{span}\{Av_j : j \in \sigma\}$.

• The statement above is equivalent to the fact that, for any choice of scalars $(t_j)_{j\in\sigma}$,

$$\Big|\sum_{j\in\sigma}t_jAv_j\Big|\geqslant\epsilonrac{\|A\|_{\mathrm{HS}}}{\sqrt{m}}\Big(\sum_{j\in\sigma}t_j^2\Big)^{1/2}\Big|$$

 Spielman and Srivastava gave a generalization of the Bourgain-Tzafriri theorem, in the spirit of Vershynin's theorem, with optimal dependence on *ε*, exploiting the method of their previous work with Batson.

Spielman-Srivastava, ~ 2010

Let $\epsilon \in (0, 1)$ and $v_1, \ldots, v_m \in \mathbb{R}^n$ such that $I = \sum_{j=1}^m v_j v_j^T$. Let $A : \ell_2^n \to \ell_2^n$ be a linear operator. We can find $\sigma \subseteq [m]$ of cardinality $|\sigma| \ge \lfloor (1 - \epsilon)^2 \|A\|_{\mathrm{HS}}^2 / \|A\|_2^2 \rfloor$ such that the set $\{Av_j : j \in \sigma\}$ is linearly independent and

$$\lambda_{\min}\Big(\sum_{j\in\sigma}(Av_j)(Av_j)^T\Big) \geqslant \epsilon^2 \frac{\|A\|_{\mathrm{HS}}^2}{m},$$

where the smallest eigenvalue λ_{\min} is computed on the subspace $\operatorname{span}\{Av_j : j \in \sigma\}$.

• The statement above is equivalent to the fact that, for any choice of scalars $(t_j)_{j\in\sigma}$,

$$\Big|\sum_{j\in\sigma}t_jAv_j\Big| \ge \epsilon \frac{\|A\|_{\mathrm{HS}}}{\sqrt{m}}\Big(\sum_{j\in\sigma}t_j^2\Big)^{1/2}$$

• The Bourgain-Tzafriri theorem follows from this one, with constants $\delta(\epsilon) = (1 - \epsilon)^2 \kappa(\epsilon) = \epsilon^2$.

Proportional Dvoretzky-Rogers factorization

Comparing the previous results we see that both generalize the Bourgain-Tzafriri theorem but in a different way.

 \bullet Vershynin: the vectors that are chosen are normalized but the dependence on ϵ is weak.

- \bullet Vershynin: the vectors that are chosen are normalized but the dependence on ϵ is weak.
- Spielman-Srivastava: optimal dependence on ϵ but the vectors are not normalized.

- \bullet Vershynin: the vectors that are chosen are normalized but the dependence on ϵ is weak.
- \bullet Spielman-Srivastava: optimal dependence on ϵ but the vectors are not normalized.

Youssef obtained a restricted invertibility theorem for any rectangular matrix and any normalization, with a good dependence on ϵ at the same time.

Youssef, 2012

Let A be an $n \times m$ matrix and $D = \operatorname{diag}(\alpha_1, \ldots, \alpha_m)$ be a diagonal $m \times m$ matrix such that $\operatorname{Ker}(D) \subset \operatorname{Ker}(A)$. Then, for any $\epsilon \in (0, 1)$ there exists $\sigma \subset \{1, \ldots, m\}$ with $|\sigma| \ge (1 - \epsilon)^2 ||A||_{\operatorname{HS}}^2 / ||A||_2^2$ such that

$$s_{\min}(A_{\sigma}D_{\sigma}^{-1}) > \epsilon \|A\|_{\mathrm{HS}}/\|D\|_{\mathrm{HS}},$$

where s_{\min} denotes the smallest singular value.

- \bullet Vershynin: the vectors that are chosen are normalized but the dependence on ϵ is weak.
- \bullet Spielman-Srivastava: optimal dependence on ϵ but the vectors are not normalized.

Youssef obtained a restricted invertibility theorem for any rectangular matrix and any normalization, with a good dependence on ϵ at the same time.

Youssef, 2012

Let A be an $n \times m$ matrix and $D = \operatorname{diag}(\alpha_1, \ldots, \alpha_m)$ be a diagonal $m \times m$ matrix such that $\operatorname{Ker}(D) \subset \operatorname{Ker}(A)$. Then, for any $\epsilon \in (0, 1)$ there exists $\sigma \subset \{1, \ldots, m\}$ with $|\sigma| \ge (1 - \epsilon)^2 ||A||_{\operatorname{HS}}^2 / ||A||_2^2$ such that

$$s_{\min}(A_{\sigma}D_{\sigma}^{-1}) > \epsilon \|A\|_{\mathrm{HS}} / \|D\|_{\mathrm{HS}},$$

where \textit{s}_{\min} denotes the smallest singular value.

Equivalently, for any choice of reals $(t_j)_{j\in\sigma}$ one has

$$\Big|\sum_{j\in\sigma} t_j \frac{Ae_j}{\alpha_j}\Big| \ge \epsilon \frac{\|A\|_{\mathrm{HS}}}{\|D\|_{\mathrm{HS}}} \Big(\sum_{j\in\sigma} t_j^2\Big)^{1/2}$$

Proof of the proportional Dvoretzky-Rogers factorization theorem

Theorem

Assume that B_2^n is the minimal volume ellipsoid of K, For every $\epsilon \in (0, 1)$ there exist $k \ge (1 - \epsilon)^2 n$ and $y_1, \ldots, y_k \in B_2^n$ such that, for any choice of scalars $(t_j)_{j \le k}$,

$$\epsilon \Big(\sum_{j=1}^k t_j^2\Big)^{1/2} \leqslant \Big\|\sum_{j=1}^k t_j y_j\Big\| \leqslant \sum_{j=1}^k |t_j|.$$

• We start from John's decomposition $I = \sum_{j \leq m} c_j x_j x_j^T$ where $x_j \in \partial(K) \cap S^{n-1}$.

Theorem

Assume that B_2^n is the minimal volume ellipsoid of K, For every $\epsilon \in (0, 1)$ there exist $k \ge (1 - \epsilon)^2 n$ and $y_1, \ldots, y_k \in B_2^n$ such that, for any choice of scalars $(t_j)_{j \le k}$,

$$\varepsilon \Big(\sum_{j=1}^k t_j^2\Big)^{1/2} \leqslant \Big\|\sum_{j=1}^k t_j y_j\Big\| \leqslant \sum_{j=1}^k |t_j|.$$

- We start from John's decomposition $I = \sum_{j \leq m} c_j x_j x_j^T$ where $x_j \in \partial(K) \cap S^{n-1}$.
- We consider the $n \times m$ matrix $A = (\sqrt{c_1}x_1, \dots, \sqrt{c_m}x_m)$ with columns $\sqrt{c_j}x_j$ and the diagonal matrix $D = \text{diag}(\sqrt{c_1}, \dots, \sqrt{c_m})$. Then, $AA^T = I$ and $\|A\|_{\text{HS}} = \|D\|_{\text{HS}} = \sqrt{n}$.

Theorem

Assume that B_2^n is the minimal volume ellipsoid of K, For every $\epsilon \in (0, 1)$ there exist $k \ge (1 - \epsilon)^2 n$ and $y_1, \ldots, y_k \in B_2^n$ such that, for any choice of scalars $(t_j)_{j \le k}$,

$$arepsilon \left(\sum_{j=1}^k t_j^2
ight)^{1/2} \leqslant \Big\|\sum_{j=1}^k t_j y_j\Big\| \leqslant \sum_{j=1}^k |t_j|.$$

- We start from John's decomposition $I = \sum_{j \leq m} c_j x_j x_j^T$ where $x_j \in \partial(K) \cap S^{n-1}$.
- We consider the $n \times m$ matrix $A = (\sqrt{c_1}x_1, \dots, \sqrt{c_m}x_m)$ with columns $\sqrt{c_j}x_j$ and the diagonal matrix $D = \text{diag}(\sqrt{c_1}, \dots, \sqrt{c_m})$. Then, $AA^T = I$ and $\|A\|_{\text{HS}} = \|D\|_{\text{HS}} = \sqrt{n}$.
- Given $\epsilon \in (0, 1)$ we apply Youssef's theorem to A and D to find $\sigma \subset \{1, \ldots, m\}$ with $|\sigma| = k \ge (1 \epsilon)^2 n$ such that, for any choice of scalars $\mathbf{t} = (t_j)_{j \in \sigma}$,

$$|A_{\sigma}D_{\sigma}^{-1}\mathbf{t}| = \Big|\sum_{j\in\sigma} t_j x_j\Big| \ge \epsilon \Big(\sum_{j\in\sigma} t_j^2\Big)^{1/2}.$$

Theorem

Assume that B_2^n is the minimal volume ellipsoid of K, For every $\epsilon \in (0, 1)$ there exist $k \ge (1 - \epsilon)^2 n$ and $y_1, \ldots, y_k \in B_2^n$ such that, for any choice of scalars $(t_j)_{j \le k}$,

$$arepsilon \left(\sum_{j=1}^k t_j^2
ight)^{1/2} \leqslant \Big\|\sum_{j=1}^k t_j y_j\Big\| \leqslant \sum_{j=1}^k |t_j|.$$

- We start from John's decomposition $I = \sum_{j \leq m} c_j x_j x_j^T$ where $x_j \in \partial(K) \cap S^{n-1}$.
- We consider the $n \times m$ matrix $A = (\sqrt{c_1}x_1, \dots, \sqrt{c_m}x_m)$ with columns $\sqrt{c_j}x_j$ and the diagonal matrix $D = \text{diag}(\sqrt{c_1}, \dots, \sqrt{c_m})$. Then, $AA^T = I$ and $\|A\|_{\text{HS}} = \|D\|_{\text{HS}} = \sqrt{n}$.
- Given $\epsilon \in (0, 1)$ we apply Youssef's theorem to A and D to find $\sigma \subset \{1, \ldots, m\}$ with $|\sigma| = k \ge (1 \epsilon)^2 n$ such that, for any choice of scalars $\mathbf{t} = (t_j)_{j \in \sigma}$,

$$|A_{\sigma}D_{\sigma}^{-1}\mathbf{t}| = \Big|\sum_{j\in\sigma}t_jx_j\Big| \ge \epsilon\Big(\sum_{j\in\sigma}t_j^2\Big)^{1/2}.$$

• Since $K \subseteq B_2^n$ and $||x_j|| = 1$, we also have

$$\left|\sum_{j\in\sigma}t_jx_j\right|\leqslant \left\|\sum_{j\in\sigma}t_jx_j\right\|\leqslant \sum_{j\in\sigma}|t_j|\,\|x_j\|\leqslant \sum_{j\in\sigma}|t_j|.$$

Idea of the proof

Youssef

Let A be an $n \times m$ matrix and $D = \text{diag}(\alpha_1, \ldots, \alpha_m)$ be a diagonal $m \times m$ matrix such that $\text{Ker}(D) \subset \text{Ker}(A)$. Then, for any $\epsilon \in (0, 1)$ there exists $\sigma \subset \{1, \ldots, m\}$ with $|\sigma| \ge (1 - \epsilon)^2 ||A||_{\text{HS}}^2 / ||A||_2^2$ such that

$$s_{\min} \Big(A_{\sigma} D_{\sigma}^{-1} \Big) > rac{\epsilon \| oldsymbol{A} \|_{ ext{HS}}}{\| oldsymbol{D} \|_{ ext{HS}}},$$

where s_{\min} denotes the smallest singular value.

• It suffices to find $\sigma \subset \{1, \dots, m\}$ with $|\sigma| \ge (1-\epsilon)^2 \|A\|_{\mathrm{HS}}^2 / \|A\|_2^2$ such that

$$(A_{\sigma}D_{\sigma}^{-1}) \cdot (A_{\sigma}D_{\sigma}^{-1})^{T} = \sum_{j \in \sigma} \left(AD_{\sigma}^{-1}\mathbf{e}_{j}\right) \cdot \left(AD_{\sigma}^{-1}\mathbf{e}_{j}\right)^{T} = \sum_{j \in \sigma} \left(\frac{A\mathbf{e}_{j}}{\alpha_{j}}\right) \cdot \left(\frac{A\mathbf{e}_{j}}{\alpha_{j}}\right)^{T}$$

has rank equal to $k_0 = |\sigma|$ and its smallest positive eigenvalue is greater than $\epsilon^2 \|A\|_{\mathrm{HS}}^2 / \|D\|_{\mathrm{HS}}^2$.

Idea of the proof

Youssef

Let A be an $n \times m$ matrix and $D = \text{diag}(\alpha_1, \ldots, \alpha_m)$ be a diagonal $m \times m$ matrix such that $\text{Ker}(D) \subset \text{Ker}(A)$. Then, for any $\epsilon \in (0, 1)$ there exists $\sigma \subset \{1, \ldots, m\}$ with $|\sigma| \ge (1 - \epsilon)^2 ||A||_{\text{HS}}^2 / ||A||_2^2$ such that

$$s_{\min}\left(A_{\sigma} D_{\sigma}^{-1}
ight) > rac{\epsilon \|A\|_{ ext{HS}}}{\|D\|_{ ext{HS}}},$$

where s_{\min} denotes the smallest singular value.

• It suffices to find $\sigma \subset \{1, \dots, m\}$ with $|\sigma| \ge (1-\epsilon)^2 \|A\|_{\mathrm{HS}}^2 / \|A\|_2^2$ such that

$$(A_{\sigma}D_{\sigma}^{-1}) \cdot (A_{\sigma}D_{\sigma}^{-1})^{T} = \sum_{j \in \sigma} \left(AD_{\sigma}^{-1}\mathbf{e}_{j}\right) \cdot \left(AD_{\sigma}^{-1}\mathbf{e}_{j}\right)^{T} = \sum_{j \in \sigma} \left(\frac{A\mathbf{e}_{j}}{\alpha_{j}}\right) \cdot \left(\frac{A\mathbf{e}_{j}}{\alpha_{j}}\right)^{T}$$

has rank equal to $k_0=|\sigma|$ and its smallest positive eigenvalue is greater than $\epsilon^2\|A\|_{\rm HS}^2/\|D\|_{\rm HS}^2.$

• The matrix $M_{k_0} = \sum_{j \in \sigma} \left(\frac{Ae_j}{\alpha_j}\right) \cdot \left(\frac{Ae_j}{\alpha_j}\right)^T$ is defined by an inductive scheme. We start with $M_0 = 0$ and at each step we add a rank one matrix $\left(\frac{Ae_j}{\alpha_j}\right) \cdot \left(\frac{Ae_j}{\alpha_j}\right)^T$ for a suitable j, which will give a new positive eigenvalue.

Sherman-Morrison formula

Let A be an invertible $n \times n$ matrix. For any $v \in \mathbb{R}^n$ we have

$$(A + vv^{T})^{-1} = A^{-1} - \frac{A^{-1}vv^{T}A^{-1}}{1 + v^{T}A^{-1}v}$$

Sherman-Morrison formula

Let A be an invertible $n \times n$ matrix. For any $v \in \mathbb{R}^n$ we have

$$(A + vv^{T})^{-1} = A^{-1} - \frac{A^{-1}vv^{T}A^{-1}}{1 + v^{T}A^{-1}v}.$$

Matrix determinant formula

Let A be an invertible $n \times n$ matrix. For any $v \in \mathbb{R}^n$ we have

$$\det(A + vv^{T}) = \det(A)(1 + v^{T}A^{-1}v).$$

Sherman-Morrison formula

Let A be an invertible $n \times n$ matrix. For any $v \in \mathbb{R}^n$ we have

$$(A + vv^{T})^{-1} = A^{-1} - \frac{A^{-1}vv^{T}A^{-1}}{1 + v^{T}A^{-1}v}.$$

Matrix determinant formula

Let A be an invertible $n \times n$ matrix. For any $v \in \mathbb{R}^n$ we have

$$\det(A + vv^{T}) = \det(A)(1 + v^{T}A^{-1}v).$$

Cauchy's interlacing theorem

Let $\chi(A)(x) = \det(xI - A)$ denote the characteristic polynomial of A. If A is a symmetric $n \times n$ matrix and $v \in \mathbb{R}^n$ then $\chi(A)$ interlaces $\chi(A + vv^T)$: if λ_i, λ'_i are their eigenvalues in decreasing order then

$$\lambda'_1 \geqslant \lambda_1 \geqslant \lambda'_2 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda'_n \geqslant \lambda_n.$$

Apostolos Giannopoulos (University of Athens)

Let $M \succeq 0$ be a positive semidefinite $n \times n$ matrix with k positive eigenvalues, all of them greater than b' > 0. If $w \neq 0$ and $1 + w^T (M - b'I)^{-1} w < 0$ then $M + ww^T$ has exactly k + 1 positive eigenvalues, all of them greater than b'.

• Let $\lambda_1 \ge \cdots \ge \lambda_k$ be the non-zero eigenvalues of the matrix M and $\lambda'_1 \ge \cdots \ge \lambda'_{k+1}$ be the largest (in decreasing order) eigenvalues of $M + ww^T$.

Let $M \succeq 0$ be a positive semidefinite $n \times n$ matrix with k positive eigenvalues, all of them greater than b' > 0. If $w \neq 0$ and $1 + w^T (M - b'I)^{-1} w < 0$ then $M + ww^T$ has exactly k + 1 positive eigenvalues, all of them greater than b'.

- Let λ₁ ≥ · · · ≥ λ_k be the non-zero eigenvalues of the matrix M and λ'₁ ≥ · · · ≥ λ'_{k+1} be the largest (in decreasing order) eigenvalues of M + ww^T.
- Consider the quantity

$$\operatorname{tr}((M - b'I)^{-1}) = \sum_{i=1}^{k} \frac{1}{\lambda_i - b'} + \sum_{i=k+1}^{n} \frac{1}{0 - b'}.$$

Let $M \succeq 0$ be a positive semidefinite $n \times n$ matrix with k positive eigenvalues, all of them greater than b' > 0. If $w \neq 0$ and $1 + w^T (M - b'I)^{-1} w < 0$ then $M + ww^T$ has exactly k + 1 positive eigenvalues, all of them greater than b'.

- Let λ₁ ≥ · · · ≥ λ_k be the non-zero eigenvalues of the matrix M and λ'₁ ≥ · · · ≥ λ'_{k+1} be the largest (in decreasing order) eigenvalues of M + ww^T.
- Consider the quantity

$$\operatorname{tr}((M - b'I)^{-1}) = \sum_{i=1}^{k} \frac{1}{\lambda_i - b'} + \sum_{i=k+1}^{n} \frac{1}{0 - b'}.$$

• From the Sherman-Morisson formula we have

$$\operatorname{tr}((M + ww^{T} - b'I)^{-1}) - \operatorname{tr}((M - b'I)^{-1}) = -\frac{w^{T}(M - b'I)^{-2}w}{1 + w^{T}(M - b'I)^{-1}w} > 0$$

because the assumption implies that the denominator on the right hand side is negative, and the numerator is positive since M - b'I is non-singular, therefore $(M - b'I)^{-2}$ is positive definite.

Let $M \succeq 0$ be a positive semidefinite $n \times n$ matrix with k positive eigenvalues, all of them greater than b' > 0. If $w \neq 0$ and $1 + w^T (M - b'I)^{-1} w < 0$ then $M + ww^T$ has exactly k + 1 positive eigenvalues, all of them greater than b'.

• Computing directly the same difference we get

$$\begin{split} 0 &< \operatorname{tr}((M + ww^T - b'I)^{-1}) - \operatorname{tr}((M - b'I)^{-1}) \\ &= \frac{1}{\lambda'_{k+1} - b'} - \frac{1}{0 - b'} + \sum_{i=1}^k \frac{1}{\lambda'_i - b'} - \sum_{i=1}^k \frac{1}{\lambda_i - b'} \leqslant \frac{1}{\lambda'_{k+1} - b'} + \frac{1}{b'}, \end{split}$$

because, by Cauchy's interlacing theorem,

$$\lambda_1' \geqslant \lambda_1 \geqslant \lambda_2' \geqslant \cdots \geqslant \lambda_k \geqslant \lambda_{k+1}' \geqslant 0$$

and hence

$$\frac{1}{\lambda'_i-b'}-\frac{1}{\lambda_i-b'}\leqslant 0$$

for every $i \leq k$.

Let $M \succeq 0$ be a positive semidefinite $n \times n$ matrix with k positive eigenvalues, all of them greater than b' > 0. If $w \neq 0$ and $1 + w^T (M - b'I)^{-1} w < 0$ then $M + ww^T$ has exactly k + 1 positive eigenvalues, all of them greater than b'.

• Computing directly the same difference we get

$$\begin{split} 0 &< \operatorname{tr}((M + ww^T - b'I)^{-1}) - \operatorname{tr}((M - b'I)^{-1}) \\ &= \frac{1}{\lambda'_{k+1} - b'} - \frac{1}{0 - b'} + \sum_{i=1}^k \frac{1}{\lambda'_i - b'} - \sum_{i=1}^k \frac{1}{\lambda_i - b'} \leqslant \frac{1}{\lambda'_{k+1} - b'} + \frac{1}{b'}, \end{split}$$

because, by Cauchy's interlacing theorem,

$$\lambda_1' \geqslant \lambda_1 \geqslant \lambda_2' \geqslant \cdots \geqslant \lambda_k \geqslant \lambda_{k+1}' \geqslant 0$$

and hence

$$\frac{1}{\lambda_i'-b'}-\frac{1}{\lambda_i-b'}\leqslant 0$$

for every $i \leq k$.

• Since $\lambda'_{k+1} \geqslant 0$, we conclude that $\lambda'_{k+1} > b'$.

• For any symmetric matrix M and any b > 0, we define the potential with barrier b by

$$\Phi_b(M) = \operatorname{tr} \left(A^T (M - bI)^{-1} A \right).$$

• For any symmetric matrix M and any b > 0, we define the potential with barrier b by

$$\Phi_b(M) = \operatorname{tr} \Big(A^T (M - bI)^{-1} A \Big).$$

• We fix $\delta > 0$ to be chosen, and write M_k for the matrix that has been constructed at the k-th step. We assume that M_k has k nonzero eigenvalues, all of them greater than $b_k > 0$. We set $\Phi_k(M_k) := \Phi_{b_k}(M_k)$.

• For any symmetric matrix M and any b > 0, we define the potential with barrier b by

$$\Phi_b(M) = \operatorname{tr} \Big(A^T (M - bI)^{-1} A \Big).$$

- We fix $\delta > 0$ to be chosen, and write M_k for the matrix that has been constructed at the k-th step. We assume that M_k has k nonzero eigenvalues, all of them greater than $b_k > 0$. We set $\Phi_k(M_k) := \Phi_{b_k}(M_k)$.
- Our aim is to add a rank one matrix $v \cdot v^T$ to M_k so that $M_{k+1} = M_k + vv^T$ has k+1 nonzero eigenvalues, all of them greater than $b_{k+1} = b_k \delta$ and $\Phi_{k+1}(M_{k+1}) \leq \Phi_k(M_k)$.

• For any symmetric matrix M and any b > 0, we define the potential with barrier b by

$$\Phi_b(M) = \operatorname{tr} \Big(A^T (M - bI)^{-1} A \Big).$$

- We fix $\delta > 0$ to be chosen, and write M_k for the matrix that has been constructed at the k-th step. We assume that M_k has k nonzero eigenvalues, all of them greater than $b_k > 0$. We set $\Phi_k(M_k) := \Phi_{b_k}(M_k)$.
- Our aim is to add a rank one matrix $v \cdot v^T$ to M_k so that $M_{k+1} = M_k + vv^T$ has k+1 nonzero eigenvalues, all of them greater than $b_{k+1} = b_k \delta$ and $\Phi_{k+1}(M_{k+1}) \leq \Phi_k(M_k)$.
- We compute

$$\Phi_{k+1}(M_{k+1}) = \Phi_{k+1}(M_k) - \frac{v^T (M_k - b_{k+1}I)^{-1} A A^T (M_k - b_{k+1}I)^{-1} v}{1 + v^T (M_k - b_{k+1}I)^{-1} v}.$$

• For any symmetric matrix M and any b > 0, we define the potential with barrier b by

$$\Phi_b(M) = \operatorname{tr} \Big(A^T (M - bI)^{-1} A \Big).$$

- We fix $\delta > 0$ to be chosen, and write M_k for the matrix that has been constructed at the k-th step. We assume that M_k has k nonzero eigenvalues, all of them greater than $b_k > 0$. We set $\Phi_k(M_k) := \Phi_{b_k}(M_k)$.
- Our aim is to add a rank one matrix $v \cdot v^T$ to M_k so that $M_{k+1} = M_k + vv^T$ has k+1 nonzero eigenvalues, all of them greater than $b_{k+1} = b_k \delta$ and $\Phi_{k+1}(M_{k+1}) \leq \Phi_k(M_k)$.
- We compute

$$\Phi_{k+1}(M_{k+1}) = \Phi_{k+1}(M_k) - \frac{v^T (M_k - b_{k+1}I)^{-1} A A^T (M_k - b_{k+1}I)^{-1} v}{1 + v^T (M_k - b_{k+1}I)^{-1} v}.$$

• So, in order to have $\Phi_{k+1}(M_{k+1}) \leqslant \Phi_k(M_k)$, we need to choose a vector v such that

$$-\frac{v^{T}(M_{k}-b_{k+1}I)^{-1}AA^{T}(M_{k}-b_{k+1}I)^{-1}v}{1+v^{T}(M_{k}-b_{k+1}I)^{-1}v} \leqslant \Phi_{k}(M_{k}) - \Phi_{k+1}(M_{k}).$$

• We saw that a sufficient condition so that $M_k + vv^T$ will have exactly k + 1 positive eigenvalues, all of them greater than b_{k+1} , is

$$1 + v^T (M_k - b_{k+1}I)^{-1}v < 0.$$

• We saw that a sufficient condition so that $M_k + vv^T$ will have exactly k + 1 positive eigenvalues, all of them greater than b_{k+1} , is

$$1 + v^{T} (M_{k} - b_{k+1}I)^{-1} v < 0.$$

• Choosing a vector v that verifies both this inequality and

$$-\frac{v^{T}(M_{k}-b_{k+1}I)^{-1}AA^{T}(M_{k}-b_{k+1}I)^{-1}v}{1+v^{T}(M_{k}-b_{k+1}I)^{-1}v} \leqslant \Phi_{k}(M_{k}) - \Phi_{k+1}(M_{k}).$$

is equivalent to choosing v so that

$$v^{T}(M_{k}-b_{k+1}I)^{-1}AA^{T}(M_{k}-b_{k+1}I)^{-1}v$$

 $\leq \left(\Phi_{k}(M_{k})-\Phi_{k+1}(M_{k})\right)\left(-1-v^{T}(M_{k}-b_{k+1}I)^{-1}v
ight).$
• We saw that a sufficient condition so that $M_k + vv^T$ will have exactly k + 1 positive eigenvalues, all of them greater than b_{k+1} , is

$$1 + v^{T} (M_{k} - b_{k+1}I)^{-1} v < 0.$$

• Choosing a vector v that verifies both this inequality and

$$-\frac{v^{T}(M_{k}-b_{k+1}I)^{-1}AA^{T}(M_{k}-b_{k+1}I)^{-1}v}{1+v^{T}(M_{k}-b_{k+1}I)^{-1}v} \leqslant \Phi_{k}(M_{k}) - \Phi_{k+1}(M_{k}).$$

is equivalent to choosing v so that

$$v^{T}(M_{k}-b_{k+1}I)^{-1}AA^{T}(M_{k}-b_{k+1}I)^{-1}v$$

 $\leq \left(\Phi_{k}(M_{k})-\Phi_{k+1}(M_{k})\right)\left(-1-v^{T}(M_{k}-b_{k+1}I)^{-1}v
ight).$

• Since $AA^T \leq ||A||_2^2 I$ and $(M_k - b_{k+1}I)^{-1}$ is symmetric, it is sufficient to choose v so that

$$v^{T}(M_{k}-b_{k+1}I)^{-2}v \leq rac{1}{\|A\|_{2}^{2}}\Big(\Phi_{k}(M_{k})-\Phi_{k+1}(M_{k})\Big)\Big(-1-v^{T}(M_{k}-b_{k+1}I)^{-1}v\Big).$$

• We set $\tau_D := \{j \leq m \mid \alpha_j \neq 0\}$ where $(\alpha_j)_{j \leq m}$ are the diagonal entries of D. Since we have assumed that $\operatorname{Ker}(D) \subseteq \operatorname{Ker}(A)$, we have

$$\|\boldsymbol{A}\|_{\mathrm{HS}}^{2} = \sum_{j \leqslant m} |\boldsymbol{A}\boldsymbol{e}_{j}|^{2} = \sum_{j \in \tau_{D}} |\boldsymbol{A}\boldsymbol{e}_{j}|^{2} \leqslant |\boldsymbol{\tau}_{D}| \cdot \|\boldsymbol{A}\|_{2}^{2},$$

and thus $|\tau_D| \ge \|A\|_{\mathrm{HS}}^2 / \|A\|_2^2$.

• We set $\tau_D := \{j \leq m \mid \alpha_j \neq 0\}$ where $(\alpha_j)_{j \leq m}$ are the diagonal entries of D. Since we have assumed that $\text{Ker}(D) \subseteq \text{Ker}(A)$, we have

$$\|\boldsymbol{A}\|_{\mathrm{HS}}^{2} = \sum_{j \leqslant m} |\boldsymbol{A}\boldsymbol{e}_{j}|^{2} = \sum_{j \in \tau_{D}} |\boldsymbol{A}\boldsymbol{e}_{j}|^{2} \leqslant |\boldsymbol{\tau}_{D}| \cdot \|\boldsymbol{A}\|_{2}^{2},$$

and thus $|\tau_D| \ge ||A||_{HS}^2 / ||A||_2^2$.

• At each step, we will select a vector v satisfying the condition among $\left(\frac{Ae_j}{\alpha_j}\right)_{j \in \tau_D}$. What we need is to find $j \in \tau_D$ such that

$$(Ae_{j})^{T}(M_{k}-b_{k+1}I)^{-2}Ae_{j} \\ \leq \frac{\Phi_{k}(M_{k})-\Phi_{k+1}(M_{k})}{\|A\|_{2}^{2}}\Big(-\alpha_{j}^{2}-(Ae_{j})^{T}(M_{k}-b_{k+1}I)^{-1}Ae_{j}\Big).$$

• We set $\tau_D := \{j \leq m \mid \alpha_j \neq 0\}$ where $(\alpha_j)_{j \leq m}$ are the diagonal entries of D. Since we have assumed that $\text{Ker}(D) \subseteq \text{Ker}(A)$, we have

$$\|\boldsymbol{A}\|_{\mathrm{HS}}^{2} = \sum_{j \leqslant m} |\boldsymbol{A}\boldsymbol{e}_{j}|^{2} = \sum_{j \in \tau_{D}} |\boldsymbol{A}\boldsymbol{e}_{j}|^{2} \leqslant |\boldsymbol{\tau}_{D}| \cdot \|\boldsymbol{A}\|_{2}^{2},$$

and thus $|\tau_D| \ge \|A\|_{\mathrm{HS}}^2 / \|A\|_2^2$.

• At each step, we will select a vector v satisfying the condition among $\left(\frac{Ae_j}{\alpha_j}\right)_{j \in \tau_D}$. What we need is to find $j \in \tau_D$ such that

$$(Ae_{j})^{T}(M_{k} - b_{k+1}I)^{-2}Ae_{j} \\ \leqslant \frac{\Phi_{k}(M_{k}) - \Phi_{k+1}(M_{k})}{\|A\|_{2}^{2}} \Big(-\alpha_{j}^{2} - (Ae_{j})^{T}(M_{k} - b_{k+1}I)^{-1}Ae_{j} \Big)$$

• The existence of such a $j \in \tau_D$ is guaranteed by the fact that the condition holds true if we take the sum over all $\left(\frac{Ae_j}{\alpha_i}\right)_{j \in \tau_D}$.

The hypothesis $\operatorname{Ker}(D) \subset \operatorname{Ker}(A)$ implies that

•
$$\sum_{j \in \tau_D} (Ae_j)^T (M_k - b_{k+1}I)^{-2} Ae_j = \operatorname{tr} (A^T (M_k - b_{k+1}I)^{-2} A),$$

•
$$\sum_{j \in \tau_D} (Ae_j)^T (M_k - b_{k+1}I)^{-1} Ae_j = \operatorname{tr} (A^T (M_k - b_{k+1}I)^{-1} A) = \Phi_{k+1} (M_k).$$

The hypothesis $\operatorname{Ker}(D) \subset \operatorname{Ker}(A)$ implies that

•
$$\sum_{j \in \tau_D} (Ae_j)^T (M_k - b_{k+1}I)^{-2} Ae_j = \operatorname{tr} (A^T (M_k - b_{k+1}I)^{-2}A),$$

•
$$\sum_{j \in \tau_D} (Ae_j)^T (M_k - b_{k+1}I)^{-1} Ae_j = \operatorname{tr} (A^T (M_k - b_{k+1}I)^{-1} A) = \Phi_{k+1}(M_k).$$

Therefore it is enough to prove that, at each step,

$$\mathrm{tr}(A^{T}(M_{k}-b_{k+1}I)^{-2}A) \leqslant \frac{\Phi_{k}(M_{k})-\Phi_{k+1}(M_{k})}{\|A\|_{2}^{2}}\Big(-\|D\|_{\mathrm{HS}}^{2}-\Phi_{k+1}(M_{k})\Big).$$

The next lemma provides the conditions that are required at each step in order to prove

$$\operatorname{tr}(A^{T}(M_{k}-b_{k+1}I)^{-2}A) \leqslant \frac{\Phi_{k}(M_{k})-\Phi_{k+1}(M_{k})}{\|A\|_{2}^{2}}\Big(-\|D\|_{\operatorname{HS}}^{2}-\Phi_{k+1}(M_{k})\Big).$$

The next lemma provides the conditions that are required at each step in order to prove

$$\mathrm{tr}(A^{T}(M_{k}-b_{k+1}I)^{-2}A)\leqslant rac{\Phi_{k}(M_{k})-\Phi_{k+1}(M_{k})}{\|A\|_{2}^{2}}\Big(-\|D\|_{\mathrm{HS}}^{2}-\Phi_{k+1}(M_{k})\Big).$$

Lemma

Suppose that M_k has k nonzero eigenvalues all greater than b_k , and write Z_k for the orthogonal projection onto the kernel of M_k . If

$$\Phi_k(M_k)\leqslant -\|D\|_{\mathrm{HS}}^2-rac{\|A\|_2^2}{\delta}$$

and

$$0 < \delta < b_k \leqslant \delta \frac{\|Z_k A\|_{\mathrm{HS}}^2}{\|A\|_2^2},$$

then there exists $i \in \tau_D$ such that $M_{k+1} := M_k + \left(\frac{Ae_i}{\alpha_i}\right) \cdot \left(\frac{Ae_i}{\alpha_i}\right)^T$ has k+1 nonzero eigenvalues all greater than $b_{k+1} := b_k - \delta$ and $\Phi_{k+1}(M_{k+1}) \leq \Phi_k(M_k)$.

• We are now able to complete the proof of the theorem. We must verify that the two conditions

$$\Phi_k(M_k) \leqslant - \|D\|_{\mathrm{HS}}^2 - \frac{\|A\|_2^2}{\delta}$$

and

$$0 < \delta < b_k \leqslant \delta \frac{\|Z_k A\|_{\mathrm{HS}}^2}{\|A\|_2^2},$$

of the Lemma hold at each step.

• We are now able to complete the proof of the theorem. We must verify that the two conditions

$$\Phi_k(M_k) \leqslant - \|D\|_{\mathrm{HS}}^2 - \frac{\|A\|_2^2}{\delta}$$

and

$$0 < \delta < b_k \leqslant \delta \frac{\|Z_k A\|_{\mathrm{HS}}^2}{\|A\|_2^2},$$

of the Lemma hold at each step.

• At the beginning we have $M_0 = 0$ and $Z_k = I$, so we must choose a barrier b_0 such that:

$$-rac{\|oldsymbol{A}\|_{ ext{HS}}^2}{b_0}\leqslant -\|oldsymbol{D}\|_{ ext{HS}}^2-rac{\|oldsymbol{A}\|_2^2}{\delta}$$

and

$$b_0 \leqslant \delta \frac{\|A\|_{\mathrm{HS}}^2}{\|A\|_2^2}.$$

• We are now able to complete the proof of the theorem. We must verify that the two conditions

$$\Phi_k(M_k) \leqslant - \|D\|_{\mathrm{HS}}^2 - \frac{\|A\|_2^2}{\delta}$$

and

$$0 < \delta < b_k \leqslant \delta \frac{\|Z_k A\|_{\mathrm{HS}}^2}{\|A\|_2^2},$$

of the Lemma hold at each step.

• At the beginning we have $M_0 = 0$ and $Z_k = I$, so we must choose a barrier b_0 such that:

$$-\frac{\|\boldsymbol{A}\|_{\mathrm{HS}}^2}{b_0} \leqslant -\|\boldsymbol{D}\|_{\mathrm{HS}}^2 - \frac{\|\boldsymbol{A}\|_2^2}{\delta}$$

and

$$b_0 \leqslant \delta rac{\|A\|_{\mathrm{HS}}^2}{\|A\|_2^2}.$$

• We choose

$$b_0:=\epsilon\|A\|_{\mathrm{HS}}^2/\|D\|_{\mathrm{HS}}^2$$
 and $\delta:=rac{\epsilon}{1-\epsilon}\|A\|_2^2/\|D\|_{\mathrm{HS}}^2.$

• We choose

$$b_0 := \epsilon \|A\|_{\mathrm{HS}}^2 / \|D\|_{\mathrm{HS}}^2$$
 and $\delta := rac{\epsilon}{1-\epsilon} \|A\|_2^2 / \|D\|_{\mathrm{HS}}^2.$

• We choose

$$b_0:=\epsilon \|A\|_{\mathrm{HS}}^2/\|D\|_{\mathrm{HS}}^2$$
 and $\delta:=rac{\epsilon}{1-\epsilon}\|A\|_2^2/\|D\|_{\mathrm{HS}}^2.$

• At the (k + 1)-th step

$$\Phi_{k+1}(M_{k+1}) \leqslant - \|D\|_{\mathrm{HS}}^2 - \frac{\|A\|_2^2}{\delta}$$

holds because $\Phi_{k+1}(M_{k+1}) \leqslant \Phi_k(M_k)$.

• We choose

$$b_0:=\epsilon \|A\|_{\mathrm{HS}}^2/\|D\|_{\mathrm{HS}}^2$$
 and $\delta:=rac{\epsilon}{1-\epsilon}\|A\|_2^2/\|D\|_{\mathrm{HS}}^2.$

• At the (k + 1)-th step

$$\Phi_{k+1}(M_{k+1}) \leqslant - \|D\|_{\mathrm{HS}}^2 - \frac{\|A\|_2^2}{\delta}$$

holds because $\Phi_{k+1}(M_{k+1}) \leqslant \Phi_k(M_k)$.

• Since $\|Z_k A\|_{\mathrm{HS}}^2$ decreases at each step by at most $\|A\|_2^2$, the right-hand side of

$$0 < \delta < b_k \leqslant \delta \frac{\|Z_k A\|_{\mathrm{HS}}^2}{\|A\|_2^2},$$

decreases by at most δ , and therefore $b_{k+1} \leqslant \delta \frac{\|Z_{k+1}A\|_{HS}^2}{\|A\|_2^2}$ also holds.

• We choose

$$b_0:=\epsilon \|A\|_{\mathrm{HS}}^2/\|D\|_{\mathrm{HS}}^2$$
 and $\delta:=rac{\epsilon}{1-\epsilon}\|A\|_2^2/\|D\|_{\mathrm{HS}}^2.$

• At the (k + 1)-th step

$$\Phi_{k+1}(M_{k+1}) \leqslant - \|D\|_{\mathrm{HS}}^2 - \frac{\|A\|_2^2}{\delta}$$

holds because $\Phi_{k+1}(M_{k+1}) \leqslant \Phi_k(M_k)$.

• Since $\|Z_k A\|^2_{\mathrm{HS}}$ decreases at each step by at most $\|A\|^2_2$, the right-hand side of

$$0 < \delta < b_k \leqslant \delta \frac{\|Z_k A\|_{\mathrm{HS}}^2}{\|A\|_2^2},$$

decreases by at most δ , and therefore $b_{k+1} \leq \delta \frac{\|Z_{k+1}A\|_{HS}^2}{\|A\|_2^2}$ also holds.

• Finally note that, after $k_0 = (1-\epsilon)^2 \|A\|_{\mathrm{HS}}^2 / \|A\|_2^2$ steps, the barrier will be

$$b_{k_0} = b_0 - k_0 \delta = \epsilon^2 ||A||_{\mathrm{HS}}^2 / ||D||_{\mathrm{HS}}^2.$$

This completes the proof.