On Coretractable Modules

Derya Keskin Tütüncü, Berke Kaleboğaz

Let R be a ring and let M be an R-module. The module M is called coretractable if $\text{Hom}(M/N, M)$ is nonzero for all proper submodule N of M. Recall that a module M is a Kasch module if every simple module in $\sigma[M]$ can be embedded in M. Amini, Ershad and Sharif proved that R_R is a Kasch module if and only if R_R is a coretractable module (see [2]). In this work we generalize this result as follows:

Theorem: Let M_R be a finitely generated self-generator module. Then M is coretractable if and only if it is Kasch.

Then we study rings whose all right modules are coretractable.

Theorem: For a ring R the following are equivalent:

1. Every right R-module is coretractable.
2. R is right perfect and every right R-module is small coretractable.
3. R is right perfect and for every right R-module M, there exists a nonzero $f \in \text{Hom}(P, M)$ such that $P/\text{Ker} f$ is a small coretractable module, where P is the projective cover of M.
4. R is right perfect and for all right R-modules M and X, $\text{Hom}(X, M) = 0$ if and only if $\text{Hom}(P, M) = 0$, where P is the projective cover of X.
5. All torsion theories on R are cohereditary.

We also prove that being coretractable is a Morita invariant property.

We will call M mono-coretractable if for every submodule N of M there is a monomorphism from M/N to M. We show that coretractable modules are a proper generalization of mono-coretractable modules. And we investigate some properties of mono-coretractable modules.

References

