Classical operators on weighted Banach spaces of entire functions

María José Beltrán Meneu

Joint work with
José Bonet and Carmen Fernández

Congreso RSME 2013
Aim of the talk

To study the dynamics of the operators:

Differentiation: \(Df := f' \)

Integration: \(Jf(z) := \int_0^z f(\xi)d\xi, \ z \in \mathbb{C} \)

Hardy operator: \(Hf(z) := \frac{1}{z} \int_0^z f(\xi)d\xi, \ z \in \mathbb{C} \)

on weighted Banach spaces of entire functions.

- \(D, J \) and \(H \) are continuous on \((H(\mathbb{C}), co)\), where \(co \) denotes the compact-open topology.
- \(DJf = f \) and \(JDf(z) = f(z) - f(0) \ \forall f \in H(\mathbb{C}), \ z \in \mathbb{C} \).
Dynamics on operators

Given a Banach space X,

$$\mathcal{L}(X) := \{ T : X \to X \text{ linear and continuous} \}.$$

Given $T \in \mathcal{L}(X)$, the pair (X, T) is a linear dynamical system.

Definitions

- Let $x \in X$. The orbit of x under T is the set

 $$\text{Orb}(x, T) := \{ x, Tx, T^2x, \ldots \} = \{ T^n x : n \geq 0 \}.$$

- $x \in X$ is a periodic point if $\exists n \in \mathbb{N}$ such that $T^n x = x$.

Dynamics on operators

Given a Banach space X and $T \in \mathcal{L}(X)$, it is said that:

Definitions

- T **topologically mixing** $\iff \forall U, V \neq \emptyset$ open, $\exists n_0 : T^n U \cap V \neq \emptyset$ for all $n \geq n_0$.
- T **hypercyclic** $\iff \exists x \in X$, $\text{Orb}(T, x) := \{x, Tx, T^2x, \ldots \}$ is dense in $X \Rightarrow X$ SEPARABLE!!!

Definition (Godefroy, Shapiro, 1991)

T is **chaotic** if

- T has a dense set of periodic points,
- T is hypercyclic.
Dynamics on operators

Given a Banach space X and $T \in \mathcal{L}(X)$, it is said that:

Definitions

- T power bounded $\iff \sup_n \|T^n\| < \infty$
- T Cesàro power bounded $\iff \sup_n \left\| \frac{1}{n} \sum_{k=1}^{n} T^k \right\| < \infty$
- T mean ergodic \iff

$$\forall x \in X, \ \exists P_x := \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} T^k x \in X$$

- T uniformly mean ergodic \iff

$$\left\{ \frac{1}{n} \sum_{k=1}^{n} T^k \right\}_n$$

converges in the operator norm.
Classical results

Mac Lane (1952)

$D : H(\mathbb{C}) \to H(\mathbb{C})$ is hypercyclic, i.e.,

$$\exists f_0 \in H(\mathbb{C}) : \forall f \in H(\mathbb{C}), \ \exists (n_k)_k \subseteq \mathbb{N} \text{ such that}$$

$$f_0^{(n_k)} \to f \text{ uniformly on compact sets.}$$

Proposition

The integration operator $J : H(\mathbb{C}) \to H(\mathbb{C})$ is not hypercyclic.
\(v : \mathbb{C} \to]0, \infty[\) is a weight if it is continuous, radial, i.e. \(v(z) = v(|z|) \), \(v(r) \) is non-increasing on \([0, \infty[\) and \(\lim_{r \to \infty} r^m v(r) = 0 \ \forall \ m \in \mathbb{N} \).

Definition

Given a weight \(v \), the weighted Banach spaces of entire functions:

\[
H_v^\infty := \{ f \in H(\mathbb{C}) : \| f \|_v := \sup_{z \in \mathbb{C}} v(z)|f(z)| < \infty \}
\]

\[
H_v^0 := \{ f \in H(\mathbb{C}) : \lim_{|z| \to \infty} v(z)|f(z)| = 0 \}.
\]

Given \(a \in \mathbb{R}, \ \alpha > 0 \), consider \(v_{a,\alpha}(z) := |z|^a e^{-\alpha |z|} \), for \(|z| \geq r_0 \), and the spaces \(H_{a,\alpha}^\infty \) and \(H_{a,\alpha}^0 \). For \(a = 0 \), denote them by \(H_\alpha^\infty \) and \(H_\alpha^0 \).

- \(f \in H_\alpha^\infty \iff \exists C > 0 : |f(z)| \leq Ce^{\alpha |z|} \ \forall z \in \mathbb{C} \).
- \(H_\alpha^\infty \cong \ell_\infty \) and \(H_\alpha^0 \cong c_0 \) (Lusky).
- \(\mathcal{P} \) are dense in \(H_\alpha^0 \) but the monomials are not a Schauder basis.
Lemma

Assume \(T : (H(\mathbb{C}), co) \to (H(\mathbb{C}), co) \) continuous and \(T(\mathcal{P}) \subseteq \mathcal{P} \). TFAE:

(i) \(T(H_v^\infty) \subseteq H_v^\infty \),

(ii) \(T : H_v^\infty \to H_v^\infty \) is continuous,

(iii) \(T(H_v^0) \subseteq H_v^0 \),

(iv) \(T : H_v^0 \to H_v^0 \) is continuous.

If this holds, \(\| T \|_{\mathcal{L}(H_v^\infty)} = \| T \|_{\mathcal{L}(H_v^0)} \) and \(\sigma_{H_v^\infty}(T) = \sigma_{H_v^0}(T) \), where \(\sigma_X(T) \) := \(\{ \lambda \in \mathbb{C} : T - \lambda I \) has no inverse }.

Harutyunyan, Lusky: The continuity of \(D \) and \(J \) on \(H_v^\infty(\mathbb{C}) \) is determined by the growth or decline of \(v(r)e^{\alpha r} \) for some \(\alpha > 0 \) in an interval \([r_0, \infty[\).
If \(\nu(r) = r^a e^{-\alpha r} \) (\(\alpha > 0, \ a \in \mathbb{R} \)) for \(r \geq r_0 \) : \(\|z^n\|_{a,\alpha} \approx (n+a)(n+a) \), with equality for \(a = 0 \).

Proposition

For \(a > 0 \):

\[
\|D^n\|_{a,\alpha} = \mathcal{O} \left(n! \left(\frac{e\alpha}{n-a} \right)^{n-a} \right) \quad \text{and} \quad n! \left(\frac{e\alpha}{n+a} \right)^{n+a} = \mathcal{O}(\|D^n\|_{a,\alpha})
\]

For \(a \leq 0 \):

\[
\|D^n\|_{a,\alpha} \approx n! \left(\frac{e\alpha}{n+a} \right)^{n+a}
\]

and the equality holds for \(a = 0 \).
Proposition

For every $\alpha > 0$ and $a \in \mathbb{R}$, the spectrum $\sigma_{a,\alpha}(D) = \alpha \overline{D}$.

Proposition

Let ν be a weight such that D is continuous on $H_{\nu}^\infty(\mathbb{C})$ and that $\nu(r)e^{\alpha r}$ is non increasing for some $\alpha > 0$. If $|\lambda| < \alpha$, the operator $D - \lambda I$ is surjective on $H_{\nu}^\infty(\mathbb{C})$ and on $H_{\nu}^0(\mathbb{C})$ and it even has a continuous linear right inverse

$$K_\lambda f(z) := e^{\lambda z} \int_0^z e^{-\lambda \xi} f(\xi) d\xi, \quad z \in \mathbb{C}$$

In particular, this is satisfied by the weight $\nu_{a,\alpha}(r) = r^a e^{-\alpha r}$ for r big enough (proved by Atzmon, Brive (2006), in the case $a = 0$).
Proposition

For the weight $\nu(r) = r^a e^{-\alpha r}$ ($\alpha > 0$, $a \in \mathbb{R}$) for r big enough, we have:

- $\|J^n\|_{a,\alpha} \cong 1/\alpha^n$, with the equality for $a = 0$,
- $\sigma_{a,\alpha}(J) = (1/\alpha) \mathbb{D}$,
- $J - \lambda I$ is not surjective on $H^\infty_{a,\alpha}$ or $H^0_{a,\alpha}$ if $|\lambda| \leq 1/\alpha$.
Theorem
For \(\nu \) an arbitrary weight, the Hardy operator \(H : H^\infty_\nu(\mathbb{C}) \rightarrow H^\infty_\nu(\mathbb{C}) \) is continuous with norm \(\|H\|_\nu = 1 \). Moreover, \(H^2(H^\infty_\nu(\mathbb{C})) \subset H^0_\nu(\mathbb{C}) \) and \(H^2 \) is compact. Therefore, \(\sigma(H) = \{\frac{1}{n}\}_N \cup \{0\} \). If the integration operator \(J : H^\infty_\nu(\mathbb{C}) \rightarrow H^\infty_\nu(\mathbb{C}) \) is continuous, then \(H \) is compact.

Remark
For the weight \(\nu(r) = \exp(-(\log r)^2) \):
- \(J \) is not continuous on \(H^\infty_\nu(\mathbb{C}) \) (Harutyunyan, Lusky)
- \(H : H^\infty_\nu(\mathbb{C}) \rightarrow H^0_\nu(\mathbb{C}) \), \(H : H^0_\nu(\mathbb{C}) \rightarrow H^0_\nu(\mathbb{C}) \), are compact (Lusky).
Introduction
Classical results
Weighted Banach spaces of holomorphic functions
Continuity, norms and spectrum
Dynamics of D and J on $H^\infty_{a,\alpha}$ and $H^0_{a,\alpha}$

Hypercyclicity

Theorem (Bonet, 2009)

$D : H^0_{a,\alpha} \to H^0_{a,\alpha}$ satisfy:

- $0 < \alpha < 1 \implies D$ is not hypercyclic and has no periodic point different from 0.
- $\alpha = 1 \implies$ if $a < 1/2$, then D is topologically mixing, and if $a \geq 1/2$, D is not hypercyclic. It has no periodic point different from 0 iif $a \geq 0$.
- $\alpha > 1 \implies D$ is chaotic and topologically mixing.
Mean ergodicity

Remark

\[T \in \mathcal{L}(X) \text{ Cesàro bounded and } P(d) = 0 \text{ for every } d \in D, \ D \subseteq X \text{ dense} \implies T \text{ mean ergodic}. \]

Proposition

Let \(T = D \) or \(T = J \) and assume \(T : H^\infty_v(\mathbb{C}) \to H^\infty_v(\mathbb{C}) \) is continuous. TFAE:

(i) \(T : H^\infty_v(\mathbb{C}) \to H^\infty_v(\mathbb{C}) \) is uniformly mean ergodic,

(ii) \(T : H^0_v(\mathbb{C}) \to H^0_v(\mathbb{C}) \) is uniformly mean ergodic,

(iii) \(\lim_{N \to \infty} \frac{||T + \cdots + T^N||_v}{N} = 0. \)

Moreover, if \(1 \in \sigma_v(T) \), then \(T \) is not uniformly mean ergodic.
Mean ergodicity

Theorem (Lin)
Let $T \in \mathcal{L}(X)$ such that $\|T^n/n\| \to 0$. Then,

$$T \text{ uniformly mean ergodic } \iff (I - T)X \text{ is closed}.$$

Theorem (Lotz)
Let $T \in \mathcal{L}(H^\infty_\alpha)$ such that $\|T^n/n\| \to 0$. Then,

$$T \text{ mean ergodic } \iff T \text{ uniformly mean ergodic}.$$
Mean ergodicity

Theorem

Let $v(r) = e^{-\alpha r}$, $r \geq 0$. D is power bounded if and only if $\alpha < 1$. It is uniformly mean ergodic on $H_\alpha^\infty(\mathbb{C})$ and $H_\alpha^0(\mathbb{C})$ if $\alpha < 1$, not mean ergodic if $\alpha > 1$, and it is not mean ergodic on $H_1^\infty(\mathbb{C})$ and not uniformly mean ergodic on $H_1^0(\mathbb{C})$.

Let $v(r) = e^{-\alpha r}$, $r \geq 0$. J is never hypercyclic and it is power bounded if and only if $\alpha \geq 1$. If $\alpha > 1$, J is uniformly mean ergodic on $H_\alpha^\infty(\mathbb{C})$ and $H_\alpha^0(\mathbb{C})$ and it is not mean ergodic on these spaces if $\alpha < 1$. If $\alpha = 1$, then J is not mean ergodic on $H_1^\infty(\mathbb{C})$, and mean ergodic but not uniformly mean ergodic on $H_1^0(\mathbb{C})$.

For every weight v, H is power bounded, not hypercyclic and uniformly mean ergodic on $H_v^\infty(\mathbb{C})$.
Summary

<table>
<thead>
<tr>
<th></th>
<th>J</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$0 < \alpha < 1$</td>
<td>$\alpha = 1$</td>
</tr>
<tr>
<td>Power bounded</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Hypercyclic on H_α^0</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Mean ergodic on H_α^0</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Mean ergodic on H_α^∞</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Uniformly mean ergodic</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>$\alpha > 1$</td>
<td></td>
</tr>
<tr>
<td>Power bounded</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Hypercyclic on H_α^0</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Top. mixing on H_α^0</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Chaotic on H_α^0</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Mean ergodic on H_α^0</td>
<td>yes</td>
<td>?</td>
</tr>
<tr>
<td>Mean ergodic on H_α^∞</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Uniformly mean ergodic</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>
Dynamics on weighted Bergman spaces

Given a weight ν, $1 \leq p \leq \infty$, and $1 \leq q < \infty$,

$$B_{p,q}(\nu) := \left\{ f \in \mathcal{H}(\mathbb{C}) : \|f\|_{p,q,\nu} := \left(2\pi \int_0^\infty r \nu(r)^q M_p(f, r)^q \, dr\right)^{1/q} < \infty \right\}$$

$$B_{p,\infty}(\nu) := \left\{ f \in \mathcal{H}(\mathbb{C}) : \|f\|_{p,\nu} := \sup_{r>0} \nu(r) M_p(f, r) < \infty \right\}$$

$$B_{p,0}(\nu) := \left\{ f \in \mathcal{H}(\mathbb{C}) : \lim_{r \to \infty} \nu(r) M_p(f, r) = 0 \right\}.$$
K.G. Grosse-Erdmann, A. Peris,
Linear Chaos.
Springer, Berlin, 2011.

A. Atzmon, B. Brive,
Surjectivity and invariant subspaces of differential operators on weighted Bergman spaces of entire functions.
Bergman spaces and related topics in complex analysis, 27–39,

M.J. Beltrán, J. Bonet, C. Fernández,
Classical operators on weighted Banach spaces of entire functions.
Bibliography II

- J. Bonet,
 Dynamics of the differentiation operator on weighted spaces of entire functions.

- A. Harutyunyan, W. Lusky,
 On the boundedness of the differentiation operator between weighted spaces of holomorphic functions.

- W. Lusky,
 On the isomorphism classes of weighted spaces of harmonic and holomorphic functions,
M. Lin,
On the Uniform Ergodic Theorem,

H.P. Lotz,
Tauberian theorems for operators on L^∞ and similar spaces,