Bode optimal loop shaping with CRONE compensators

A. Baños¹ J. Cervera¹ P. Lanusse² J. Sabatier²

¹Faculty of Computer Engineering, Department of Computer and Systems Engineering, University of Murcia (Spain) – [jcervera,abanos]@um.es

²Université de Bordeaux, CNRS UMR 5218, Laboratoire IMS, Talence Cedex (France) – [patrick.lanusse,jocelyn.sabatier]@laps.ims-bordeaux.fr

14th IEEE Mediterranean Electrotechnical Conference 5-7 May 2008, Ajaccio, France
PROBLEM:
- for operational bandwidth $0 \leq \omega \leq \omega_0$
- where desired $|L(j\omega)| = M_0 \gg 1$
- given crossover frequency ω_c
- compute $L(j\omega)$ which maximizes ω_0

SOLUTION: decrease $|L(j\omega)|$ as fast as possible...
Problem Statement

PROBLEM:
- for operational bandwidth $0 \leq \omega \leq \omega_0$
- where desired $|L(j\omega)| = M_0 \gg 1$
- given crossover frequency ω_c
- compute $L(j\omega)$ which maximizes ω_0

SOLUTION: decrease $|L(j\omega)|$ as fast as possible...
Problem Statement

- \(|L(j\omega)|_{dB}\)
- \(M_0\)
- \(\omega_0\)
- \(\omega_c\)
- \(\arg(L(j\omega))\)
- \(-180^\circ\)
- \(-180^\circ\)
- \(\omega_0\)
- \(\omega_c\)
Ideal Bode Characteristic

For ideal optimal structure

\[
\begin{align*}
|L(j\omega)| &= M_0, \quad 0 < \omega < \omega_0 \\
\angle L(j\omega) &= -\alpha \pi, \quad \omega > \omega_0
\end{align*}
\]

solution is equivalent to maximize phase lag,
or minimizing stability margin,
so it is necessary to trade-off between ω_0 and stability margin...
Introduction: Bode Optimal Loops
Loop Shaping with CRONE Compensators
Design Examples
Conclusions

Four Parameters Bode Optimal Loop
Eight Parameters Bode Optimal Loop

Goal

Ideal Bode Characteristic

For ideal optimal structure

\[
|L(j\omega)| = M_0, \quad 0 < \omega < \omega_0
\]

\[
\angle L(j\omega) = -\alpha \pi, \quad \omega > \omega_0
\]

solution is equivalent to maximize phase lag,
or minimizing stability margin,
so it is necessary to trade-off between \(\omega_0 \) and stability margin...

Baños, Cervera, Lanusse & Sabatier
Ideal Bode Characteristic

For ideal optimal structure
\[
\begin{align*}
|L(j\omega)| &= M_0, \quad 0 < \omega < \omega_0 \\
\angle L(j\omega) &= -\alpha \pi, \quad \omega > \omega_0
\end{align*}
\]
solution is equivalent to maximize phase lag, or minimizing stability margin, so it is necessary to trade-off between \(\omega_0\) and stability margin...
In general, the problem is well defined as a function of parameters:

- M_0
- α
- ω_0
- ω_c

Not all of them independent.
Practical considerations about high frequency

- In practice, four parameters Bode Optimal Loop has to be modified:
 - To cope with sensor noise amplification
 - Because it is not realistic to assume good control of $|L(j\omega)|$ for high frequency.
Seven Parameters Bode Optimal Loop
Seven Parameters Bode Optimal Loop

\[|L(j\omega)|_{dB} \]

\[\arg(L(j\omega)) \]

\(\omega_0 \)

\(\omega_c \)

\(\omega_1 \)

\(\omega_2 \)

\(M_0 \)

\(-\alpha \ 180^\circ\)

\(-180^\circ\)

\(-90^\circ\)
In order to add integrators to the loop, for a good steady state response ...
Eight Parameters Bode Optimal Loop

- M_0
- $|L(j\omega)|_{dB}$
- ω_0
- ω_c
- ω_1
- ω_2
- $e 90^\circ$
- -180°
- $-\pi 180^\circ$

Baños, Cervera, Lanusse & Sabatier
Bode optimal loop shaping with CRONE compensators
Eight Parameters Bode Optimal Loop

Parameters:
- M_0
- M_1
- α
- ω_0
- ω_c
- ω_1
- n
- e

Not all of them are independent.
Establish **relations between** these **eight parameters** and the **parameters of** a proposed **CRONE structure**, so that a first approach to Bode optimal loop can be obtained in an easy and fast way.
CRONE Features for Bode Optimal Loop Shaping

- Easy to tune
- Few parameters

For the 2/3 CRONE generation band defined compensator

\[D_r = \left(C_0 \frac{1}{1+s/\omega_l} \right)^a \cos \left[-b \log \left(C_0 \frac{1}{1+s/\omega_h} \right) \right], \]

- Phase and gain slope only depend on \(a \) (real differentiation order)
- Gain and phase slope only depend on \(b \) (complex differentiation order)

Idea: for a Bode optimal loop shape, with constant phase at \((\omega_l, \omega_h)\) and constant gain at \((\omega'_l, \omega'_h)\), use real differentiator at \((\omega_l, \omega_h)\) \((b=0)\) and complex differentiator \((a=0)\) at \((\omega'_l, \omega'_h)\).
CRONE Features for Bode Optimal Loop Shaping

- Easy to tune
- Few parameters
- For the 2/3 CRONE generation band defined compensator

\[D_r = \left(C_0 \frac{1 + \frac{s}{\omega_l}}{1 + \frac{s}{\omega_h}} \right)^a \cos \left[-b \log \left(C_0 \frac{1 + \frac{s}{\omega_l}}{1 + \frac{s}{\omega_h}} \right) \right], \]

- Phase and gain slope only depend on \(a \) (real differentiation order)
- Gain and phase slope only depend on \(b \) (complex differentiation order)

Idea: for a Bode optimal loop shape, with constant phase at \((\omega_l, \omega_h)\) and constant gain at \((\omega'_l, \omega'_h)\), use real differentiator at \((\omega_l, \omega_h)\) (\(b=0\)) and complex differentiator (\(a=0\)) at \((\omega'_l, \omega'_h)\).
CRONE Features for Bode Optimal Loop Shaping

- Easy to tune
- Few parameters
- For the 2/3 CRONE generation band defined compensator

\[D_r = \left(C_0 \frac{1 + \frac{s}{\omega_l}}{1 + \frac{s}{\omega_h}} \right)^a \cos \left[-b \log \left(C_0 \frac{1 + \frac{s}{\omega_l}}{1 + \frac{s}{\omega_h}} \right) \right], \]

- Phase and gain slope only depend on \(a \) (real differentiation order)
- Gain and phase slope only depend on \(b \) (complex differentiation order)

- Idea: for a Bode optimal loop shape, with constant phase at \((\omega_l, \omega_h)\) and constant gain at \((\omega'_l, \omega'_h)\), use real differentiator at \((\omega_l, \omega_h)\) (\(b=0 \)) and complex differentiator (\(a=0 \)) at \((\omega'_l, \omega'_h)\).
CRONE Features for Bode Optimal Loop Shaping

- Easy to tune
- Few parameters
- For the 2/3 CRONE generation band defined compensator
 \[D_r = \left(C_0 \frac{1+\omega}{1+\omega_a} \right) \]
 - Phase and gain slope only depend on \(a \) (real differentiation order)
 - Gain and phase slope only depend on \(b \) (complex differentiation order)
- Idea: for a Bode optimal loop shape, with constant phase at \((\omega_l, \omega_h)\) and constant gain at \((\omega'_l, \omega'_h)\), use real differentiator at \((\omega_l, \omega_h)\) (\(b=0\)) and complex differentiator \((a=0)\) at \((\omega'_l, \omega'_h)\).
Additionally, two terms to shape low and high frequencies

Final structure:

\[
L(s) = k \left(\frac{\omega_l}{s} + 1 \right)^{n_l} \left(C_0 \frac{1 + \frac{s}{\omega_l}}{1 + \frac{s}{\omega_h}} \right)^a \\
\cos \left[-b \log \left(C_0' \frac{1 + \frac{s}{\omega_l'}}{1 + \frac{s}{\omega_h'}} \right) \right] \frac{1}{\left(\frac{s}{\omega_h} + 1 \right)^{n_h}}
\]
Real Differentiator Term

\[L_2(s) = \left(C_0 \frac{1+\frac{s}{\omega_l}}{1+\frac{s}{\omega_h}} \right)^a \]

Design relations:
- \[a \left(\frac{\pi}{2} - 2\theta_l(\omega_u) \right) = (1 - \alpha)\pi \]
- \[\left(\frac{\omega_h}{2\omega_l} \right)^{-a} \approx M_0 M_1 \]
Real Differentiator Term

$L_2(s) = \left(C_0 \right.$

Design relations:

\[a \left(\frac{\pi}{2} - 2\theta \right) \left(\frac{\omega_h}{2\omega_l} \right)^{-a} \]

\[\approx M_0 M_1 \]

Baños, Cervera, Lanusse & Sabatier

Bode optimal loop shaping with CRONE compensators
Real Differentiator Term

\[L_2(s) = \left(C_0 \frac{1 + \frac{s}{\omega_l}}{1 + \frac{s}{\omega_h}} \right)^a \]

Design relations:
- \(a \left(\frac{\pi}{2} - 2\theta_l(\omega_u) \right) = (1 - \alpha)\pi \)
- \(\left(\frac{\omega_h}{2\omega_l} \right)^{-a} \approx M_0 M_1 \)
Real Differentiator Term

\[L_2(s) = C_0: \]

Design relation:
- \(a \left(\frac{\pi}{2} - 2\theta \right) \)
- \(\left(\frac{\omega_h}{2\omega_l} \right)^{-a} \)

Why a CRONE compensator?
- Real Differentiator Term
- Low and High Frequency Terms
- Complex Differentiator Term
- Maximizing Loop Phase Lag

Baños, Cervera, Lanusse & Sabatier
Bode optimal loop shaping with CRONE compensators
Low and High Frequency Terms

\[L_{CRONE2}(s) = k \left(\frac{\omega_l}{s} + 1 \right)^{n_l} \left(C_0 \frac{1 + \frac{s}{\omega_l}}{1 + \frac{s}{\omega_h}} \right)^a \frac{1}{\left(\frac{s}{\omega_h} + 1 \right)^{n_h}} \]

Design relations:
- \(n_l \geq n \)
- \(n_h \geq e_p \geq n \)
- \(|L_{CRONE2}(j\omega_c)| = 1 \)
- \(|L_{CRONE2}(j\omega_u)| = \frac{M_{0, dB} + M_{1, dB}}{2} \)
Low and High Frequency Terms

\[L_{CRONE2}(s) = k \left(\frac{\omega_l}{s} + 1 \right)^{n_l} \left(C_0 \frac{1 + \frac{s}{\omega_l}}{1 + \frac{s}{\omega_h}} \right)^a \frac{1}{\left(\frac{s}{\omega_h} + 1 \right)^{n_h}} \]

Design relations:
- \(n_l \geq n \)
- \(n_h \geq e_p \geq n \)
- \(|L_{CRONE2}(j\omega_c)| = 1 \)
- \(|L_{CRONE2}(j\omega_u)| = \frac{M_0_{,dB} + M_1_{,dB}}{2} \)
Low and High Frequency Terms

\[L_{CRONE2}(s) = \]

Design relations:
- \(n_l \geq n \)
- \(n_h \geq e_p \)
- \(|L_{CRONE2}(j \omega)| \)
- \(|L_{CRONE2}(j \omega)| \)

\[\omega_l = 0.1 \text{ rad/s} \]
\[\omega_h = 10 \text{ rad/s} \]
\[\omega_h = 100 \text{ rad/s} \]
\[\omega_h = 1000 \text{ rad/s} \]

Baños, Cervera, Lanusse & Sabatier

Complex Differentiator Term

- \(L_3(s) = \cos \left[-b \log \left(C'_0 \frac{1 + \frac{s}{\omega'_l}}{1 + \frac{s}{\omega'_h}} \right) \right] \)

- Complements \(L_2(s) \), to increase phase lag at \([\omega'_l, \omega'_h]\)

- To avoid non minimum phase:

 \[
 b \log \left(\frac{\omega'_h}{\omega'_l} \right) < \pi
 \]

 or, equivalently

 \[
 b < b_{\text{max}} = \frac{\pi}{\log(\omega'_h/\omega'_l)}
 \]
Complex Differentiator Term

- \(L_3(s) = \cos \left(-b \log \left(C_0 \frac{1+s/\omega_l}{1+s/\omega_h} \right) \right) \)

- Complements \(L_2(s) \), to increase phase lag at \([\omega'_l, \omega'_h]\)

- To avoid non minimum phase:
 \[b \log \left(\frac{\omega'_h}{\omega'_l} \right) < \pi \]

 or, equivalently

 \[b < b_{\text{max}} = \frac{\pi}{\log(\omega'_h/\omega'_l)} \]
Complex Differentiator Term

\[L_3(s) = \cos \left[-b \log \left(C'_0 \frac{1+s/\omega_l}{\omega_h} \right) \right] \]

- Complements \(L_2(s) \), to increase phase lag at \([\omega'_l, \omega'_h]\)
- To avoid non minimum phase:

\[
b \log \left(\frac{\omega'_h}{\omega'_l} \right) < \pi
\]

or, equivalently

\[
b < b_{max} = \frac{\pi}{\log(\omega'_h/\omega'_l)}
\]
Maximizing Loop Phase Lag

- Maximized by $b = b_{max}$, but...
- Design relations:
 - $\omega_u' = \omega_h \approx \omega_1$
 - $b \approx b_{max}$
Maximizing Loop Phase Lag

- Maximized by γ
- Design relations:
 - $\omega'_u = \omega_h \approx \omega_1$
 - $b \approx b_{max}$

\[b = b_{max} = 0.68 \]
\[b = 0.75 \]
\[b = 0.67 \]
\[b = 0.60 \]
\[b = 0.40 \]
\[b = 0.10 \]
Maximizing Loop Phase Lag

- Maximized by $b = b_{\text{max}}$, but...
- Design relations:
 - $\omega'_u = \omega_h \approx \omega_1$
 - $b \approx b_{\text{max}}$
Maximizing Loop Phase Lag

- Maximized by
 - Design relations
 - \(\omega_u' = \omega_h \approx \)
 - \(b \approx b_{\text{max}} \)
Maximizing Loop Phase Lag

- Maximized by
- Design relations:
 - $\omega_u' = \omega_h \approx \omega_1$
 - $b \approx b_{\text{max}}$

Design relations:

$$\omega_u' = \omega_h \approx \omega_1$$
$$b \approx b_{\text{max}}$$
8 Parameters Bode Optimal Specifications:

- $M_0, dB = M_1, dB = 30$ dB
- $\omega_0 = 0.4$ rad/s, $\omega_c = 0.4$ rad/s
- $\alpha = 0.22$ (40° phase margin)
- $e = 3$, $n = 2$
- $\omega_1 = 40$ rad/s

Loop obtained:

$$L_{ex}(s) = 0.87 \left(\frac{0.34}{s} + 1 \right)^2 \left(C_0 \frac{1 + \frac{s}{0.34}}{1 + \frac{s}{93.5}} \right)^{-1.45} \cos \left[-1.8374 \log \left(C'_0 \frac{1 + \frac{s}{97.5}}{1 + \frac{s}{250}} \right) \right] \frac{1}{\left(\frac{s}{93.5} + 1 \right)^3}$$
Desig Example

- **8 Parameters Bode Optimal Specifications:**
 - \(M_0, dB = M_1, dB = 30 \text{ dB} \)
 - \(\omega_0 = 0.4 \text{ rad/s} \), \(\omega_c = 0.4 \text{ rad/s} \)
 - \(\alpha = 0.22 \) (40° phase margin)
 - \(e = 3 \), \(n = 2 \)
 - \(\omega_1 = 40 \text{ rad/s} \)

- **Loop obtained:**

\[
L_{ex}(s) = 0.87 \left(\frac{0.34}{s} + 1 \right)^2 \left(C_0 \frac{1 + \frac{s}{0.34}}{1 + \frac{s}{93.5}} \right)^{-1.45} \cos \left[-1.8374 \log \left(C'_0 \frac{1 + \frac{s}{97.5}}{1 + \frac{s}{250}} \right) \right] \frac{1}{\left(\frac{s}{93.5} + 1 \right)^3}
\]
Design Example

8 Parameters
- $M_0, dB = M_1$
- $\omega_0 = 0.4 \text{ rad/s}$
- $\alpha = 0.22$ (40° phase margin)
- $e = 3$, $n = 2$
- $\omega_1 = 40 \text{ rad/s}$

Loop obtained:

$L_{ex}(s) = 0.$
Conclusions

- A special CRONE compensator has been proposed to efficiently approximate Bode optimal loop.
- Bode optimal loop has been defined based on a number of parameters, and simple design rules have been obtained for tuning the proposed compensator.
- These rules yield a first solution of a rather hard problem.
- A finest tuning may require the use of some automatic loop shaping technique.
Conclusions

- A special CRONE compensator has been proposed to efficiently approximate Bode optimal loop.
- Bode optimal loop has been defined based on a number of parameters, and simple design rules have been obtained for tuning the proposed compensator.
- These rules yield a first solution of a rather hard problem.
- A finest tuning may require the use of some automatic loop shaping technique.
Conclusions

- A special CRONE compensator has been proposed to efficiently approximate Bode optimal loop.
- Bode optimal loop has been defined based on a number of parameters, and simple design rules have been obtained for tuning the proposed compensator.
- These rules yield a first solution of a rather hard problem.
- A finest tuning may require the use of some automatic loop shaping technique.
Conclusions

- A special CRONE compensator has been proposed to efficiently approximate Bode optimal loop.
- Bode optimal loop has been defined based on a number of parameters, and simple design rules have been obtained for tuning the proposed compensator.
- These rules yield a first solution of a rather hard problem.
- A finest tuning may require the use of some automatic loop shaping technique.