# Banach-Mazur distance to the cube 

## Apostolos Giannopoulos

## National and Kapodistrian University of Athens

September 6, 2018

## Banach-Mazur distance

- If $X$ and $Y$ are two n-dimensional normed spaces then their Banach-Mazur distance $d(X, Y)$ is defined by

$$
d(X, Y)=\min \left\{\|T\|\left\|T^{-1}\right\| \mid T: X \rightarrow Y \text { is an isomorphism }\right\}
$$

## Banach-Mazur distance

- If $X$ and $Y$ are two $n$-dimensional normed spaces then their Banach-Mazur distance $d(X, Y)$ is defined by

$$
d(X, Y)=\min \left\{\|T\|\left\|T^{-1}\right\| \mid T: X \rightarrow Y \text { is an isomorphism }\right\} .
$$

## Geometric interpretation

Let $B_{X}$ and $B_{Y}$ denote the unit balls of $X$ and $Y$. Then, $d(X, Y)$ is the smallest possible $r \geqslant 1$ for which there exists an isomorphism $T: X \rightarrow Y$ such that

$$
B_{Y} \subseteq T\left(B_{X}\right) \subseteq r B_{Y} .
$$

## Banach-Mazur distance

- If $X$ and $Y$ are two n-dimensional normed spaces then their Banach-Mazur distance $d(X, Y)$ is defined by

$$
d(X, Y)=\min \left\{\|T\|\left\|T^{-1}\right\| \mid T: X \rightarrow Y \text { is an isomorphism }\right\}
$$

## Geometric interpretation

Let $B_{X}$ and $B_{Y}$ denote the unit balls of $X$ and $Y$. Then, $d(X, Y)$ is the smallest possible $r \geqslant 1$ for which there exists an isomorphism $T: X \rightarrow Y$ such that

$$
B_{Y} \subseteq T\left(B_{X}\right) \subseteq r B_{Y}
$$

## Basic properties

- $d(X, Y) \geqslant 1$ with equality if and only if $X$ is isometrically isomorphic to $Y$.
- $d(X, Y)=d(Y, X)$.
- $d(X, Z) \leqslant d(X, Y) d(Y, Z)$.
- $d\left(X^{*}, Y^{*}\right)=d(X, Y)$.


## Banach-Mazur compactum

- The $n$-th Banach-Mazur (or Minkowski) compactum is the set $\mathcal{B}_{n}$ of all equivalence classes of isometrically isomorphic $n$-dimensional normed spaces.
- $\mathcal{B}_{n}$ becomes a compact metric space with the metric $\log d$.
- Usually, instead of $\log d$, we consider $d$ as a "multiplicative" distance on $\mathcal{B}_{n}$.


## Banach-Mazur compactum

- The $n$-th Banach-Mazur (or Minkowski) compactum is the set $\mathcal{B}_{n}$ of all equivalence classes of isometrically isomorphic $n$-dimensional normed spaces.
- $\mathcal{B}_{n}$ becomes a compact metric space with the metric $\log d$.
- Usually, instead of $\log d$, we consider $d$ as a "multiplicative" distance on $\mathcal{B}_{n}$.


## Diameter of the compactum

## Banach-Mazur compactum

- The $n$-th Banach-Mazur (or Minkowski) compactum is the set $\mathcal{B}_{n}$ of all equivalence classes of isometrically isomorphic $n$-dimensional normed spaces.
- $\mathcal{B}_{n}$ becomes a compact metric space with the metric $\log d$.
- Usually, instead of $\log d$, we consider $d$ as a "multiplicative" distance on $\mathcal{B}_{n}$.


## Diameter of the compactum

Upper bound: $\operatorname{diam}\left(\mathcal{B}_{n}\right) \leqslant n$.

## Banach-Mazur compactum

- The $n$-th Banach-Mazur (or Minkowski) compactum is the set $\mathcal{B}_{n}$ of all equivalence classes of isometrically isomorphic $n$-dimensional normed spaces.
- $\mathcal{B}_{n}$ becomes a compact metric space with the metric $\log d$.
- Usually, instead of $\log d$, we consider $d$ as a "multiplicative" distance on $\mathcal{B}_{n}$.


## Diameter of the compactum

Upper bound: $\operatorname{diam}\left(\mathcal{B}_{n}\right) \leqslant n$.

- This is a consequence of John's theorem which can be stated as follows: for any $n$-dimensional normed space $X$,

$$
d\left(X, \ell_{2}^{n}\right) \leqslant \sqrt{n}
$$

Then, for any $X$ and $Y$,

$$
d(X, Y) \leqslant d\left(X, \ell_{2}^{n}\right) d\left(\ell_{2}^{n}, Y\right) \leqslant \sqrt{n} \cdot \sqrt{n}=n
$$

## Notation: $\ell_{p}^{n}$

$\ell_{p}^{n}=\left(\mathbb{R}^{n},\|\cdot\|_{p}\right)$, where $\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}$ if $1 \leqslant p<\infty$ and $\|x\|_{\infty}=\max _{1 \leqslant i \leqslant n}\left|x_{i}\right|$.

## Diameter of the Banach-Mazur compactum

## Gluskin's theorem

There exists an absolute constant $c>0$ with the following property: for any $n \in \mathbb{N}$ one may find two $n$-dimensional normed spaces $X_{n}, Y_{n}$ with $d\left(X_{n}, Y_{n}\right) \geqslant c n$. Consequently, $\operatorname{diam}\left(\mathcal{B}_{n}\right) \geqslant c n$.

## Diameter of the Banach-Mazur compactum

## Gluskin's theorem

There exists an absolute constant $c>0$ with the following property: for any $n \in \mathbb{N}$ one may find two $n$-dimensional normed spaces $X_{n}, Y_{n}$ with $d\left(X_{n}, Y_{n}\right) \geqslant c n$. Consequently, $\operatorname{diam}\left(\mathcal{B}_{n}\right) \geqslant c n$.

- The proof introduces a class of random spaces, sometimes called Gluskin spaces. Let $x_{1}, \ldots, x_{m}$ be random vectors which are independently and uniformly distributed in the Euclidean unit sphere $S^{n-1}$. We consider the symmetric random polytope

$$
B_{m}:=B_{m}\left(x_{1}, \ldots, x_{m}\right)=\operatorname{conv}\left\{ \pm e_{1}, \pm e_{2}, \ldots, \pm e_{n}, \pm x_{1}, \ldots, \pm x_{m}\right\}
$$

where $\left\{e_{i}\right\}_{i \leqslant n}$ is the standard orthonormal basis of $\mathbb{R}^{n}$. The space whose unit ball is $B_{m}$ is denoted by $X_{B_{m}}$. We write $\mathcal{A}_{m}$ for the set of all these spaces equipped with the probability measure $\mu \equiv \otimes_{i=1}^{m} \sigma$.

## Diameter of the Banach-Mazur compactum

## Gluskin's theorem

There exists an absolute constant $c>0$ with the following property: for any $n \in \mathbb{N}$ one may find two $n$-dimensional normed spaces $X_{n}, Y_{n}$ with $d\left(X_{n}, Y_{n}\right) \geqslant c n$. Consequently, $\operatorname{diam}\left(\mathcal{B}_{n}\right) \geqslant c n$.

- The proof introduces a class of random spaces, sometimes called Gluskin spaces. Let $x_{1}, \ldots, x_{m}$ be random vectors which are independently and uniformly distributed in the Euclidean unit sphere $S^{n-1}$. We consider the symmetric random polytope

$$
B_{m}:=B_{m}\left(x_{1}, \ldots, x_{m}\right)=\operatorname{conv}\left\{ \pm e_{1}, \pm e_{2}, \ldots, \pm e_{n}, \pm x_{1}, \ldots, \pm x_{m}\right\}
$$

where $\left\{e_{i}\right\}_{i \leqslant n}$ is the standard orthonormal basis of $\mathbb{R}^{n}$. The space whose unit ball is $B_{m}$ is denoted by $X_{B_{m}}$. We write $\mathcal{A}_{m}$ for the set of all these spaces equipped with the probability measure $\mu \equiv \otimes_{i=1}^{m} \sigma$.

- Gluskin proves that if $m=2 n$ and $B_{m}^{\prime}$ is an independent copy of $B_{m}$ then

$$
d\left(X_{B_{m}}, X_{B_{m}^{\prime}}\right) \geqslant c n
$$

with probability greater than $1-2^{-n^{2}}$.

## Banach-Mazur distance to the cube

- Let $X_{0} \in \mathcal{B}_{n}$. We denote by $\mathcal{R}\left(X_{0}\right)$ the "radius" of the Banach-Mazur compactum $\mathcal{B}_{n}$ with respect to $X_{0}$, defined by

$$
\mathcal{R}\left(X_{0}\right)=\max \left\{d\left(X, X_{0}\right): X \in \mathcal{B}_{n}\right\} .
$$

## Banach-Mazur distance to the cube

- Let $X_{0} \in \mathcal{B}_{n}$. We denote by $\mathcal{R}\left(X_{0}\right)$ the "radius" of the Banach-Mazur compactum $\mathcal{B}_{n}$ with respect to $X_{0}$, defined by

$$
\mathcal{R}\left(X_{0}\right)=\max \left\{d\left(X, X_{0}\right): X \in \mathcal{B}_{n}\right\}
$$

- John's theorem implies that $\mathcal{R}\left(\ell_{2}^{n}\right)=\sqrt{n}$ because one can show that

$$
d\left(\ell_{\infty}^{n}, \ell_{2}^{n}\right)=d\left(\ell_{1}^{n}, \ell_{2}^{n}\right)=\sqrt{n}
$$

## Banach-Mazur distance to the cube

- Let $X_{0} \in \mathcal{B}_{n}$. We denote by $\mathcal{R}\left(X_{0}\right)$ the "radius" of the Banach-Mazur compactum $\mathcal{B}_{n}$ with respect to $X_{0}$, defined by

$$
\mathcal{R}\left(X_{0}\right)=\max \left\{d\left(X, X_{0}\right): X \in \mathcal{B}_{n}\right\}
$$

- John's theorem implies that $\mathcal{R}\left(\ell_{2}^{n}\right)=\sqrt{n}$ because one can show that

$$
d\left(\ell_{\infty}^{n}, \ell_{2}^{n}\right)=d\left(\ell_{1}^{n}, \ell_{2}^{n}\right)=\sqrt{n}
$$

- We shall discuss the radius of $\mathcal{B}_{n}$ with respect to $\ell_{\infty}^{n}$, defined by

$$
\mathcal{R}_{\infty}^{n}=\max \left\{d\left(X, \ell_{\infty}^{n}\right): X \in \mathcal{B}_{n}\right\}
$$

## Banach-Mazur distance to the cube

- Let $X_{0} \in \mathcal{B}_{n}$. We denote by $\mathcal{R}\left(X_{0}\right)$ the "radius" of the Banach-Mazur compactum $\mathcal{B}_{n}$ with respect to $X_{0}$, defined by

$$
\mathcal{R}\left(X_{0}\right)=\max \left\{d\left(X, X_{0}\right): X \in \mathcal{B}_{n}\right\}
$$

- John's theorem implies that $\mathcal{R}\left(\ell_{2}^{n}\right)=\sqrt{n}$ because one can show that

$$
d\left(\ell_{\infty}^{n}, \ell_{2}^{n}\right)=d\left(\ell_{1}^{n}, \ell_{2}^{n}\right)=\sqrt{n}
$$

- We shall discuss the radius of $\mathcal{B}_{n}$ with respect to $\ell_{\infty}^{n}$, defined by

$$
\mathcal{R}_{\infty}^{n}=\max \left\{d\left(X, \ell_{\infty}^{n}\right): X \in \mathcal{B}_{n}\right\}
$$

## Pełczynski

What is the asymptotic behavior of $\mathcal{R}_{\infty}^{n}$ as $n$ tends to infinity?

## Banach-Mazur distance to the cube

- Let $X_{0} \in \mathcal{B}_{n}$. We denote by $\mathcal{R}\left(X_{0}\right)$ the "radius" of the Banach-Mazur compactum $\mathcal{B}_{n}$ with respect to $X_{0}$, defined by

$$
\mathcal{R}\left(X_{0}\right)=\max \left\{d\left(X, X_{0}\right): X \in \mathcal{B}_{n}\right\}
$$

- John's theorem implies that $\mathcal{R}\left(\ell_{2}^{n}\right)=\sqrt{n}$ because one can show that

$$
d\left(\ell_{\infty}^{n}, \ell_{2}^{n}\right)=d\left(\ell_{1}^{n}, \ell_{2}^{n}\right)=\sqrt{n}
$$

- We shall discuss the radius of $\mathcal{B}_{n}$ with respect to $\ell_{\infty}^{n}$, defined by

$$
\mathcal{R}_{\infty}^{n}=\max \left\{d\left(X, \ell_{\infty}^{n}\right): X \in \mathcal{B}_{n}\right\}
$$

## Pełczynski

## What is the asymptotic behavior of $\mathcal{R}_{\infty}^{n}$ as $n$ tends to infinity?

- One clearly has $\mathcal{R}_{\infty}^{n} \leqslant \operatorname{diam}\left(\mathcal{B}_{n}\right) \leqslant n$ and the fact that $d\left(\ell_{\infty}^{n}, \ell_{2}^{n}\right)=\sqrt{n}$ shows that

$$
\sqrt{n} \leqslant \mathcal{R}_{\infty}^{n} \leqslant n
$$

## Banach-Mazur distance to the cube

Upper bounds were obtained by:

- Bourgain-Szarek: $\mathcal{R}_{\infty}^{n} \leqslant n \cdot \exp (-c \sqrt{\log n})$.


## Banach-Mazur distance to the cube

Upper bounds were obtained by:

- Bourgain-Szarek: $\mathcal{R}_{\infty}^{n} \leqslant n \cdot \exp (-c \sqrt{\log n})$.
- Szarek-Talagrand: $\mathcal{R}_{\infty}^{n} \leqslant c n^{7 / 8}$.


## Banach-Mazur distance to the cube

Upper bounds were obtained by:

- Bourgain-Szarek: $\mathcal{R}_{\infty}^{n} \leqslant n \cdot \exp (-c \sqrt{\log n})$.
- Szarek-Talagrand: $\mathcal{R}_{\infty}^{n} \leqslant c n^{7 / 8}$.


## G., 1993

There exists an absolute constant $c>0$ such that, for any $n \geqslant 2$,

$$
\mathcal{R}_{\infty}^{n} \leqslant c n^{5 / 6} .
$$

## Banach-Mazur distance to the cube

Upper bounds were obtained by:

- Bourgain-Szarek: $\mathcal{R}_{\infty}^{n} \leqslant n \cdot \exp (-c \sqrt{\log n})$.
- Szarek-Talagrand: $\mathcal{R}_{\infty}^{n} \leqslant c n^{7 / 8}$.


## G., 1993

There exists an absolute constant $c>0$ such that, for any $n \geqslant 2$,

$$
\mathcal{R}_{\infty}^{n} \leqslant c n^{5 / 6} .
$$

Lower bounds: Szarek, using random spaces of Gluskin type, proved that

$$
\mathcal{R}_{\infty}^{n} \geqslant c \sqrt{n} \log n
$$

## Banach-Mazur distance to the cube

Upper bounds were obtained by:

- Bourgain-Szarek: $\mathcal{R}_{\infty}^{n} \leqslant n \cdot \exp (-c \sqrt{\log n})$.
- Szarek-Talagrand: $\mathcal{R}_{\infty}^{n} \leqslant c n^{7 / 8}$.


## G., 1993

There exists an absolute constant $c>0$ such that, for any $n \geqslant 2$,

$$
\mathcal{R}_{\infty}^{n} \leqslant c n^{5 / 6} .
$$

Lower bounds: Szarek, using random spaces of Gluskin type, proved that

$$
\mathcal{R}_{\infty}^{n} \geqslant c \sqrt{n} \log n .
$$

## Tikhomirov, 2018

There exist absolute constants $c, b>0$ such that, for any $n \geqslant 2$,

$$
\mathcal{R}_{\infty}^{n} \geqslant c n^{5 / 9} \log ^{-b} n
$$

## Banach-Mazur distance to the cube

Upper bounds were obtained by:

- Bourgain-Szarek: $\mathcal{R}_{\infty}^{n} \leqslant n \cdot \exp (-c \sqrt{\log n})$.
- Szarek-Talagrand: $\mathcal{R}_{\infty}^{n} \leqslant c n^{7 / 8}$.


## G., 1993

There exists an absolute constant $c>0$ such that, for any $n \geqslant 2$,

$$
\mathcal{R}_{\infty}^{n} \leqslant c n^{5 / 6}
$$

Lower bounds: Szarek, using random spaces of Gluskin type, proved that

$$
\mathcal{R}_{\infty}^{n} \geqslant c \sqrt{n} \log n
$$

## Tikhomirov, 2018

There exist absolute constants $c, b>0$ such that, for any $n \geqslant 2$,

$$
\mathcal{R}_{\infty}^{n} \geqslant c n^{5 / 9} \log ^{-b} n
$$

- This means that $\mathcal{R}_{\infty}^{n}$ has order of growth much larger than $\sqrt{n}$; in other words, $\ell_{\infty}^{n}$ is not an asymptotic center of the Banach-Mazur compactum, in a very strong sense.


## Upper bound for $\mathcal{R}_{\infty}^{n}$

- It is more convenient to work with the dual quantity

$$
\mathcal{R}_{1}^{n}=\max \left\{d\left(X, \ell_{1}^{n}\right): X \in \mathcal{B}_{n}\right\}
$$

## Upper bound for $\mathcal{R}_{\infty}^{n}$

- It is more convenient to work with the dual quantity

$$
\mathcal{R}_{1}^{n}=\max \left\{d\left(X, \ell_{1}^{n}\right): X \in \mathcal{B}_{n}\right\}
$$

- Since $d\left(X^{*}, Y^{*}\right)=d(X, Y)$ we see that $\mathcal{R}_{\infty}^{n}=\mathcal{R}_{1}^{n}$.


## Upper bound for $\mathcal{R}_{\infty}^{n}$

- It is more convenient to work with the dual quantity

$$
\mathcal{R}_{1}^{n}=\max \left\{d\left(X, \ell_{1}^{n}\right): X \in \mathcal{B}_{n}\right\} .
$$

- Since $d\left(X^{*}, Y^{*}\right)=d(X, Y)$ we see that $\mathcal{R}_{\infty}^{n}=\mathcal{R}_{1}^{n}$.
- We want an upper bound for $d\left(X, \ell_{1}^{n}\right)$ where $X=\left(\mathbb{R}^{n},\|\cdot\|\right)$, and we may also assume that the minimal volume ellipsoid of the unit ball $K$ of $X$ is the Euclidean unit ball $B_{2}^{n}$.


## Upper bound for $\mathcal{R}_{\infty}^{n}$

- It is more convenient to work with the dual quantity

$$
\mathcal{R}_{1}^{n}=\max \left\{d\left(X, \ell_{1}^{n}\right): X \in \mathcal{B}_{n}\right\} .
$$

- Since $d\left(X^{*}, Y^{*}\right)=d(X, Y)$ we see that $\mathcal{R}_{\infty}^{n}=\mathcal{R}_{1}^{n}$.
- We want an upper bound for $d\left(X, \ell_{1}^{n}\right)$ where $X=\left(\mathbb{R}^{n},\|\cdot\|\right)$, and we may also assume that the minimal volume ellipsoid of the unit ball $K$ of $X$ is the Euclidean unit ball $B_{2}^{n}$.
- We need to find $n$ vectors $u_{1}, \ldots, u_{n} \in \mathbb{R}^{n}$ such that, for all $t_{1}, \ldots, t_{n} \in \mathbb{R}$,

$$
\frac{1}{c n^{5 / 6}} \sum_{i=1}^{n}\left|t_{i}\right| \leqslant\left\|\sum_{i=1}^{n} t_{i} u_{i}\right\| \leqslant \sum_{i=1}^{n}\left|t_{i}\right| .
$$

## Upper bound for $\mathcal{R}_{\infty}^{n}$

- It is more convenient to work with the dual quantity

$$
\mathcal{R}_{1}^{n}=\max \left\{d\left(X, \ell_{1}^{n}\right): X \in \mathcal{B}_{n}\right\}
$$

- Since $d\left(X^{*}, Y^{*}\right)=d(X, Y)$ we see that $\mathcal{R}_{\infty}^{n}=\mathcal{R}_{1}^{n}$.
- We want an upper bound for $d\left(X, \ell_{1}^{n}\right)$ where $X=\left(\mathbb{R}^{n},\|\cdot\|\right)$, and we may also assume that the minimal volume ellipsoid of the unit ball $K$ of $X$ is the Euclidean unit ball $B_{2}^{n}$.
- We need to find $n$ vectors $u_{1}, \ldots, u_{n} \in \mathbb{R}^{n}$ such that, for all $t_{1}, \ldots, t_{n} \in \mathbb{R}$,

$$
\frac{1}{c n^{5 / 6}} \sum_{i=1}^{n}\left|t_{i}\right| \leqslant\left\|\sum_{i=1}^{n} t_{i} u_{i}\right\| \leqslant \sum_{i=1}^{n}\left|t_{i}\right| .
$$

- Then, the operator $T: \ell_{1}^{n} \rightarrow X$ defined by $T\left(e_{i}\right)=u_{i}$ satisfies $\|T\| \leqslant 1$ and $\left\|T^{-1}\right\| \leqslant c n^{5 / 6}$, which implies the bound

$$
d\left(X, \ell_{1}^{n}\right) \leqslant\|T\|\left\|T^{-1}\right\| \leqslant c n^{5 / 6}
$$

## Upper bound for $\mathcal{R}_{\infty}^{n}$

- It is more convenient to work with the dual quantity

$$
\mathcal{R}_{1}^{n}=\max \left\{d\left(X, \ell_{1}^{n}\right): X \in \mathcal{B}_{n}\right\}
$$

- Since $d\left(X^{*}, Y^{*}\right)=d(X, Y)$ we see that $\mathcal{R}_{\infty}^{n}=\mathcal{R}_{1}^{n}$.
- We want an upper bound for $d\left(X, \ell_{1}^{n}\right)$ where $X=\left(\mathbb{R}^{n},\|\cdot\|\right)$, and we may also assume that the minimal volume ellipsoid of the unit ball $K$ of $X$ is the Euclidean unit ball $B_{2}^{n}$.
- We need to find $n$ vectors $u_{1}, \ldots, u_{n} \in \mathbb{R}^{n}$ such that, for all $t_{1}, \ldots, t_{n} \in \mathbb{R}$,

$$
\frac{1}{c n^{5 / 6}} \sum_{i=1}^{n}\left|t_{i}\right| \leqslant\left\|\sum_{i=1}^{n} t_{i} u_{i}\right\| \leqslant \sum_{i=1}^{n}\left|t_{i}\right| .
$$

- Then, the operator $T: \ell_{1}^{n} \rightarrow X$ defined by $T\left(e_{i}\right)=u_{i}$ satisfies $\|T\| \leqslant 1$ and $\left\|T^{-1}\right\| \leqslant c n^{5 / 6}$, which implies the bound

$$
d\left(X, \ell_{1}^{n}\right) \leqslant\|T\|\left\|T^{-1}\right\| \leqslant c n^{5 / 6}
$$

- The main ingredients for the proof are the combinatorial Sauer-Shelah lemma and a Dvoretzky-Rogers type lemma of Szarek and Talagrand on the distribution of the contact points of $K$ and $B_{2}^{n}$ when $K$ is in Löwner position.


## The lemma of Szarek and Talagrand

- Recall John's representation of the identity: since $B_{2}^{n}$ is the minimal volume ellipsoid of $K$, there exist contact points $x_{1}, \ldots, x_{m}$ of $K$ and $B_{2}^{n}$, and positive real numbers $c_{1}, \ldots, c_{m}$ such that

$$
\begin{equation*}
x=\sum_{i=1}^{m} c_{i}\left\langle x, x_{i}\right\rangle x_{i} \tag{1}
\end{equation*}
$$

for all $x \in \mathbb{R}^{n}$.

## The lemma of Szarek and Talagrand

- Recall John's representation of the identity: since $B_{2}^{n}$ is the minimal volume ellipsoid of $K$, there exist contact points $x_{1}, \ldots, x_{m}$ of $K$ and $B_{2}^{n}$, and positive real numbers $c_{1}, \ldots, c_{m}$ such that

$$
\begin{equation*}
x=\sum_{i=1}^{m} c_{i}\left\langle x, x_{i}\right\rangle x_{i} \tag{1}
\end{equation*}
$$

for all $x \in \mathbb{R}^{n}$.

## Szarek-Talagrand

Let $B_{2}^{n}$ be the minimal volume ellipsoid of $K$. For every $\epsilon \in(0,1)$, we can find $k \geqslant(1-\epsilon) n$ and contact points $y_{1}, \ldots, y_{k}$ of $K$ and $B_{2}^{n}$ with the following property: If $j \in\{1, \ldots, k\}$ and $F_{j}=\operatorname{span}\left\{y_{i}: i \neq j\right\}$, then

$$
\left|P_{F_{j}^{\perp}}\left(y_{j}\right)\right| \geqslant \sqrt{\epsilon} \quad \text { for all } 1 \leqslant j \leqslant k .
$$

## The lemma of Szarek and Talagrand

- Recall John's representation of the identity: since $B_{2}^{n}$ is the minimal volume ellipsoid of $K$, there exist contact points $x_{1}, \ldots, x_{m}$ of $K$ and $B_{2}^{n}$, and positive real numbers $c_{1}, \ldots, c_{m}$ such that

$$
\begin{equation*}
x=\sum_{i=1}^{m} c_{i}\left\langle x, x_{i}\right\rangle x_{i} \tag{1}
\end{equation*}
$$

for all $x \in \mathbb{R}^{n}$.

## Szarek-Talagrand

Let $B_{2}^{n}$ be the minimal volume ellipsoid of $K$. For every $\epsilon \in(0,1)$, we can find $k \geqslant(1-\epsilon) n$ and contact points $y_{1}, \ldots, y_{k}$ of $K$ and $B_{2}^{n}$ with the following property: If $j \in\{1, \ldots, k\}$ and $F_{j}=\operatorname{span}\left\{y_{i}: i \neq j\right\}$, then

$$
\left|P_{F_{j}^{\perp}}\left(y_{j}\right)\right| \geqslant \sqrt{\epsilon} \quad \text { for all } 1 \leqslant j \leqslant k
$$

- Among all $k$-sets $\left\{x_{i_{1}}, \ldots, x_{i_{k}}\right\}$ of contact points in (1) choose one, say $\left\{y_{1}, \ldots, y_{k}\right\}$, which maximizes $\operatorname{vol}_{k}\left(\operatorname{conv}\left\{ \pm x_{i_{1}}, \ldots, \pm x_{i_{k}}\right\}\right)$.


## The lemma of Szarek and Talagrand

- Recall John's representation of the identity: since $B_{2}^{n}$ is the minimal volume ellipsoid of $K$, there exist contact points $x_{1}, \ldots, x_{m}$ of $K$ and $B_{2}^{n}$, and positive real numbers $c_{1}, \ldots, c_{m}$ such that

$$
\begin{equation*}
x=\sum_{i=1}^{m} c_{i}\left\langle x, x_{i}\right\rangle x_{i} \tag{1}
\end{equation*}
$$

for all $x \in \mathbb{R}^{n}$.

## Szarek-Talagrand

Let $B_{2}^{n}$ be the minimal volume ellipsoid of $K$. For every $\epsilon \in(0,1)$, we can find $k \geqslant(1-\epsilon) n$ and contact points $y_{1}, \ldots, y_{k}$ of $K$ and $B_{2}^{n}$ with the following property: If $j \in\{1, \ldots, k\}$ and $F_{j}=\operatorname{span}\left\{y_{i}: i \neq j\right\}$, then

$$
\left|P_{F_{j}^{\perp}}\left(y_{j}\right)\right| \geqslant \sqrt{\epsilon} \quad \text { for all } 1 \leqslant j \leqslant k
$$

- Among all $k$-sets $\left\{x_{i_{1}}, \ldots, x_{i_{k}}\right\}$ of contact points in (1) choose one, say $\left\{y_{1}, \ldots, y_{k}\right\}$, which maximizes $\operatorname{vol}_{k}\left(\operatorname{conv}\left\{ \pm x_{i_{1}}, \ldots, \pm x_{i_{k}}\right\}\right)$.
- Then, for all $1 \leqslant j \leqslant k$ and all $1 \leqslant i \leqslant m$ we have

$$
\left|P_{F_{j}^{\perp}}\left(y_{j}\right)\right| \geqslant\left|P_{F_{j}^{\perp}}\left(x_{i}\right)\right| .
$$

## The lemma of Szarek and Talagrand

## Szarek-Talagrand

Let $B_{2}^{n}$ be the minimal volume ellipsoid of $K$. For every $\epsilon \in(0,1)$, we can find $k \geqslant(1-\epsilon) n$ and contact points $y_{1}, \ldots, y_{k}$ of $K$ and $B_{2}^{n}$ with the following property: If $j \in\{1, \ldots, k\}$ and $F_{j}=\operatorname{span}\left\{y_{i}: i \neq j\right\}$, then $\left|P_{F_{j}^{\perp}}\left(y_{j}\right)\right| \geqslant \sqrt{\epsilon}$ for all $1 \leqslant j \leqslant k$.

## The lemma of Szarek and Talagrand

## Szarek-Talagrand

Let $B_{2}^{n}$ be the minimal volume ellipsoid of $K$. For every $\epsilon \in(0,1)$, we can find $k \geqslant(1-\epsilon) n$ and contact points $y_{1}, \ldots, y_{k}$ of $K$ and $B_{2}^{n}$ with the following property: If $j \in\{1, \ldots, k\}$ and $F_{j}=\operatorname{span}\left\{y_{i}: i \neq j\right\}$, then $\left|P_{F_{j}^{\perp}}\left(y_{j}\right)\right| \geqslant \sqrt{\epsilon}$ for all $1 \leqslant j \leqslant k$.

- Among all $k$-sets $\left\{x_{i_{1}}, \ldots, x_{i_{k}}\right\}$ of contact points in (1) choose one, say $\left\{y_{1}, \ldots, y_{k}\right\}$, which maximizes $\operatorname{vol}_{k}\left(\operatorname{conv}\left\{ \pm x_{i 1}, \ldots, \pm x_{i_{k}}\right\}\right)$.


## The lemma of Szarek and Talagrand

## Szarek-Talagrand

Let $B_{2}^{n}$ be the minimal volume ellipsoid of $K$. For every $\epsilon \in(0,1)$, we can find $k \geqslant(1-\epsilon) n$ and contact points $y_{1}, \ldots, y_{k}$ of $K$ and $B_{2}^{n}$ with the following property: If $j \in\{1, \ldots, k\}$ and $F_{j}=\operatorname{span}\left\{y_{i}: i \neq j\right\}$, then $\left|P_{F_{j}^{\perp}}\left(y_{j}\right)\right| \geqslant \sqrt{\epsilon}$ for all $1 \leqslant j \leqslant k$.

- Among all $k$-sets $\left\{x_{i 1}, \ldots, x_{i_{k}}\right\}$ of contact points in (1) choose one, say $\left\{y_{1}, \ldots, y_{k}\right\}$, which maximizes $\operatorname{vol}_{k}\left(\operatorname{conv}\left\{ \pm x_{i 1}, \ldots, \pm x_{i_{k}}\right\}\right)$.
- Then, for all $1 \leqslant j \leqslant k$ and all $1 \leqslant i \leqslant m$ we have $\left|P_{F_{j}}\left(y_{j}\right)\right| \geqslant\left|P_{F_{j}^{\perp}}\left(x_{i}\right)\right|$.


## The lemma of Szarek and Talagrand

## Szarek-Talagrand

Let $B_{2}^{n}$ be the minimal volume ellipsoid of $K$. For every $\epsilon \in(0,1)$, we can find $k \geqslant(1-\epsilon) n$ and contact points $y_{1}, \ldots, y_{k}$ of $K$ and $B_{2}^{n}$ with the following property: If $j \in\{1, \ldots, k\}$ and $F_{j}=\operatorname{span}\left\{y_{i}: i \neq j\right\}$, then $\left|P_{F_{j}^{\perp}}\left(y_{j}\right)\right| \geqslant \sqrt{\epsilon}$ for all $1 \leqslant j \leqslant k$.

- Among all $k$-sets $\left\{x_{i 1}, \ldots, x_{i_{k}}\right\}$ of contact points in (1) choose one, say $\left\{y_{1}, \ldots, y_{k}\right\}$, which maximizes $\operatorname{vol}_{k}\left(\operatorname{conv}\left\{ \pm x_{i_{1}}, \ldots, \pm x_{i_{k}}\right\}\right)$.
- Then, for all $1 \leqslant j \leqslant k$ and all $1 \leqslant i \leqslant m$ we have $\left|P_{F_{j}^{\perp}}\left(y_{j}\right)\right| \geqslant\left|P_{F_{j}^{\perp}}\left(x_{i}\right)\right|$.
- Note that $P_{F_{j}^{\perp}}(x)=\sum_{i=1}^{m} c_{i}\left\langle x, x_{i}\right\rangle P_{F_{j}^{\perp}}\left(x_{i}\right)$. Using this, we see that

$$
n-k+1=\operatorname{tr}\left(P_{F_{j}^{\perp}}\right)=\sum_{i=1}^{m} c_{i}\left\langle x_{i}, P_{F_{j}^{\perp}}\left(x_{i}\right)\right\rangle=\sum_{i=1}^{m} c_{i}\left|P_{F_{j}^{\perp}}\left(x_{i}\right)\right|^{2},
$$

and since $\sum_{i=1}^{m} c_{i}=n$ there exists $x_{i}$ such that

$$
\left|P_{F_{j}^{\perp}}\left(x_{i}\right)\right|^{2}=\left\langle x_{i}, P_{F_{j}^{\perp}}\left(x_{i}\right)\right\rangle \geqslant \operatorname{tr}\left(P_{F_{j}^{\perp}}\right) / n=(n-k+1) / n .
$$

## The lemma of Szarek and Talagrand

## Szarek-Talagrand

Let $B_{2}^{n}$ be the minimal volume ellipsoid of $K$. For every $\epsilon \in(0,1)$, we can find $k \geqslant(1-\epsilon) n$ and contact points $y_{1}, \ldots, y_{k}$ of $K$ and $B_{2}^{n}$ with the following property: If $j \in\{1, \ldots, k\}$ and $F_{j}=\operatorname{span}\left\{y_{i}: i \neq j\right\}$, then $\left|P_{F_{j}^{\perp}}\left(y_{j}\right)\right| \geqslant \sqrt{\epsilon}$ for all $1 \leqslant j \leqslant k$.

- Among all $k$-sets $\left\{x_{i 1}, \ldots, x_{i_{k}}\right\}$ of contact points in (1) choose one, say $\left\{y_{1}, \ldots, y_{k}\right\}$, which maximizes $\operatorname{vol}_{k}\left(\operatorname{conv}\left\{ \pm x_{i 1}, \ldots, \pm x_{i_{k}}\right\}\right)$.
- Then, for all $1 \leqslant j \leqslant k$ and all $1 \leqslant i \leqslant m$ we have $\left|P_{F_{j}^{\prime}}\left(y_{j}\right)\right| \geqslant\left|P_{F_{j}^{\perp}}\left(x_{i}\right)\right|$.
- Note that $P_{F_{j}^{\perp}}(x)=\sum_{i=1}^{m} c_{i}\left\langle x, x_{i}\right\rangle P_{F_{j}^{\perp}}\left(x_{i}\right)$. Using this, we see that

$$
n-k+1=\operatorname{tr}\left(P_{F_{j}^{\perp}}\right)=\sum_{i=1}^{m} c_{i}\left\langle x_{i}, P_{F_{j}^{\perp}}\left(x_{i}\right)\right\rangle=\sum_{i=1}^{m} c_{i}\left|P_{F_{j}^{\perp}}\left(x_{i}\right)\right|^{2},
$$

and since $\sum_{i=1}^{m} c_{i}=n$ there exists $x_{i}$ such that

$$
\left|P_{F_{j}^{\perp}}\left(x_{i}\right)\right|^{2}=\left\langle x_{i}, P_{F_{j}^{\perp}}\left(x_{i}\right)\right\rangle \geqslant \operatorname{tr}\left(P_{F_{j}^{\perp}}\right) / n=(n-k+1) / n .
$$

- Taking $k=\lfloor(1-\epsilon) n\rfloor+1$, we see that $k \geqslant(1-\epsilon) n$ and, for all $1 \leqslant j \leqslant k$,

$$
\left|P_{F_{j}^{\perp}}\left(y_{j}\right)\right|=\max _{i \leqslant m}\left|P_{F_{j}^{\perp}}\left(x_{i}\right)\right| \geqslant \sqrt{(n-k+1) / n} \geqslant \sqrt{\epsilon} .
$$

## The Sauer-Shelah lemma

## Sauer-Shelah

Let $X$ be a set with cardinality $|X|=n$ and $1 \leqslant k \leqslant n$. If $\mathcal{F}$ is a family of subsets of $X$ with

$$
|\mathcal{F}|>\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{k-1}
$$

then we can find $A \subseteq X$ with $|A| \geqslant k$ and $A \cap \mathcal{F}=\mathcal{P}(A)$, where $\mathcal{P}(A)$ is the family of all subsets of $A$.

## The Sauer-Shelah lemma

## Sauer-Shelah

Let $X$ be a set with cardinality $|X|=n$ and $1 \leqslant k \leqslant n$. If $\mathcal{F}$ is a family of subsets of $X$ with

$$
|\mathcal{F}|>\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{k-1}
$$

then we can find $A \subseteq X$ with $|A| \geqslant k$ and $A \cap \mathcal{F}=\mathcal{P}(A)$, where $\mathcal{P}(A)$ is the family of all subsets of $A$.

- Consider the discrete cube $E_{2}^{n}=\{-1,1\}^{n}$. For any $\sigma \subseteq[n]$ we consider the coordinates restriction function $P_{\sigma}: E_{2}^{n}=\{-1,1\}^{n} \rightarrow\{-1,1\}^{\sigma}$ with $\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) \mapsto\left(\epsilon_{j}\right)_{j \in \sigma}$. Since the map $\varphi: \mathcal{P}(\{1, \ldots, n\}) \rightarrow E_{2}^{n}$ with $\varphi(\sigma)_{i}=1$ if $i \in \sigma$ and $\varphi(\sigma)_{i}=-1$ if $i \notin \sigma$ is a bijection, we can immediate translate the Sauer-Shelah lemma as follows:


## The Sauer-Shelah lemma

## Sauer-Shelah

Let $X$ be a set with cardinality $|X|=n$ and $1 \leqslant k \leqslant n$. If $\mathcal{F}$ is a family of subsets of $X$ with

$$
|\mathcal{F}|>\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{k-1}
$$

then we can find $A \subseteq X$ with $|A| \geqslant k$ and $A \cap \mathcal{F}=\mathcal{P}(A)$, where $\mathcal{P}(A)$ is the family of all subsets of $A$.

- Consider the discrete cube $E_{2}^{n}=\{-1,1\}^{n}$. For any $\sigma \subseteq[n]$ we consider the coordinates restriction function $P_{\sigma}: E_{2}^{n}=\{-1,1\}^{n} \rightarrow\{-1,1\}^{\sigma}$ with $\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) \mapsto\left(\epsilon_{j}\right)_{j \in \sigma}$. Since the map $\varphi: \mathcal{P}(\{1, \ldots, n\}) \rightarrow E_{2}^{n}$ with $\varphi(\sigma)_{i}=1$ if $i \in \sigma$ and $\varphi(\sigma)_{i}=-1$ if $i \notin \sigma$ is a bijection, we can immediate translate the Sauer-Shelah lemma as follows:


## Sauer-Shelah II

Let $A$ be a subset of $E_{2}^{n}=\{-1,1\}^{n}$ with cardinality $|A|>\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{k-1}$. There exists $\sigma \subseteq\{1, \ldots, n\}$ with $|\sigma| \geqslant k$, such that the map $P_{\sigma}$ is onto. That is,

$$
P_{\sigma}(A)=\{-1,1\}^{\sigma} .
$$

## The Sauer-Shelah lemma

## Sauer-Shelah II

Let $A$ be a subset of $E_{2}^{n}=\{-1,1\}^{n}$ with cardinality $|A|>\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{k-1}$. There exists $\sigma \subseteq\{1, \ldots, n\}$ with $|\sigma| \geqslant k$, such that the map $P_{\sigma}$ is onto. That is,

$$
P_{\sigma}(A)=\{-1,1\}^{\sigma} .
$$

## The Sauer-Shelah lemma

## Sauer-Shelah II

Let $A$ be a subset of $E_{2}^{n}=\{-1,1\}^{n}$ with cardinality $|A|>\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{k-1}$. There exists $\sigma \subseteq\{1, \ldots, n\}$ with $|\sigma| \geqslant k$, such that the map $P_{\sigma}$ is onto. That is,

$$
P_{\sigma}(A)=\{-1,1\}^{\sigma} .
$$

- It is useful to think of the elements of $E_{2}^{n}$ as the vertices of the cube $Q_{n}=[-1,1]^{n}$ in $\mathbb{R}^{n}$.


## The Sauer-Shelah lemma

## Sauer-Shelah II

Let $A$ be a subset of $E_{2}^{n}=\{-1,1\}^{n}$ with cardinality $|A|>\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{k-1}$. There exists $\sigma \subseteq\{1, \ldots, n\}$ with $|\sigma| \geqslant k$, such that the map $P_{\sigma}$ is onto. That is,

$$
P_{\sigma}(A)=\{-1,1\}^{\sigma} .
$$

- It is useful to think of the elements of $E_{2}^{n}$ as the vertices of the cube $Q_{n}=[-1,1]^{n}$ in $\mathbb{R}^{n}$.
- Then, the coordinates restriction function $P_{\sigma}$ is the orthogonal projection onto $\mathbb{R}^{\sigma}$.


## The Sauer-Shelah lemma

## Sauer-Shelah II

Let $A$ be a subset of $E_{2}^{n}=\{-1,1\}^{n}$ with cardinality $|A|>\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{k-1}$. There exists $\sigma \subseteq\{1, \ldots, n\}$ with $|\sigma| \geqslant k$, such that the map $P_{\sigma}$ is onto. That is,

$$
P_{\sigma}(A)=\{-1,1\}^{\sigma} .
$$

- It is useful to think of the elements of $E_{2}^{n}$ as the vertices of the cube $Q_{n}=[-1,1]^{n}$ in $\mathbb{R}^{n}$.
- Then, the coordinates restriction function $P_{\sigma}$ is the orthogonal projection onto $\mathbb{R}^{\sigma}$.
- In this setting, the Sauer-Shelah lemma tells us the following.


## Geometric Sauer-Shelah lemma

If $A \subseteq\{-1,1\}^{n} \subseteq \mathbb{R}^{n}$, and $|A|>\sum_{i=0}^{k-1}\binom{n}{i}$, then there exists $\sigma \subseteq\{1, \ldots, n\}$ with $|\sigma| \geqslant k$ such that the orthogonal projection $P_{\sigma}(\operatorname{conv}(A))$ of the convex hull of $A$ onto $\mathbb{R}^{\sigma}$ is the full unit cube of $\mathbb{R}^{\sigma}$ :

$$
P_{\sigma}(\operatorname{conv}(A))=Q_{\sigma}:=[-1,1]^{\sigma} .
$$

## Isomorphic Sauer-Shelah lemma

## Isomorphic Sauer-Shelah lemma

Let $u_{1}, \ldots, u_{s} \in B_{2}^{n}$ and $\mathcal{E}=\left\{\left(\delta_{j}\right)_{j \leqslant s} \in \mathbb{R}^{s}:\left|\sum_{j=1}^{s} \delta_{j} u_{j}\right|^{2} \leqslant 2 s\right\}$. Then, for every $\epsilon \in(0,1)$ there exists $\sigma \subseteq\{1, \ldots, s\}$ with cardinality $|\sigma| \geqslant(1-\epsilon) s$, such that $P_{\sigma}(\mathcal{E}) \supseteq c \sqrt{\epsilon}[-1,1]^{\sigma}$, where $c>0$ is an absolute constant, and $P_{\sigma}$ is the orthogonal projection onto $\mathbb{R}^{\boldsymbol{\sigma}}$.

## Isomorphic Sauer-Shelah lemma

## Isomorphic Sauer-Shelah lemma

Let $u_{1}, \ldots, u_{s} \in B_{2}^{n}$ and $\mathcal{E}=\left\{\left(\delta_{j}\right)_{j \leqslant s} \in \mathbb{R}^{s}:\left|\sum_{j=1}^{s} \delta_{j} u_{j}\right|^{2} \leqslant 2 s\right\}$. Then, for every $\epsilon \in(0,1)$ there exists $\sigma \subseteq\{1, \ldots, s\}$ with cardinality $|\sigma| \geqslant(1-\epsilon) s$, such that $P_{\sigma}(\mathcal{E}) \supseteq c \sqrt{\epsilon}[-1,1]^{\sigma}$, where $c>0$ is an absolute constant, and $P_{\sigma}$ is the orthogonal projection onto $\mathbb{R}^{\sigma}$.

- For the proof we use an inductive scheme; first, consider all points of the form $\left(\delta_{j}^{(1)}\right)_{j \leqslant s} \in \mathbb{R}^{s}$, with $\delta_{j}^{(1)}= \pm 1$. By the parallelogram law,

$$
\mathbb{E}_{\delta_{j}^{(1)}= \pm 1}\left|\sum_{j=1}^{s} \delta_{j}^{(1)} u_{j}\right|^{2}=\sum_{j=1}^{s}\left|u_{j}\right|^{2} \leqslant s .
$$

## Isomorphic Sauer-Shelah lemma

## Isomorphic Sauer-Shelah lemma

Let $u_{1}, \ldots, u_{s} \in B_{2}^{n}$ and $\mathcal{E}=\left\{\left(\delta_{j}\right)_{j \leqslant s} \in \mathbb{R}^{s}:\left|\sum_{j=1}^{s} \delta_{j} u_{j}\right|^{2} \leqslant 2 s\right\}$. Then, for every $\epsilon \in(0,1)$ there exists $\sigma \subseteq\{1, \ldots, s\}$ with cardinality $|\sigma| \geqslant(1-\epsilon) s$, such that $P_{\sigma}(\mathcal{E}) \supseteq c \sqrt{\epsilon}[-1,1]^{\sigma}$, where $c>0$ is an absolute constant, and $P_{\sigma}$ is the orthogonal projection onto $\mathbb{R}^{\sigma}$.

- For the proof we use an inductive scheme; first, consider all points of the form $\left(\delta_{j}^{(1)}\right)_{j \leqslant s} \in \mathbb{R}^{s}$, with $\delta_{j}^{(1)}= \pm 1$. By the parallelogram law,

$$
\mathbb{E}_{\delta_{j}^{(1)}= \pm 1}\left|\sum_{j=1}^{s} \delta_{j}^{(1)} u_{j}\right|^{2}=\sum_{j=1}^{s}\left|u_{j}\right|^{2} \leqslant s .
$$

- Using Markov's inequality, we find $M^{1} \subseteq\{-1,1\}^{s}$ with cardinality $\left|M^{1}\right| \geqslant 2^{s-1}$, such that for every $\left(\delta_{j}^{(1)}\right) \in M^{1}$,

$$
\left|\sum_{j=1}^{s} \delta_{j}^{(1)} u_{j}\right|^{2} \leqslant 2 s
$$

## Isomorphic Sauer-Shelah lemma

## Isomorphic Sauer-Shelah lemma

Let $u_{1}, \ldots, u_{s} \in B_{2}^{n}$ and $\mathcal{E}=\left\{\left(\delta_{j}\right)_{j \leqslant s} \in \mathbb{R}^{s}:\left|\sum_{j=1}^{s} \delta_{j} u_{j}\right|^{2} \leqslant 2 s\right\}$. Then, for every $\epsilon \in(0,1)$ there exists $\sigma \subseteq\{1, \ldots, s\}$ with cardinality $|\sigma| \geqslant(1-\epsilon) s$, such that $P_{\sigma}(\mathcal{E}) \supseteq c \sqrt{\epsilon}[-1,1]^{\sigma}$, where $c>0$ is an absolute constant, and $P_{\sigma}$ is the orthogonal projection onto $\mathbb{R}^{\sigma}$.

- For the proof we use an inductive scheme; first, consider all points of the form $\left(\delta_{j}^{(1)}\right)_{j \leqslant s} \in \mathbb{R}^{s}$, with $\delta_{j}^{(1)}= \pm 1$. By the parallelogram law,

$$
\mathbb{E}_{\delta_{j}^{(1)}= \pm 1}\left|\sum_{j=1}^{s} \delta_{j}^{(1)} u_{j}\right|^{2}=\sum_{j=1}^{s}\left|u_{j}\right|^{2} \leqslant s .
$$

- Using Markov's inequality, we find $M^{1} \subseteq\{-1,1\}^{s}$ with cardinality $\left|M^{1}\right| \geqslant 2^{s-1}$, such that for every $\left(\delta_{j}^{(1)}\right) \in M^{1}$,

$$
\left|\sum_{j=1}^{s} \delta_{j}^{(1)} u_{j}\right|^{2} \leqslant 2 s
$$

- Using the geometric Sauer-Shelah lemma we find $\sigma_{1} \subseteq S$, with cardinality $\left|\sigma_{1}\right| \geqslant \frac{s}{2}$, such that $P_{\sigma_{1}}\left(M^{1}\right)=\{-1,1\}^{\sigma_{1}}$. Since $M^{1} \subseteq \mathcal{E} \cap Q$ and the last set is convex, we have $Q_{\sigma_{1}} \subseteq P_{\sigma_{1}}(\mathcal{E} \cap Q)$.


## Isomorphic Sauer-Shelah lemma

## Isomorphic Sauer-Shelah lemma

Let $u_{1}, \ldots, u_{s} \in B_{2}^{n}$ and $\mathcal{E}=\left\{\left(\delta_{j}\right)_{j \leqslant s} \in \mathbb{R}^{s}:\left|\sum_{j=1}^{s} \delta_{j} u_{j}\right|^{2} \leqslant 2 s\right\}$. Then, for every $\epsilon \in(0,1)$ there exists $\sigma \subseteq\{1, \ldots, s\}$ with cardinality $|\sigma| \geqslant(1-\epsilon) s$, such that $P_{\sigma}(\mathcal{E}) \supseteq c \sqrt{\epsilon}[-1,1]^{\sigma}$, where $c>0$ is an absolute constant, and $P_{\sigma}$ is the orthogonal projection onto $\mathbb{R}^{\sigma}$.

## Isomorphic Sauer-Shelah lemma

## Isomorphic Sauer-Shelah lemma

Let $u_{1}, \ldots, u_{s} \in B_{2}^{n}$ and $\mathcal{E}=\left\{\left(\delta_{j}\right)_{j \leqslant s} \in \mathbb{R}^{s}:\left|\sum_{j=1}^{s} \delta_{j} u_{j}\right|^{2} \leqslant 2 s\right\}$. Then, for every $\epsilon \in(0,1)$ there exists $\sigma \subseteq\{1, \ldots, s\}$ with cardinality $|\sigma| \geqslant(1-\epsilon) s$, such that $P_{\sigma}(\mathcal{E}) \supseteq c \sqrt{\epsilon}[-1,1]^{\sigma}$, where $c>0$ is an absolute constant, and $P_{\sigma}$ is the orthogonal projection onto $\mathbb{R}^{\sigma}$.

We set $S=\{1, \ldots, s\}, Q=[-1,1]^{s}, Q_{\tau}=[-1,1]^{\tau}$ for every $\tau \subseteq S$, and for every $k \geqslant 1$ we define $\alpha_{k}=\sum_{r=0}^{k-1} 2^{r / 2}$ and $\beta_{k}=\sum_{r=0}^{k-1} 2^{r}=2^{k}-1$.

## Isomorphic Sauer-Shelah lemma

## Isomorphic Sauer-Shelah lemma

Let $u_{1}, \ldots, u_{s} \in B_{2}^{n}$ and $\mathcal{E}=\left\{\left(\delta_{j}\right)_{j \leqslant s} \in \mathbb{R}^{s}:\left|\sum_{j=1}^{s} \delta_{j} u_{j}\right|^{2} \leqslant 2 s\right\}$. Then, for every $\epsilon \in(0,1)$ there exists $\sigma \subseteq\{1, \ldots, s\}$ with cardinality $|\sigma| \geqslant(1-\epsilon) s$, such that $P_{\sigma}(\mathcal{E}) \supseteq c \sqrt{\epsilon}[-1,1]^{\sigma}$, where $c>0$ is an absolute constant, and $P_{\sigma}$ is the orthogonal projection onto $\mathbb{R}^{\sigma}$.

We set $S=\{1, \ldots, s\}, Q=[-1,1]^{s}, Q_{\tau}=[-1,1]^{\tau}$ for every $\tau \subseteq S$, and for every $k \geqslant 1$ we define $\alpha_{k}=\sum_{r=0}^{k-1} 2^{r / 2}$ and $\beta_{k}=\sum_{r=0}^{k-1} 2^{r}=2^{k}-1$.

## Claim (proved by induction on $k$ )

For every $k \geqslant 1$ there exists $\sigma_{k} \subseteq S$ with cardinality $\left|\sigma_{k}\right| \geqslant\left(1-\frac{1}{2^{k}}\right) s$, such that

$$
Q_{\sigma_{k}} \subseteq P_{\sigma_{k}}\left(\alpha_{k} \mathcal{E} \cap \beta_{k} Q\right)
$$

## Isomorphic Sauer-Shelah lemma

## Isomorphic Sauer-Shelah lemma

Let $u_{1}, \ldots, u_{s} \in B_{2}^{n}$ and $\mathcal{E}=\left\{\left(\delta_{j}\right)_{j \leqslant s} \in \mathbb{R}^{s}:\left|\sum_{j=1}^{s} \delta_{j} u_{j}\right|^{2} \leqslant 2 s\right\}$. Then, for every $\epsilon \in(0,1)$ there exists $\sigma \subseteq\{1, \ldots, s\}$ with cardinality $|\sigma| \geqslant(1-\epsilon) s$, such that $P_{\sigma}(\mathcal{E}) \supseteq c \sqrt{\epsilon}[-1,1]^{\sigma}$, where $c>0$ is an absolute constant, and $P_{\sigma}$ is the orthogonal projection onto $\mathbb{R}^{\sigma}$.

We set $S=\{1, \ldots, s\}, Q=[-1,1]^{s}, Q_{\tau}=[-1,1]^{\tau}$ for every $\tau \subseteq S$, and for every $k \geqslant 1$ we define $\alpha_{k}=\sum_{r=0}^{k-1} 2^{r / 2}$ and $\beta_{k}=\sum_{r=0}^{k-1} 2^{r}=2^{k}-1$.

## Claim (proved by induction on $k$ )

For every $k \geqslant 1$ there exists $\sigma_{k} \subseteq S$ with cardinality $\left|\sigma_{k}\right| \geqslant\left(1-\frac{1}{2^{k}}\right) s$, such that

$$
Q_{\sigma_{k}} \subseteq P_{\sigma_{k}}\left(\alpha_{k} \mathcal{E} \cap \beta_{k} Q\right)
$$

The claim shows that for every $k=1,2, \ldots$, there exists $\sigma_{k} \subseteq S$ with $\left|\sigma_{k}\right| \geqslant\left(1-\frac{1}{2^{k}}\right) s$, such that

$$
P_{\sigma_{k}}(\mathcal{E}) \supseteq c \sqrt{\frac{1}{2^{k}}}[-1,1]^{\sigma_{k}},
$$

where $c=\sqrt{2}-1$. Then, we easily arrive at the statement of the isomorphic Sauer-Shelah lemma with a slightly worse value for the constant $c$.

## The inductive step

- Consider all points of the form $\delta_{j}^{(k+1)}, j \leqslant s$, where $\delta_{j}^{(k+1)}=0$ if $j \in \sigma_{k}$ and $\delta_{j}^{(k+1)}= \pm 2^{k / 2}$ if $j \notin \sigma_{k}$.


## The inductive step

- Consider all points of the form $\delta_{j}^{(k+1)}, j \leqslant s$, where $\delta_{j}^{(k+1)}=0$ if $j \in \sigma_{k}$ and $\delta_{j}^{(k+1)}= \pm 2^{k / 2}$ if $j \notin \sigma_{k}$.
- As in the first step,

$$
\mathbb{E}_{\left(\delta_{j}^{(k+1)}\right)_{j \leqslant s}}\left|\sum_{j=1}^{s} \delta_{j}^{(k+1)} u_{j}\right|^{2}=\sum_{j \notin \sigma_{k}} 2^{k}\left|u_{j}\right|^{2} \leqslant s
$$

Observe that the cardinality of the set of points $\left(\delta_{j}^{(k+1)}\right)_{j \leqslant s}$ is $2^{s-\left|\sigma_{k}\right|}$. From Markov's inequality we may find $M^{k+1} \subseteq\left[\mathbf{0}_{\sigma_{k}} \times\left\{-2^{k / 2}, 2^{k / 2}\right\}^{S \backslash \sigma_{k}}\right] \cap \mathcal{E}$ with $\left|M^{k+1}\right| \geqslant 2^{s-\left|\sigma_{k}\right|-1}$.

## The inductive step

- Consider all points of the form $\delta_{j}^{(k+1)}, j \leqslant s$, where $\delta_{j}^{(k+1)}=0$ if $j \in \sigma_{k}$ and $\delta_{j}^{(k+1)}= \pm 2^{k / 2}$ if $j \notin \sigma_{k}$.
- As in the first step,

$$
\mathbb{E}_{\left(\delta_{j}^{(k+1)}\right)_{j \leqslant s}}\left|\sum_{j=1}^{s} \delta_{j}^{(k+1)} u_{j}\right|^{2}=\sum_{j \notin \sigma_{k}} 2^{k}\left|u_{j}\right|^{2} \leqslant s
$$

Observe that the cardinality of the set of points $\left(\delta_{j}^{(k+1)}\right)_{j \leqslant s}$ is $2^{s-\left|\sigma_{k}\right|}$. From Markov's inequality we may find $M^{k+1} \subseteq\left[\mathbf{0}_{\sigma_{k}} \times\left\{-2^{k / 2}, 2^{k / 2}\right\}^{S \backslash \sigma_{k}}\right] \cap \mathcal{E}$ with $\left|M^{k+1}\right| \geqslant 2^{s-\left|\sigma_{k}\right|-1}$.

- By the Sauer-Shelah lemma there exists $\sigma_{k+1}^{*} \subseteq S \backslash \sigma_{k}$, with cardinality $\left|\sigma_{k+1}^{*}\right| \geqslant \frac{1}{2}\left(s-\left|\sigma_{k}\right|\right)$, such that

$$
P_{\sigma_{k} \cup \sigma_{k+1}^{*}}\left(M^{k+1}\right)=\mathbf{0}_{\sigma_{k}} \times\left\{-2^{k / 2}, 2^{k / 2}\right\}^{\sigma_{k+1}^{*}}
$$

## The inductive step

- Consider all points of the form $\delta_{j}^{(k+1)}, j \leqslant s$, where $\delta_{j}^{(k+1)}=0$ if $j \in \sigma_{k}$ and $\delta_{j}^{(k+1)}= \pm 2^{k / 2}$ if $j \notin \sigma_{k}$.
- As in the first step,

$$
\mathbb{E}_{\left(\delta_{j}^{(k+1)}\right)_{j \leqslant s}}\left|\sum_{j=1}^{s} \delta_{j}^{(k+1)} u_{j}\right|^{2}=\sum_{j \notin \sigma_{k}} 2^{k}\left|u_{j}\right|^{2} \leqslant s
$$

Observe that the cardinality of the set of points $\left(\delta_{j}^{(k+1)}\right)_{j \leqslant s}$ is $2^{s-\left|\sigma_{k}\right|}$. From Markov's inequality we may find $M^{k+1} \subseteq\left[\mathbf{0}_{\sigma_{k}} \times\left\{-2^{k / 2}, 2^{k / 2}\right\}^{S \backslash \sigma_{k}}\right] \cap \mathcal{E}$ with $\left|M^{k+1}\right| \geqslant 2^{s-\left|\sigma_{k}\right|-1}$.

- By the Sauer-Shelah lemma there exists $\sigma_{k+1}^{*} \subseteq S \backslash \sigma_{k}$, with cardinality $\left|\sigma_{k+1}^{*}\right| \geqslant \frac{1}{2}\left(s-\left|\sigma_{k}\right|\right)$, such that

$$
P_{\sigma_{k} \cup \sigma_{k+1}^{*}}\left(M^{k+1}\right)=\mathbf{0}_{\sigma_{k}} \times\left\{-2^{k / 2}, 2^{k / 2}\right\}^{\sigma_{k+1}^{*}}
$$

- Since $M^{k+1} \subseteq \mathcal{E} \cap 2^{k / 2} Q$ and the last set is convex, it follows that

$$
\mathbf{0}_{\sigma_{k}} \times 2^{k} Q_{\sigma_{k+1}^{*}} \subseteq P_{\sigma_{k} \cup \sigma_{k+1}^{*}}\left(2^{k / 2} \mathcal{E} \cap 2^{k} Q\right)
$$

## The inductive step

- We know that $Q_{\sigma_{k}} \subseteq P_{\sigma_{k}}\left(\alpha_{k} \mathcal{E} \cap \beta_{k} Q\right)$ and

$$
\mathbf{0}_{\sigma_{k}} \times 2^{k} Q_{\sigma_{k+1}^{*}} \subseteq P_{\sigma_{k} \cup \sigma_{k+1}^{*}}\left(2^{k / 2} \mathcal{E} \cap 2^{k} Q\right) .
$$

## The inductive step

- We know that $Q_{\sigma_{k}} \subseteq P_{\sigma_{k}}\left(\alpha_{k} \mathcal{E} \cap \beta_{k} Q\right)$ and

$$
\mathbf{0}_{\sigma_{k}} \times 2^{k} Q_{\sigma_{k+1}^{*}} \subseteq P_{\sigma_{k} \cup \sigma_{k+1}^{*}}\left(2^{k / 2} \mathcal{E} \cap 2^{k} Q\right) .
$$

- Suppose that $a \in Q_{\sigma_{k}}$ and $b \in Q_{\sigma_{k+1}^{*}}$. By the inductive hypothesis, we can find $w_{a} \in \beta_{k} Q_{\sigma_{k+1}^{*}}$ for which

$$
\left(a, w_{a}\right) \in P_{\sigma_{k} \cup \sigma_{k+1}^{*}}\left(\alpha_{k} \mathcal{E} \cap \beta_{k} Q\right) .
$$

## The inductive step

- We know that $Q_{\sigma_{k}} \subseteq P_{\sigma_{k}}\left(\alpha_{k} \mathcal{E} \cap \beta_{k} Q\right)$ and

$$
\mathbf{0}_{\sigma_{k}} \times 2^{k} Q_{\sigma_{k+1}^{*}} \subseteq P_{\sigma_{k} \cup \sigma_{k+1}^{*}}\left(2^{k / 2} \mathcal{E} \cap 2^{k} Q\right) .
$$

- Suppose that $a \in Q_{\sigma_{k}}$ and $b \in Q_{\sigma_{k+1}^{*}}$. By the inductive hypothesis, we can find $w_{a} \in \beta_{k} Q_{\sigma_{k+1}^{*}}$ for which

$$
\left(a, w_{a}\right) \in P_{\sigma_{k} \cup \sigma_{k+1}^{*}}\left(\alpha_{k} \mathcal{E} \cap \beta_{k} Q\right) .
$$

- We define $v_{a, b}=b-w_{a}$. It is clear that $v_{a, b} \in\left(\beta_{k}+1\right) Q_{\sigma_{k+1}^{*}}=2^{k} Q_{\sigma_{k+1}^{*}}$, and hence

$$
\left(\mathbf{0}_{\sigma_{k}}, v_{a, b}\right) \in P_{\sigma_{k} \cup \sigma_{k+1}^{*}}\left(2^{k / 2} \mathcal{E} \cap 2^{k} Q\right) .
$$

## The inductive step

- We know that $Q_{\sigma_{k}} \subseteq P_{\sigma_{k}}\left(\alpha_{k} \mathcal{E} \cap \beta_{k} Q\right)$ and

$$
\mathbf{0}_{\sigma_{k}} \times 2^{k} Q_{\sigma_{k+1}^{*}} \subseteq P_{\sigma_{k} \cup \sigma_{k+1}^{*}}\left(2^{k / 2} \mathcal{E} \cap 2^{k} Q\right) .
$$

- Suppose that $a \in Q_{\sigma_{k}}$ and $b \in Q_{\sigma_{k+1}^{*}}$. By the inductive hypothesis, we can find $w_{a} \in \beta_{k} Q_{\sigma_{k+1}^{*}}$ for which

$$
\left(a, w_{a}\right) \in P_{\sigma_{k} \cup \sigma_{k+1}^{*}}\left(\alpha_{k} \mathcal{E} \cap \beta_{k} Q\right) .
$$

- We define $v_{a, b}=b-w_{a}$. It is clear that $v_{a, b} \in\left(\beta_{k}+1\right) Q_{\sigma_{k+1}^{*}}=2^{k} Q_{\sigma_{k+1}^{*}}$, and hence

$$
\left(\mathbf{0}_{\sigma_{k}}, v_{a, b}\right) \in P_{\sigma_{k} \cup \sigma_{k+1}^{*}}\left(2^{k / 2} \mathcal{E} \cap 2^{k} Q\right) .
$$

- Consequently,

$$
\begin{aligned}
(a, b) & =\left(a, w_{a}\right)+\left(\mathbf{0}_{\sigma_{k}}, v_{a, b}\right) \in P_{\sigma_{k} \cup \sigma_{k+1}^{*}}\left(\alpha_{k} \mathcal{E} \cap \beta_{k} Q\right)+P_{\sigma_{k} \cup \sigma_{k+1}^{*}}\left(2^{k / 2} \mathcal{E} \cap 2^{k} Q\right) \\
& \subseteq P_{\sigma_{k} \cup \sigma_{k+1}^{*}}\left(\alpha_{k+1} \mathcal{E} \cap \beta_{k+1} Q\right) .
\end{aligned}
$$

## The inductive step

- We know that $Q_{\sigma_{k}} \subseteq P_{\sigma_{k}}\left(\alpha_{k} \mathcal{E} \cap \beta_{k} Q\right)$ and

$$
\mathbf{0}_{\sigma_{k}} \times 2^{k} Q_{\sigma_{k+1}^{*}} \subseteq P_{\sigma_{k} \cup \sigma_{k+1}^{*}}\left(2^{k / 2} \mathcal{E} \cap 2^{k} Q\right) .
$$

- Suppose that $a \in Q_{\sigma_{k}}$ and $b \in Q_{\sigma_{k+1}^{*}}$. By the inductive hypothesis, we can find $w_{a} \in \beta_{k} Q_{\sigma_{k+1}^{*}}$ for which

$$
\left(a, w_{a}\right) \in P_{\sigma_{k} \cup \sigma_{k+1}^{*}}\left(\alpha_{k} \mathcal{E} \cap \beta_{k} Q\right) .
$$

- We define $v_{a, b}=b-w_{a}$. It is clear that $v_{a, b} \in\left(\beta_{k}+1\right) Q_{\sigma_{k+1}^{*}}=2^{k} Q_{\sigma_{k+1}^{*}}$, and hence

$$
\left(\mathbf{0}_{\sigma_{k}}, v_{a, b}\right) \in P_{\sigma_{k} \cup \sigma_{k+1}^{*}}\left(2^{k / 2} \mathcal{E} \cap 2^{k} Q\right) .
$$

- Consequently,

$$
\begin{aligned}
(a, b) & =\left(a, w_{a}\right)+\left(\mathbf{0}_{\sigma_{k}}, v_{a, b}\right) \in P_{\sigma_{k} \cup \sigma_{k+1}^{*}}\left(\alpha_{k} \mathcal{E} \cap \beta_{k} Q\right)+P_{\sigma_{k} \cup \sigma_{k+1}^{*}}\left(2^{k / 2} \mathcal{E} \cap 2^{k} Q\right) \\
& \subseteq P_{\sigma_{k} \cup \sigma_{k+1}^{*}}\left(\alpha_{k+1} \mathcal{E} \cap \beta_{k+1} Q\right) .
\end{aligned}
$$

- We have thus proved that

$$
Q_{\sigma_{k} \cup \sigma_{k+1}^{*}} \subseteq P_{\sigma_{k} \cup \sigma_{k+1}^{*}}\left(\alpha_{k+1} \mathcal{E} \cap \beta_{k+1} Q\right) .
$$

We set $\sigma_{k+1}=\sigma_{k} \cup \sigma_{k+1}^{*}$ and observe that $\left|\sigma_{k+1}\right| \geqslant\left(1-\frac{1}{2^{k+1}}\right) s$.

## Upper bound for $\mathcal{R}_{\infty}^{n}$

## The main proposition

Let $X=\left(\mathbb{R}^{n},\|\cdot\|\right)$ be a normed space and let $\epsilon \in(0,1)$. Assume that the unit ball $K$ of $X$ is in Löwner position. Then, we can find $m \geqslant(1-\epsilon) n$ and vectors $z_{1}, \ldots, z_{m}$ in $X$ with $\left\|z_{i}\right\|=\left|z_{i}\right|=1$ so that, for any choice of real numbers $t_{1}, \ldots, t_{m}$,

$$
\left|\sum_{i=1}^{m} t_{i} z_{i}\right| \geqslant c \frac{\epsilon}{\sqrt{n}} \sum_{i=1}^{m}\left|t_{i}\right|
$$

where $c>0$ is an absolute constant.

## Upper bound for $\mathcal{R}_{\infty}^{n}$

## The main proposition

Let $X=\left(\mathbb{R}^{n},\|\cdot\|\right)$ be a normed space and let $\epsilon \in(0,1)$. Assume that the unit ball $K$ of $X$ is in Löwner position. Then, we can find $m \geqslant(1-\epsilon) n$ and vectors $z_{1}, \ldots, z_{m}$ in $X$ with $\left\|z_{i}\right\|=\left|z_{i}\right|=1$ so that, for any choice of real numbers $t_{1}, \ldots, t_{m}$,

$$
\left|\sum_{i=1}^{m} t_{i} z_{i}\right| \geqslant c \frac{\epsilon}{\sqrt{n}} \sum_{i=1}^{m}\left|t_{i}\right|,
$$

where $c>0$ is an absolute constant.

## Proof:

- We use the lemma of Szarek and Talagrand to choose $x_{1}, \ldots, x_{s} \in K$ with $s \geqslant\left(1-\frac{\epsilon}{2}\right) n$, such that $\operatorname{dist}\left(x_{i}, \operatorname{span}\left\{x_{j}, j \neq i\right\}\right) \geqslant \sqrt{\epsilon / 2}$ for all $i=1, \ldots, s$.


## Upper bound for $\mathcal{R}_{\infty}^{n}$

## The main proposition

Let $X=\left(\mathbb{R}^{n},\|\cdot\|\right)$ be a normed space and let $\epsilon \in(0,1)$. Assume that the unit ball $K$ of $X$ is in Löwner position. Then, we can find $m \geqslant(1-\epsilon) n$ and vectors $z_{1}, \ldots, z_{m}$ in $X$ with $\left\|z_{i}\right\|=\left|z_{i}\right|=1$ so that, for any choice of real numbers $t_{1}, \ldots, t_{m}$,

$$
\left|\sum_{i=1}^{m} t_{i} z_{i}\right| \geqslant c \frac{\epsilon}{\sqrt{n}} \sum_{i=1}^{m}\left|t_{i}\right|,
$$

where $c>0$ is an absolute constant.

## Proof:

- We use the lemma of Szarek and Talagrand to choose $x_{1}, \ldots, x_{s} \in K$ with $s \geqslant\left(1-\frac{\epsilon}{2}\right) n$, such that dist $\left(x_{i}, \operatorname{span}\left\{x_{j}, j \neq i\right\}\right) \geqslant \sqrt{\epsilon / 2}$ for all $i=1, \ldots, s$.
- There exist $v_{i} \perp \operatorname{span}\left\{x_{j}, j \neq i\right\}$ which form a biorthogonal system with the $x_{j}$ 's and have length $\left|v_{i}\right| \leqslant \sqrt{2 / \epsilon}$. In other words, we can find $v_{1}, \ldots, v_{s} \in \mathbb{R}^{n}$ such that

$$
\left|v_{i}\right| \leqslant \sqrt{2 / \epsilon} \quad \text { and } \quad\left\langle x_{i}, v_{j}\right\rangle=\delta_{i j} \quad i, j=1, \ldots, s
$$

## Upper bound for $\mathcal{R}_{\infty}^{n}$

## Proof (continued):

- We define $u_{i}=\sqrt{\epsilon / 2} v_{i}$, and applying the isomorphic Sauer-Shelah lemma for the set $\mathcal{E}=\left\{\left(\delta_{j}\right)_{j \leqslant s} \in \mathbb{R}^{s}:\left|\sum_{j=1}^{s} \delta_{j} u_{j}\right|^{2} \leqslant 2 s\right\}$ we find $\sigma \subseteq\{1, \ldots, s\}$ of cardinality $|\sigma| \geqslant\left(1-\frac{\epsilon}{2}\right) s$, with

$$
P_{\sigma}(\mathcal{E}) \supseteq c \sqrt{\epsilon}[-1,1]^{\sigma} .
$$

Then, $|\sigma| \geqslant(1-\epsilon) n$.

## Upper bound for $\mathcal{R}_{\infty}^{n}$

## Proof (continued):

- We define $u_{i}=\sqrt{\epsilon / 2} v_{i}$, and applying the isomorphic Sauer-Shelah lemma for the set $\mathcal{E}=\left\{\left(\delta_{j}\right)_{j \leqslant s} \in \mathbb{R}^{s}:\left|\sum_{j=1}^{s} \delta_{j} u_{j}\right|^{2} \leqslant 2 s\right\}$ we find $\sigma \subseteq\{1, \ldots, s\}$ of cardinality $|\sigma| \geqslant\left(1-\frac{\epsilon}{2}\right) s$, with

$$
P_{\sigma}(\mathcal{E}) \supseteq c \sqrt{\epsilon}[-1,1]^{\sigma} .
$$

Then, $|\sigma| \geqslant(1-\epsilon) n$.

- Note that for all $\left(t_{i}\right)_{i \in \sigma}$ we have

$$
\sum_{i \in \sigma}\left|t_{i}\right|=\left\langle\sum_{i \in \sigma} t_{i} x_{i}, \sum_{j \in \sigma} \operatorname{sign}\left(t_{j}\right) v_{j}\right\rangle
$$

## Upper bound for $\mathcal{R}_{\infty}^{n}$

## Proof (continued):

- We define $u_{i}=\sqrt{\epsilon / 2} v_{i}$, and applying the isomorphic Sauer-Shelah lemma for the set $\mathcal{E}=\left\{\left(\delta_{j}\right)_{j \leqslant s} \in \mathbb{R}^{s}:\left|\sum_{j=1}^{s} \delta_{j} u_{j}\right|^{2} \leqslant 2 s\right\}$ we find $\sigma \subseteq\{1, \ldots, s\}$ of cardinality $|\sigma| \geqslant\left(1-\frac{\epsilon}{2}\right) s$, with

$$
P_{\sigma}(\mathcal{E}) \supseteq c \sqrt{\epsilon}[-1,1]^{\sigma} .
$$

Then, $|\sigma| \geqslant(1-\epsilon) n$.

- Note that for all $\left(t_{i}\right)_{i \in \sigma}$ we have

$$
\sum_{i \in \sigma}\left|t_{i}\right|=\left\langle\sum_{i \in \sigma} t_{i} x_{i}, \sum_{j \in \sigma} \operatorname{sign}\left(t_{j}\right) v_{j}\right\rangle
$$

- Since $\left(c \sqrt{\epsilon} \operatorname{sign}\left(t_{j}\right)\right)_{j \in \sigma} \in P_{\sigma}(\mathcal{E})$, we can find a point $\left(\delta_{j}\right)_{j \leqslant s}$ in $\mathcal{E}$, such that $\delta_{j}=c \sqrt{\epsilon} \operatorname{sign}\left(t_{j}\right)$ if $j \in \sigma$. Note that if $i \in \sigma$ and $j \notin \sigma$ then $\left\langle x_{i}, v_{j}\right\rangle=0$, and hence

$$
\begin{aligned}
\left\langle\sum_{i \in \sigma} t_{i} x_{i}, \sum_{j \in \sigma} \operatorname{sign}\left(t_{j}\right) v_{j}\right\rangle & =\frac{1}{c \sqrt{\epsilon}}\left\langle\sum_{i \in \sigma} t_{i} x_{i}, \sum_{j=1}^{s} \delta_{j} v_{j}\right\rangle \leqslant \frac{1}{c \sqrt{\epsilon}}\left|\sum_{i \in \sigma} t_{i} x_{i}\right| \sqrt{\frac{2}{\epsilon}}\left|\sum_{j=1}^{s} \delta_{j} u_{j}\right| \\
& \leqslant \frac{2 \sqrt{s}}{c \epsilon}\left|\sum_{i \in \sigma} t_{i} x_{i}\right| \leqslant \frac{\sqrt{n}}{c_{1} \epsilon}\left|\sum_{i \in \sigma} t_{i} x_{i}\right|
\end{aligned}
$$

## Upper bound for $\mathcal{R}_{\infty}^{n}$

## Proof (continued):

- We define $u_{i}=\sqrt{\epsilon / 2} v_{i}$, and applying the isomorphic Sauer-Shelah lemma for the set $\mathcal{E}=\left\{\left(\delta_{j}\right)_{j \leqslant s} \in \mathbb{R}^{s}:\left|\sum_{j=1}^{s} \delta_{j} u_{j}\right|^{2} \leqslant 2 s\right\}$ we find $\sigma \subseteq\{1, \ldots, s\}$ of cardinality $|\sigma| \geqslant\left(1-\frac{\epsilon}{2}\right) s$, with

$$
P_{\sigma}(\mathcal{E}) \supseteq c \sqrt{\epsilon}[-1,1]^{\sigma} .
$$

Then, $|\sigma| \geqslant(1-\epsilon) n$.

- Note that for all $\left(t_{i}\right)_{i \in \sigma}$ we have

$$
\sum_{i \in \sigma}\left|t_{i}\right|=\left\langle\sum_{i \in \sigma} t_{i} x_{i}, \sum_{j \in \sigma} \operatorname{sign}\left(t_{j}\right) v_{j}\right\rangle
$$

- Since $\left(c \sqrt{\epsilon} \operatorname{sign}\left(t_{j}\right)\right)_{j \in \sigma} \in P_{\sigma}(\mathcal{E})$, we can find a point $\left(\delta_{j}\right)_{j \leqslant s}$ in $\mathcal{E}$, such that $\delta_{j}=c \sqrt{\epsilon} \operatorname{sign}\left(t_{j}\right)$ if $j \in \sigma$. Note that if $i \in \sigma$ and $j \notin \sigma$ then $\left\langle x_{i}, v_{j}\right\rangle=0$, and hence

$$
\begin{aligned}
\left\langle\sum_{i \in \sigma} t_{i} x_{i}, \sum_{j \in \sigma} \operatorname{sign}\left(t_{j}\right) v_{j}\right\rangle & =\frac{1}{c \sqrt{\epsilon}}\left\langle\sum_{i \in \sigma} t_{i} x_{i}, \sum_{j=1}^{s} \delta_{j} v_{j}\right\rangle \leqslant \frac{1}{c \sqrt{\epsilon}}\left|\sum_{i \in \sigma} t_{i} x_{i}\right| \sqrt{\frac{2}{\epsilon}}\left|\sum_{j=1}^{s} \delta_{j} u_{j}\right| \\
& \leqslant \frac{2 \sqrt{s}}{c \epsilon}\left|\sum_{i \in \sigma} t_{i} x_{i}\right| \leqslant \frac{\sqrt{n}}{c_{1} \epsilon}\left|\sum_{i \in \sigma} t_{i} x_{i}\right| .
\end{aligned}
$$

- We choose as $z_{i}, i=1, \ldots,|\sigma|=m$, the $x_{j}$ 's for which $j \in \sigma$, and the proof is complete.


## Proof of $\mathcal{R}_{\infty}^{n} \leqslant c n^{5 / 6}$

- Let $X=\left(\mathbb{R}^{n},\|\cdot\|\right)$ be an $n$-dimensional normed space.


## Proof of $\mathcal{R}_{\infty}^{n} \leqslant c n^{5 / 6}$

- Let $X=\left(\mathbb{R}^{n},\|\cdot\|\right)$ be an $n$-dimensional normed space.
- We may assume that the unit ball $K$ of $X$ is in Löwner position. Fix $\epsilon \in(0,1)$. We have found $m \geqslant(1-\epsilon) n$ and $z_{1}, \ldots, z_{m}$ in $X$ with $\left\|z_{i}\right\|=\left|z_{i}\right|=1$ so that, for any choice of real numbers $t_{1}, \ldots, t_{m}$,

$$
\left|\sum_{i=1}^{m} t_{i} z_{i}\right| \geqslant c \frac{\epsilon}{\sqrt{n}} \sum_{i=1}^{m}\left|t_{i}\right| .
$$

## Proof of $\mathcal{R}_{\infty}^{n} \leqslant c n^{5 / 6}$

- Let $X=\left(\mathbb{R}^{n},\|\cdot\|\right)$ be an $n$-dimensional normed space.
- We may assume that the unit ball $K$ of $X$ is in Löwner position. Fix $\epsilon \in(0,1)$. We have found $m \geqslant(1-\epsilon) n$ and $z_{1}, \ldots, z_{m}$ in $X$ with $\left\|z_{i}\right\|=\left|z_{i}\right|=1$ so that, for any choice of real numbers $t_{1}, \ldots, t_{m}$,

$$
\left|\sum_{i=1}^{m} t_{i} z_{i}\right| \geqslant c \frac{\epsilon}{\sqrt{n}} \sum_{i=1}^{m}\left|t_{i}\right|
$$

- We define $F=\operatorname{span}\left\{z_{1}, \ldots, z_{m}\right\}$ and choose any orthonormal basis $y_{1}, \ldots, y_{n-m}$ of $F^{\perp}$. By John's theorem, for every $j=1, \ldots, n-m$ we have

$$
\left|y_{j}\right| \leqslant\left\|y_{j}\right\| \leqslant \sqrt{n}\left|y_{j}\right|=\sqrt{n} .
$$

## Proof of $\mathcal{R}_{\infty}^{n} \leqslant c n^{5 / 6}$

- Let $X=\left(\mathbb{R}^{n},\|\cdot\|\right)$ be an $n$-dimensional normed space.
- We may assume that the unit ball $K$ of $X$ is in Löwner position. Fix $\epsilon \in(0,1)$. We have found $m \geqslant(1-\epsilon) n$ and $z_{1}, \ldots, z_{m}$ in $X$ with $\left\|z_{i}\right\|=\left|z_{i}\right|=1$ so that, for any choice of real numbers $t_{1}, \ldots, t_{m}$,

$$
\left|\sum_{i=1}^{m} t_{i} z_{i}\right| \geqslant c \frac{\epsilon}{\sqrt{n}} \sum_{i=1}^{m}\left|t_{i}\right| .
$$

- We define $F=\operatorname{span}\left\{z_{1}, \ldots, z_{m}\right\}$ and choose any orthonormal basis $y_{1}, \ldots, y_{n-m}$ of $F^{\perp}$. By John's theorem, for every $j=1, \ldots, n-m$ we have

$$
\left|y_{j}\right| \leqslant\left\|y_{j}\right\| \leqslant \sqrt{n}\left|y_{j}\right|=\sqrt{n} .
$$

- Therefore, if we set $w_{j}=y_{j} /\left\|y_{j}\right\|$ we have $\left\|w_{j}\right\|=1$ and $\left|w_{j}\right| \geqslant 1 / \sqrt{n}$, $j=1, \ldots, n-m$.


## Proof of $\mathcal{R}_{\infty}^{n} \leqslant c n^{5 / 6}$

- Let $X=\left(\mathbb{R}^{n},\|\cdot\|\right)$ be an $n$-dimensional normed space.
- We may assume that the unit ball $K$ of $X$ is in Löwner position. Fix $\epsilon \in(0,1)$. We have found $m \geqslant(1-\epsilon) n$ and $z_{1}, \ldots, z_{m}$ in $X$ with $\left\|z_{i}\right\|=\left|z_{i}\right|=1$ so that, for any choice of real numbers $t_{1}, \ldots, t_{m}$,

$$
\left|\sum_{i=1}^{m} t_{i} z_{i}\right| \geqslant c \frac{\epsilon}{\sqrt{n}} \sum_{i=1}^{m}\left|t_{i}\right|
$$

- We define $F=\operatorname{span}\left\{z_{1}, \ldots, z_{m}\right\}$ and choose any orthonormal basis $y_{1}, \ldots, y_{n-m}$ of $F^{\perp}$. By John's theorem, for every $j=1, \ldots, n-m$ we have

$$
\left|y_{j}\right| \leqslant\left\|y_{j}\right\| \leqslant \sqrt{n}\left|y_{j}\right|=\sqrt{n} .
$$

- Therefore, if we set $w_{j}=y_{j} /\left\|y_{j}\right\|$ we have $\left\|w_{j}\right\|=1$ and $\left|w_{j}\right| \geqslant 1 / \sqrt{n}$, $j=1, \ldots, n-m$.
- Consider the $n$-tuple of vectors $z_{1}, \ldots, z_{m}, w_{1}, \ldots, w_{n-m}$. Note that $n-m \leqslant \epsilon n$.


## Proof of $\mathcal{R}_{\infty}^{n} \leqslant c n^{5 / 6}$

- Let $t_{1}, \ldots, t_{m}, s_{1}, \ldots, s_{n-m} \in \mathbb{R}$. Then,

$$
\left|\sum_{i=1}^{m} t_{i} z_{i}+\sum_{j=1}^{n-m} s_{j} w_{j}\right| \leqslant\left\|\sum_{i=1}^{m} t_{i} z_{i}+\sum_{j=1}^{n-m} s_{j} w_{j}\right\| \leqslant \sum_{i=1}^{m}\left|t_{i}\right|+\sum_{j=1}^{n-m}\left|s_{j}\right| .
$$

## Proof of $\mathcal{R}_{\infty}^{n} \leqslant c n^{5 / 6}$

- Let $t_{1}, \ldots, t_{m}, s_{1}, \ldots, s_{n-m} \in \mathbb{R}$. Then,

$$
\left|\sum_{i=1}^{m} t_{i} z_{i}+\sum_{j=1}^{n-m} s_{j} w_{j}\right| \leqslant\left\|\sum_{i=1}^{m} t_{i} z_{i}+\sum_{j=1}^{n-m} s_{j} w_{j}\right\| \leqslant \sum_{i=1}^{m}\left|t_{i}\right|+\sum_{j=1}^{n-m}\left|s_{j}\right| .
$$

- On the other hand, $\sum_{i} t_{i} z_{i}$ is orthogonal to $\sum_{j} s_{j} w_{j}$. It follows that

$$
\begin{aligned}
& \left|\sum_{i=1}^{m} t_{i} z_{i}+\sum_{j=1}^{n-m} s_{j} w_{j}\right|=\left(\left|\sum_{i=1}^{m} t_{i} z_{i}\right|^{2}+\left|\sum_{j=1}^{n-m} s_{j} w_{j}\right|^{2}\right)^{1 / 2} \geqslant \frac{1}{\sqrt{2}}\left(\left|\sum_{i=1}^{m} t_{i} z_{i}\right|+\left|\sum_{j=1}^{n-m} s_{j} w_{j}\right|\right) \\
& =\frac{1}{\sqrt{2}}\left(\left|\sum_{i=1}^{m} t_{i} z_{i}\right|+\left(\sum_{j=1}^{n-m} s_{j}^{2}\left|w_{j}\right|^{2}\right)^{1 / 2}\right) \geqslant \frac{1}{\sqrt{2}}\left(\frac{c \epsilon}{\sqrt{n}} \sum_{i=1}^{m}\left|t_{i}\right|+\frac{1}{\sqrt{n}} \frac{1}{\sqrt{n-m}} \sum_{j=1}^{n-m}\left|s_{j}\right|\right) \\
& \geqslant \frac{1}{\sqrt{2}} \min \left\{\frac{c \epsilon}{\sqrt{n}}, \frac{1}{\sqrt{\epsilon} n}\right\}\left(\sum_{i=1}^{m}\left|t_{i}\right|+\sum_{j=1}^{n-m}\left|s_{j}\right|\right) .
\end{aligned}
$$

## Proof of $\mathcal{R}_{\infty}^{n} \leqslant c n^{5 / 6}$

- Let $t_{1}, \ldots, t_{m}, s_{1}, \ldots, s_{n-m} \in \mathbb{R}$. Then,

$$
\left|\sum_{i=1}^{m} t_{i} z_{i}+\sum_{j=1}^{n-m} s_{j} w_{j}\right| \leqslant\left\|\sum_{i=1}^{m} t_{i} z_{i}+\sum_{j=1}^{n-m} s_{j} w_{j}\right\| \leqslant \sum_{i=1}^{m}\left|t_{i}\right|+\sum_{j=1}^{n-m}\left|s_{j}\right| .
$$

- On the other hand, $\sum_{i} t_{i} z_{i}$ is orthogonal to $\sum_{j} s_{j} w_{j}$. It follows that

$$
\begin{aligned}
& \left|\sum_{i=1}^{m} t_{i} z_{i}+\sum_{j=1}^{n-m} s_{j} w_{j}\right|=\left(\left|\sum_{i=1}^{m} t_{i} z_{i}\right|^{2}+\left|\sum_{j=1}^{n-m} s_{j} w_{j}\right|^{2}\right)^{1 / 2} \geqslant \frac{1}{\sqrt{2}}\left(\left|\sum_{i=1}^{m} t_{i} z_{i}\right|+\left|\sum_{j=1}^{n-m} s_{j} w_{j}\right|\right) \\
& =\frac{1}{\sqrt{2}}\left(\left|\sum_{i=1}^{m} t_{i} z_{i}\right|+\left(\sum_{j=1}^{n-m} s_{j}^{2}\left|w_{j}\right|^{2}\right)^{1 / 2}\right) \geqslant \frac{1}{\sqrt{2}}\left(\frac{c \epsilon}{\sqrt{n}} \sum_{i=1}^{m}\left|t_{i}\right|+\frac{1}{\sqrt{n}} \frac{1}{\sqrt{n-m}} \sum_{j=1}^{n-m}\left|s_{j}\right|\right) \\
& \geqslant \frac{1}{\sqrt{2}} \min \left\{\frac{c \epsilon}{\sqrt{n}}, \frac{1}{\sqrt{\epsilon} n}\right\}\left(\sum_{i=1}^{m}\left|t_{i}\right|+\sum_{j=1}^{n-m}\left|s_{j}\right|\right)
\end{aligned}
$$

- We have thus proved that

$$
d\left(X, \ell_{1}^{n}\right) \leqslant \sqrt{2} \max \{\sqrt{n} / c \epsilon, \sqrt{\epsilon} n\}
$$

for every $\epsilon \in(0,1)$. The optimal choice of $\epsilon$ is $\epsilon \simeq 1 / n^{1 / 3}$. For a value of $\epsilon$ of this order we have $d\left(X, \ell_{1}^{n}\right) \leqslant c n^{5 / 6}$.

## Proportional Dvoretzky-Rogers factorization

In their study of the radius $\mathcal{R}_{\infty}^{n}$, Bourgain and Szarek obtained a proportional Dvoretzky-Rogers factorization theorem.

## Bourgain-Szarek

Assume that $B_{2}^{n}$ is the minimal volume ellipsoid of $K$, For every $\epsilon \in(0,1)$ one can find $m \geqslant(1-\epsilon) n$ and $x_{1}, \ldots, x_{m}$ among the contact points of $K$ and $B_{2}^{n}$, so that for every choice of scalars $\left(t_{i}\right)_{i \leqslant m}$

$$
f(\epsilon)\left(\sum_{i=1}^{m} t_{i}^{2}\right)^{1 / 2} \leqslant\left|\sum_{i=1}^{m} t_{i} x_{i}\right| \leqslant\left\|\sum_{i=1}^{m} t_{i} x_{i}\right\|_{K} \leq \sum_{i=1}^{m}\left|t_{i}\right|
$$

## Proportional Dvoretzky-Rogers factorization

In their study of the radius $\mathcal{R}_{\infty}^{n}$, Bourgain and Szarek obtained a proportional Dvoretzky-Rogers factorization theorem.

## Bourgain-Szarek

Assume that $B_{2}^{n}$ is the minimal volume ellipsoid of $K$, For every $\epsilon \in(0,1)$ one can find $m \geqslant(1-\epsilon) n$ and $x_{1}, \ldots, x_{m}$ among the contact points of $K$ and $B_{2}^{n}$, so that for every choice of scalars $\left(t_{i}\right)_{i \leqslant m}$

$$
f(\epsilon)\left(\sum_{i=1}^{m} t_{i}^{2}\right)^{1 / 2} \leqslant\left|\sum_{i=1}^{m} t_{i} x_{i}\right| \leqslant\left\|\sum_{i=1}^{m} t_{i} x_{i}\right\|_{K} \leq \sum_{i=1}^{m}\left|t_{i}\right| .
$$

- The important part in this string of inequalities is the first one; it provides a much-stronger version of the classical Dvoretzky-Rogers Lemma which implied a similar inequality only for $m \leqslant \sqrt{n}$.


## Proportional Dvoretzky-Rogers factorization

In their study of the radius $\mathcal{R}_{\infty}^{n}$, Bourgain and Szarek obtained a proportional Dvoretzky-Rogers factorization theorem.

## Bourgain-Szarek

Assume that $B_{2}^{n}$ is the minimal volume ellipsoid of $K$, For every $\epsilon \in(0,1)$ one can find $m \geqslant(1-\epsilon) n$ and $x_{1}, \ldots, x_{m}$ among the contact points of $K$ and $B_{2}^{n}$, so that for every choice of scalars $\left(t_{i}\right)_{i \leqslant m}$

$$
f(\epsilon)\left(\sum_{i=1}^{m} t_{i}^{2}\right)^{1 / 2} \leqslant\left|\sum_{i=1}^{m} t_{i} x_{i}\right| \leqslant\left\|\sum_{i=1}^{m} t_{i} x_{i}\right\|_{K} \leq \sum_{i=1}^{m}\left|t_{i}\right| .
$$

- The important part in this string of inequalities is the first one; it provides a much-stronger version of the classical Dvoretzky-Rogers Lemma which implied a similar inequality only for $m \leqslant \sqrt{n}$.
- Equivalently, it can be stated in the form of a "proportional factorization result":


## Proportional Dvoretzky-Rogers factorization

Let $X$ be an $n$-dimensional normed space. For any $\epsilon>0$ there exists $k \geqslant(1-\epsilon)^{2} n$ such that the identity operator $i_{2, \infty}: l_{2}^{k} \rightarrow l_{\infty}^{k}$ can be written in the form $i_{2, \infty}=\alpha \circ \beta$, where $\beta: I_{2}^{k} \rightarrow X, \alpha: X \rightarrow I_{\infty}^{k}$ and $\|\alpha\| \cdot\|\beta\| \leqslant \frac{1}{\epsilon}$.

## Proportional Dvoretzky-Rogers factorization

- The first proof by Bourgain and Szarek gave a weaker dependence on $\epsilon$. The work of Szarek and Talagrand improved the dependence on $\epsilon$ to $\epsilon^{-2}$.


## Proportional Dvoretzky-Rogers factorization

- The first proof by Bourgain and Szarek gave a weaker dependence on $\epsilon$. The work of Szarek and Talagrand improved the dependence on $\epsilon$ to $\epsilon^{-2}$.
- The best known dependence on $\epsilon$ is $c(\epsilon)=\frac{c}{\epsilon}$. The tools that are used are factorization arguments related to Grothendieck's inequality and the following stronger version of the isomorphic Sauer-Shelah lemma.


## G., 1993

Let $u_{1}, \ldots, u_{s} \in B_{2}^{n}$ and define $\mathcal{E}=\left\{\left(\delta_{j}\right)_{j \leqslant s} \in \mathbb{R}^{s}:\left|\sum_{j=1}^{s} \delta_{j} u_{j}\right| \leqslant 1\right\}$. For every $\epsilon \in(0,1)$ we can find $\sigma \subseteq\{1, \ldots, s\}$ with $|\sigma| \geqslant(1-\epsilon) s$ such that

$$
P_{\sigma}(\mathcal{E}) \supseteq c \sqrt{\epsilon} B_{\sigma},
$$

where $B_{\sigma}$ is the Euclidean unit ball in $\mathbb{R}^{\sigma}$ and $c>0$ is an absolute constant.

## Proportional Dvoretzky-Rogers factorization

- The first proof by Bourgain and Szarek gave a weaker dependence on $\epsilon$. The work of Szarek and Talagrand improved the dependence on $\epsilon$ to $\epsilon^{-2}$.
- The best known dependence on $\epsilon$ is $c(\epsilon)=\frac{c}{\epsilon}$. The tools that are used are factorization arguments related to Grothendieck's inequality and the following stronger version of the isomorphic Sauer-Shelah lemma.


## G., 1993

Let $u_{1}, \ldots, u_{s} \in B_{2}^{n}$ and define $\mathcal{E}=\left\{\left(\delta_{j}\right)_{j \leqslant s} \in \mathbb{R}^{s}:\left|\sum_{j=1}^{s} \delta_{j} u_{j}\right| \leqslant 1\right\}$. For every $\epsilon \in(0,1)$ we can find $\sigma \subseteq\{1, \ldots, s\}$ with $|\sigma| \geqslant(1-\epsilon) s$ such that

$$
P_{\sigma}(\mathcal{E}) \supseteq c \sqrt{\epsilon} B_{\sigma},
$$

where $B_{\sigma}$ is the Euclidean unit ball in $\mathbb{R}^{\sigma}$ and $c>0$ is an absolute constant.

- The $\sqrt{\epsilon}$-dependence on $\epsilon$ in the previous result is best possible.


## Proportional Dvoretzky-Rogers factorization

- The first proof by Bourgain and Szarek gave a weaker dependence on $\epsilon$. The work of Szarek and Talagrand improved the dependence on $\epsilon$ to $\epsilon^{-2}$.
- The best known dependence on $\epsilon$ is $c(\epsilon)=\frac{c}{\epsilon}$. The tools that are used are factorization arguments related to Grothendieck's inequality and the following stronger version of the isomorphic Sauer-Shelah lemma.


## G., 1993

Let $u_{1}, \ldots, u_{s} \in B_{2}^{n}$ and define $\mathcal{E}=\left\{\left(\delta_{j}\right)_{j \leqslant s} \in \mathbb{R}^{s}:\left|\sum_{j=1}^{s} \delta_{j} u_{j}\right| \leqslant 1\right\}$. For every $\epsilon \in(0,1)$ we can find $\sigma \subseteq\{1, \ldots, s\}$ with $|\sigma| \geqslant(1-\epsilon) s$ such that

$$
P_{\sigma}(\mathcal{E}) \supseteq c \sqrt{\epsilon} B_{\sigma},
$$

where $B_{\sigma}$ is the Euclidean unit ball in $\mathbb{R}^{\sigma}$ and $c>0$ is an absolute constant.

- The $\sqrt{\epsilon}$-dependence on $\epsilon$ in the previous result is best possible.
- Having the proportional Dvoretzky-Rogers factorization theorem, by an application of the Cauchy-Schwarz inequality we receive the main proposition that we used to prove the estimate $\mathcal{R}_{\infty}^{n} \leqslant c n^{5 / 6}$ for the Banach-Mazur distance to the cube.


## Asymptotic centers of the Banach-Mazur compactum

- As an application of the proportional Dvoretzky-Rogers factorization theorem, Bourgain and Szarek gave a final answer to the problem of the uniqueness up to constant of the center of the Banach-Mazur compactum.


## Asymptotic centers of the Banach-Mazur compactum

- As an application of the proportional Dvoretzky-Rogers factorization theorem, Bourgain and Szarek gave a final answer to the problem of the uniqueness up to constant of the center of the Banach-Mazur compactum.


## Question

Does there exist a function $f(\lambda), \lambda \geqslant 1$, such that for every $X \in \mathcal{B}_{n}$ with $\mathcal{R}(X) \leqslant \lambda \sqrt{n}$ we must have $d\left(X, \ell_{2}^{n}\right) \leqslant f(\lambda)$ ?

## Asymptotic centers of the Banach-Mazur compactum

- As an application of the proportional Dvoretzky-Rogers factorization theorem, Bourgain and Szarek gave a final answer to the problem of the uniqueness up to constant of the center of the Banach-Mazur compactum.


## Question

Does there exist a function $f(\lambda), \lambda \geqslant 1$, such that for every $X \in \mathcal{B}_{n}$ with $\mathcal{R}(X) \leqslant \lambda \sqrt{n}$ we must have $d\left(X, \ell_{2}^{n}\right) \leqslant f(\lambda)$ ?

In other words, the question is if all the "asymptotic centers" of the Banach-Mazur compactum are close to Euclidean space.

## Asymptotic centers of the Banach-Mazur compactum

- As an application of the proportional Dvoretzky-Rogers factorization theorem, Bourgain and Szarek gave a final answer to the problem of the uniqueness up to constant of the center of the Banach-Mazur compactum.


## Question

Does there exist a function $f(\lambda), \lambda \geqslant 1$, such that for every $X \in \mathcal{B}_{n}$ with $\mathcal{R}(X) \leqslant \lambda \sqrt{n}$ we must have $d\left(X, \ell_{2}^{n}\right) \leqslant f(\lambda)$ ?

In other words, the question is if all the "asymptotic centers" of the Banach-Mazur compactum are close to Euclidean space.

- The answer is negative:


## Bourgain-Szarek

Let $X_{0}=\ell_{2}^{s} \oplus \ell_{1}^{n-s}$ where $s=\lfloor n / 2\rfloor$. Then $\mathcal{R}\left(X_{0}\right) \leqslant c \sqrt{n}$ for some absolute constant but $d\left(X_{0}, \ell_{2}^{n}\right) \geqslant \sqrt{n / 2}$.

## Asymptotic centers of the Banach-Mazur compactum

- As an application of the proportional Dvoretzky-Rogers factorization theorem, Bourgain and Szarek gave a final answer to the problem of the uniqueness up to constant of the center of the Banach-Mazur compactum.


## Question

Does there exist a function $f(\lambda), \lambda \geqslant 1$, such that for every $X \in \mathcal{B}_{n}$ with $\mathcal{R}(X) \leqslant \lambda \sqrt{n}$ we must have $d\left(X, \ell_{2}^{n}\right) \leqslant f(\lambda)$ ?

In other words, the question is if all the "asymptotic centers" of the Banach-Mazur compactum are close to Euclidean space.

- The answer is negative:


## Bourgain-Szarek

Let $X_{0}=\ell_{2}^{s} \oplus \ell_{1}^{n-s}$ where $s=\lfloor n / 2\rfloor$. Then $\mathcal{R}\left(X_{0}\right) \leqslant c \sqrt{n}$ for some absolute constant but $d\left(X_{0}, \ell_{2}^{n}\right) \geqslant \sqrt{n / 2}$.

- The main tool in the proof is the proportional Dvoretzky-Rogers theorem.


## An alternative approach

## A second proof of the bound $\mathcal{R}_{\infty}^{n} \leqslant c n^{5 / 6}$

## An alternative approach

## A second proof of the bound $\mathcal{R}_{\infty}^{n} \leqslant c n^{5 / 6}$

- Next we discuss an alternative proof of the proportional Dvoretzky-Rogers factorization theorem, which is due to P. Youssef.


## An alternative approach

A second proof of the bound $\mathcal{R}_{\infty}^{n} \leqslant c n^{5 / 6}$

- Next we discuss an alternative proof of the proportional Dvoretzky-Rogers factorization theorem, which is due to P . Youssef.
- We have seen that this also implies the upper bound $\mathcal{R}_{\infty}^{n} \leqslant c n^{5 / 6}$.


## An alternative approach

A second proof of the bound $\mathcal{R}_{\infty}^{n} \leqslant c n^{5 / 6}$

- Next we discuss an alternative proof of the proportional Dvoretzky-Rogers factorization theorem, which is due to $P$. Youssef.
- We have seen that this also implies the upper bound $\mathcal{R}_{\infty}^{n} \leqslant c n^{5 / 6}$.
- Youssef exploited the method introduced in previous work of Spielman and Srivastava.


## Spectral sparsification

- We start with the work of Batson, Spielman and Srivastava on the question to approximate a graph $G=(V, E, w)$ by a sparse graph $G^{\prime}$.


## Spectral sparsification

- We start with the work of Batson, Spielman and Srivastava on the question to approximate a graph $G=(V, E, w)$ by a sparse graph $G^{\prime}$.
- Recall that the Laplacian matrix $L_{G}$ of a graph $G=(V, E, w)$ is defined by

$$
\left\langle L_{G} X, x\right\rangle=\sum_{(u, v) \in E} w_{u, v}\left(x_{u}-x_{v}\right)^{2} .
$$

Here, $V$ is the set of vertices of $G, E$ is the set of edges of $G$, and $w_{u, v}$ is the weight of the edge $(u, v) \in E$.

## Spectral sparsification

- We start with the work of Batson, Spielman and Srivastava on the question to approximate a graph $G=(V, E, w)$ by a sparse graph $G^{\prime}$.
- Recall that the Laplacian matrix $L_{G}$ of a graph $G=(V, E, w)$ is defined by

$$
\left\langle L_{G} x, x\right\rangle=\sum_{(u, v) \in E} w_{u, v}\left(x_{u}-x_{v}\right)^{2} .
$$

Here, $V$ is the set of vertices of $G, E$ is the set of edges of $G$, and $w_{u, v}$ is the weight of the edge $(u, v) \in E$.

- Formally, one says that $G^{\prime}$ is a $\gamma$-approximation of $G$ (for some $\gamma>1$ ) if

$$
\left\langle L_{G} x, x\right\rangle \leqslant\left\langle L_{G^{\prime}} x, x\right\rangle \leqslant \gamma\left\langle L_{G} x, x\right\rangle
$$

for all $x \in \mathbb{R}^{V}$.

## Spectral sparsification

- We start with the work of Batson, Spielman and Srivastava on the question to approximate a graph $G=(V, E, w)$ by a sparse graph $G^{\prime}$.
- Recall that the Laplacian matrix $L_{G}$ of a graph $G=(V, E, w)$ is defined by

$$
\left\langle L_{G} X, x\right\rangle=\sum_{(u, v) \in E} w_{u, v}\left(x_{u}-x_{v}\right)^{2} .
$$

Here, $V$ is the set of vertices of $G, E$ is the set of edges of $G$, and $w_{u, v}$ is the weight of the edge $(u, v) \in E$.

- Formally, one says that $G^{\prime}$ is a $\gamma$-approximation of $G$ (for some $\gamma>1$ ) if

$$
\left\langle L_{G} x, x\right\rangle \leqslant\left\langle L_{G^{\prime}} x, x\right\rangle \leqslant \gamma\left\langle L_{G} x, x\right\rangle
$$

for all $x \in \mathbb{R}^{V}$.

- Batson, Spielman and Srivastava developed a method which shows that for every $d>1$, every undirected weighted graph $G=(V, E, w)$ with $n$ vertices and $m$ edges contains a weighted subgraph $G^{\prime}=\left(V, F^{\prime}, \tilde{w}\right)$ with $\lceil d(n-1)\rceil$ edges that satisfies

$$
\left\langle L_{G} x, x\right\rangle \leqslant\left\langle L_{G^{\prime}} x, x\right\rangle \leqslant \gamma_{d}\left\langle L_{G} x, x\right\rangle
$$

for all $x \in \mathbb{R}^{n}$, where $\gamma_{d}:=\left(\frac{\sqrt{d}+1}{\sqrt{d}-1}\right)^{2}$.

## Spectral sparsification

- We start with the work of Batson, Spielman and Srivastava on the question to approximate a graph $G=(V, E, w)$ by a sparse graph $G^{\prime}$.
- Recall that the Laplacian matrix $L_{G}$ of a graph $G=(V, E, w)$ is defined by

$$
\left\langle L_{G} x, x\right\rangle=\sum_{(u, v) \in E} w_{u, v}\left(x_{u}-x_{v}\right)^{2}
$$

Here, $V$ is the set of vertices of $G, E$ is the set of edges of $G$, and $w_{u, v}$ is the weight of the edge $(u, v) \in E$.

- Formally, one says that $G^{\prime}$ is a $\gamma$-approximation of $G$ (for some $\gamma>1$ ) if

$$
\left\langle L_{G} x, x\right\rangle \leqslant\left\langle L_{G^{\prime}} x, x\right\rangle \leqslant \gamma\left\langle L_{G} x, x\right\rangle
$$

for all $x \in \mathbb{R}^{V}$.

- Batson, Spielman and Srivastava developed a method which shows that for every $d>1$, every undirected weighted graph $G=(V, E, w)$ with $n$ vertices and $m$ edges contains a weighted subgraph $G^{\prime}=\left(V, F^{\prime}, \tilde{w}\right)$ with $\lceil d(n-1)\rceil$ edges that satisfies

$$
\left\langle L_{G} x, x\right\rangle \leqslant\left\langle L_{G^{\prime}} x, x\right\rangle \leqslant \gamma_{d}\left\langle L_{G} x, x\right\rangle
$$

for all $x \in \mathbb{R}^{n}$, where $\gamma_{d}:=\left(\frac{\sqrt{d}+1}{\sqrt{d}-1}\right)^{2}$.

- The proof also provided a deterministic algorithm for computing the graph $G^{\prime}$ in time $O\left(d n^{3} m\right)$.


## Spectral sparsification

- For notational convenience, from now on $v$ denotes a column vector in $\mathbb{R}^{n}$ (an $n \times 1$ matrix) and $v^{\top}$ denotes a row vector (a $1 \times n$ matrix). We write $I$ for the identity matrix of the appropriate dimension. If $A, B$ are two $n \times n$ matrices then the notation $A \preceq B$ means that the matrix $B-A$ is positive semidefinite, while $A \prec B$ means that $B-A$ is positive definite.


## Spectral sparsification

- For notational convenience, from now on $v$ denotes a column vector in $\mathbb{R}^{n}$ (an $n \times 1$ matrix) and $v^{T}$ denotes a row vector (a $1 \times n$ matrix). We write $I$ for the identity matrix of the appropriate dimension. If $A, B$ are two $n \times n$ matrices then the notation $A \preceq B$ means that the matrix $B-A$ is positive semidefinite, while $A \prec B$ means that $B-A$ is positive definite.
- The main technical result of Batson, Spielman and Srivastava is the following purely linear algebraic theorem.


## Batson-Spielman-Srivastava, ~ 2009

Let $d>1, \gamma_{d}:=\left(\frac{\sqrt{d}+1}{\sqrt{d}-1}\right)^{2}$ and $v_{1}, \ldots, v_{m} \in \mathbb{R}^{n}$ such that

$$
I=\sum_{j=1}^{m} v_{j} v_{j}^{T}
$$

There exist non-negative reals $\left\{s_{j}\right\}_{1 \leqslant j \leqslant m}$, with $\left|\left\{j: s_{j} \neq 0\right\}\right| \leqslant d n$, such that

$$
I \preceq \sum_{j=1}^{m} s_{j} v_{j} v_{j}^{T} \preceq \gamma_{d} I
$$

## Geometric applications

- It was soon understood that the theorem of Batson, Spielman and Srivastava is closely related to John decompositions and should have important applications to convex geometry.


## Geometric applications

- It was soon understood that the theorem of Batson, Spielman and Srivastava is closely related to John decompositions and should have important applications to convex geometry.
- A sample of applications (chronologically the first):


## Srivastava, ~ 2010

Let $K$ be a symmetric convex body in $\mathbb{R}^{n}$. For any $0<\epsilon<1$ there exists a symmetric convex body $D$ in $\mathbb{R}^{n}$ such that $D \subseteq K \subseteq(1+\epsilon) D$ and $D$ has at most $\mathrm{cn} / \epsilon^{2}$ contact points with its John ellipsoid, where $c>0$ is an absolute constant.

## Geometric applications

- It was soon understood that the theorem of Batson, Spielman and Srivastava is closely related to John decompositions and should have important applications to convex geometry.
- A sample of applications (chronologically the first):


## Srivastava, ~ 2010

Let $K$ be a symmetric convex body in $\mathbb{R}^{n}$. For any $0<\epsilon<1$ there exists a symmetric convex body $D$ in $\mathbb{R}^{n}$ such that $D \subseteq K \subseteq(1+\epsilon) D$ and $D$ has at most $\mathrm{cn} / \epsilon^{2}$ contact points with its John ellipsoid, where $c>0$ is an absolute constant.

- Using completely different methods, Rudelson had proved that one can do the same with a convex body $D$ whose number of contact points with its John ellipsoid is less than $C n \log n / \epsilon^{2}$.


## Geometric applications

- It was soon understood that the theorem of Batson, Spielman and Srivastava is closely related to John decompositions and should have important applications to convex geometry.
- A sample of applications (chronologically the first):


## Srivastava, ~ 2010

Let $K$ be a symmetric convex body in $\mathbb{R}^{n}$. For any $0<\epsilon<1$ there exists a symmetric convex body $D$ in $\mathbb{R}^{n}$ such that $D \subseteq K \subseteq(1+\epsilon) D$ and $D$ has at most $\mathrm{cn} / \epsilon^{2}$ contact points with its John ellipsoid, where $c>0$ is an absolute constant.

- Using completely different methods, Rudelson had proved that one can do the same with a convex body $D$ whose number of contact points with its John ellipsoid is less than $C n \log n / \epsilon^{2}$.
- Srivastava also obtained a non-symmetric analogue of this theorem. Later, it took an optimal form:


## Friedland-Youssef, ~ 2016

Let $K$ be a convex body in $\mathbb{R}^{n}$. For any $0<\epsilon<1$ there exists a convex body $D$ in $\mathbb{R}^{n}$ such that $d(K, D) \leqslant 1+\epsilon$ and $D$ has at most $c n / \epsilon^{2}$ contact points with its John ellipsoid, where $c>0$ is an absolute constant.

## Geometric applications, II

## Gluskin-Litvak, Barvinok, ~ 2012

Let $d>1$. If $K$ is a symmetric convex body whose minimal volume ellipsoid is the Euclidean unit ball, then there is a subset $X \subset K \cap S^{n-1}$ of cardinality $\operatorname{card}(X) \leqslant d n$ such that

$$
K \subseteq B_{2}^{n} \subseteq \gamma_{d} \sqrt{n} \operatorname{conv}(X)
$$

## Geometric applications, II

## Gluskin-Litvak, Barvinok, ~ 2012

Let $d>1$. If $K$ is a symmetric convex body whose minimal volume ellipsoid is the Euclidean unit ball, then there is a subset $X \subset K \cap S^{n-1}$ of cardinality $\operatorname{card}(X) \leqslant d n$ such that

$$
K \subseteq B_{2}^{n} \subseteq \gamma_{d} \sqrt{n} \operatorname{conv}(X)
$$

- Barvinok applied this fact to prove that there exist $C, \epsilon_{0}>0$ such that for any $0<\epsilon<\epsilon_{0}$ and any symmetric convex body $C$ in $\mathbb{R}^{n}, n \geqslant 1$, there exists a symmetric polytope $P$ in $\mathbb{R}^{d}$ with at most $\left(\frac{C}{\sqrt{\epsilon}} \log \frac{1}{\epsilon}\right)^{n}$ vertices such that $P \subseteq C \subseteq(1+\epsilon) P$. One should compare this estimate with the standard bound $(3 / \epsilon)^{n}$ which follows by a simple volumetric argument.


## Geometric applications, II

## Gluskin-Litvak, Barvinok, ~ 2012

Let $d>1$. If $K$ is a symmetric convex body whose minimal volume ellipsoid is the Euclidean unit ball, then there is a subset $X \subset K \cap S^{n-1}$ of cardinality $\operatorname{card}(X) \leqslant d n$ such that

$$
K \subseteq B_{2}^{n} \subseteq \gamma_{d} \sqrt{n} \operatorname{conv}(X)
$$

- Barvinok applied this fact to prove that there exist $C, \epsilon_{0}>0$ such that for any $0<\epsilon<\epsilon_{0}$ and any symmetric convex body $C$ in $\mathbb{R}^{n}, n \geqslant 1$, there exists a symmetric polytope $P$ in $\mathbb{R}^{d}$ with at most $\left(\frac{C}{\sqrt{\epsilon}} \log \frac{1}{\epsilon}\right)^{n}$ vertices such that $P \subseteq C \subseteq(1+\epsilon) P$. One should compare this estimate with the standard bound $(3 / \epsilon)^{n}$ which follows by a simple volumetric argument.
- Gluskin and Litvak applied the same fact to obtain the optimal form of an estimate of Bezdek and Litvak for the vertex index of a convex body, defined by

$$
\operatorname{vein}(K)=\inf \left\{\sum_{j=1}^{N}\left\|y_{j}\right\|_{K}: K \subseteq \operatorname{conv}\left\{y_{1}, \ldots, y_{N}\right\}\right\}
$$

## Geometric applications, II

## Gluskin-Litvak, Barvinok, ~ 2012

Let $d>1$. If $K$ is a symmetric convex body whose minimal volume ellipsoid is the Euclidean unit ball, then there is a subset $X \subset K \cap S^{n-1}$ of cardinality $\operatorname{card}(X) \leqslant d n$ such that

$$
K \subseteq B_{2}^{n} \subseteq \gamma_{d} \sqrt{n} \operatorname{conv}(X)
$$

- Barvinok applied this fact to prove that there exist $C, \epsilon_{0}>0$ such that for any $0<\epsilon<\epsilon_{0}$ and any symmetric convex body $C$ in $\mathbb{R}^{n}, n \geqslant 1$, there exists a symmetric polytope $P$ in $\mathbb{R}^{d}$ with at most $\left(\frac{C}{\sqrt{\epsilon}} \log \frac{1}{\epsilon}\right)^{n}$ vertices such that $P \subseteq C \subseteq(1+\epsilon) P$. One should compare this estimate with the standard bound $(3 / \epsilon)^{n}$ which follows by a simple volumetric argument.
- Gluskin and Litvak applied the same fact to obtain the optimal form of an estimate of Bezdek and Litvak for the vertex index of a convex body, defined by

$$
\operatorname{vein}(K)=\inf \left\{\sum_{j=1}^{N}\left\|y_{j}\right\|_{K}: K \subseteq \operatorname{conv}\left\{y_{1}, \ldots, y_{N}\right\}\right\}
$$

- They proved that if $K$ is a centrally symmetric convex body in $\mathbb{R}^{n}$ then $\operatorname{vein}(K) \leqslant 24 n^{3 / 2}$. The example of the Euclidean ball shows that the bound $O\left(n^{3 / 2}\right)$ is optimal.


## Restricted invertibility principle

- The restricted invertibility principle of Bourgain and Tzafriri states that if $A$ is an $n \times n$ matrix whose columns $A e_{j}$ have Euclidean norm equal to 1 then there exists $\sigma \subset[n]$ of cardinality $|\sigma| \geqslant c n /\|A\|_{2}^{2}$ such that the restriction $A_{\sigma}$ of $A$ to $\operatorname{span}\left\{e_{j}: j \in \sigma\right\}$ is well-invertible.


## Restricted invertibility principle

- The restricted invertibility principle of Bourgain and Tzafriri states that if $A$ is an $n \times n$ matrix whose columns $A e_{j}$ have Euclidean norm equal to 1 then there exists $\sigma \subset[n]$ of cardinality $|\sigma| \geqslant c n /\|A\|_{2}^{2}$ such that the restriction $A_{\sigma}$ of $A$ to $\operatorname{span}\left\{e_{j}: j \in \sigma\right\}$ is well-invertible.


## Bourgain-Tzafriri, 1987

There exist absolute constants $\delta, \kappa>0$ such that if $A: \ell_{2}^{n} \longrightarrow \ell_{2}^{n}$ is a linear operator with $\left|A e_{j}\right|=1$ for all $j=1, \ldots, n$ then one may find a subset $\sigma \subseteq[n]$ of cardinality $|\sigma| \geqslant \delta n /\|A\|_{2}^{2}$ such that

$$
\begin{equation*}
\left|\sum_{j \in \sigma} t_{j} A e_{j}\right|^{2} \geqslant \kappa \sum_{j \in \sigma}\left|t_{j}\right|^{2} \tag{2}
\end{equation*}
$$

for any choice of scalars $\left\{t_{j}\right\}_{j \in \sigma}$.

## Restricted invertibility principle

- The restricted invertibility principle of Bourgain and Tzafriri states that if $A$ is an $n \times n$ matrix whose columns $A e_{j}$ have Euclidean norm equal to 1 then there exists $\sigma \subset[n]$ of cardinality $|\sigma| \geqslant c n /\|A\|_{2}^{2}$ such that the restriction $A_{\sigma}$ of $A$ to $\operatorname{span}\left\{e_{j}: j \in \sigma\right\}$ is well-invertible.


## Bourgain-Tzafriri, 1987

There exist absolute constants $\delta, \kappa>0$ such that if $A: \ell_{2}^{n} \longrightarrow \ell_{2}^{n}$ is a linear operator with $\left|A e_{j}\right|=1$ for all $j=1, \ldots, n$ then one may find a subset $\sigma \subseteq[n]$ of cardinality $|\sigma| \geqslant \delta n /\|A\|_{2}^{2}$ such that

$$
\begin{equation*}
\left|\sum_{j \in \sigma} t_{j} A e_{j}\right|^{2} \geqslant \kappa \sum_{j \in \sigma}\left|t_{j}\right|^{2} \tag{2}
\end{equation*}
$$

for any choice of scalars $\left\{t_{j}\right\}_{j \in \sigma}$.

- If $A_{\sigma}$ is the restriction of $A$ to $\operatorname{span}\left\{e_{j}: j \in \sigma\right\}$ then (2) is equivalent to the fact that $s_{\text {min }}\left(A_{\sigma}\right) \geqslant \kappa$, where $s_{\text {min }}(A)$ denotes the smallest singular number of an operator $A$.


## Restricted invertibility principle

Vershynin generalized the restricted invertibility theorem as follows.

## Vershynin, ~ 2000

Let $I=\sum_{j=1}^{m} v_{j} v_{j}^{T}$ is an arbitrary decomposition of the identity and $A: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ be a linear operator. Then, for any $\epsilon \in(0,1)$ one can find $\sigma \subset[m]$ of cardinality $|\sigma| \geqslant(1-\epsilon)\|A\|_{\mathrm{HS}}^{2} /\|A\|_{2}^{2}$ such that for any choice of scalars $\left(t_{j}\right)_{j \in \sigma}$,

$$
\begin{equation*}
\left|\sum_{j \in \sigma} t_{j} \frac{A v_{j}}{\left|A v_{j}\right|}\right| \geqslant c(\epsilon)\left(\sum_{j \in \sigma} t_{j}^{2}\right)^{1 / 2}, \tag{3}
\end{equation*}
$$

where $c(\epsilon)>0$ is a constant depending only on $\epsilon$.

## Restricted invertibility principle

Vershynin generalized the restricted invertibility theorem as follows.

## Vershynin, ~ 2000

Let $I=\sum_{j=1}^{m} v_{j} v_{j}^{T}$ is an arbitrary decomposition of the identity and $A: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ be a linear operator. Then, for any $\epsilon \in(0,1)$ one can find $\sigma \subset[m]$ of cardinality $|\sigma| \geqslant(1-\epsilon)\|A\|_{\mathrm{HS}}^{2} /\|A\|_{2}^{2}$ such that for any choice of scalars $\left(t_{j}\right)_{j \in \sigma}$,

$$
\begin{equation*}
\left|\sum_{j \in \sigma} t_{j} \frac{A v_{j}}{\left|A v_{j}\right|}\right| \geqslant c(\epsilon)\left(\sum_{j \in \sigma} t_{j}^{2}\right)^{1 / 2} \tag{3}
\end{equation*}
$$

where $c(\epsilon)>0$ is a constant depending only on $\epsilon$.

- Note that if $\left|A e_{j}\right|=1$ for all $j$ then, applying Vershynin's theorem for the standard decomposition $I=\sum_{j=1}^{n} e_{j} e_{j}^{T}$ we recover the theorem of Bourgain and Tzafriri.


## Restricted invertibility principle

Vershynin generalized the restricted invertibility theorem as follows.

## Vershynin, ~ 2000

Let $I=\sum_{j=1}^{m} v_{j} v_{j}^{T}$ is an arbitrary decomposition of the identity and $A: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ be a linear operator. Then, for any $\epsilon \in(0,1)$ one can find $\sigma \subset[m]$ of cardinality $|\sigma| \geqslant(1-\epsilon)\|A\|_{\mathrm{HS}}^{2} /\|A\|_{2}^{2}$ such that for any choice of scalars $\left(t_{j}\right)_{j \in \sigma}$,

$$
\begin{equation*}
\left|\sum_{j \in \sigma} t_{j} \frac{A v_{j}}{\left|A v_{j}\right|}\right| \geqslant c(\epsilon)\left(\sum_{j \in \sigma} t_{j}^{2}\right)^{1 / 2} \tag{3}
\end{equation*}
$$

where $c(\epsilon)>0$ is a constant depending only on $\epsilon$.

- Note that if $\left|A e_{j}\right|=1$ for all $j$ then, applying Vershynin's theorem for the standard decomposition $I=\sum_{j=1}^{n} e_{j} e_{j}^{T}$ we recover the theorem of Bourgain and Tzafriri.
- Moreover, we may now find $\sigma \subseteq[n]$ of cardinality greater than $(1-\epsilon) n /\|A\|_{2}^{2}$ for any $\epsilon \in(0,1)$ so that (2) will hold true, of course with a constant $\delta=c(\epsilon)$ depending on $\epsilon$.


## Restricted invertibility principle

Vershynin generalized the restricted invertibility theorem as follows.

## Vershynin, ~ 2000

Let $I=\sum_{j=1}^{m} v_{j} v_{j}^{T}$ is an arbitrary decomposition of the identity and $A: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ be a linear operator. Then, for any $\epsilon \in(0,1)$ one can find $\sigma \subset[m]$ of cardinality $|\sigma| \geqslant(1-\epsilon)\|A\|_{\mathrm{HS}}^{2} /\|A\|_{2}^{2}$ such that for any choice of scalars $\left(t_{j}\right)_{j \in \sigma}$,

$$
\begin{equation*}
\left|\sum_{j \in \sigma} t_{j} \frac{A v_{j}}{\left|A v_{j}\right|}\right| \geqslant c(\epsilon)\left(\sum_{j \in \sigma} t_{j}^{2}\right)^{1 / 2} \tag{3}
\end{equation*}
$$

where $c(\epsilon)>0$ is a constant depending only on $\epsilon$.

- Note that if $\left|A e_{j}\right|=1$ for all $j$ then, applying Vershynin's theorem for the standard decomposition $I=\sum_{j=1}^{n} e_{j} e_{j}^{T}$ we recover the theorem of Bourgain and Tzafriri.
- Moreover, we may now find $\sigma \subseteq[n]$ of cardinality greater than $(1-\epsilon) n /\|A\|_{2}^{2}$ for any $\epsilon \in(0,1)$ so that (2) will hold true, of course with a constant $\delta=c(\epsilon)$ depending on $\epsilon$.
- Vershynin's argument is based on an iteration of the Bourgain-Tzafriri theorem and a result of Kashin-Tzafriri, and this affects the final dependence of $c(\epsilon)$ on $\epsilon$.


## Restricted invertibility principle

- Spielman and Srivastava gave a generalization of the Bourgain-Tzafriri theorem, in the spirit of Vershynin's theorem, with optimal dependence on $\epsilon$, exploiting the method of their previous work with Batson.


## Restricted invertibility principle

- Spielman and Srivastava gave a generalization of the Bourgain-Tzafriri theorem, in the spirit of Vershynin's theorem, with optimal dependence on $\epsilon$, exploiting the method of their previous work with Batson.


## Spielman-Srivastava, $\sim 2010$

Let $\epsilon \in(0,1)$ and $v_{1}, \ldots, v_{m} \in \mathbb{R}^{n}$ such that $I=\sum_{j=1}^{m} v_{j} v_{j}^{T}$. Let $A: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ be a linear operator. We can find $\sigma \subseteq[m]$ of cardinality $|\sigma| \geqslant\left\lfloor(1-\epsilon)^{2}\|A\|_{\mathrm{HS}}^{2} /\|A\|_{2}^{2}\right\rfloor$ such that the set $\left\{A v_{j}: j \in \sigma\right\}$ is linearly independent and

$$
\lambda_{\min }\left(\sum_{j \in \sigma}\left(A v_{j}\right)\left(A v_{j}\right)^{T}\right) \geqslant \epsilon^{2} \frac{\|A\|_{\mathrm{HS}}^{2}}{m}
$$

where the smallest eigenvalue $\lambda_{\min }$ is computed on the subspace $\operatorname{span}\left\{A v_{j}: j \in \sigma\right\}$.

## Restricted invertibility principle

- Spielman and Srivastava gave a generalization of the Bourgain-Tzafriri theorem, in the spirit of Vershynin's theorem, with optimal dependence on $\epsilon$, exploiting the method of their previous work with Batson.


## Spielman-Srivastava, $\sim 2010$

Let $\epsilon \in(0,1)$ and $v_{1}, \ldots, v_{m} \in \mathbb{R}^{n}$ such that $I=\sum_{j=1}^{m} v_{j} v_{j}^{T}$. Let $A: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ be a linear operator. We can find $\sigma \subseteq[m]$ of cardinality $|\sigma| \geqslant\left\lfloor(1-\epsilon)^{2}\|A\|_{\mathrm{HS}}^{2} /\|A\|_{2}^{2}\right\rfloor$ such that the set $\left\{A v_{j}: j \in \sigma\right\}$ is linearly independent and

$$
\lambda_{\min }\left(\sum_{j \in \sigma}\left(A v_{j}\right)\left(A v_{j}\right)^{T}\right) \geqslant \epsilon^{2} \frac{\|A\|_{\mathrm{HS}}^{2}}{m}
$$

where the smallest eigenvalue $\lambda_{\text {min }}$ is computed on the subspace $\operatorname{span}\left\{A v_{j}: j \in \sigma\right\}$.

- The statement above is equivalent to the fact that, for any choice of scalars $\left(t_{j}\right)_{j \in \sigma}$,

$$
\left|\sum_{j \in \sigma} t_{j} A v_{j}\right| \geqslant \epsilon \frac{\|A\|_{\mathrm{HS}}}{\sqrt{m}}\left(\sum_{j \in \sigma} t_{j}^{2}\right)^{1 / 2} .
$$

## Restricted invertibility principle

- Spielman and Srivastava gave a generalization of the Bourgain-Tzafriri theorem, in the spirit of Vershynin's theorem, with optimal dependence on $\epsilon$, exploiting the method of their previous work with Batson.


## Spielman-Srivastava, $\sim 2010$

Let $\epsilon \in(0,1)$ and $v_{1}, \ldots, v_{m} \in \mathbb{R}^{n}$ such that $I=\sum_{j=1}^{m} v_{j} v_{j}^{T}$. Let $A: \ell_{2}^{n} \rightarrow \ell_{2}^{n}$ be a linear operator. We can find $\sigma \subseteq[m]$ of cardinality $|\sigma| \geqslant\left\lfloor(1-\epsilon)^{2}\|A\|_{\mathrm{HS}}^{2} /\|A\|_{2}^{2}\right\rfloor$ such that the set $\left\{A v_{j}: j \in \sigma\right\}$ is linearly independent and

$$
\lambda_{\min }\left(\sum_{j \in \sigma}\left(A v_{j}\right)\left(A v_{j}\right)^{T}\right) \geqslant \epsilon^{2} \frac{\|A\|_{\mathrm{HS}}^{2}}{m}
$$

where the smallest eigenvalue $\lambda_{\text {min }}$ is computed on the subspace $\operatorname{span}\left\{A v_{j}: j \in \sigma\right\}$.

- The statement above is equivalent to the fact that, for any choice of scalars $\left(t_{j}\right)_{j \in \sigma}$,

$$
\left|\sum_{j \in \sigma} t_{j} A v_{j}\right| \geqslant \epsilon \frac{\|A\|_{\mathrm{HS}}}{\sqrt{m}}\left(\sum_{j \in \sigma} t_{j}^{2}\right)^{1 / 2} .
$$

- The Bourgain-Tzafriri theorem follows from this one, with constants $\delta(\epsilon)=(1-\epsilon)^{2}$ $\kappa(\epsilon)=\epsilon^{2}$.


## Proportional Dvoretzky-Rogers factorization

Comparing the previous results we see that both generalize the Bourgain-Tzafriri theorem but in a different way.

## Proportional Dvoretzky-Rogers factorization

Comparing the previous results we see that both generalize the Bourgain-Tzafriri theorem but in a different way.

- Vershynin: the vectors that are chosen are normalized but the dependence on $\epsilon$ is weak.


## Proportional Dvoretzky-Rogers factorization

Comparing the previous results we see that both generalize the Bourgain-Tzafriri theorem but in a different way.

- Vershynin: the vectors that are chosen are normalized but the dependence on $\epsilon$ is weak.
- Spielman-Srivastava: optimal dependence on $\epsilon$ but the vectors are not normalized.


## Proportional Dvoretzky-Rogers factorization

Comparing the previous results we see that both generalize the Bourgain-Tzafriri theorem but in a different way.

- Vershynin: the vectors that are chosen are normalized but the dependence on $\epsilon$ is weak.
- Spielman-Srivastava: optimal dependence on $\epsilon$ but the vectors are not normalized. Youssef obtained a restricted invertibility theorem for any rectangular matrix and any normalization, with a good dependence on $\epsilon$ at the same time.


## Youssef, 2012

Let $A$ be an $n \times m$ matrix and $D=\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ be a diagonal $m \times m$ matrix such that $\operatorname{Ker}(D) \subset \operatorname{Ker}(A)$. Then, for any $\epsilon \in(0,1)$ there exists $\sigma \subset\{1, \ldots, m\}$ with $|\sigma| \geqslant(1-\epsilon)^{2}\|A\|_{\mathrm{HS}}^{2} /\|A\|_{2}^{2}$ such that

$$
s_{\min }\left(A_{\sigma} D_{\sigma}^{-1}\right)>\epsilon\|A\|_{\mathrm{HS}} /\|D\|_{\mathrm{HS}}
$$

where $s_{\text {min }}$ denotes the smallest singular value.

## Proportional Dvoretzky-Rogers factorization

Comparing the previous results we see that both generalize the Bourgain-Tzafriri theorem but in a different way.

- Vershynin: the vectors that are chosen are normalized but the dependence on $\epsilon$ is weak.
- Spielman-Srivastava: optimal dependence on $\epsilon$ but the vectors are not normalized. Youssef obtained a restricted invertibility theorem for any rectangular matrix and any normalization, with a good dependence on $\epsilon$ at the same time.


## Youssef, 2012

Let $A$ be an $n \times m$ matrix and $D=\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ be a diagonal $m \times m$ matrix such that $\operatorname{Ker}(D) \subset \operatorname{Ker}(A)$. Then, for any $\epsilon \in(0,1)$ there exists $\sigma \subset\{1, \ldots, m\}$ with $|\sigma| \geqslant(1-\epsilon)^{2}\|A\|_{\mathrm{HS}}^{2} /\|A\|_{2}^{2}$ such that

$$
s_{\min }\left(A_{\sigma} D_{\sigma}^{-1}\right)>\epsilon\|A\|_{\mathrm{HS}} /\|D\|_{\mathrm{HS}}
$$

where $s_{\text {min }}$ denotes the smallest singular value.
Equivalently, for any choice of reals $\left(t_{j}\right)_{j \in \sigma}$ one has

$$
\left|\sum_{j \in \sigma} t_{j} \frac{A e_{j}}{\alpha_{j}}\right| \geqslant \epsilon \frac{\|A\|_{\mathrm{HS}}}{\|D\|_{\mathrm{HS}}}\left(\sum_{j \in \sigma} t_{j}^{2}\right)^{1 / 2}
$$

## Proof of the proportional Dvoretzky-Rogers factorization theorem

## Theorem

Assume that $B_{2}^{n}$ is the minimal volume ellipsoid of $K$, For every $\epsilon \in(0,1)$ there exist $k \geqslant(1-\epsilon)^{2} n$ and $y_{1}, \ldots, y_{k} \in B_{2}^{n}$ such that, for any choice of scalars $\left(t_{j}\right)_{j \leqslant k}$,

$$
\epsilon\left(\sum_{j=1}^{k} t_{j}^{2}\right)^{1 / 2} \leqslant\left\|\sum_{j=1}^{k} t_{j} y_{j}\right\| \leqslant \sum_{j=1}^{k}\left|t_{j}\right|
$$

- We start from John's decomposition $I=\sum_{j \leqslant m} c_{j} x_{j} x_{j}^{T}$ where $x_{j} \in \partial(K) \cap S^{n-1}$.


## Proof of the proportional Dvoretzky-Rogers factorization theorem

## Theorem

Assume that $B_{2}^{n}$ is the minimal volume ellipsoid of $K$, For every $\epsilon \in(0,1)$ there exist $k \geqslant(1-\epsilon)^{2} n$ and $y_{1}, \ldots, y_{k} \in B_{2}^{n}$ such that, for any choice of scalars $\left(t_{j}\right)_{j \leqslant k}$,

$$
\epsilon\left(\sum_{j=1}^{k} t_{j}^{2}\right)^{1 / 2} \leqslant\left\|\sum_{j=1}^{k} t_{j} y_{j}\right\| \leqslant \sum_{j=1}^{k}\left|t_{j}\right|
$$

- We start from John's decomposition $I=\sum_{j \leqslant m} c_{j} x_{j} x_{j}^{\top}$ where $x_{j} \in \partial(K) \cap S^{n-1}$.
- We consider the $n \times m$ matrix $A=\left(\sqrt{c_{1}} x_{1}, \ldots, \sqrt{c_{m}} x_{m}\right)$ with columns $\sqrt{c_{j}} x_{j}$ and the diagonal matrix $D=\operatorname{diag}\left(\sqrt{c_{1}}, \ldots, \sqrt{c_{m}}\right)$. Then, $A A^{T}=I$ and $\|A\|_{\mathrm{HS}}=\|D\|_{\mathrm{HS}}=\sqrt{n}$.


## Proof of the proportional Dvoretzky-Rogers factorization theorem

## Theorem

Assume that $B_{2}^{n}$ is the minimal volume ellipsoid of $K$, For every $\epsilon \in(0,1)$ there exist $k \geqslant(1-\epsilon)^{2} n$ and $y_{1}, \ldots, y_{k} \in B_{2}^{n}$ such that, for any choice of scalars $\left(t_{j}\right)_{j \leqslant k}$,

$$
\epsilon\left(\sum_{j=1}^{k} t_{j}^{2}\right)^{1 / 2} \leqslant\left\|\sum_{j=1}^{k} t_{j} y_{j}\right\| \leqslant \sum_{j=1}^{k}\left|t_{j}\right|
$$

- We start from John's decomposition $I=\sum_{j \leqslant m} c_{j} x_{j} x_{j}^{T}$ where $x_{j} \in \partial(K) \cap S^{n-1}$.
- We consider the $n \times m$ matrix $A=\left(\sqrt{c_{1}} x_{1}, \ldots, \sqrt{c_{m}} x_{m}\right)$ with columns $\sqrt{c_{j}} x_{j}$ and the diagonal matrix $D=\operatorname{diag}\left(\sqrt{c_{1}}, \ldots, \sqrt{c_{m}}\right)$. Then, $A A^{T}=I$ and $\|A\|_{\mathrm{HS}}=\|D\|_{\mathrm{HS}}=\sqrt{n}$.
- Given $\epsilon \in(0,1)$ we apply Youssef's theorem to $A$ and $D$ to find $\sigma \subset\{1, \ldots, m\}$ with $|\sigma|=k \geqslant(1-\epsilon)^{2} n$ such that, for any choice of scalars $\mathbf{t}=\left(t_{j}\right)_{j \in \sigma}$,

$$
\left|A_{\sigma} D_{\sigma}^{-1} \mathbf{t}\right|=\left|\sum_{j \in \sigma} t_{j} x_{j}\right| \geqslant \epsilon\left(\sum_{j \in \sigma} t_{j}^{2}\right)^{1 / 2} .
$$

## Proof of the proportional Dvoretzky-Rogers factorization theorem

## Theorem

Assume that $B_{2}^{n}$ is the minimal volume ellipsoid of $K$, For every $\epsilon \in(0,1)$ there exist $k \geqslant(1-\epsilon)^{2} n$ and $y_{1}, \ldots, y_{k} \in B_{2}^{n}$ such that, for any choice of scalars $\left(t_{j}\right)_{j \leqslant k}$,

$$
\epsilon\left(\sum_{j=1}^{k} t_{j}^{2}\right)^{1 / 2} \leqslant\left\|\sum_{j=1}^{k} t_{j} y_{j}\right\| \leqslant \sum_{j=1}^{k}\left|t_{j}\right|
$$

- We start from John's decomposition $I=\sum_{j \leqslant m} c_{j} x_{j} x_{j}^{T}$ where $x_{j} \in \partial(K) \cap S^{n-1}$.
- We consider the $n \times m$ matrix $A=\left(\sqrt{c_{1}} x_{1}, \ldots, \sqrt{c_{m}} x_{m}\right)$ with columns $\sqrt{c_{j}} x_{j}$ and the diagonal matrix $D=\operatorname{diag}\left(\sqrt{c_{1}}, \ldots, \sqrt{c_{m}}\right)$. Then, $A A^{T}=I$ and $\|A\|_{\mathrm{HS}}=\|D\|_{\mathrm{HS}}=\sqrt{n}$.
- Given $\epsilon \in(0,1)$ we apply Youssef's theorem to $A$ and $D$ to find $\sigma \subset\{1, \ldots, m\}$ with $|\sigma|=k \geqslant(1-\epsilon)^{2} n$ such that, for any choice of scalars $\mathbf{t}=\left(t_{j}\right)_{j \in \sigma}$,

$$
\left|A_{\sigma} D_{\sigma}^{-1} \mathbf{t}\right|=\left|\sum_{j \in \sigma} t_{j} x_{j}\right| \geqslant \epsilon\left(\sum_{j \in \sigma} t_{j}^{2}\right)^{1 / 2}
$$

- Since $K \subseteq B_{2}^{n}$ and $\left\|x_{j}\right\|=1$, we also have

$$
\left|\sum_{j \in \sigma} t_{j} x_{j}\right| \leqslant\left\|\sum_{j \in \sigma} t_{j} x_{j}\right\| \leqslant \sum_{j \in \sigma}\left|t_{j}\right|\left\|x_{j}\right\| \leqslant \sum_{j \in \sigma}\left|t_{j}\right| .
$$

## Idea of the proof

## Youssef

Let $A$ be an $n \times m$ matrix and $D=\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ be a diagonal $m \times m$ matrix such that $\operatorname{Ker}(D) \subset \operatorname{Ker}(A)$. Then, for any $\epsilon \in(0,1)$ there exists $\sigma \subset\{1, \ldots, m\}$ with $|\sigma| \geqslant(1-\epsilon)^{2}\|A\|_{\mathrm{HS}}^{2} /\|A\|_{2}^{2}$ such that

$$
s_{\min }\left(A_{\sigma} D_{\sigma}^{-1}\right)>\frac{\epsilon\|A\|_{\mathrm{HS}}}{\|D\|_{\mathrm{HS}}}
$$

where $s_{\text {min }}$ denotes the smallest singular value.

- It suffices to find $\sigma \subset\{1, \ldots, m\}$ with $|\sigma| \geqslant(1-\epsilon)^{2}\|A\|_{\mathrm{HS}}^{2} /\|A\|_{2}^{2}$ such that

$$
\left(A_{\sigma} D_{\sigma}^{-1}\right) \cdot\left(A_{\sigma} D_{\sigma}^{-1}\right)^{T}=\sum_{j \in \sigma}\left(A D_{\sigma}^{-1} e_{j}\right) \cdot\left(A D_{\sigma}^{-1} e_{j}\right)^{T}=\sum_{j \in \sigma}\left(\frac{A e_{j}}{\alpha_{j}}\right) \cdot\left(\frac{A e_{j}}{\alpha_{j}}\right)^{T}
$$

has rank equal to $k_{0}=|\sigma|$ and its smallest positive eigenvalue is greater than $\epsilon^{2}\|A\|_{\mathrm{HS}}^{2} /\|D\|_{\mathrm{HS}}^{2}$.

## Idea of the proof

## Youssef

Let $A$ be an $n \times m$ matrix and $D=\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ be a diagonal $m \times m$ matrix such that $\operatorname{Ker}(D) \subset \operatorname{Ker}(A)$. Then, for any $\epsilon \in(0,1)$ there exists $\sigma \subset\{1, \ldots, m\}$ with $|\sigma| \geqslant(1-\epsilon)^{2}\|A\|_{\mathrm{HS}}^{2} /\|A\|_{2}^{2}$ such that

$$
s_{\min }\left(A_{\sigma} D_{\sigma}^{-1}\right)>\frac{\epsilon\|A\|_{\mathrm{HS}}}{\|D\|_{\mathrm{HS}}}
$$

where $s_{\text {min }}$ denotes the smallest singular value.

- It suffices to find $\sigma \subset\{1, \ldots, m\}$ with $|\sigma| \geqslant(1-\epsilon)^{2}\|A\|_{\mathrm{HS}}^{2} /\|A\|_{2}^{2}$ such that

$$
\left(A_{\sigma} D_{\sigma}^{-1}\right) \cdot\left(A_{\sigma} D_{\sigma}^{-1}\right)^{T}=\sum_{j \in \sigma}\left(A D_{\sigma}^{-1} e_{j}\right) \cdot\left(A D_{\sigma}^{-1} e_{j}\right)^{T}=\sum_{j \in \sigma}\left(\frac{A e_{j}}{\alpha_{j}}\right) \cdot\left(\frac{A e_{j}}{\alpha_{j}}\right)^{T}
$$

has rank equal to $k_{0}=|\sigma|$ and its smallest positive eigenvalue is greater than $\epsilon^{2}\|A\|_{\mathrm{HS}}^{2} /\|D\|_{\mathrm{HS}}^{2}$.

- The matrix $M_{k_{0}}=\sum_{j \in \sigma}\left(\frac{A e_{j}}{\alpha_{j}}\right) \cdot\left(\frac{A e_{j}}{\alpha_{j}}\right)^{T}$ is defined by an inductive scheme. We start with $M_{0}=0$ and at each step we add a rank one matrix $\left(\frac{A e_{j}}{\alpha_{j}}\right) \cdot\left(\frac{A e_{j}}{\alpha_{j}}\right)^{T}$ for a suitable $j$, which will give a new positive eigenvalue.


## Facts from linear algebra

## Sherman-Morrison formula

Let $A$ be an invertible $n \times n$ matrix. For any $v \in \mathbb{R}^{n}$ we have

$$
\left(A+v v^{T}\right)^{-1}=A^{-1}-\frac{A^{-1} v v^{T} A^{-1}}{1+v^{\top} A^{-1} v}
$$

## Facts from linear algebra

## Sherman-Morrison formula

Let $A$ be an invertible $n \times n$ matrix. For any $v \in \mathbb{R}^{n}$ we have

$$
\left(A+v v^{\top}\right)^{-1}=A^{-1}-\frac{A^{-1} v v^{\top} A^{-1}}{1+v^{\top} A^{-1} v} .
$$

## Matrix determinant formula

Let $A$ be an invertible $n \times n$ matrix. For any $v \in \mathbb{R}^{n}$ we have

$$
\operatorname{det}\left(A+v v^{\top}\right)=\operatorname{det}(A)\left(1+v^{\top} A^{-1} v\right) .
$$

## Facts from linear algebra

## Sherman-Morrison formula

Let $A$ be an invertible $n \times n$ matrix. For any $v \in \mathbb{R}^{n}$ we have

$$
\left(A+v v^{\top}\right)^{-1}=A^{-1}-\frac{A^{-1} v v^{\top} A^{-1}}{1+v^{\top} A^{-1} v} .
$$

## Matrix determinant formula

Let $A$ be an invertible $n \times n$ matrix. For any $v \in \mathbb{R}^{n}$ we have

$$
\operatorname{det}\left(A+v v^{\top}\right)=\operatorname{det}(A)\left(1+v^{\top} A^{-1} v\right) .
$$

## Cauchy's interlacing theorem

Let $\chi(A)(x)=\operatorname{det}(x I-A)$ denote the characteristic polynomial of $A$. If $A$ is a symmetric $n \times n$ matrix and $v \in \mathbb{R}^{n}$ then $\chi(A)$ interlaces $\chi\left(A+v v^{T}\right)$ : if $\lambda_{i}, \lambda_{i}^{\prime}$ are their eigenvalues in decreasing order then

$$
\lambda_{1}^{\prime} \geqslant \lambda_{1} \geqslant \lambda_{2}^{\prime} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n}^{\prime} \geqslant \lambda_{n} .
$$

## Facts from linear algebra

## Condition for eigenvalues

Let $M \succeq 0$ be a positive semidefinite $n \times n$ matrix with $k$ positive eigenvalues, all of them greater than $b^{\prime}>0$. If $w \neq 0$ and $1+w^{T}\left(M-b^{\prime} I\right)^{-1} w<0$ then $M+w w^{T}$ has exactly $k+1$ positive eigenvalues, all of them greater than $b^{\prime}$.

- Let $\lambda_{1} \geqslant \cdots \geqslant \lambda_{k}$ be the non-zero eigenvalues of the matrix $M$ and $\lambda_{1}^{\prime} \geqslant \cdots \geqslant \lambda_{k+1}^{\prime}$ be the largest (in decreasing order) eigenvalues of $M+w w^{\top}$.


## Facts from linear algebra

## Condition for eigenvalues

Let $M \succeq 0$ be a positive semidefinite $n \times n$ matrix with $k$ positive eigenvalues, all of them greater than $b^{\prime}>0$. If $w \neq 0$ and $1+w^{T}\left(M-b^{\prime} I\right)^{-1} w<0$ then $M+w w^{T}$ has exactly $k+1$ positive eigenvalues, all of them greater than $b^{\prime}$.

- Let $\lambda_{1} \geqslant \cdots \geqslant \lambda_{k}$ be the non-zero eigenvalues of the matrix $M$ and $\lambda_{1}^{\prime} \geqslant \cdots \geqslant \lambda_{k+1}^{\prime}$ be the largest (in decreasing order) eigenvalues of $M+w w^{\top}$.
- Consider the quantity

$$
\operatorname{tr}\left(\left(M-b^{\prime} I\right)^{-1}\right)=\sum_{i=1}^{k} \frac{1}{\lambda_{i}-b^{\prime}}+\sum_{i=k+1}^{n} \frac{1}{0-b^{\prime}}
$$

## Facts from linear algebra

## Condition for eigenvalues

Let $M \succeq 0$ be a positive semidefinite $n \times n$ matrix with $k$ positive eigenvalues, all of them greater than $b^{\prime}>0$. If $w \neq 0$ and $1+w^{T}\left(M-b^{\prime} I\right)^{-1} w<0$ then $M+w w^{T}$ has exactly $k+1$ positive eigenvalues, all of them greater than $b^{\prime}$.

- Let $\lambda_{1} \geqslant \cdots \geqslant \lambda_{k}$ be the non-zero eigenvalues of the matrix $M$ and $\lambda_{1}^{\prime} \geqslant \cdots \geqslant \lambda_{k+1}^{\prime}$ be the largest (in decreasing order) eigenvalues of $M+w w^{\top}$.
- Consider the quantity

$$
\operatorname{tr}\left(\left(M-b^{\prime} I\right)^{-1}\right)=\sum_{i=1}^{k} \frac{1}{\lambda_{i}-b^{\prime}}+\sum_{i=k+1}^{n} \frac{1}{0-b^{\prime}}
$$

- From the Sherman-Morisson formula we have

$$
\operatorname{tr}\left(\left(M+w w^{T}-b^{\prime} l\right)^{-1}\right)-\operatorname{tr}\left(\left(M-b^{\prime} l\right)^{-1}\right)=-\frac{w^{T}\left(M-b^{\prime} l\right)^{-2} w}{1+w^{T}\left(M-b^{\prime} l\right)^{-1} w}>0
$$

because the assumption implies that the denominator on the right hand side is negative, and the numerator is positive since $M-b^{\prime} l$ is non-singular, therefore $\left(M-b^{\prime} l\right)^{-2}$ is positive definite.

## Facts from linear algebra

## Condition for eigenvalues

Let $M \succeq 0$ be a positive semidefinite $n \times n$ matrix with $k$ positive eigenvalues, all of them greater than $b^{\prime}>0$. If $w \neq 0$ and $1+w^{T}\left(M-b^{\prime} I\right)^{-1} w<0$ then $M+w w^{T}$ has exactly $k+1$ positive eigenvalues, all of them greater than $b^{\prime}$.

- Computing directly the same difference we get

$$
\begin{aligned}
0 & <\operatorname{tr}\left(\left(M+w w^{T}-b^{\prime} I\right)^{-1}\right)-\operatorname{tr}\left(\left(M-b^{\prime} I\right)^{-1}\right) \\
& =\frac{1}{\lambda_{k+1}^{\prime}-b^{\prime}}-\frac{1}{0-b^{\prime}}+\sum_{i=1}^{k} \frac{1}{\lambda_{i}^{\prime}-b^{\prime}}-\sum_{i=1}^{k} \frac{1}{\lambda_{i}-b^{\prime}} \leqslant \frac{1}{\lambda_{k+1}^{\prime}-b^{\prime}}+\frac{1}{b^{\prime}},
\end{aligned}
$$

because, by Cauchy's interlacing theorem,

$$
\lambda_{1}^{\prime} \geqslant \lambda_{1} \geqslant \lambda_{2}^{\prime} \geqslant \cdots \geqslant \lambda_{k} \geqslant \lambda_{k+1}^{\prime} \geqslant 0
$$

and hence

$$
\frac{1}{\lambda_{i}^{\prime}-b^{\prime}}-\frac{1}{\lambda_{i}-b^{\prime}} \leqslant 0
$$

for every $i \leqslant k$.

## Facts from linear algebra

## Condition for eigenvalues

Let $M \succeq 0$ be a positive semidefinite $n \times n$ matrix with $k$ positive eigenvalues, all of them greater than $b^{\prime}>0$. If $w \neq 0$ and $1+w^{T}\left(M-b^{\prime} I\right)^{-1} w<0$ then $M+w w^{T}$ has exactly $k+1$ positive eigenvalues, all of them greater than $b^{\prime}$.

- Computing directly the same difference we get

$$
\begin{aligned}
0 & <\operatorname{tr}\left(\left(M+w w^{T}-b^{\prime} I\right)^{-1}\right)-\operatorname{tr}\left(\left(M-b^{\prime} I\right)^{-1}\right) \\
& =\frac{1}{\lambda_{k+1}^{\prime}-b^{\prime}}-\frac{1}{0-b^{\prime}}+\sum_{i=1}^{k} \frac{1}{\lambda_{i}^{\prime}-b^{\prime}}-\sum_{i=1}^{k} \frac{1}{\lambda_{i}-b^{\prime}} \leqslant \frac{1}{\lambda_{k+1}^{\prime}-b^{\prime}}+\frac{1}{b^{\prime}},
\end{aligned}
$$

because, by Cauchy's interlacing theorem,

$$
\lambda_{1}^{\prime} \geqslant \lambda_{1} \geqslant \lambda_{2}^{\prime} \geqslant \cdots \geqslant \lambda_{k} \geqslant \lambda_{k+1}^{\prime} \geqslant 0
$$

and hence

$$
\frac{1}{\lambda_{i}^{\prime}-b^{\prime}}-\frac{1}{\lambda_{i}-b^{\prime}} \leqslant 0
$$

for every $i \leqslant k$.

- Since $\lambda_{k+1}^{\prime} \geqslant 0$, we conclude that $\lambda_{k+1}^{\prime}>b^{\prime}$.


## Proof

- For any symmetric matrix $M$ and any $b>0$, we define the potential with barrier $b$ by

$$
\Phi_{b}(M)=\operatorname{tr}\left(A^{T}(M-b l)^{-1} A\right)
$$

## Proof

- For any symmetric matrix $M$ and any $b>0$, we define the potential with barrier $b$ by

$$
\Phi_{b}(M)=\operatorname{tr}\left(A^{T}(M-b l)^{-1} A\right)
$$

- We fix $\delta>0$ to be chosen, and write $M_{k}$ for the matrix that has been constructed at the $k$-th step. We assume that $M_{k}$ has $k$ nonzero eigenvalues, all of them greater than $b_{k}>0$. We set $\Phi_{k}\left(M_{k}\right):=\Phi_{b_{k}}\left(M_{k}\right)$.


## Proof

- For any symmetric matrix $M$ and any $b>0$, we define the potential with barrier $b$ by

$$
\Phi_{b}(M)=\operatorname{tr}\left(A^{T}(M-b l)^{-1} A\right)
$$

- We fix $\delta>0$ to be chosen, and write $M_{k}$ for the matrix that has been constructed at the $k$-th step. We assume that $M_{k}$ has $k$ nonzero eigenvalues, all of them greater than $b_{k}>0$. We set $\Phi_{k}\left(M_{k}\right):=\Phi_{b_{k}}\left(M_{k}\right)$.
- Our aim is to add a rank one matrix $v \cdot v^{T}$ to $M_{k}$ so that $M_{k+1}=M_{k}+v v^{T}$ has $k+1$ nonzero eigenvalues, all of them greater than $b_{k+1}=b_{k}-\delta$ and $\Phi_{k+1}\left(M_{k+1}\right) \leqslant \Phi_{k}\left(M_{k}\right)$.


## Proof

- For any symmetric matrix $M$ and any $b>0$, we define the potential with barrier $b$ by

$$
\Phi_{b}(M)=\operatorname{tr}\left(A^{T}(M-b l)^{-1} A\right)
$$

- We fix $\delta>0$ to be chosen, and write $M_{k}$ for the matrix that has been constructed at the $k$-th step. We assume that $M_{k}$ has $k$ nonzero eigenvalues, all of them greater than $b_{k}>0$. We set $\Phi_{k}\left(M_{k}\right):=\Phi_{b_{k}}\left(M_{k}\right)$.
- Our aim is to add a rank one matrix $v \cdot v^{T}$ to $M_{k}$ so that $M_{k+1}=M_{k}+v v^{T}$ has $k+1$ nonzero eigenvalues, all of them greater than $b_{k+1}=b_{k}-\delta$ and $\Phi_{k+1}\left(M_{k+1}\right) \leqslant \Phi_{k}\left(M_{k}\right)$.
- We compute

$$
\Phi_{k+1}\left(M_{k+1}\right)=\Phi_{k+1}\left(M_{k}\right)-\frac{v^{T}\left(M_{k}-b_{k+1} I\right)^{-1} A A^{T}\left(M_{k}-b_{k+1} I\right)^{-1} v}{1+v^{T}\left(M_{k}-b_{k+1} I\right)^{-1} v}
$$

## Proof

- For any symmetric matrix $M$ and any $b>0$, we define the potential with barrier $b$ by

$$
\Phi_{b}(M)=\operatorname{tr}\left(A^{T}(M-b l)^{-1} A\right)
$$

- We fix $\delta>0$ to be chosen, and write $M_{k}$ for the matrix that has been constructed at the $k$-th step. We assume that $M_{k}$ has $k$ nonzero eigenvalues, all of them greater than $b_{k}>0$. We set $\Phi_{k}\left(M_{k}\right):=\Phi_{b_{k}}\left(M_{k}\right)$.
- Our aim is to add a rank one matrix $v \cdot v^{T}$ to $M_{k}$ so that $M_{k+1}=M_{k}+v v^{T}$ has $k+1$ nonzero eigenvalues, all of them greater than $b_{k+1}=b_{k}-\delta$ and $\Phi_{k+1}\left(M_{k+1}\right) \leqslant \Phi_{k}\left(M_{k}\right)$.
- We compute

$$
\Phi_{k+1}\left(M_{k+1}\right)=\Phi_{k+1}\left(M_{k}\right)-\frac{v^{T}\left(M_{k}-b_{k+1} I\right)^{-1} A A^{T}\left(M_{k}-b_{k+1} I\right)^{-1} v}{1+v^{T}\left(M_{k}-b_{k+1} I\right)^{-1} v}
$$

- So, in order to have $\Phi_{k+1}\left(M_{k+1}\right) \leqslant \Phi_{k}\left(M_{k}\right)$, we need to choose a vector $v$ such that

$$
-\frac{v^{T}\left(M_{k}-b_{k+1} I\right)^{-1} A A^{T}\left(M_{k}-b_{k+1} I\right)^{-1} v}{1+v^{T}\left(M_{k}-b_{k+1} I\right)^{-1} v} \leqslant \Phi_{k}\left(M_{k}\right)-\Phi_{k+1}\left(M_{k}\right)
$$

## Proof

- We saw that a sufficient condition so that $M_{k}+v v^{\top}$ will have exactly $k+1$ positive eigenvalues, all of them greater than $b_{k+1}$, is

$$
1+v^{T}\left(M_{k}-b_{k+1} l\right)^{-1} v<0
$$

## Proof

- We saw that a sufficient condition so that $M_{k}+v v^{T}$ will have exactly $k+1$ positive eigenvalues, all of them greater than $b_{k+1}$, is

$$
1+v^{T}\left(M_{k}-b_{k+1} l\right)^{-1} v<0
$$

- Choosing a vector $v$ that verifies both this inequality and

$$
-\frac{v^{T}\left(M_{k}-b_{k+1} I\right)^{-1} A A^{T}\left(M_{k}-b_{k+1} I\right)^{-1} v}{1+v^{T}\left(M_{k}-b_{k+1} I\right)^{-1} v} \leqslant \Phi_{k}\left(M_{k}\right)-\Phi_{k+1}\left(M_{k}\right)
$$

is equivalent to choosing $v$ so that

$$
\begin{aligned}
& v^{T}\left(M_{k}-b_{k+1} I\right)^{-1} A A^{T}\left(M_{k}-b_{k+1} I\right)^{-1} v \\
& \leqslant\left(\Phi_{k}\left(M_{k}\right)-\Phi_{k+1}\left(M_{k}\right)\right)\left(-1-v^{T}\left(M_{k}-b_{k+1} I\right)^{-1} v\right)
\end{aligned}
$$

## Proof

- We saw that a sufficient condition so that $M_{k}+v v^{T}$ will have exactly $k+1$ positive eigenvalues, all of them greater than $b_{k+1}$, is

$$
1+v^{T}\left(M_{k}-b_{k+1} l\right)^{-1} v<0
$$

- Choosing a vector $v$ that verifies both this inequality and

$$
-\frac{v^{T}\left(M_{k}-b_{k+1} I\right)^{-1} A A^{T}\left(M_{k}-b_{k+1} I\right)^{-1} v}{1+v^{T}\left(M_{k}-b_{k+1} I\right)^{-1} v} \leqslant \Phi_{k}\left(M_{k}\right)-\Phi_{k+1}\left(M_{k}\right)
$$

is equivalent to choosing $v$ so that

$$
\begin{aligned}
& v^{T}\left(M_{k}-b_{k+1} I\right)^{-1} A A^{T}\left(M_{k}-b_{k+1} I\right)^{-1} v \\
& \leqslant\left(\Phi_{k}\left(M_{k}\right)-\Phi_{k+1}\left(M_{k}\right)\right)\left(-1-v^{T}\left(M_{k}-b_{k+1} I\right)^{-1} v\right)
\end{aligned}
$$

- Since $A A^{T} \preceq\|A\|_{2}^{2} l$ and $\left(M_{k}-b_{k+1} I\right)^{-1}$ is symmetric, it is sufficient to choose $v$ so that

$$
v^{T}\left(M_{k}-b_{k+1} I\right)^{-2} v \leqslant \frac{1}{\|A\|_{2}^{2}}\left(\Phi_{k}\left(M_{k}\right)-\Phi_{k+1}\left(M_{k}\right)\right)\left(-1-v^{T}\left(M_{k}-b_{k+1} I\right)^{-1} v\right)
$$

## Proof

- We set $\tau_{D}:=\left\{j \leqslant m \mid \alpha_{j} \neq 0\right\}$ where $\left(\alpha_{j}\right)_{j \leqslant m}$ are the diagonal entries of $D$. Since we have assumed that $\operatorname{Ker}(D) \subseteq \operatorname{Ker}(A)$, we have

$$
\|A\|_{\mathrm{HS}}^{2}=\sum_{j \leqslant m}\left|A e_{j}\right|^{2}=\sum_{j \in \tau_{D}}\left|A e_{j}\right|^{2} \leqslant\left|\tau_{D}\right| \cdot\|A\|_{2}^{2},
$$

and thus $\left|\tau_{D}\right| \geqslant\|A\|_{\mathrm{HS}}^{2} /\|A\|_{2}^{2}$.

## Proof

- We set $\tau_{D}:=\left\{j \leqslant m \mid \alpha_{j} \neq 0\right\}$ where $\left(\alpha_{j}\right)_{j \leqslant m}$ are the diagonal entries of $D$. Since we have assumed that $\operatorname{Ker}(D) \subseteq \operatorname{Ker}(A)$, we have

$$
\|A\|_{\mathrm{HS}}^{2}=\sum_{j \leqslant m}\left|A e_{j}\right|^{2}=\sum_{j \in \tau_{D}}\left|A e_{j}\right|^{2} \leqslant\left|\tau_{D}\right| \cdot\|A\|_{2}^{2},
$$

and thus $\left|\tau_{D}\right| \geqslant\|A\|_{\text {HS }}^{2} /\|A\|_{2}^{2}$.

- At each step, we will select a vector $v$ satisfying the condition among $\left(\frac{A e_{j}}{\alpha_{j}}\right)_{j \in \tau_{D}}$. What we need is to find $j \in \tau_{D}$ such that

$$
\begin{aligned}
& \left(A e_{j}\right)^{T}\left(M_{k}-b_{k+1} I\right)^{-2} A e_{j} \\
& \leqslant \frac{\Phi_{k}\left(M_{k}\right)-\Phi_{k+1}\left(M_{k}\right)}{\|A\|_{2}^{2}}\left(-\alpha_{j}^{2}-\left(A e_{j}\right)^{T}\left(M_{k}-b_{k+1} I\right)^{-1} A e_{j}\right) .
\end{aligned}
$$

## Proof

- We set $\tau_{D}:=\left\{j \leqslant m \mid \alpha_{j} \neq 0\right\}$ where $\left(\alpha_{j}\right)_{j \leqslant m}$ are the diagonal entries of $D$. Since we have assumed that $\operatorname{Ker}(D) \subseteq \operatorname{Ker}(A)$, we have

$$
\|A\|_{\mathrm{HS}}^{2}=\sum_{j \leqslant m}\left|A e_{j}\right|^{2}=\sum_{j \in \tau_{D}}\left|A e_{j}\right|^{2} \leqslant\left|\tau_{D}\right| \cdot\|A\|_{2}^{2}
$$

and thus $\left|\tau_{D}\right| \geqslant\|A\|_{\mathrm{HS}}^{2} /\|A\|_{2}^{2}$.

- At each step, we will select a vector $v$ satisfying the condition among $\left(\frac{A e_{j}}{\alpha_{j}}\right)_{j \in \tau_{D}}$. What we need is to find $j \in \tau_{D}$ such that

$$
\begin{aligned}
& \left(A e_{j}\right)^{T}\left(M_{k}-b_{k+1} I\right)^{-2} A e_{j} \\
& \leqslant \frac{\Phi_{k}\left(M_{k}\right)-\Phi_{k+1}\left(M_{k}\right)}{\|A\|_{2}^{2}}\left(-\alpha_{j}^{2}-\left(A e_{j}\right)^{T}\left(M_{k}-b_{k+1} I\right)^{-1} A e_{j}\right)
\end{aligned}
$$

- The existence of such a $j \in \tau_{D}$ is guaranteed by the fact that the condition holds true if we take the sum over all $\left(\frac{A e_{j}}{\alpha_{j}}\right)_{j \in \tau_{D}}$.


## Proof

The hypothesis $\operatorname{Ker}(D) \subset \operatorname{Ker}(A)$ implies that

- $\sum_{j \in \tau_{D}}\left(A e_{j}\right)^{T}\left(M_{k}-b_{k+1} I\right)^{-2} A e_{j}=\operatorname{tr}\left(A^{T}\left(M_{k}-b_{k+1} I\right)^{-2} A\right)$,
- $\sum_{j \in \tau_{D}}\left(A e_{j}\right)^{T}\left(M_{k}-b_{k+1} I\right)^{-1} A e_{j}=\operatorname{tr}\left(A^{T}\left(M_{k}-b_{k+1} /\right)^{-1} A\right)=\Phi_{k+1}\left(M_{k}\right)$.


## Proof

The hypothesis $\operatorname{Ker}(D) \subset \operatorname{Ker}(A)$ implies that

- $\sum_{j \in \tau_{D}}\left(A e_{j}\right)^{T}\left(M_{k}-b_{k+1} I\right)^{-2} A e_{j}=\operatorname{tr}\left(A^{T}\left(M_{k}-b_{k+1} I\right)^{-2} A\right)$,
- $\sum_{j \in \tau_{D}}\left(A e_{j}\right)^{T}\left(M_{k}-b_{k+1} I\right)^{-1} A e_{j}=\operatorname{tr}\left(A^{T}\left(M_{k}-b_{k+1} I\right)^{-1} A\right)=\Phi_{k+1}\left(M_{k}\right)$.

Therefore it is enough to prove that, at each step,

$$
\operatorname{tr}\left(A^{T}\left(M_{k}-b_{k+1} l\right)^{-2} A\right) \leqslant \frac{\Phi_{k}\left(M_{k}\right)-\Phi_{k+1}\left(M_{k}\right)}{\|A\|_{2}^{2}}\left(-\|D\|_{\text {HS }}^{2}-\Phi_{k+1}\left(M_{k}\right)\right) .
$$

## Proof

The next lemma provides the conditions that are required at each step in order to prove

$$
\operatorname{tr}\left(A^{T}\left(M_{k}-b_{k+1} I\right)^{-2} A\right) \leqslant \frac{\Phi_{k}\left(M_{k}\right)-\Phi_{k+1}\left(M_{k}\right)}{\|A\|_{2}^{2}}\left(-\|D\|_{\mathrm{HS}}^{2}-\Phi_{k+1}\left(M_{k}\right)\right) .
$$

## Proof

The next lemma provides the conditions that are required at each step in order to prove

$$
\operatorname{tr}\left(A^{T}\left(M_{k}-b_{k+1} I\right)^{-2} A\right) \leqslant \frac{\Phi_{k}\left(M_{k}\right)-\Phi_{k+1}\left(M_{k}\right)}{\|A\|_{2}^{2}}\left(-\|D\|_{\mathrm{HS}}^{2}-\Phi_{k+1}\left(M_{k}\right)\right)
$$

## Lemma

Suppose that $M_{k}$ has $k$ nonzero eigenvalues all greater than $b_{k}$, and write $Z_{k}$ for the orthogonal projection onto the kernel of $M_{k}$. If

$$
\Phi_{k}\left(M_{k}\right) \leqslant-\|D\|_{\mathrm{HS}}^{2}-\frac{\|A\|_{2}^{2}}{\delta}
$$

and

$$
0<\delta<b_{k} \leqslant \delta \frac{\left\|Z_{k} A\right\|_{\mathrm{HS}}^{2}}{\|A\|_{2}^{2}}
$$

then there exists $i \in \tau_{D}$ such that $M_{k+1}:=M_{k}+\left(\frac{A e_{i}}{\alpha_{i}}\right) \cdot\left(\frac{A e_{i}}{\alpha_{i}}\right)^{T}$ has $k+1$ nonzero eigenvalues all greater than $b_{k+1}:=b_{k}-\delta$ and $\Phi_{k+1}\left(M_{k+1}\right) \leqslant \Phi_{k}\left(M_{k}\right)$.

## Proof

- We are now able to complete the proof of the theorem. We must verify that the two conditions

$$
\Phi_{k}\left(M_{k}\right) \leqslant-\|D\|_{\mathrm{HS}}^{2}-\frac{\|A\|_{2}^{2}}{\delta}
$$

and

$$
0<\delta<b_{k} \leqslant \delta \frac{\left\|Z_{k} A\right\|_{\mathrm{HS}}^{2}}{\|A\|_{2}^{2}}
$$

of the Lemma hold at each step.

## Proof

- We are now able to complete the proof of the theorem. We must verify that the two conditions

$$
\Phi_{k}\left(M_{k}\right) \leqslant-\|D\|_{\mathrm{HS}}^{2}-\frac{\|A\|_{2}^{2}}{\delta}
$$

and

$$
0<\delta<b_{k} \leqslant \delta \frac{\left\|Z_{k} A\right\|_{\mathrm{HS}}^{2}}{\|A\|_{2}^{2}}
$$

of the Lemma hold at each step.

- At the beginning we have $M_{0}=0$ and $Z_{k}=l$, so we must choose a barrier $b_{0}$ such that:

$$
-\frac{\|A\|_{\mathrm{HS}}^{2}}{b_{0}} \leqslant-\|D\|_{\mathrm{HS}}^{2}-\frac{\|A\|_{2}^{2}}{\delta}
$$

and

$$
b_{0} \leqslant \delta \frac{\|A\|_{\mathrm{HS}}^{2}}{\|A\|_{2}^{2}}
$$

## Proof

- We are now able to complete the proof of the theorem. We must verify that the two conditions

$$
\Phi_{k}\left(M_{k}\right) \leqslant-\|D\|_{\mathrm{HS}}^{2}-\frac{\|A\|_{2}^{2}}{\delta}
$$

and

$$
0<\delta<b_{k} \leqslant \delta \frac{\left\|Z_{k} A\right\|_{\mathrm{HS}}^{2}}{\|A\|_{2}^{2}}
$$

of the Lemma hold at each step.

- At the beginning we have $M_{0}=0$ and $Z_{k}=l$, so we must choose a barrier $b_{0}$ such that:

$$
-\frac{\|A\|_{\mathrm{HS}}^{2}}{b_{0}} \leqslant-\|D\|_{\mathrm{HS}}^{2}-\frac{\|A\|_{2}^{2}}{\delta}
$$

and

$$
b_{0} \leqslant \delta \frac{\|A\|_{\mathrm{HS}}^{2}}{\|A\|_{2}^{2}}
$$

- We choose

$$
b_{0}:=\epsilon\|A\|_{\mathrm{HS}}^{2} /\|D\|_{\mathrm{HS}}^{2} \quad \text { and } \quad \delta:=\frac{\epsilon}{1-\epsilon}\|A\|_{2}^{2} /\|D\|_{\mathrm{HS}}^{2}
$$

## Proof

- We choose

$$
b_{0}:=\epsilon\|A\|_{\mathrm{HS}}^{2} /\|D\|_{\mathrm{HS}}^{2} \quad \text { and } \quad \delta:=\frac{\epsilon}{1-\epsilon}\|A\|_{2}^{2} /\|D\|_{\mathrm{HS}}^{2} .
$$

## Proof

- We choose

$$
b_{0}:=\epsilon\|A\|_{\mathrm{HS}}^{2} /\|D\|_{\mathrm{HS}}^{2} \quad \text { and } \quad \delta:=\frac{\epsilon}{1-\epsilon}\|A\|_{2}^{2} /\|D\|_{\mathrm{HS}}^{2}
$$

- At the $(k+1)$-th step

$$
\Phi_{k+1}\left(M_{k+1}\right) \leqslant-\|D\|_{\mathrm{HS}}^{2}-\frac{\|A\|_{2}^{2}}{\delta}
$$

holds because $\Phi_{k+1}\left(M_{k+1}\right) \leqslant \Phi_{k}\left(M_{k}\right)$.

## Proof

- We choose

$$
b_{0}:=\epsilon\|A\|_{\mathrm{HS}}^{2} /\|D\|_{\mathrm{HS}}^{2} \quad \text { and } \quad \delta:=\frac{\epsilon}{1-\epsilon}\|A\|_{2}^{2} /\|D\|_{\mathrm{HS}}^{2}
$$

- At the $(k+1)$-th step

$$
\Phi_{k+1}\left(M_{k+1}\right) \leqslant-\|D\|_{\mathrm{HS}}^{2}-\frac{\|A\|_{2}^{2}}{\delta}
$$

holds because $\Phi_{k+1}\left(M_{k+1}\right) \leqslant \Phi_{k}\left(M_{k}\right)$.

- Since $\left\|Z_{k} A\right\|_{\text {HS }}^{2}$ decreases at each step by at most $\|A\|_{2}^{2}$, the right-hand side of

$$
0<\delta<b_{k} \leqslant \delta \frac{\left\|Z_{k} A\right\|_{\mathrm{HS}}^{2}}{\|A\|_{2}^{2}}
$$

decreases by at most $\delta$, and therefore $b_{k+1} \leqslant \delta \frac{\left\|z_{k+1} A\right\|_{\text {HS }}^{2}}{\|A\|_{2}^{2}}$ also holds.

## Proof

- We choose

$$
b_{0}:=\epsilon\|A\|_{\mathrm{HS}}^{2} /\|D\|_{\mathrm{HS}}^{2} \quad \text { and } \quad \delta:=\frac{\epsilon}{1-\epsilon}\|A\|_{2}^{2} /\|D\|_{\mathrm{HS}}^{2}
$$

- At the $(k+1)$-th step

$$
\Phi_{k+1}\left(M_{k+1}\right) \leqslant-\|D\|_{\mathrm{HS}}^{2}-\frac{\|A\|_{2}^{2}}{\delta}
$$

holds because $\Phi_{k+1}\left(M_{k+1}\right) \leqslant \Phi_{k}\left(M_{k}\right)$.

- Since $\left\|Z_{k} A\right\|_{\text {HS }}^{2}$ decreases at each step by at most $\|A\|_{2}^{2}$, the right-hand side of

$$
0<\delta<b_{k} \leqslant \delta \frac{\left\|Z_{k} A\right\|_{\mathrm{HS}}^{2}}{\|A\|_{2}^{2}}
$$

decreases by at most $\delta$, and therefore $b_{k+1} \leqslant \delta \frac{\left\|z_{k+1} A\right\|_{\text {HS }}^{2}}{\|A\|_{2}^{2}}$ also holds.

- Finally note that, after $k_{0}=(1-\epsilon)^{2}\|A\|_{\mathrm{HS}}^{2} /\|A\|_{2}^{2}$ steps, the barrier will be

$$
b_{k_{0}}=b_{0}-k_{0} \delta=\epsilon^{2}\|A\|_{\mathrm{HS}}^{2} /\|D\|_{\mathrm{HS}}^{2}
$$

This completes the proof.

