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Banach-Mazur distance

If X and Y are two n-dimensional normed spaces then their Banach-Mazur distance
d(X ,Y ) is defined by

d(X ,Y ) = min{‖T‖ ‖T−1‖ | T : X → Y is an isomorphism}.

Geometric interpretation

Let BX and BY denote the unit balls of X and Y . Then, d(X ,Y ) is the smallest possible
r > 1 for which there exists an isomorphism T : X → Y such that

BY ⊆ T (BX ) ⊆ rBY .

Basic properties

d(X ,Y ) > 1 with equality if and only if X is isometrically isomorphic to Y .

d(X ,Y ) = d(Y ,X ).

d(X ,Z) 6 d(X ,Y )d(Y ,Z).

d(X ∗,Y ∗) = d(X ,Y ).
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Banach-Mazur compactum

The n-th Banach-Mazur (or Minkowski) compactum is the set Bn of all equivalence
classes of isometrically isomorphic n-dimensional normed spaces.

Bn becomes a compact metric space with the metric log d .

Usually, instead of log d , we consider d as a “multiplicative” distance on Bn.

Diameter of the compactum

Upper bound: diam(Bn) 6 n.

This is a consequence of John’s theorem which can be stated as follows: for any
n-dimensional normed space X ,

d(X , `n2) 6
√
n.

Then, for any X and Y ,

d(X ,Y ) 6 d(X , `n2)d(`n2,Y ) 6
√
n ·
√
n = n.

Notation: `np

`np = (Rn, ‖ · ‖p), where ‖x‖p =
(∑n

i=1 |xi |
p
)1/p

if 1 6 p <∞ and ‖x‖∞ = max
16i6n

|xi |.
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Diameter of the Banach-Mazur compactum

Gluskin’s theorem

There exists an absolute constant c > 0 with the following property: for any n ∈ N one
may find two n-dimensional normed spaces Xn,Yn with d(Xn,Yn) > cn. Consequently,
diam(Bn) > cn.

The proof introduces a class of random spaces, sometimes called Gluskin spaces. Let
x1, . . . , xm be random vectors which are independently and uniformly distributed in
the Euclidean unit sphere Sn−1. We consider the symmetric random polytope

Bm := Bm(x1, . . . , xm) = conv{±e1,±e2, . . . ,±en,±x1, . . . ,±xm},

where {ei}i6n is the standard orthonormal basis of Rn. The space whose unit ball is
Bm is denoted by XBm . We write Am for the set of all these spaces equipped with
the probability measure µ ≡ ⊗m

i=1σ.

Gluskin proves that if m = 2n and B ′m is an independent copy of Bm then

d(XBm ,XB′m ) > cn

with probability greater than 1− 2−n2 .
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Banach-Mazur distance to the cube

Let X0 ∈ Bn. We denote by R(X0) the “radius” of the Banach-Mazur compactum
Bn with respect to X0, defined by

R(X0) = max{d(X ,X0) : X ∈ Bn}.

John’s theorem implies that R(`n2) =
√
n because one can show that

d(`n∞, `
n
2) = d(`n1, `

n
2) =

√
n.

We shall discuss the radius of Bn with respect to `n∞, defined by

Rn
∞ = max{d(X , `n∞) : X ∈ Bn}.

Pe lczynski

What is the asymptotic behavior of Rn
∞ as n tends to infinity?

One clearly has Rn
∞ 6 diam(Bn) 6 n and the fact that d(`n∞, `

n
2) =

√
n shows that

√
n 6 Rn

∞ 6 n.
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Banach-Mazur distance to the cube

Upper bounds were obtained by:

Bourgain-Szarek: Rn
∞ 6 n · exp(−c

√
log n).

Szarek-Talagrand: Rn
∞ 6 cn7/8.

G., 1993

There exists an absolute constant c > 0 such that, for any n > 2,

Rn
∞ 6 cn5/6.

Lower bounds: Szarek, using random spaces of Gluskin type, proved that

Rn
∞ > c

√
n log n.

Tikhomirov, 2018

There exist absolute constants c, b > 0 such that, for any n > 2,

Rn
∞ > cn5/9 log−b n.

This means that Rn
∞ has order of growth much larger than

√
n; in other words, `n∞

is not an asymptotic center of the Banach-Mazur compactum, in a very strong sense.
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Upper bound for Rn
∞

It is more convenient to work with the dual quantity

Rn
1 = max{d(X , `n1) : X ∈ Bn}.

Since d(X ∗,Y ∗) = d(X ,Y ) we see that Rn
∞ = Rn

1.

We want an upper bound for d(X , `n1) where X = (Rn, ‖ · ‖), and we may also
assume that the minimal volume ellipsoid of the unit ball K of X is the Euclidean
unit ball Bn

2 .

We need to find n vectors u1, . . . , un ∈ Rn such that, for all t1, . . . , tn ∈ R,

1

cn5/6

n∑
i=1

|ti | 6
∥∥∥ n∑

i=1

tiui

∥∥∥ 6
n∑

i=1

|ti |.

Then, the operator T : `n1 → X defined by T (ei ) = ui satisfies ‖T‖ 6 1 and
‖T−1‖ 6 cn5/6, which implies the bound

d(X , `n1) 6 ‖T‖ ‖T−1‖ 6 cn5/6.

The main ingredients for the proof are the combinatorial Sauer-Shelah lemma and a
Dvoretzky-Rogers type lemma of Szarek and Talagrand on the distribution of the
contact points of K and Bn

2 when K is in Löwner position.
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The lemma of Szarek and Talagrand

Recall John’s representation of the identity: since Bn
2 is the minimal volume ellipsoid

of K , there exist contact points x1, . . . , xm of K and Bn
2 , and positive real numbers

c1, . . . , cm such that

x =
m∑
i=1

ci 〈x , xi 〉xi (1)

for all x ∈ Rn.

Szarek-Talagrand

Let Bn
2 be the minimal volume ellipsoid of K . For every ε ∈ (0, 1), we can find

k > (1− ε)n and contact points y1, . . . , yk of K and Bn
2 with the following property: If

j ∈ {1, . . . , k} and Fj = span{yi : i 6= j}, then

|PF⊥j
(yj)| >

√
ε for all 1 6 j 6 k.

Among all k-sets {xi1 , . . . , xik } of contact points in (1) choose one, say {y1, . . . , yk},
which maximizes volk(conv{±xi1 , . . . ,±xik }).

Then, for all 1 6 j 6 k and all 1 6 i 6 m we have

|PF⊥j
(yj)| > |PF⊥j

(xi )|.
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Note that PF⊥j

(x) =
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(xi ). Using this, we see that
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The Sauer-Shelah lemma

Sauer-Shelah

Let X be a set with cardinality |X | = n and 1 6 k 6 n. If F is a family of subsets of X
with

|F| >

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

k − 1

)
then we can find A ⊆ X with |A| > k and A ∩ F = P(A), where P(A) is the family of all
subsets of A.

Consider the discrete cube E n
2 = {−1, 1}n. For any σ ⊆ [n] we consider the

coordinates restriction function Pσ : E n
2 = {−1, 1}n → {−1, 1}σ with

(ε1, . . . , εn) 7→ (εj)j∈σ. Since the map ϕ : P({1, . . . , n})→ E n
2 with ϕ(σ)i = 1 if

i ∈ σ and ϕ(σ)i = −1 if i /∈ σ is a bijection, we can immediate translate the
Sauer-Shelah lemma as follows:

Sauer-Shelah II

Let A be a subset of E n
2 = {−1, 1}n with cardinality |A| >

(
n
0

)
+
(
n
1

)
+ · · ·+

(
n

k−1

)
. There

exists σ ⊆ {1, . . . , n} with |σ| > k, such that the map Pσ is onto. That is,

Pσ(A) = {−1, 1}σ.
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The Sauer-Shelah lemma

Sauer-Shelah II

Let A be a subset of E n
2 = {−1, 1}n with cardinality |A| >

(
n
0

)
+
(
n
1

)
+ · · ·+

(
n

k−1

)
. There

exists σ ⊆ {1, . . . , n} with |σ| > k, such that the map Pσ is onto. That is,

Pσ(A) = {−1, 1}σ.

It is useful to think of the elements of E n
2 as the vertices of the cube Qn = [−1, 1]n

in Rn.

Then, the coordinates restriction function Pσ is the orthogonal projection onto Rσ.

In this setting, the Sauer-Shelah lemma tells us the following.

Geometric Sauer-Shelah lemma

If A ⊆ {−1, 1}n ⊆ Rn, and |A| >
∑k−1

i=0

(
n
i

)
, then there exists σ ⊆ {1, . . . , n} with |σ| > k

such that the orthogonal projection Pσ(conv(A)) of the convex hull of A onto Rσ is the
full unit cube of Rσ:

Pσ(conv(A)) = Qσ := [−1, 1]σ.
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In this setting, the Sauer-Shelah lemma tells us the following.

Geometric Sauer-Shelah lemma

If A ⊆ {−1, 1}n ⊆ Rn, and |A| >
∑k−1

i=0

(
n
i

)
, then there exists σ ⊆ {1, . . . , n} with |σ| > k

such that the orthogonal projection Pσ(conv(A)) of the convex hull of A onto Rσ is the
full unit cube of Rσ:

Pσ(conv(A)) = Qσ := [−1, 1]σ.
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Isomorphic Sauer-Shelah lemma

Isomorphic Sauer-Shelah lemma

Let u1, . . . , us ∈ Bn
2 and E =

{
(δj)j6s ∈ Rs :

∣∣∣∑s
j=1 δjuj

∣∣∣2 6 2s
}

. Then, for every

ε ∈ (0, 1) there exists σ ⊆ {1, . . . , s} with cardinality |σ| > (1− ε)s, such that
Pσ(E) ⊇ c

√
ε [−1, 1]σ, where c > 0 is an absolute constant, and Pσ is the orthogonal

projection onto Rσ.

For the proof we use an inductive scheme; first, consider all points of the form
(δ

(1)
j )j6s ∈ Rs , with δ

(1)
j = ±1. By the parallelogram law,

E
δ
(1)
j =±1

∣∣∣ s∑
j=1

δ
(1)
j uj

∣∣∣2 =
s∑

j=1

|uj |2 6 s.

Using Markov’s inequality, we find M1 ⊆ {−1, 1}s with cardinality |M1| > 2s−1, such

that for every (δ
(1)
j ) ∈ M1, ∣∣∣ s∑

j=1

δ
(1)
j uj

∣∣∣2 6 2s.

Using the geometric Sauer-Shelah lemma we find σ1 ⊆ S , with cardinality |σ1| > s
2
,

such that Pσ1(M1) = {−1, 1}σ1 . Since M1 ⊆ E ∩ Q and the last set is convex, we
have Qσ1 ⊆ Pσ1(E ∩ Q).
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Pσ(E) ⊇ c

√
ε [−1, 1]σ, where c > 0 is an absolute constant, and Pσ is the orthogonal

projection onto Rσ.

We set S = {1, . . . , s}, Q = [−1, 1]s , Qτ = [−1, 1]τ for every τ ⊆ S , and for every k > 1
we define αk =

∑k−1
r=0 2r/2 and βk =

∑k−1
r=0 2r = 2k − 1.

Claim (proved by induction on k)

For every k > 1 there exists σk ⊆ S with cardinality |σk | > (1− 1
2k

)s, such that

Qσk ⊆ Pσk (αkE ∩ βkQ).

The claim shows that for every k = 1, 2, . . ., there exists σk ⊆ S with |σk | > (1− 1
2k

)s,
such that

Pσk (E) ⊇ c

√
1

2k
[−1, 1]σk ,

where c =
√

2− 1. Then, we easily arrive at the statement of the isomorphic
Sauer-Shelah lemma with a slightly worse value for the constant c.
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The inductive step

Consider all points of the form δ
(k+1)
j , j 6 s, where δ

(k+1)
j = 0 if j ∈ σk and

δ
(k+1)
j = ±2k/2 if j /∈ σk .

As in the first step,

E
(δ

(k+1)
j )j6s

∣∣∣ s∑
j=1

δ
(k+1)
j uj

∣∣∣2 =
∑
j /∈σk

2k |uj |2 6 s.

Observe that the cardinality of the set of points (δ
(k+1)
j )j6s is 2s−|σk |. From

Markov’s inequality we may find Mk+1 ⊆ [0σk × {−2k/2, 2k/2}S\σk ] ∩ E with
|Mk+1| > 2s−|σk |−1.

By the Sauer-Shelah lemma there exists σ∗k+1 ⊆ S \ σk , with cardinality
|σ∗k+1| > 1

2
(s − |σk |), such that

Pσk∪σ∗k+1
(Mk+1) = 0σk × {−2k/2, 2k/2}σ

∗
k+1 .

Since Mk+1 ⊆ E ∩ 2k/2Q and the last set is convex, it follows that

0σk × 2kQσ∗
k+1
⊆ Pσk∪σ∗k+1

(2k/2E ∩ 2kQ).
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The inductive step

We know that Qσk ⊆ Pσk (αkE ∩ βkQ) and

0σk × 2kQσ∗
k+1
⊆ Pσk∪σ∗k+1

(2k/2E ∩ 2kQ).

Suppose that a ∈ Qσk and b ∈ Qσ∗
k+1

. By the inductive hypothesis, we can find
wa ∈ βkQσ∗

k+1
for which

(a,wa) ∈ Pσk∪σ∗k+1
(αkE ∩ βkQ).

We define va,b = b − wa. It is clear that va,b ∈ (βk + 1)Qσ∗
k+1

= 2kQσ∗
k+1

, and hence

(0σk , va,b) ∈ Pσk∪σ∗k+1
(2k/2E ∩ 2kQ).

Consequently,

(a, b) = (a,wa) + (0σk , va,b) ∈ Pσk∪σ∗k+1
(αkE ∩ βkQ) + Pσk∪σ∗k+1

(2k/2E ∩ 2kQ)

⊆ Pσk∪σ∗k+1
(αk+1E ∩ βk+1Q).

We have thus proved that

Qσk∪σ∗k+1
⊆ Pσk∪σ∗k+1

(αk+1E ∩ βk+1Q).

We set σk+1 = σk ∪ σ∗k+1 and observe that |σk+1| > (1− 1
2k+1 )s.
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The inductive step
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Upper bound for Rn
∞

The main proposition

Let X = (Rn, ‖ · ‖) be a normed space and let ε ∈ (0, 1). Assume that the unit ball K of
X is in Löwner position. Then, we can find m > (1− ε)n and vectors z1, . . . , zm in X
with ‖zi‖ = |zi | = 1 so that, for any choice of real numbers t1, . . . , tm,∣∣∣ m∑

i=1

tizi
∣∣∣ > c

ε√
n

m∑
i=1

|ti |,

where c > 0 is an absolute constant.

Proof:

We use the lemma of Szarek and Talagrand to choose x1, . . . , xs ∈ K with

s > (1− ε
2
)n, such that dist

(
xi , span{xj , j 6= i}

)
>
√
ε/2 for all i = 1, . . . , s.

There exist vi ⊥ span{xj , j 6= i} which form a biorthogonal system with the xj ’s and
have length |vi | 6

√
2/ε. In other words, we can find v1, . . . , vs ∈ Rn such that

|vi | 6
√

2/ε and 〈xi , vj〉 = δij i , j = 1, . . . , s.
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X is in Löwner position. Then, we can find m > (1− ε)n and vectors z1, . . . , zm in X
with ‖zi‖ = |zi | = 1 so that, for any choice of real numbers t1, . . . , tm,∣∣∣ m∑

i=1

tizi
∣∣∣ > c

ε√
n

m∑
i=1

|ti |,

where c > 0 is an absolute constant.

Proof:

We use the lemma of Szarek and Talagrand to choose x1, . . . , xs ∈ K with

s > (1− ε
2
)n, such that dist

(
xi , span{xj , j 6= i}

)
>
√
ε/2 for all i = 1, . . . , s.

There exist vi ⊥ span{xj , j 6= i} which form a biorthogonal system with the xj ’s and
have length |vi | 6

√
2/ε. In other words, we can find v1, . . . , vs ∈ Rn such that

|vi | 6
√

2/ε and 〈xi , vj〉 = δij i , j = 1, . . . , s.

Apostolos Giannopoulos (University of Athens) Banach-Mazur distance to the cube Castro Urdiales, September 2018 16 / 43



Upper bound for Rn
∞

Proof (continued):

We define ui =
√
ε/2 vi , and applying the isomorphic Sauer-Shelah lemma for the

set E =
{

(δj)j6s ∈ Rs :
∣∣∣∑s

j=1 δjuj
∣∣∣2 6 2s

}
we find σ ⊆ {1, . . . , s} of cardinality

|σ| > (1− ε
2
)s, with

Pσ(E) ⊇ c
√
ε [−1, 1]σ.

Then, |σ| > (1− ε)n.

Note that for all (ti )i∈σ we have∑
i∈σ

|ti | =
〈 ∑

i∈σ

tixi ,
∑
j∈σ

sign(tj)vj
〉
.

Since (c
√
ε sign(tj))j∈σ ∈ Pσ(E), we can find a point (δj)j6s in E , such that

δj = c
√
ε sign(tj) if j ∈ σ. Note that if i ∈ σ and j /∈ σ then 〈xi , vj〉 = 0, and hence〈 ∑

i∈σ

tixi ,
∑
j∈σ

sign(tj)vj
〉

=
1

c
√
ε

〈 ∑
i∈σ

tixi ,
s∑

j=1

δjvj
〉
6

1

c
√
ε

∣∣∣∑
i∈σ

tixi

∣∣∣√2

ε

∣∣∣ s∑
j=1

δjuj
∣∣∣

6
2
√
s

cε

∣∣∣∑
i∈σ

tixi
∣∣∣ 6 √n

c1ε

∣∣∣∑
i∈σ

tixi
∣∣∣.

We choose as zi , i = 1, . . . , |σ| = m, the xj ’s for which j ∈ σ, and the proof is
complete.
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Proof of Rn
∞ 6 cn5/6

Let X = (Rn, ‖ · ‖) be an n-dimensional normed space.

We may assume that the unit ball K of X is in Löwner position. Fix ε ∈ (0, 1). We
have found m > (1− ε)n and z1, . . . , zm in X with ‖zi‖ = |zi | = 1 so that, for any
choice of real numbers t1, . . . , tm,∣∣∣ m∑

i=1

tizi
∣∣∣ > c

ε√
n

m∑
i=1

|ti |.

We define F = span{z1, . . . , zm} and choose any orthonormal basis y1, . . . , yn−m of
F⊥. By John’s theorem, for every j = 1, . . . , n −m we have

|yj | 6 ‖yj‖ 6
√
n|yj | =

√
n.

Therefore, if we set wj = yj/‖yj‖ we have ‖wj‖ = 1 and |wj | > 1/
√
n,

j = 1, . . . , n −m.

Consider the n-tuple of vectors z1, . . . , zm,w1, . . . ,wn−m. Note that n −m 6 εn.
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Proof of Rn
∞ 6 cn5/6

Let t1, . . . , tm, s1, . . . , sn−m ∈ R. Then,∣∣∣ m∑
i=1

tizi +
n−m∑
j=1

sjwj

∣∣∣ 6 ∥∥∥ m∑
i=1

tizi +
n−m∑
j=1

sjwj

∥∥∥ 6
m∑
i=1

|ti |+
n−m∑
j=1

|sj |.

On the other hand,
∑

i tizi is orthogonal to
∑

j sjwj . It follows that∣∣∣ m∑
i=1

tizi +
n−m∑
j=1

sjwj

∣∣∣ =
(∣∣∣ m∑

i=1

tizi
∣∣∣2 +

∣∣∣ n−m∑
j=1

sjwj

∣∣∣2)1/2 > 1√
2

(∣∣∣ m∑
i=1

tizi

∣∣∣+
∣∣∣ n−m∑

j=1

sjwj

∣∣∣)

=
1√
2

(∣∣∣ m∑
i=1

tizi
∣∣∣+
( n−m∑

j=1

s2j |wj |2
)1/2)

>
1√
2

( cε√
n

m∑
i=1

|ti |+
1√
n

1√
n −m

n−m∑
j=1

|sj |
)

>
1√
2

min

{
cε√
n
,

1√
εn

}( m∑
i=1

|ti |+
n−m∑
j=1

|sj |
)
.

We have thus proved that

d(X , `n1) 6
√

2 max
{√

n/cε,
√
εn
}

for every ε ∈ (0, 1). The optimal choice of ε is ε ' 1/n1/3. For a value of ε of this
order we have d(X , `n1) 6 cn5/6.
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sjwj

∣∣∣ =
(∣∣∣ m∑

i=1

tizi

∣∣∣2 +
∣∣∣ n−m∑

j=1

sjwj

∣∣∣2)1/2 > 1√
2

(∣∣∣ m∑
i=1

tizi

∣∣∣+
∣∣∣ n−m∑

j=1

sjwj

∣∣∣)

=
1√
2

(∣∣∣ m∑
i=1

tizi
∣∣∣+
( n−m∑

j=1

s2j |wj |2
)1/2)

>
1√
2

( cε√
n

m∑
i=1

|ti |+
1√
n

1√
n −m

n−m∑
j=1

|sj |
)

>
1√
2

min

{
cε√
n
,

1√
εn

}( m∑
i=1

|ti |+
n−m∑
j=1

|sj |
)
.

We have thus proved that

d(X , `n1) 6
√

2 max
{√

n/cε,
√
εn
}

for every ε ∈ (0, 1). The optimal choice of ε is ε ' 1/n1/3. For a value of ε of this
order we have d(X , `n1) 6 cn5/6.
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Proportional Dvoretzky-Rogers factorization

In their study of the radius Rn
∞, Bourgain and Szarek obtained a proportional

Dvoretzky-Rogers factorization theorem.

Bourgain-Szarek

Assume that Bn
2 is the minimal volume ellipsoid of K , For every ε ∈ (0, 1) one can find

m > (1− ε)n and x1, . . . , xm among the contact points of K and Bn
2 , so that for every

choice of scalars (ti )i6m

f (ε)
( m∑

i=1

t2i

)1/2
6
∣∣∣ m∑

i=1

tixi
∣∣∣ 6 ∥∥∥ m∑

i=1

tixi
∥∥∥
K
≤

m∑
i=1

|ti |.

The important part in this string of inequalities is the first one; it provides a
much-stronger version of the classical Dvoretzky–Rogers Lemma which implied a
similar inequality only for m 6

√
n.

Equivalently, it can be stated in the form of a “proportional factorization result”:

Proportional Dvoretzky-Rogers factorization

Let X be an n-dimensional normed space. For any ε > 0 there exists k > (1− ε)2n such
that the identity operator i2,∞ : lk2 → lk∞ can be written in the form i2,∞ = α ◦ β, where
β : lk2 → X , α : X → lk∞ and ‖α‖ · ‖β‖ 6 1

ε
.
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Proportional Dvoretzky-Rogers factorization

The first proof by Bourgain and Szarek gave a weaker dependence on ε. The work of
Szarek and Talagrand improved the dependence on ε to ε−2.

The best known dependence on ε is c(ε) = c
ε

. The tools that are used are
factorization arguments related to Grothendieck’s inequality and the following
stronger version of the isomorphic Sauer-Shelah lemma.

G., 1993

Let u1, . . . , us ∈ Bn
2 and define E =

{
(δj)j6s ∈ Rs :

∣∣∣∑s
j=1 δjuj

∣∣∣ 6 1
}

. For every

ε ∈ (0, 1) we can find σ ⊆ {1, . . . , s} with |σ| > (1− ε)s such that

Pσ(E) ⊇ c
√
εBσ,

where Bσ is the Euclidean unit ball in Rσ and c > 0 is an absolute constant.

The
√
ε-dependence on ε in the previous result is best possible.

Having the proportional Dvoretzky-Rogers factorization theorem, by an application
of the Cauchy-Schwarz inequality we receive the main proposition that we used to
prove the estimate Rn

∞ 6 cn5/6 for the Banach-Mazur distance to the cube.
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Asymptotic centers of the Banach-Mazur compactum

As an application of the proportional Dvoretzky-Rogers factorization theorem,
Bourgain and Szarek gave a final answer to the problem of the uniqueness up to
constant of the center of the Banach-Mazur compactum.

Question

Does there exist a function f (λ), λ > 1, such that for every X ∈ Bn with R(X ) 6 λ
√
n

we must have d(X , `n2) 6 f (λ)?

In other words, the question is if all the “asymptotic centers” of the Banach-Mazur
compactum are close to Euclidean space.

The answer is negative:

Bourgain-Szarek

Let X0 = `s2 ⊕ `n−s
1 where s = bn/2c. Then R(X0) 6 c

√
n for some absolute constant but

d(X0, `
n
2) >

√
n/2.

The main tool in the proof is the proportional Dvoretzky-Rogers theorem.
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An alternative approach

A second proof of the bound Rn
∞ 6 cn5/6

Next we discuss an alternative proof of the proportional Dvoretzky-Rogers
factorization theorem, which is due to P. Youssef.

We have seen that this also implies the upper bound Rn
∞ 6 cn5/6.

Youssef exploited the method introduced in previous work of Spielman and
Srivastava.
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Spectral sparsification

We start with the work of Batson, Spielman and Srivastava on the question to
approximate a graph G = (V ,E ,w) by a sparse graph G ′.

Recall that the Laplacian matrix LG of a graph G = (V ,E ,w) is defined by

〈LGx , x〉 =
∑

(u,v)∈E

wu,v (xu − xv )2.

Here, V is the set of vertices of G , E is the set of edges of G , and wu,v is the weight
of the edge (u, v) ∈ E .

Formally, one says that G ′ is a γ-approximation of G (for some γ > 1) if

〈LGx , x〉 6 〈LG ′x , x〉 6 γ 〈LGx , x〉

for all x ∈ RV .

Batson, Spielman and Srivastava developed a method which shows that for every
d > 1, every undirected weighted graph G = (V ,E ,w) with n vertices and m edges
contains a weighted subgraph G ′ = (V ,F ′, w̃) with dd(n − 1)e edges that satisfies

〈LGx , x〉 6 〈LG ′x , x〉 6 γd 〈LGx , x〉

for all x ∈ Rn, where γd :=
(√

d+1√
d−1

)2
.

The proof also provided a deterministic algorithm for computing the graph G ′ in
time O(dn3m).
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Spectral sparsification

For notational convenience, from now on v denotes a column vector in Rn (an n × 1
matrix) and vT denotes a row vector (a 1× n matrix). We write I for the identity
matrix of the appropriate dimension. If A,B are two n × n matrices then the
notation A � B means that the matrix B − A is positive semidefinite, while A ≺ B
means that B − A is positive definite.

The main technical result of Batson, Spielman and Srivastava is the following purely
linear algebraic theorem.

Batson-Spielman-Srivastava, ∼ 2009

Let d > 1, γd :=
(√

d+1√
d−1

)2
and v1, . . . , vm ∈ Rn such that

I =
m∑
j=1

vjv
T
j .

There exist non-negative reals {sj}16j6m, with |{j : sj 6= 0}| 6 dn, such that

I �
m∑
j=1

sjvjv
T
j � γd I .
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matrix of the appropriate dimension. If A,B are two n × n matrices then the
notation A � B means that the matrix B − A is positive semidefinite, while A ≺ B
means that B − A is positive definite.
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(√

d+1√
d−1

)2
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Geometric applications

It was soon understood that the theorem of Batson, Spielman and Srivastava is
closely related to John decompositions and should have important applications to
convex geometry.

A sample of applications (chronologically the first):

Srivastava, ∼ 2010

Let K be a symmetric convex body in Rn. For any 0 < ε < 1 there exists a symmetric
convex body D in Rn such that D ⊆ K ⊆ (1 + ε)D and D has at most cn/ε2 contact
points with its John ellipsoid, where c > 0 is an absolute constant.

Using completely different methods, Rudelson had proved that one can do the same
with a convex body D whose number of contact points with its John ellipsoid is less
than Cn log n/ε2.

Srivastava also obtained a non-symmetric analogue of this theorem. Later, it took
an optimal form:

Friedland-Youssef, ∼ 2016

Let K be a convex body in Rn. For any 0 < ε < 1 there exists a convex body D in Rn

such that d(K ,D) 6 1 + ε and D has at most cn/ε2 contact points with its John
ellipsoid, where c > 0 is an absolute constant.
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Geometric applications, II

Gluskin-Litvak, Barvinok, ∼ 2012

Let d > 1. If K is a symmetric convex body whose minimal volume ellipsoid is the
Euclidean unit ball, then there is a subset X ⊂ K ∩ Sn−1 of cardinality card(X ) 6 dn
such that

K ⊆ Bn
2 ⊆ γd

√
n conv(X ).

Barvinok applied this fact to prove that there exist C , ε0 > 0 such that for any
0 < ε < ε0 and any symmetric convex body C in Rn, n > 1, there exists a symmetric

polytope P in Rd with at most
(

C√
ε

log 1
ε

)n
vertices such that P ⊆ C ⊆ (1 + ε)P.

One should compare this estimate with the standard bound (3/ε)n which follows by
a simple volumetric argument.

Gluskin and Litvak applied the same fact to obtain the optimal form of an estimate
of Bezdek and Litvak for the vertex index of a convex body, defined by

vein(K) = inf
{ N∑

j=1

‖yj‖K : K ⊆ conv{y1, . . . , yN}
}
.

They proved that if K is a centrally symmetric convex body in Rn then
vein(K) 6 24n3/2. The example of the Euclidean ball shows that the bound O(n3/2)
is optimal.
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Restricted invertibility principle

The restricted invertibility principle of Bourgain and Tzafriri states that if A is an
n × n matrix whose columns Aej have Euclidean norm equal to 1 then there exists
σ ⊂ [n] of cardinality |σ| > cn/‖A‖22 such that the restriction Aσ of A to
span{ej : j ∈ σ} is well-invertible.

Bourgain-Tzafriri, 1987

There exist absolute constants δ, κ > 0 such that if A : `n2 −→ `n2 is a linear operator with
|Aej | = 1 for all j = 1, . . . , n then one may find a subset σ ⊆ [n] of cardinality
|σ| > δn/‖A‖22 such that ∣∣∣∑

j∈σ

tjAej
∣∣∣2 > κ

∑
j∈σ

|tj |2 (2)

for any choice of scalars {tj}j∈σ.

If Aσ is the restriction of A to span{ej : j ∈ σ} then (2) is equivalent to the fact that
smin(Aσ) > κ, where smin(A) denotes the smallest singular number of an operator A.
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Restricted invertibility principle

Vershynin generalized the restricted invertibility theorem as follows.

Vershynin, ∼ 2000

Let I =
∑m

j=1 vjv
T
j is an arbitrary decomposition of the identity and A : `n2 → `n2 be a

linear operator. Then, for any ε ∈ (0, 1) one can find σ ⊂ [m] of cardinality
|σ| > (1− ε) ‖A‖2HS/‖A‖22 such that for any choice of scalars (tj)j∈σ,∣∣∣∑

j∈σ

tj
Avj
|Avj |

∣∣∣ > c(ε)
(∑

j∈σ

t2j

)1/2
, (3)

where c(ε) > 0 is a constant depending only on ε.

Note that if |Aej | = 1 for all j then, applying Vershynin’s theorem for the standard
decomposition I =

∑n
j=1 eje

T
j we recover the theorem of Bourgain and Tzafriri.

Moreover, we may now find σ ⊆ [n] of cardinality greater than (1− ε)n/‖A‖22 for
any ε ∈ (0, 1) so that (2) will hold true, of course with a constant δ = c(ε)
depending on ε.

Vershynin’s argument is based on an iteration of the Bourgain-Tzafriri theorem and
a result of Kashin-Tzafriri, and this affects the final dependence of c(ε) on ε.
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Restricted invertibility principle

Spielman and Srivastava gave a generalization of the Bourgain-Tzafriri theorem, in
the spirit of Vershynin’s theorem, with optimal dependence on ε, exploiting the
method of their previous work with Batson.

Spielman-Srivastava, ∼ 2010

Let ε ∈ (0, 1) and v1, . . . , vm ∈ Rn such that I =
∑m

j=1 vjv
T
j . Let A : `n2 → `n2 be a linear

operator. We can find σ ⊆ [m] of cardinality |σ| > b(1− ε)2‖A‖2HS/‖A‖22c such that the
set {Avj : j ∈ σ} is linearly independent and

λmin

(∑
j∈σ

(Avj)(Avj)
T
)
> ε2
‖A‖2HS

m
,

where the smallest eigenvalue λmin is computed on the subspace span{Avj : j ∈ σ}.

The statement above is equivalent to the fact that, for any choice of scalars (tj)j∈σ,∣∣∣∑
j∈σ

tjAvj
∣∣∣ > ε

‖A‖HS√
m

(∑
j∈σ

t2j

)1/2
.

The Bourgain-Tzafriri theorem follows from this one, with constants δ(ε) = (1− ε)2
κ(ε) = ε2.
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Proportional Dvoretzky-Rogers factorization

Comparing the previous results we see that both generalize the Bourgain-Tzafriri theorem
but in a different way.

Vershynin: the vectors that are chosen are normalized but the dependence on ε is
weak.

Spielman-Srivastava: optimal dependence on ε but the vectors are not normalized.

Youssef obtained a restricted invertibility theorem for any rectangular matrix and any
normalization, with a good dependence on ε at the same time.

Youssef, 2012

Let A be an n ×m matrix and D = diag(α1, . . . , αm) be a diagonal m ×m matrix such
that Ker(D) ⊂ Ker(A). Then, for any ε ∈ (0, 1) there exists σ ⊂ {1, . . . ,m} with
|σ| > (1− ε)2‖A‖2HS/‖A‖22 such that

smin(AσD
−1
σ ) > ε‖A‖HS/‖D‖HS,

where smin denotes the smallest singular value.

Equivalently, for any choice of reals (tj)j∈σ one has∣∣∣∑
j∈σ

tj
Aej
αj

∣∣∣ > ε
‖A‖HS

‖D‖HS

(∑
j∈σ

t2j

)1/2
.

Apostolos Giannopoulos (University of Athens) Banach-Mazur distance to the cube Castro Urdiales, September 2018 31 / 43



Proportional Dvoretzky-Rogers factorization

Comparing the previous results we see that both generalize the Bourgain-Tzafriri theorem
but in a different way.

Vershynin: the vectors that are chosen are normalized but the dependence on ε is
weak.

Spielman-Srivastava: optimal dependence on ε but the vectors are not normalized.

Youssef obtained a restricted invertibility theorem for any rectangular matrix and any
normalization, with a good dependence on ε at the same time.

Youssef, 2012

Let A be an n ×m matrix and D = diag(α1, . . . , αm) be a diagonal m ×m matrix such
that Ker(D) ⊂ Ker(A). Then, for any ε ∈ (0, 1) there exists σ ⊂ {1, . . . ,m} with
|σ| > (1− ε)2‖A‖2HS/‖A‖22 such that

smin(AσD
−1
σ ) > ε‖A‖HS/‖D‖HS,

where smin denotes the smallest singular value.

Equivalently, for any choice of reals (tj)j∈σ one has∣∣∣∑
j∈σ

tj
Aej
αj

∣∣∣ > ε
‖A‖HS

‖D‖HS

(∑
j∈σ

t2j

)1/2
.

Apostolos Giannopoulos (University of Athens) Banach-Mazur distance to the cube Castro Urdiales, September 2018 31 / 43



Proportional Dvoretzky-Rogers factorization

Comparing the previous results we see that both generalize the Bourgain-Tzafriri theorem
but in a different way.

Vershynin: the vectors that are chosen are normalized but the dependence on ε is
weak.

Spielman-Srivastava: optimal dependence on ε but the vectors are not normalized.

Youssef obtained a restricted invertibility theorem for any rectangular matrix and any
normalization, with a good dependence on ε at the same time.

Youssef, 2012

Let A be an n ×m matrix and D = diag(α1, . . . , αm) be a diagonal m ×m matrix such
that Ker(D) ⊂ Ker(A). Then, for any ε ∈ (0, 1) there exists σ ⊂ {1, . . . ,m} with
|σ| > (1− ε)2‖A‖2HS/‖A‖22 such that

smin(AσD
−1
σ ) > ε‖A‖HS/‖D‖HS,

where smin denotes the smallest singular value.

Equivalently, for any choice of reals (tj)j∈σ one has∣∣∣∑
j∈σ

tj
Aej
αj

∣∣∣ > ε
‖A‖HS

‖D‖HS

(∑
j∈σ

t2j

)1/2
.

Apostolos Giannopoulos (University of Athens) Banach-Mazur distance to the cube Castro Urdiales, September 2018 31 / 43



Proportional Dvoretzky-Rogers factorization

Comparing the previous results we see that both generalize the Bourgain-Tzafriri theorem
but in a different way.

Vershynin: the vectors that are chosen are normalized but the dependence on ε is
weak.

Spielman-Srivastava: optimal dependence on ε but the vectors are not normalized.

Youssef obtained a restricted invertibility theorem for any rectangular matrix and any
normalization, with a good dependence on ε at the same time.

Youssef, 2012

Let A be an n ×m matrix and D = diag(α1, . . . , αm) be a diagonal m ×m matrix such
that Ker(D) ⊂ Ker(A). Then, for any ε ∈ (0, 1) there exists σ ⊂ {1, . . . ,m} with
|σ| > (1− ε)2‖A‖2HS/‖A‖22 such that

smin(AσD
−1
σ ) > ε‖A‖HS/‖D‖HS,

where smin denotes the smallest singular value.

Equivalently, for any choice of reals (tj)j∈σ one has∣∣∣∑
j∈σ

tj
Aej
αj

∣∣∣ > ε
‖A‖HS

‖D‖HS

(∑
j∈σ

t2j

)1/2
.

Apostolos Giannopoulos (University of Athens) Banach-Mazur distance to the cube Castro Urdiales, September 2018 31 / 43



Proportional Dvoretzky-Rogers factorization

Comparing the previous results we see that both generalize the Bourgain-Tzafriri theorem
but in a different way.

Vershynin: the vectors that are chosen are normalized but the dependence on ε is
weak.

Spielman-Srivastava: optimal dependence on ε but the vectors are not normalized.

Youssef obtained a restricted invertibility theorem for any rectangular matrix and any
normalization, with a good dependence on ε at the same time.

Youssef, 2012

Let A be an n ×m matrix and D = diag(α1, . . . , αm) be a diagonal m ×m matrix such
that Ker(D) ⊂ Ker(A). Then, for any ε ∈ (0, 1) there exists σ ⊂ {1, . . . ,m} with
|σ| > (1− ε)2‖A‖2HS/‖A‖22 such that

smin(AσD
−1
σ ) > ε‖A‖HS/‖D‖HS,

where smin denotes the smallest singular value.

Equivalently, for any choice of reals (tj)j∈σ one has∣∣∣∑
j∈σ

tj
Aej
αj

∣∣∣ > ε
‖A‖HS

‖D‖HS

(∑
j∈σ

t2j

)1/2
.

Apostolos Giannopoulos (University of Athens) Banach-Mazur distance to the cube Castro Urdiales, September 2018 31 / 43



Proof of the proportional Dvoretzky-Rogers factorization theorem

Theorem

Assume that Bn
2 is the minimal volume ellipsoid of K , For every ε ∈ (0, 1) there exist

k > (1− ε)2n and y1, . . . , yk ∈ Bn
2 such that, for any choice of scalars (tj)j6k ,

ε
( k∑

j=1

t2j

)1/2
6
∥∥∥ k∑

j=1

tjyj
∥∥∥ 6

k∑
j=1

|tj |.

We start from John’s decomposition I =
∑

j6m cjxjx
T
j where xj ∈ ∂(K) ∩ Sn−1.

We consider the n×m matrix A = (
√
c1x1, . . . ,

√
cmxm) with columns

√
cjxj and the

diagonal matrix D = diag(
√
c1, . . . ,

√
cm). Then, AAT = I and

‖A‖HS = ‖D‖HS =
√
n.

Given ε ∈ (0, 1) we apply Youssef’s theorem to A and D to find σ ⊂ {1, . . . ,m} with
|σ| = k > (1− ε)2n such that, for any choice of scalars t = (tj)j∈σ,

|AσD−1
σ t| =

∣∣∣∑
j∈σ

tjxj

∣∣∣ > ε
(∑

j∈σ

t2j

)1/2
.

Since K ⊆ Bn
2 and ‖xj‖ = 1, we also have∣∣∣∑

j∈σ

tjxj
∣∣∣ 6 ∥∥∥∑

j∈σ

tjxj
∥∥∥ 6

∑
j∈σ

|tj | ‖xj‖ 6
∑
j∈σ

|tj |.
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Idea of the proof

Youssef

Let A be an n ×m matrix and D = diag(α1, . . . , αm) be a diagonal m ×m matrix such
that Ker(D) ⊂ Ker(A). Then, for any ε ∈ (0, 1) there exists σ ⊂ {1, . . . ,m} with
|σ| > (1− ε)2‖A‖2HS/‖A‖22 such that

smin

(
AσD

−1
σ

)
>
ε‖A‖HS

‖D‖HS
,

where smin denotes the smallest singular value.

It suffices to find σ ⊂ {1, . . . ,m} with |σ| > (1− ε)2‖A‖2HS/‖A‖22 such that

(AσD
−1
σ ) · (AσD−1

σ )T =
∑
j∈σ

(
AD−1

σ ej
)
·
(
AD−1

σ ej
)T

=
∑
j∈σ

(Aej
αj

)
·
(Aej
αj

)T
has rank equal to k0 = |σ| and its smallest positive eigenvalue is greater than
ε2‖A‖2HS/‖D‖2HS.

The matrix Mk0 =
∑

j∈σ

(
Aej
αj

)
·
(

Aej
αj

)T
is defined by an inductive scheme. We start

with M0 = 0 and at each step we add a rank one matrix
(

Aej
αj

)
·
(

Aej
αj

)T
for a

suitable j , which will give a new positive eigenvalue.
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Facts from linear algebra

Sherman-Morrison formula

Let A be an invertible n × n matrix. For any v ∈ Rn we have

(A + vvT )−1 = A−1 − A−1vvTA−1

1 + vTA−1v
.

Matrix determinant formula

Let A be an invertible n × n matrix. For any v ∈ Rn we have

det(A + vvT ) = det(A)(1 + vTA−1v).

Cauchy’s interlacing theorem

Let χ(A)(x) = det(xI − A) denote the characteristic polynomial of A. If A is a symmetric
n × n matrix and v ∈ Rn then χ(A) interlaces χ(A + vvT ): if λi , λ

′
i are their eigenvalues

in decreasing order then

λ′1 > λ1 > λ′2 > λ2 > · · · > λ′n > λn.
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Facts from linear algebra

Condition for eigenvalues

Let M � 0 be a positive semidefinite n× n matrix with k positive eigenvalues, all of them
greater than b′ > 0. If w 6= 0 and 1 + wT (M − b′I )−1w < 0 then M + wwT has exactly
k + 1 positive eigenvalues, all of them greater than b′.

Let λ1 > · · · > λk be the non-zero eigenvalues of the matrix M and λ′1 > · · · > λ′k+1

be the largest (in decreasing order) eigenvalues of M + wwT .

Consider the quantity

tr((M − b′I )−1) =
k∑

i=1

1

λi − b′
+

n∑
i=k+1

1

0− b′
.

From the Sherman-Morisson formula we have

tr((M + wwT − b′I )−1)− tr((M − b′I )−1) = − wT (M − b′I )−2w

1 + wT (M − b′I )−1w
> 0

because the assumption implies that the denominator on the right hand side is
negative, and the numerator is positive since M − b′I is non-singular, therefore
(M − b′I )−2 is positive definite.
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0 < tr((M + wwT − b′I )−1)− tr((M − b′I )−1)

=
1

λ′k+1 − b′
− 1

0− b′
+

k∑
i=1

1

λ′i − b′
−

k∑
i=1

1

λi − b′
6

1

λ′k+1 − b′
+

1

b′
,

because, by Cauchy’s interlacing theorem,

λ′1 > λ1 > λ′2 > · · · > λk > λ′k+1 > 0

and hence
1

λ′i − b′
− 1

λi − b′
6 0

for every i 6 k.

Since λ′k+1 > 0, we conclude that λ′k+1 > b′.
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Proof

For any symmetric matrix M and any b > 0, we define the potential with barrier b by

Φb(M) = tr
(
AT (M − bI )−1A

)
.

We fix δ > 0 to be chosen, and write Mk for the matrix that has been constructed
at the k-th step. We assume that Mk has k nonzero eigenvalues, all of them greater
than bk > 0. We set Φk(Mk) := Φbk (Mk).

Our aim is to add a rank one matrix v · vT to Mk so that Mk+1 = Mk + vvT has
k + 1 nonzero eigenvalues, all of them greater than bk+1 = bk − δ and
Φk+1(Mk+1) 6 Φk(Mk).

We compute

Φk+1(Mk+1) = Φk+1(Mk)− vT (Mk − bk+1I )
−1AAT (Mk − bk+1I )

−1v

1 + vT (Mk − bk+1I )−1v
.

So, in order to have Φk+1(Mk+1) 6 Φk(Mk), we need to choose a vector v such that

−vT (Mk − bk+1I )
−1AAT (Mk − bk+1I )

−1v

1 + vT (Mk − bk+1I )−1v
6 Φk(Mk)− Φk+1(Mk).
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Proof

We saw that a sufficient condition so that Mk + vvT will have exactly k + 1 positive
eigenvalues, all of them greater than bk+1, is

1 + vT (Mk − bk+1I )
−1v < 0.

Choosing a vector v that verifies both this inequality and

−vT (Mk − bk+1I )
−1AAT (Mk − bk+1I )

−1v

1 + vT (Mk − bk+1I )−1v
6 Φk(Mk)− Φk+1(Mk).

is equivalent to choosing v so that

vT (Mk − bk+1I )
−1AAT (Mk − bk+1I )

−1v

6
(

Φk(Mk)− Φk+1(Mk)
)(
− 1− vT (Mk − bk+1I )

−1v
)
.

Since AAT � ‖A‖22I and (Mk − bk+1I )
−1 is symmetric, it is sufficient to choose v so

that

vT (Mk − bk+1I )
−2v 6

1

‖A‖22

(
Φk(Mk)− Φk+1(Mk)

)(
− 1− vT (Mk − bk+1I )

−1v
)
.
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Proof

We set τD := {j 6 m | αj 6= 0} where (αj)j6m are the diagonal entries of D. Since
we have assumed that Ker(D) ⊆ Ker(A), we have

‖A‖2HS =
∑
j6m

|Aej |2 =
∑
j∈τD

|Aej |2 6 |τD | · ‖A‖22,

and thus |τD | > ‖A‖2HS/‖A‖22.

At each step, we will select a vector v satisfying the condition among (
Aej
αj

)j∈τD .

What we need is to find j ∈ τD such that

(Aej)
T (Mk − bk+1I )

−2Aej

6
Φk(Mk)− Φk+1(Mk)

‖A‖22

(
− α2

j − (Aej)
T (Mk − bk+1I )

−1Aej
)
.

The existence of such a j ∈ τD is guaranteed by the fact that the condition holds

true if we take the sum over all (
Aej
αj

)j∈τD .
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Proof

The hypothesis Ker(D) ⊂ Ker(A) implies that∑
j∈τD

(Aej)
T (Mk − bk+1I )

−2Aej = tr
(
AT (Mk − bk+1I )

−2A
)

,

∑
j∈τD

(Aej)
T (Mk − bk+1I )

−1Aej = tr
(
AT (Mk − bk+1I )

−1A
)

= Φk+1(Mk).

Therefore it is enough to prove that, at each step,

tr(AT (Mk − bk+1I )
−2A) 6

Φk(Mk)− Φk+1(Mk)

‖A‖22

(
− ‖D‖2HS − Φk+1(Mk)

)
.
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Proof

The next lemma provides the conditions that are required at each step in order to prove

tr(AT (Mk − bk+1I )
−2A) 6

Φk(Mk)− Φk+1(Mk)

‖A‖22

(
− ‖D‖2HS − Φk+1(Mk)

)
.

Lemma

Suppose that Mk has k nonzero eigenvalues all greater than bk , and write Zk for the
orthogonal projection onto the kernel of Mk . If

Φk(Mk) 6 −‖D‖2HS −
‖A‖22
δ

and

0 < δ < bk 6 δ
‖ZkA‖2HS

‖A‖22
,

then there exists i ∈ τD such that Mk+1 := Mk +
(

Aei
αi

)
·
(

Aei
αi

)T
has k + 1 nonzero

eigenvalues all greater than bk+1 := bk − δ and Φk+1(Mk+1) 6 Φk(Mk).
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Proof

We are now able to complete the proof of the theorem. We must verify that the two
conditions

Φk(Mk) 6 −‖D‖2HS −
‖A‖22
δ

and

0 < δ < bk 6 δ
‖ZkA‖2HS

‖A‖22
,

of the Lemma hold at each step.

At the beginning we have M0 = 0 and Zk = I , so we must choose a barrier b0 such
that:

−‖A‖
2
HS

b0
6 −‖D‖2HS −

‖A‖22
δ

and

b0 6 δ
‖A‖2HS

‖A‖22
.

We choose

b0 := ε‖A‖2HS/‖D‖2HS and δ :=
ε

1− ε‖A‖
2
2/‖D‖2HS.
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Proof

We choose

b0 := ε‖A‖2HS/‖D‖2HS and δ :=
ε

1− ε‖A‖
2
2/‖D‖2HS.

At the (k + 1)-th step

Φk+1(Mk+1) 6 −‖D‖2HS −
‖A‖22
δ

holds because Φk+1(Mk+1) 6 Φk(Mk).

Since ‖ZkA‖2HS decreases at each step by at most ‖A‖22, the right-hand side of

0 < δ < bk 6 δ
‖ZkA‖2HS

‖A‖22
,

decreases by at most δ, and therefore bk+1 6 δ
‖Zk+1A‖2HS

‖A‖22
also holds.

Finally note that, after k0 = (1− ε)2‖A‖2HS/‖A‖22 steps, the barrier will be

bk0 = b0 − k0δ = ε2‖A‖2HS/‖D‖2HS.

This completes the proof.
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