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Abstract— Within Object Orientation (OO), the UML (Unified Modeling Language) is the standard language adopted by the Object Management Group to analyze and design information systems. However, UML has been criticized since its appearance due to the ambiguity and the lack of a truly formal definition of its semantics. This situation hinders the rigorous statement of properties related to the models constructed using this language, something which is crucial in the aerospace industry, given the high level of reliability that these systems require. With this in mind, a proposal to formalize a set of components described by UML class diagrams, using the algebraic specifications theory, is presented. Within this formal framework, specifications of software concerning aerospace systems constructed by UML class diagrams can be transformed into equivalent formal representations. Thus, the diagram can be mathematically verified and manipulated by using its equivalent formal representation. The formal model obtained has been described in an executable formal specification language called Maude
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1. Introduction

Currently Object Orientation is one of the most prominent approaches in software development projects. Within this approach, the UML [23] [24] (Unified Modeling Language) is the standard language adopted by the Object Management Group to specify and develop object-oriented information systems. UML stems mainly from three methodologies, Booch ’93, OMT-2 and OOSE, with the removal of  elements considered unnecessary and the inclusion of other new ones. 

Combining intuitive graphical techniques with the rigor and precision of mathematical theories is revealed as the most appropriate way to exploit the best of both modeling tools in the software development process. Formal methods (FM) have been traditionally applied to the realm of critical or embedded systems and in particular, they can be successfully used in the aerospace industry, given the high level of reliability that these systems require.

Currently, there are a number of projects using UML in the aerospace industry. MDS (Mission Data System) uses UML to undertake the design and implementation of a set of reusable deep space mission components for future NASA missions. Another big UML project called the Reinvention Project aims at redesigning and reimplementing a lot of the code associated with the Space Shuttle Software. In this same line, but tackling the reengineering of real time control system code, the NASA’s Checkout and Launch Control System project uses, among others, finite state machines, similar to the UML statecharts. Likewise, a lot of avionics-specific CASE tools such as MatrixX support some UML diagrams.

In addition to the traditional use of formal methods (FM), in critical or embedded systems, there is now yet another reason for using them in Software Engineering projects. This is the new fashion for developing software, which will be reused by many people through Internet, and in particular, software components. According to B. Meyer, the extra effort of applying mathematical techniques to specify software becomes economically justifiable, when they are applied to the development of reusable components which will be used by many programmers [20]. This author recently presented a project [21], aimed at obtaining a set of trusted components by using several techniques, including “Design by Contract”, formal methods and formal validation, among others. The approach presented in this paper is in line with that project, adapting it to the case where the components (“assets”, in reuse terminology) are conceptual [30], in particular, UML specifications of an aerospace system, or a part of it.

It is widely accepted in Software Engineering that errors introduced during the requirements stage are more likely than implementation errors to be safety critical [16][17]. In this paper, a proposal to formalize the UML Class Diagram in the context of the whole UML metamodel by means of the algebraic specifications theory is presented. Within this formal framework, specifications of an aerospace system or the related software components, constructed by one or more UML class diagrams can be transformed into an equivalent formal representation. Thus, the diagram can be mathematically verified and manipulated by using its equivalent formal representation. Performing general tests in both static and dynamic aspects according to the UML syntax and semantics as defined in UML documentation, are examples of verification. Likewise, modeling and proving specific properties related to the domain of the aerospace system under development are also feasible. This is one of the main benefits of FM application. This helps to detect the presence of errors in the early system models, thus preventing the introduction of faults in the later implementation models.

The formal language chosen to develop our research has been Maude [3][18], an executable algebraic specification language based upon order sorted algebra (the sorts or types of the elements handled can be ordered by means of a partial order relation), with an operational semantics based on rewriting logic [19]. Maude has evolved from OBJ3 and it is also an executable language that supports parameterized programming, multiple inheritance, and a large-grain programming technique which provides support for the scalability of the specification and appropriately manages the complexity of a system. The additional advantage of using the formal model as an operational prototype results in a formal UML virtual machine, in this case to verify and execute Class Diagrams. In spite of its youth, Maude has already been used in Software Engineering applications [4] [26].

After this introduction, section 2 discusses issues that provide motivation for our framework. Section 3 presents a brief outline of the UML Class Diagram. Section 4 describes an algebraic formalization of the UML Class Diagram, in the context of the whole UML metamodel including syntax and both static and dynamic semantics aspects. In section 5, a review of the related work is given. Finally, section 6 shows some concluding remarks and an outline of the work to be done in the future.


2. motivation
UML has been criticized since its appearance (some of the criticism has been accepted by the authors themselves), mainly due to the ambiguity and the lack of a truly formal definition of its semantics [29]. The UML static semantics are described by the semi-formal constraint language OCL [25] (Object Constraint Language), and the UML dynamic semantics are expressed in natural language. The lack of a formal definition of the UML semantics gives rise to different interpretations between members of the development team and the users. This situation hinders the rigorous statement or the formal proving of properties [7] related to the models constructed using this language. In addition, these problems can lead to misunderstandings and errors along the software development process (from UML conceptual models to UML implementation or deployment models), thus considerably increasing the cost of the projects. 

For these reasons, it is essential to increase the level of reliability both in the UML language itself, and thus in the variety of UML models obtained along the development process. Particularly, early stages UML models are critical since it has been shown in Software Engineering that the sooner errors are caused in the software development process, the bigger the impact on the cost of correcting them is. Combining intuitive graphical techniques with the rigor and precision of mathematical theories is revealed as the most appropriate way to exploit the best of both modeling tools in the software development process. Formal methods (FM) have been traditionally applied to the realm of critical or embedded systems and, in particular, they can be successfully used in the aerospace industry, given the high level of reliability required by these systems.

Commonly, the research aimed at formalizing the UML models is based on model-oriented notations, such as Z or VDM. This is the approach taken, for instance, by the precise UML group [28] (pUML
), one of the main research groups working on this topic, as we shall discuss later in the Related Work section. Unlike that work, we base our approach on the use of the algebraic formalism which, in our opinion, facilitates a holistic formalization of all (or, at least, the majority of) the diagrams and elements involved in UML. In this paper, we focus on one of the UML diagrams, the Class Diagram (probably the most widely used UML diagram among software practitioners) to illustrate the approach, but we consider it in a modular way within the whole UML language. Our final goal is to integrate several formal specifications [7] [10] [33] representing the corresponding UML models in the same, homogeneous, mathematical framework. The algebraic formalism, together with a modular architecture of the formal models defined, makes it possible to prove UML inter-model properties, in addition to those properties related just to one model. It also permits the immediate execution of the formal models obtained (for instance with OBJ3 and Maude). The prototypes automatically generated can be considered as formal UML virtual machines, thus providing the possibility for a developer to manipulate and animate the UML models. In this paper, we show a simple example concerning the UML Class Diagram dynamic semantics. Another application related to the UML static semantics (in this case focused on the orthogonality property of the UML Statechart Diagrams) can be found in related work [7].

Maude, unlike other formal specification languages, offers an excellent framework to cope with changes in the UML metamodel at modeling time. The rewriting logic reflective framework can be exploited to support the UML metamodel evolution [31] in a natural way.


3. The UML Class Diagram
The formalization described in this paper is centered around the UML Class Diagram which can be used for analyzing and designing software, in general, and components, in particular. Therefore, it is worth briefly introducing its main features. The Class Diagram describes the static structure of a system and is made up of a set of elements such as classes, data types, interfaces, parameterized classes, packages, objects and relationships among these elements, such as associations, aggregations, compositions, generalizations and links.

A class describes the common properties (attributes and operations) of a set of objects. A class can be specialized, by means of a stereotype, as a type or as an implementation class. For example, the types Company, Runway and Aircraft are shown in Figure 1. Let us just consider, for illustrative purposes, the type Runway, which has two attributes, status and length, and one operation, changeStatus. A type characterizes a role that an object can adopt and abandon at any time of its life. On the other hand, an implementation class defines the procedures and physical data structure of an object as implemented in programming languages (C++, Smalltalk, Java, Eiffel, etc.). An object may have multiple types but only one implementation class.
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An association is a relationship among classifiers such as classes. For example the relations Has, TakeOff and Land in Figure 1. Observe that an association can also have attributes: the association Land is an association class that has two attributes, emergency and stopover. The former indicates whether an instance of Land is considered an emergency landing. The latter indicates whether the aircraft in the relationship makes a stopover. Each end of association has properties of the association related to the classifier. For instance, the multiplicity is a property that specifies the number of target instances that may be associated with a single source instance across the given association when placed on a target end. For example, in the TakeOff relation an instance of Aircraft (source end) is associated with a unique instance of Runway (target end with multiplicity 1).

It is worth noting that the association Has contains a qualifier attribute, idPlane, in one of its association ends. As defined by the OMG Modeling Glossary, a qualifier attribute is an association attribute whose values partition the set of objects related to an object across an association, in such a way that given a qualified object and a qualifier instance, the number of objects of the target classifier is constrained by the multiplicity declared at the other end of the association. For instance, given an instance of Company and an identifier plane, a unique instance of Aircraft is selected.

As the aim of this paper is to illustrate a process and a proposal to formalize the UML metamodel, only the most relevant aspects of the UML Class Diagram are considered.


4. Formalizing the UML Class Diagram

In this section, an algebraic specification of the UML Class Diagram is presented. For the sake of clarity, the mathematical model is not shown in detail, but the aspects that we consider necessary to understand the specification are included. More details can be found in a related technical report [8]. The approach followed in this paper is based on the UML metamodel and it is in agreement with the four-layer metamodeling architecture on which the UML definition is based [24]. Table 1 shows the correspondence between the UML conceptual framework and the formal framework that we propose.
The UML meta-metamodeling layer (the UML highest abstraction level) presents the language for defining the UML metamodel and its evolution. The formalization of this layer enables us to establish properties that must be satisfied by the UML metamodel. The formalization procedure of the meta-metamodel is based upon the reflective properties of rewriting logic and the executable specification language, Maude. An overview of this subject, which is beyond the scope of this paper, has already been reported [31]. The formalization of the UML Class Diagram (at the UML metamodel layer), as well as the formal representation and use of the related UML models and user objects that we describe in the rest of this section, are in compliance with the UML meta-metamodel layer formalization procedure. Together they all lead to a holistic UML formalization.
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The UML metamodel layer aims at obtaining the conceptual framework to specify domain models, that is to say, the syntactic and semantic rules on how to construct correct UML class diagrams belong to the metamodel layer, whereas the application of these UML class diagrams to describe concrete systems (for instance the domain model in Figure 1) belongs to the model layer. Transformations on diagrams can be supported by means of equations [9] [33] [34]. Thus, semantically equivalent diagrams, but which provide for different or derivative views of a model, can be obtained. This layer is represented by the syntactic and semantic specifications (Figure 2). Concepts such as class, attribute, association, operation are formalised in the syntactic specifications which include the UML syntax and static semantics concepts. On the other hand, link, object and value are formalised in the semantic specifications which mainly include the UML dynamic semantics aspects.
The UML model layer permits a particular domain to be defined in terms of the concepts represented in the UML metamodel. Problem domain concepts such as runway, status and length can be formally represented by terms of syntactic specifications.

Finally, the UML user objects layer allows objects of a particular domain to be described. This layer relies on terms of semantic specifications, and corresponds to the dynamic semantics of the UML.

Applying Rewriting Logic to Formalize the UML Class Diagram

As was said above, a set of Maude theories associated with the UML syntax and semantics is defined. The syntax is described by the signatures of the so-called syntactic theories and the static semantics are incorporated as equations of these theories. A model of a certain problem, initially represented, for example, as a class diagram, is represented by a term in Maude (Figure 2). On the other hand, the dynamic semantics is described by the so-called semantic theories which use the syntactic theories previously obtained in order to ensure consistency in the system state. For example, when an object of a class is included in the system, it is required to check that the new object has the structure of its type (which has been defined in the class diagram).

In the process followed in applying our approach, a model of a particular problem is initially depicted by a UML class diagram from the functional requirements previously elicited. This model is then transformed and represented in an alternative and equivalent way by means of a formal term of the quotient term algebra
 of the syntactic theory signatures, that is to say, the interpretation of the signature. In turn, the instance of a model corresponds to a formal term of the quotient term algebra of the semantics theory signatures which can also be represented by a term or by the own elements of the problem. Figure 2 shows graphically the approach followed, in which Term1... Termn are formal terms of the (syntactic or semantic theories) corresponding term algebras or formal interpretation models. Likewise, ErrorMessage and canonicalTerm1... canonicalTermn are formal terms of the quotient term algebra, which is the minimal formal interpretation model. For instance, at the top of Figure 2, a number of different incorrect UML class diagrams are first translated to the same number of corresponding formal terms of the term algebra. Then, as all of them are erroneous, they are converted (or “reduced”, in algebraic terminology) to a unique, minimal term with the same semantics, in this case the term ErrorMessage from the quotient term algebra
.

This proposal offers a number of advantages as opposed to other commonly used approaches [2]. For instance, as we formalize the UML metamodel, it is not necessary to construct a formal model (an algebraic specification, in this case) for each particular domain model. Each particular model becomes just a term. Thus, the complexity of the formal specification does not depend on the complexity and extension of the problem domain models. In our approach the formal specification describes the UML metamodel, and therefore, it is fixed and independent of the complexity of the problem domain models. The complexity of the problem is supported by the terms that represent specific models.

As an application of our work, an illustrative and deliberately simple example (Figure 1) is formalized. In turn, a number of examples are presented, showing the results obtained by means of the prototype constructed in Maude.

As a first step towards formalizing the UML Class Diagram, the abstract syntax of a type in UML is considered. A type comprises a name, a list of attributes and a list of operations. Figure 3 shows the formal definition that includes the declaration of the sort Type, the constructor type and the query operation typeAttribute (fmod stands for functional module, in Maude). This last operation takes one argument, an element of sort Type, and yields its list of attributes. The sorts TypeName, AttributeList and OperationList are declared in the modules TypeName, AttributeList and OperationList, which are imported by protecting declarations. Although they are not shown, there are query operations that yield the operations and the name of a given type.

Figure 4 shows the definition of the sorts TypeList, NeTypeList (“Ne” stands for Non-empty). A protecting importation is used in this example (protecting LIST[Type]), by importing the module TYPE and the parameterized module LIST (with the usual sorts and operations of list) which is instantiated with the module TYPE. Likewise, the sorts List and NeList are renamed as TypeList and NeTypeList, respectively. In the module TYPES the query operation qTypeAttribute is also defined. The qTypeAttribute operation takes two arguments, a name of a type and a list of types, and yields its list of attributes.
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The next step is to formalize the UML type semantics. The uniqueness of the type names is one of the constraints imposed by the UML static semantics. No equation including this kind of static semantics constraint is shown for the page limitation

As mentioned earlier, the algebraic formalization of the UML static semantics is discussed in more detail in [7], in this case for another element of the UML metamodel: the UML Statechart Diagram. We do, however, focus on the diagram class dynamic semantics. To this aim, a pair of modules are introduced, namely OBJECT, which specifies the instances of a class, and SYSTEMOBJECTS, which specifies the whole population of instances, by using, respectively, the definition of the sorts Object and ObjectList (Figure 5).


The constructor object is used for representing instances of UML types made up of an identifier, the name of a type (to which the instance belongs) and a non-empty list of values associated with the attributes of instance type. The operation newObject yields a list of objects constructed by means of the incorporation of an object into a list of objects which are arguments of the operation newObject. Any error condition can be specified according to the UML semantics. For example, if the new object contains values incompatible with the types of the attributes associated with the type of the new object (equation nonCompatibleTypes (NEVL, qTypeAttribute (TN, TL)) included in the module SYSTEMOBJECTS), or if the number of values does not coincide with the number of attributes (equation length (qTypeAttribute (TN, TL)) =/= length (NEVL)). In both cases, the operation newObject yields the constant term incorrectAttributes of the sort ObjectList. This element is a particular case of the canonical term Dynamic error message (Figure 2) that represents the set of terms, of the term algebra, denoting incorrect objects according to the UML language. Although it is omitted in Figure 5, the operation newObject can detect other error situations such as the inclusion of an object with duplicate identifier or the inclusion of an object whose type is not among those defined. In a more natural way, the previous tests could also be defined as constraints imposed on sorts (membership axioms
), instead of as equations. Nevertheless, the alternative chosen is more suitable to show explicitly the unsatisfied constraint.

In order to complete the subset of the chosen UML Class Diagram elements, the formalization of the binary associations is suggested (Figure 6). Although this paper only deals with binary associations, the formalization can be readily extended to n-ary associations.


An association, represented by the operation association, comprises a name, two association ends, and a (possibly empty) list of association attributes. Each end of association, represented by the operation assocEnd, has the name of the type attached to the association end, a name that indicates the role played in the association by the objects whose type is attached to the association end, an interval of integers that represents the multiplicity of the association end and a (possibly empty) list of qualifier attributes. For example, the association TakeOff has two association ends associated with Runway and Aircraft. In the first, an object plays a role of trackForTakingOff and can participate as runway in multiple TakeOff relationships to different aircraft, in particular between 0 and 5, multiplicity 0..5, formally represented by the pair (0, 5) in Figure 10. In the other association end, an object plays a role of planeTakingOff and must participate in one and only one TakeOff relationship, multiplicity 1, (pair (1, 1) in Figure 10).

The formalization of the UML binary association semantics is shown in Figure 7. An instance of a binary association, (operation assocInstance), is made up of:

· an association name

· for each object of a binary association, an object identifier, a (possibly empty) list of values associated with the qualifier attributes, and the role played by the object in the association (the same object may play different roles in different association instances)

· a (possibly empty) list of values associated with the association attributes.

The operation newAssocInstance takes an association instance, a list of association instances, a list of associations and a list of objects, and yields either a list of association instances formed by the concatenation of first and second operation arguments or an error message. Formal verification of the correct inclusion of association instances corresponding to the domain model defined, is performed by means of the newAssocInstance equations, according to the constraints described in the UML semantics. One of these tests involves checking the existence of the objects that try to participate in the association instance (equation existObject (qOid1AssocInstance (AI), OL) included in the module ASSOCIATIONINSTANCE). The canonical term nonExistenceObject represents the set of elements, of the term algebra, which denote associations instances where any of the objects do not exist. In a similar way, a number of constants that represent sets of terms (error messages) denoting incorrect association instances are introduced (see table 2).

Figure 8 shows the term tl that represents the list of types depicted in Figure 1.


Prototypes can be automatically generated out of the previously defined modules. This allows developers to validate models rigorously, to check their semantics, and to verify properties of the information systems being described by the UML language. Nevertheless, syntax and static semantics properties can be automatically checked without using the prototype obtained. As an example, prototype results related to the dynamic semantics of the types are shown in Figure 9.


A list of objects is introduced by means of the operation newObject. An object of the type Runway with three values, Excellent, Bad and 250 is added to an empty list of objects. The canonical term obtained after a number of rewrites is incorrectAttributes due to the incompatibility between the type of the value Bad and the type of the attribute Length. Likewise, the number of attributes of type Runway is not 3, but 2.

The binary associations depicted in Figure 1 are formally specified in Figure 10. It is also worth mentioning again that the association Has has a qualifier attribute, idPlane, in one of its association ends, and the association Land has two attributes, emergency and stopover.

From what has been said, the class diagram depicted in Figure 1 can be now formally specified by means of the modules previously defined. Thus, this class diagram is represented as a pair (tl, al), where tl denotes a list of types (for instance the term shown in Figure 8) and al a list of associations (for instance the term shown in Figure 10). On the other hand, the state of a system at any time is formally defined as a pair (ol, ail), where ol represents a list of objects and ail a list of association instances (see ai1, ai2 and ol in Figure 11).

Subsequently, the formalization and verification of a UML class diagram dynamic semantics property is shown in Figure 11. First, a term, named ol, similar to the term ol1 produced in Figure 9, is defined. After a number of rewrites verifying its correction, a list of four checked objects (canonical term) is obtained. Two instances of association TakeOff are represented by the terms ai1 and ai2. In the first one, an association instance is specified where an instance of Runway with oid 1, with status Caution, plays the role of trackForTakingOff and an instance of Aircraft with oid 2, named Wind, plays the role of planeTakingOff. In the second term, an association instance is specified where an instance of Runway with oid 3, with status Excellent, plays the role of trackForTakingOff and an instance of Aircraft with oid 2, named Wind, plays the role of planeTakingOff. The incorporation of the instance represented by the term ai2 into a list of association instances which includes the instance represented by the term ai1 violates the multiplicity constraint of the association end attached to the type Runway, since an instance of Aircraft can be attached to only one runway.


5. related work
The formalization of OO notations by means of different formalisms has been the subject of numerous recent studies. In a recent paper [32] an updated survey on formal UML approaches can be found. There is no doubt that all the approaches have something in common: the definition of a rigorous mathematical semantics that can be accepted or rejected by the analysts.

Pons [27] presents an algebraic specification (SPEC) of an object model similar to the UML one, but no mechanism of proving is put forward. The formalization presented there offers a proposal of specifying, but without the possibility of execution. Another related work is a study of formalization of Objectcharts notation [14], which is an extension of Statecharts [15]. In this pioneering paper, an executable prototype in OBJ3 is constructed using an algebraic specification of the Statecharts concurrent structure. Although properties such as the orthogonality of a Statechart are established, the complex transitions, an essential aspect of concurrent states, are not considered in the specification. These were included in [7].

The second generation OO methodology SYNTROPY has also been formalized [1]. This work aims at providing a formal semantics for the SYNTROPY Class Diagram and Statecharts, by applying Object Calculus. The Fusion object-oriented analysis modeling technique have been formally described [12] by using the formal language Z. The formalization consists of establishing rule-based translation to represent the Fusion object model and interface model by means of schemas in Z. The authors point out that the Life-Cycle Model is rigorous and analyzable, and, therefore, it is not formally specified. However, this choice does not take into account the integration of the different models in an homogeneous formal framework. This approach has been extended to the Fusion design models [13].

Recently, the formalization of UML has been drawing the increasing attention of many researchers. The effort of research groups is directed away from traditional graphical notations and languages towards the UML language. In this sense, one of the most relevant research groups is the pUML group. Research directly related to this paper, but using the formal language Z, has been reported by this group [5] [6] [11]. The primary goal of the pUML group is to define precise semantics for the UML language and to develop mechanisms that allow developers to rigorously analyze the UML models. One of the key differences between our work and the work on formalizing UML in Z by this group is that Maude specifications are directly executable and thus provide rapid prototyping.

In addition, the results of our work differ from the above in two aspects. First, rewriting logic supported by Maude is a general framework in which many other logics can be represented [18], endowing Maude with high expressive power and a great capacity to adapt to any domain. Second, both the models of a particular domain and the own domain objects are specified by terms, thus laying the foundations for a formal representation of the evolution of the domain models and their instances. Moreover, the reflective properties of rewriting logic provide a powerful framework to deal with UML meta-metamodeling aspects and extensibility, that is to say, the evolution of the UML language itself. This is a piece of our ongoing research [31] which is closely related to the work presented in this paper.


6. CONCLUSIONS

An algebraic formalization of the UML Class Diagram syntax and semantics has been reported. The possibility of performing functional prototyping with respect to systems specified in UML so as to verify and validate the structure defined in a class diagram has been provided. The correction of the prototyping session itself, by checking the operations performed in it, has also been offered. The mathematical model obtained from a class diagram becomes a useful tool of practical interest to software engineers. Our approach allows for different integrity violations of the system state such as the violation of the multiplicity constraint of an association end, the incompatibility of types and the existence of the objects that participate in an association instance, and in general, properties concerning the UML static semantics well-formedness rules.

In order to validate, verify and simulate models constructed in UML, the Maude operational semantics are used. As the execution of a formal model is equivalent to animating a UML model, a formal specification can be considered a UML Virtual Machine for UML model execution. This prototype is directly obtained by using the Maude interpreter. The incorporation of a user interface that hides the formal aspects of the language and a defined model process, will result in a powerful CASE tool to edit, validate, verify and execute functional system requirements. To this extent, we are now trying to integrate the formal specifications with Rational Rose and other modeling tools via a standard XMI interface. A prototype of such an integrated tool already exists [10]. The formal approach described in this paper is in the process of integration into an OO prototyping tool which combines rapid and evolutionary prototyping strategies, in order to obtain EIFFEL programs within our research group [22].
As a continuation of the work made hitherto, we are currently working on extending the formalization to the main UML diagrams: preliminary versions of the UML Statechart Diagrams [7], UML Sequence Diagrams and the constraint language OCL are already available. Another experience has been the formalization of the UML extension mechanisms [31], stereotypes, constraints and tagged values, in Maude, by taking advantage of the reflective feature of the underlying logic. This characteristic allows us to work simultaneously with information and metainformation. Likewise, we are looking for new semantics properties and diagram transformations of interest for the Industry.
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Table 1. The four-layer metamodeling architecture of UML


The UML layer�
Formal layer�
Example�
�
Meta-metamodel�
Module META-LEVEL�
MetaClass, MetaAttribute, MetaOperation�
�
Metamodel�
Syntactic and semantic specifications�
Class, Attribute, Operation�
�
Model�
Terms (of syntactic specifications)�
Runway, Status, Length�
�
User objects�
Terms (of semantic specifications)�
<1, Caution, 2500>, <3, Excellent, 2600>�
�
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Figure � SEC Fig. \n �1� - A UML class diagram
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Figure � SEC Fig. \n �2� - Formalization of the UML metamodel





(fmod TYPE is sort Type . � protecting TYPENAME . *** Importing the module TYPENAME� protecting ATTRIBUTELIST . *** Importing the module ATTRIBUTELIST� protecting OPERATIONLIST . *** Importing the module OPERATIONLIST� op type : TypeName AttributeList OperationList -> Type� op typeAttribute : Type -> AttributeList .� var TN : TypeName . var AL : AttributeList .� var OL : OperationList .� eq typeAttribute (type (TN, AL, OL)) = AL .�endfm)


Figure 3 - Algebraic specification of a UML type





�





(view Type from TRIV to TYPE is�    sort Elt to Type .�endv) �(fmod TYPES is � protecting LIST[Type] * (sort List to TypeList,�                          sort NeList to NeTypeList) .� op qTypeAttribute : TypeName TypeList -> AttributeList .� vars TN1, TN2 : TypeName .   var AL : AttributeList .� var OL : OperationList .   var TL : TypeList .� eq qTypeAttribute (TN1, empty ) = empty .� cq qTypeAttribute (TN1, type (TN2, AL, OL) TL) = AL if TN1 == TN2 .� cq qTypeAttribute (TN1, type (TN2, AL, OL) TL) = �                        qTypeAttribute (TN1, TL) if TN1 =/= TN2 .�endfm)


Figure 4 - Algebraic specification of a list of UML types





(fmod OBJECT is sorts Object .� protecting OID .� protecting TYPENAME .� protecting VALUELIST .� op object : Oid TypeName NEValueList -> Object .�endfm)�(view Object from TRIV to OBJECT is�    sort Elt to Object .�endv)�(fmod SYSTEMOBJECTS is � including LIST[Object] * (sort List to ObjectList, �                           sort NonEmptyList to NEObjectList) .� protecting TYPELIST .� op incorrectAttributes : -> ObjectList .� op newObject : Object TypeList ObjectList -> ObjectList .� op nonCompatibleType : ValueList AttributeList -> Bool .� var OI:Oid . var TN:TypeName . var NEVL:NEValueList . � var TL:TypeList . var OL:ObjectList .� cq newObject (object (OI, TN, NEVL), TL, OL) = incorrectAttributes �      if (length (qTypeAttribute (TN, TL)) =/= length (NEVL)) or�         (nonCompatibleType (NEVL, qTypeAttribute (TN, TL))) .� cq newObject (object (OI, TN, NEVL), TL, OL) = �              object (OI, TN, NEVL) OL �   if not ((length (qTypeAttribute (TN, TL)) =/= length (NEVL)) �          or (nonCompatibleType (NEVL, qTypeAttribute (TN, TL)))) .�endfm)


Figure 5 - Algebraic specification of the UML objects





tl = type ( 'Aircraft, attribute ('name, 'String)�                 attribute ('NºPassengers, 'Integer), empty) �         type ( 'Company, attribute ('name, 'String) , empty ) �         type ( 'Runway, attribute ('status, 'Rank) �                         attribute ('length, 'Integer) ,�       operation ( 'changeStatus, parameter ('rank, 'Rank))) .


Figure 8 - Term representing the types of a UML class diagram





(fmod ASSOCEND is sort AssocEnd .� *** ( Protecting modules)� op assocEnd : TypeName RoleName �               Multiplicity AttributeList -> AssocEnd .� *** ( Query operations and equations)�endfm)�(fmod ASSOCIATION is sort Association .� protecting ASSOCIATIONNAME .� protecting ASSOCEND .� protecting ATTRIBUTELIST� op association : AssociationName AssocEnd �                  AssocEnd AttributeList -> Association .�*** ( Query operations and equations)�endfm)


Figure 6 - Algebraic specification of the UML binary association





ol1 = newObject (object (3, 'Runway, ('Excellent 'Bad  250)), tl, empty).�reduce in MODELO : ol1�rewrites: 37	result ObjecList: incorrectAttributes


Figure 9 - Rewriting a term that represents an object which does not satisfy the equations








(fmod ASSOCIATIONINSTANCE is sorts AssociationInstance�                                   AssociationInstances.� *** ( Protecting modules)� protecting TYPES .� protecting SYSTEMOBJECTS .� protecting ASSOCIATION .� subsort AssociationInstance < AssociationInstances .� op empty : -> AssociationInstances .� op nonExistenceAssociation : -> AssociationInstance .� op nonExistenceObject : -> AssociationInstance .� op violationAssociationMultiplicity : -> AssociationInstances.� op incompatibleAIValues : -> AssociationInstances .� op incompatibleQualifierValues : -> AssociationInstances .� op violationQualifierMultiplicity : -> AssociationInstances .� op assocInstance : AssociationName Oid ValueList RolName �                          Oid ValueList RolName ValueList -> �                                               AssociationInstance .� op __ : AssociationInstances AssociationInstances -> �                            AssociationInstances [assoc id: empty] .� op newAssocInstance : AssociationInstance AssociationInstances �                       AssociationList ObjectList -> �                                             AssociationInstances .� var AI : AssociationInstance . var AIL : AssociationInstances . � var AL : AssociationList . var OL : ObjectList .� cq newAssocInstance (AI, AIL AL, OL) = nonExistenceObject if�    not (existObject (qOid1AssocInstance (AI), OL) and�         existObject (qOid2AssocInstance (AI), OL))� *** (rest of equations to check constraints)�endfm)


Figure 7 - Algebraic specification of the instances of the UML binary associations





Table 2. Terms denoting instances of incorrect associations


�
�
�
Name of the constant�
Meaning�
�
nonExistenceAssociation�
Lack of a binary association between the objects that participate in an instance of binary association�
�
violationAssociationMultiplicity�
The new instance of a binary association instance does not fulfill the multiplicity constraints�
�
incompatibleQualifierValues�
If the new instance of a binary association contains values of qualifier attributes incompatible with the binary association ones, or the number of values is not the same as the number of attributes of this association�
�
incompatibleAIValues�
If the new instance of a binary association class contains values of attributes incompatible with those the binary association class or the number of values is not the same as the number of attributes of this association�
�
violationQualifierMultiplicity�
If the new instance of a binary association with qualifier does not fulfill the multiplicity constraints�
�






al =    association ('TakeOff,� assocEnd('Runway, 'trackForTakingOff, multiplicity (1, 1), empty),� assocEnd ('Aircraft, 'planeTakingOff, multiplicity (0, 5), empty), empty) �        association ('Has, � assocEnd ('Aircraft, 'possession, multiplicity (1, 1), empty),    � assocEnd ('Company, 'owner, multiplicity (1, 1), �                      attribute ('idPlane, 'Integer)), empty)�        association ('Land, � assocEnd ('Runway, 'trackForLanding, multiplicity (1, 1), empty),    � assocEnd ('Aircraft, 'planeLanding, multiplicity (0, n), empty), �   attribute ('emergency, 'Bool) attribute ('stopover, 'Bool)) .


Figure 10 - Term representing a list of UML associations





�





ol = newObject (object(4,'Aircraft,('Riviera 260)), tl,�newObject (object (3, 'Runway, ('Excellent 2600)), tl,�   newObject (object(2,'Aircraft,('Wind 100)), tl,�          newObject (object(1,'Runway, ('Caution 2500)), tl, empty)))).�reduce in MODELO : ol�rewrites: 245	result ObjectList: object(4,'Aircraft,'Riviera 260)�object(3,'Runway, 'Excellent 2600) object(2,'Aircraft,'Wind 100)�object(1,'Runway, 'Caution 2500)��::::::::��ai1 = assocInstance ( 'TakeOff, 1, empty, 'trackForTakingOff, 2, empty,�'planeTakingOff, empty ) .�ai2 = assocInstance ( 'TakeOff, 3, empty, 'trackForTakingOff, 2, empty,�'planeTakingOff, empty ) .�::::::::�reduce in MODELO : �newAssocInstance(ai2,newAssocInstance(ai1,empty ,al,ol),al,ol)�rewrites: 1102 �result AssociationInstances: violationAssociationMultiplicity


Figure 11 - Checking the violation of the multiplicity of an association








� Granted by the CICYT (Science and Technology Joint Committee), Spanish Ministry of Education and Ministry of Industry, project MENHIR TIC97-0593-C05-02 OM.


� The pUML group is made up of international researchers and practitioners who are interested in providing a precise and well-defined semantics for UML.


� Algebra (or model of the algebraic specification) that contains the canonical terms obtained after applying the equations.


� If required, or desired, different types of error messages could be defined to distinguish the variety of errors (see table 2 for the dynamic semantics case).


� A term is asserted to have a certain sort if a condition consisting of a conjunction of equations and of unconditional membership tests is satisfied.
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