Dinámica lineal de C_0-semigrupos

J. Alberto Conejero
Institut Universitari de Matemàtica Pura i Aplicada
Universitat Politècnica de Valencia, Spain

April, 20th 2012
This is part of a joint work with X. Barrachina.
Contents

1 Introduction
 - C_0-semigroups of operators
 - Hypercyclicity
 - Devaney chaos
 - Sensitive dependence on the initial conditions
 - Li-Yorke chaos
 - Distributional chaos and distributional irregular vectors

2 Dynamics of the translation C_0-semigroup

3 Results on linear dynamics
 - Discrete & continuous dynamics
 - How to determine Devaney chaos?
 - How to determine distributional chaos?

4 Examples of distributionally chaotic C_0-semigroups
Let X be a Banach space, and $L(X)$ be the set of linear and continuous operators from X to X.

Definition

A family of linear and continuous operators $\{T\}_{t \geq 0}$ in $L(X)$ is said to be a semigroup on X if the following are verified:

1. $T_0 = I$.
2. $T_t T_s = T_{t+s}$ for all $t, s \geq 0$.

A semigroup in $L(X)$ is strongly continuous (or a C_0-semigroup) if in addition

3. $\lim_{t \to s} T_t x = T_s x$ for all $x \in X, s \geq 0$.

A semigroup in $L(X)$ is uniformly continuous if in addition

3'. $\lim_{t \to s} T_t x = T_s x$ for all $s \geq 0$ uniformly on X.

Example

The translation semigroup on $L^p(\mathbb{R}^+), 1 \leq p < \infty$, defined as $\{T_t\}_{t \geq 0}$ with $T_t f(s) := f(s + t)$ is a C_0-semigroup.

\textbf{C}_0\text{-semigroups of operators}

Let \(X \) be a Banach space, and \(L(X) \) be the set of linear and continuous operators from \(X \) to \(X \).

\textbf{Definition}

A family of linear and continuous operators \(\{T\}_{t \geq 0} \) in \(L(X) \) is said to be a \textbf{semigroup} on \(X \) if the following are verified:

1. \(T_0 = I \).
2. \(T_t T_s = T_{t+s} \) for all \(t, s \geq 0 \).

A semigroup in \(L(X) \) is \textbf{strongly continuous} (or a \(C_0 \)-semigroup) if in addition

3. \(\lim_{t \to s} T_t x = T_s x \) for all \(x \in X, s \geq 0 \).

A semigroup in \(L(X) \) is \textbf{uniformly continuous} if in addition

3.’ \(\lim_{t \to s} T_t x = T_s x \) for all \(s \geq 0 \) uniformly on \(X \).

\textbf{Example}

The translation semigroup on \(L^p(\mathbb{R}^+) \), \(1 \leq p < \infty \), defined as \(\{T_t\}_{t \geq 0} \) with \(T_t f(s) := f(s+t) \) is a \(C_0 \)-semigroup.
Introduction

Dynamics of the translation C_0-semigroup

Results on linear dynamics

Examples of distributionally chaotic C_0-semigroups

C_0-semigroups of operators

Let X be a Banach space, and $L(X)$ be the set of linear and continuous operators from X to X.

Definition

A family of linear and continuous operators $\{T\}_{t \geq 0}$ in $L(X)$ is said to be a semigroup on X if the following are verified:

1. $T_0 = I$.
2. $T_t T_s = T_{t+s}$ for all $t, s \geq 0$.

A semigroup in $L(X)$ is strongly continuous (or a C_0-semigroup) if in addition

3. $\lim_{t \to s} T_t x = T_s x$ for all $x \in X, s \geq 0$.

A semigroup in $L(X)$ is uniformly continuous if in addition

3'. $\lim_{t \to s} T_t x = T_s x$ for all $s \geq 0$ uniformly on X.

Example

The translation semigroup on $L^p(\mathbb{R}^+), 1 \leq p < \infty$, defined as $\{T_t\}_{t \geq 0}$ with $T_t f(s) := f(s + t)$ is a C_0-semigroup.
Let X be a Banach space, and $L(X)$ be the set of linear and continuous operators from X to X.

Definition

A family of linear and continuous operators $\{T\}_{t \geq 0}$ in $L(X)$ is said to be a **semigroup** on X if the following are verified:

1. $T_0 = I$.
2. $T_t T_s = T_{t+s}$ for all $t, s \geq 0$

A semigroup in $L(X)$ is **strongly continuous** (or a C_0-**semigroup**) if in addition

3. $\lim_{t \to s} T_t x = T_s x$ for all $x \in X, s \geq 0$

A semigroup in $L(X)$ is **uniformly continuous** if in addition

3'. $\lim_{t \to s} T_t x = T_s x$ for all $s \geq 0$ uniformly on X.

Example

The translation semigroup on $L^p(\mathbb{R}^+)$, $1 \leq p < \infty$, defined as $\{T_t\}_{t \geq 0}$ with $T_t f(s) := f(s + t)$ is a C_0-semigroup.
Introduction

Dynamics of the translation C_0-semigroup

Results on linear dynamics

Examples of distributionally chaotic C_0-semigroups

C_0-semigroups of operators

Hypercyclicity

Devaney chaos

Sensitive dependence on the initial conditions

Li-Yorke chaos

Distributional chaos and distributional irregular vectors

Let X be a Banach space, and $L(X)$ be the set of linear and continuous operators from X to X.

Definition

A family of linear and continuous operators $\{ T \}_{t \geq 0}$ in $L(X)$ is said to be a semigroup on X if the following are verified:

1. $T_0 = I$.
2. $T_t T_s = T_{t+s}$ for all $t, s \geq 0$

A semigroup in $L(X)$ is **strongly continuous** (or a C_0-semigroup) if in addition

3. $\lim_{t \to s} T_t x = T_s x$ for all $x \in X, s \geq 0$

A semigroup in $L(X)$ is **uniformly continuous** if in addition

3'. $\lim_{t \to s} T_t x = T_s x$ for all $s \geq 0$ uniformly on X.

Example

The translation semigroup on $L^p(\mathbb{R}^+), 1 \leq p < \infty$, defined as $\{ T_t \}_{t \geq 0}$ with $T_tf(s) := f(s + t)$ is a C_0-semigroup.
Let X be a Banach space, and $L(X)$ be the set of linear and continuous operators from X to X.

Definition

A family of linear and continuous operators \(\{T\}_{t \geq 0} \) in $L(X)$ is said to be a **semigroup** on X if the following are verified:

1. $T_0 = I$.
2. $T_t T_s = T_{t+s}$ for all $t, s \geq 0$.

A semigroup in $L(X)$ is **strongly continuous** (or a C_0-**semigroup**) if in addition

3. $\lim_{t \to s} T_t x = T_s x$ for all $x \in X, s \geq 0$.

A semigroup in $L(X)$ is **uniformly continuous** if in addition

3.’ $\lim_{t \to s} T_t x = T_s x$ for all $s \geq 0$ uniformly on X.

Example

The translation semigroup on $L^p(\mathbb{R}^+)$, $1 \leq p < \infty$, defined as $\{T_t\}_{t \geq 0}$ with $T_t f(s) := f(s + t)$ is a C_0-semigroup.
Theorem

\(\{ T \}_{t \geq 0} \) is a uniformly continuous semigroup if and only if there is \(A \in L(X) \) such that \(T_t = e^{tA}, t \geq 0 \).

Definition

The **infinitesimal generator** \(A : Dom(A) \subseteq X \rightarrow X \) of a semigroup \(\{ T \}_{t \geq 0} \) on \(X \), is the operator

\[
Ax := \lim_{h \rightarrow 0^+} \frac{T_hx - x}{h}
\]

defined for every \(x \) where this limit exists.

The generator of a \(C_0 \)-semigroup is a closed and densely defined linear operator that determines the semigroup uniquely.

Example

The translation semigroup on \(X = L^p(\mathbb{R}^+) \), \(1 \leq p < \infty \), has \(D \) as infinitesimal generator with \(Dom(D) = \{ u \in X : u \text{ absolutely continuous, and } u' \in X \} \).
Theorem

\{ T \}_{t \geq 0} \text{ is a uniformly continuous semigroup } \iff \text{ there is } A \in L(X) \text{ such that } T_t = e^{tA}, t \geq 0.

Definition

The infinitesimal generator \(A : \text{Dom}(A) \subseteq X \to X \) of a semigroup \(\{ T \}_{t \geq 0} \) on \(X \), is the operator

\[Ax := \lim_{h \to 0^+} \frac{T_h x - x}{h} \]

defined for every \(x \) where this limit exists.

The generator of a \(C_0 \)-semigroup is a closed and densely defined linear operator that determines the semigroup uniquely.

Example

The translation semigroup on \(X = L^p(\mathbb{R}^+) \), \(1 \leq p < \infty \), has \(D \) as infinitesimal generator with \(\text{Dom}(D) = \{ u \in X : u \text{ absolutely continuous, and } u' \in X \} \).
Theorem

\[\{ T \}_{t \geq 0} \text{ is a uniformly continuous semigroup } \iff \text{ there is } A \in L(X) \text{ such that } T_t = e^{tA}, \, t \geq 0. \]

Definition

The **infinitesimal generator** \(A : \text{Dom}(A) \subseteq X \to X \) of a semigroup \(\{ T \}_{t \geq 0} \) on \(X \), is the operator

\[
A x := \lim_{h \to 0^+} \frac{T_h x - x}{h}
\]

defined for every \(x \) where this limit exists.

The generator of a \(C_0 \)-semigroup is a closed and densely defined linear operator that determines the semigroup uniquely.

Example

The translation semigroup on \(X = L^p(\mathbb{R}^+) \), \(1 \leq p < \infty \), has \(D \) as infinitesimal generator with \(\text{Dom}(D) = \{ u \in X : u \text{ absolutely continuous, and } u' \in X \} \).
Theorem

\(\{ T \}_{t \geq 0} \) is a uniformly continuous semigroup \(\iff \) there is \(A \in L(X) \) such that \(T_t = e^{tA}, t \geq 0 \).

Definition

The **infinitesimal generator** \(A : Dom(A) \subseteq X \rightarrow X \) of a semigroup \(\{ T \}_{t \geq 0} \) on \(X \), is the operator

\[
Ax := \lim_{h \rightarrow 0^+} \frac{T_hx - x}{h}
\]

defined for every \(x \) where this limit exists.

The generator of a \(C_0 \)-semigroup is a closed and densely defined linear operator that determines the semigroup uniquely.

Example

The translation semigroup on \(X = L^p(\mathbb{R}^+) \), \(1 \leq p < \infty \), has \(D \) as infinitesimal generator with \(Dom(D) = \{ u \in X : u \text{ absolutely continuous, and } u' \in X \} \).
Hypercyclicity

Definition

\(\{ T_t \}_{t \geq 0} \) is **hypercyclic** if there exists some \(x \in X \) such that

\[
\text{Orb}(\{ T_t \}_{t \geq 0}, x) := \{ T_t x : t \geq 0 \} \text{ is dense in } X.
\]

Theorem

If there is a hypercyclic \(C_0 \)-semigroup on \(X \), then

- \(X \) must be infinite-dimensional, and
- \(X \) must be separable.

This notion coincides with transitivity (Birkhoff '20):

Definition

\(\{ T_t \}_{t \geq 0} \) is **transitive** if for any pair of nonempty open sets \(U, V \subset X \) there exists \(t_0 > 0 \) such that \(T_{t_0} U \cap V \neq \emptyset \).
Hypercyclicity

Definition

$\{T_t\}_{t \geq 0}$ is **hypercyclic** if there exists some $x \in X$ such that

$$\text{Orb}(\{T_t\}_{t \geq 0}, x) := \{ T_t x : t \geq 0 \}$$

is dense in X.

Theorem

If there is a hypercyclic C_0-semigroup on X, then

- X *must be infinite-dimensional, and*
- X *must be separable.*

This notion coincides with transitivity (Birkhoff '20):

Definition

$\{T_t\}_{t \geq 0}$ is **transitive** if for any pair of nonempty open sets $U, V \subset X$ there exists $t_0 > 0$ such that $T_{t_0} U \cap V \neq \emptyset$.
Introduction
Dynamics of the translation C_0-semigroup
Results on linear dynamics
Examples of distributionally chaotic C_0-semigroups

Hypercyclicity

Definition

$\{T_t\}_{t \geq 0}$ is **hypercyclic** if there exists some $x \in X$ such that

$$\text{Orb}(\{T_t\}_{t \geq 0}, x) := \{ T_t x : t \geq 0 \}$$

is dense in X.

Theorem

If there is a hypercyclic C_0-semigroup on X, then

- X **must be infinite-dimensional**, and
- X **must be separable**.

This notion coincides with transitivity (Birkhoff '20):

Definition

$\{T_t\}_{t \geq 0}$ is **transitive** if for any pair of nonempty open sets $U, V \subset X$ there exists $t_0 > 0$ such that $T_{t_0} U \cap V \neq \emptyset$.
Hypercyclicity

Definition

$\{T_t\}_{t \geq 0}$ is **hypercyclic** if there exists some $x \in X$ such that

$$\text{Orb}(\{T_t\}_{t \geq 0}, x) := \{T_t x : t \geq 0\}$$

is dense in X.

Theorem

If there is a hypercyclic C_0-semigroup on X, then

- X *must be infinite-dimensional, and*
- X *must be separable.*

This notion coincides with transitivity (Birkhoff '20):

Definition

$\{T_t\}_{t \geq 0}$ is **transitive** if for any pair of nonempty open sets $U, V \subset X$ there exists $t_0 > 0$ such that $T_{t_0} U \cap V \neq \emptyset$.
Hypercyclicity

Definition

\(\{ T_t \}_{t \geq 0} \) is **hypercyclic** if there exists some \(x \in X \) such that

\[
\text{Orb}(\{ T_t \}_{t \geq 0}, x) := \{ T_t x \ : \ t \geq 0 \} \text{ is dense in } X.
\]

Theorem

If there is a hypercyclic \(C_0 \)-semigroup on \(X \), then

- \(X \) **must be infinite-dimensional**, and
- \(X \) **must be separable**.

This notion coincides with transitivity (Birkhoff '20):

Definition

\(\{ T_t \}_{t \geq 0} \) is **transitive** if for any pair of nonempty open sets \(U, V \subset X \) there exists \(t_0 > 0 \) such that \(T_{t_0} U \cap V \neq \emptyset \).
Definition

$x \in X$ is a **periodic point** for $\{T_t\}_{t \geq 0}$ if there is some $t_0 > 0$ such that $T_{t_0}x = x$.

Definition

$\{T_t\}_{t \geq 0}$ is a **chaotic C_0-semigroup** in the sense of Devaney if

1. it is hypercyclic,
2. it has a dense set of periodic points, and
3. it has sensitive dependence on the initial conditions.

The third condition can be deduced from the first condition.
Definition

$x \in X$ is a **periodic point** for $\{T_t\}_{t \geq 0}$ if there is some $t_0 > 0$ such that $T_{t_0}x = x$.

Definition

$\{T_t\}_{t \geq 0}$ is a **chaotic** C_0-semigroup in the sense of **Devaney** if

1. it is hypercyclic,
2. it has a dense set of periodic points, and
3. it has sensitive dependence on the initial conditions.

The third condition can be deduced from the first condition.
Definition

$x \in X$ is a periodic point for $\{T_t\}_{t \geq 0}$ if there is some $t_0 > 0$ such that $T_{t_0}x = x$.

Definition

$\{T_t\}_{t \geq 0}$ is a chaotic C_0-semigroup in the sense of Devaney if

1. it is hypercyclic,
2. it has a dense set of periodic points, and
3. it has sensitive dependence on the initial conditions.

The third condition can be deduced from the first condition.
Definition

$x \in X$ is a **periodic point** for $\{ T_t \}_{t \geq 0}$ if there is some $t_0 > 0$ such that $T_{t_0} x = x$.

Definition

$\{ T_t \}_{t \geq 0}$ is a **chaotic** C_0-semigroup in the sense of **Devaney** if

1. it is hypercyclic,
2. it has a dense set of periodic points, and
3. it has sensitive dependence on the initial conditions.

The third condition can be deduced from the first condition.
Definition

$x \in X$ is a **periodic point** for \(\{ T_t \}_{t \geq 0} \) if there is some \(t_0 > 0 \) such that \(T_{t_0} x = x \).

Definition

\(\{ T_t \}_{t \geq 0} \) is a **chaotic** \(C_0 \)-semigroup in the sense of **Devaney** if

1. it is hypercyclic,
2. it has a dense set of periodic points, and
3. it has sensitive dependence on the initial conditions.

The third condition can be deduced from the first condition.
Definition

$x \in X$ is a **periodic point** for $\{T_t\}_{t \geq 0}$ if there is some $t_0 > 0$ such that $T_{t_0}x = x$.

Definition

$\{T_t\}_{t \geq 0}$ is a **chaotic C_0-semigroup** in the sense of Devaney if

1. it is hypercyclic,
2. it has a dense set of periodic points, and
3. it has sensitive dependence on the initial conditions.

The third condition can be deduced from the first condition.
Sensitive dependence on the initial conditions

Definition

\(\{ T_t \}_{t \geq 0} \) has **sensitive dependence on the initial conditions** if

\[
\exists \delta > 0 \forall x \in X, \varepsilon > 0
\]

\[
\exists y \in X, t_0 > 0 \text{ such that }
\]

\[
\| x - y \| < \varepsilon \& \| T_{t_0} x - T_{t_0} y \| > \delta
\]

Hypercyclicity \(\Rightarrow \) Sensitive dependence on the initial conditions

If \(\{ T_t \}_{t \geq 0} \) is hypercyclic, then \(\lim_{t \to \infty} ||T_t|| = \infty \).
Definition

\(\{ T_t \}_{t \geq 0} \) has **sensitive dependence on the initial conditions** if

\[
\exists \delta > 0 \forall x \in X, \epsilon > 0
\]

\[
\exists y \in X, t_0 > 0 \text{ such that }
\]

\[
||x - y|| < \epsilon \& ||T_{t_0} x - T_{t_0} y|| > \delta
\]

Hypercyclicity \(\Rightarrow \) Sensitive dependence on the initial conditions

If \(\{ T_t \}_{t \geq 0} \) is hypercyclic, then

\[
limit_{t \to \infty} ||T_t|| = \infty.
\]
Sensitive dependence on the initial conditions

Definition

\(\{ T_t \}_{t \geq 0} \) has **sensitive dependence on the initial conditions** if

\[\exists \delta > 0 \forall x \in X, \varepsilon > 0 \]

\[\exists y \in X, t_0 > 0 \text{ such that} \]

\[||x - y|| < \varepsilon \& ||T_{t_0}x - T_{t_0}y|| > \delta \]

Hypercyclicity \(\Rightarrow \) Sensitive dependence on the initial conditions

If \(\{ T_t \}_{t \geq 0} \) is hypercyclic, then \(\lim_{t \to \infty} ||T_t|| = \infty. \)
Introduction
Dynamics of the translation C_0-semigroup
Results on linear dynamics
Examples of distributionally chaotic C_0-semigroups

Sensitive dependence on the initial conditions

Definition

$\{T_t\}_{t \geq 0}$ has **sensitive dependence on the initial conditions** if

$$\exists \delta > 0 \forall x \in X, \epsilon > 0$$

$$\exists y \in X, t_0 > 0 \text{ such that}$$

$$||x - y|| < \epsilon \& ||T_{t_0}x - T_{t_0}y|| > \delta$$

Hypercyclicity \Rightarrow Sensitive dependence on the initial conditions

If $\{T_t\}_{t \geq 0}$ is hypercyclic, then $\lim_{t \to \infty} ||T_t|| = \infty$.
Definition

$\{T_t\}_{t \geq 0}$ has **sensitive dependence on the initial conditions** if

$$\exists \delta > 0 \forall x \in X, \varepsilon > 0$$

$$\exists y \in X, t_0 > 0 \text{ such that}$$

$$\|x - y\| < \varepsilon \& \|T_{t_0}x - T_{t_0}y\| > \delta$$

Hypercyclicity \Rightarrow **Sensitive dependence on the initial conditions**

If $\{T_t\}_{t \geq 0}$ is hypercyclic, then $\lim_{t \to \infty} \|T_t\| = \infty$.

J.A. Conejero 2012
Li-Yorke chaos

Can we find many of these points?

Definition

A C_0-semigroup $\{T_t\}_{t \geq 0}$ is said to be **Li-Yorke chaotic** if there exists an uncountable subset $\Gamma \subset X$, called the **scrambled** set, such that for every pair $x, y \in \Gamma$ of distinct points we have that

$$\liminf_{t \to \infty} \| T_t x - T_t y \| = 0 \text{ and } \limsup_{t \to \infty} \| T_t x - T_t y \| > 0.$$

Every hypercyclic C_0-semigroup is Li-Yorke chaotic

Fix a hypercyclic vector $x \in X$ for $\{T_t\}_{t \geq 0}$ and consider $\Gamma := \{ \lambda x ; |\lambda| \leq 1 \}$ as a scrambled set.
Can we find many of these points?

Definition

A C_0-semigroup $\{T_t\}_{t \geq 0}$ is said to be **Li-Yorke chaotic** if there exists an uncountable subset $\Gamma \subseteq X$, called the **scrambled** set, such that for every pair $x, y \in \Gamma$ of distinct points we have that

$$\liminf_{t \to \infty} \| T_t x - T_t y \| = 0 \quad \text{and} \quad \limsup_{t \to \infty} \| T_t x - T_t y \| > 0.$$

Every hypercyclic C_0-semigroup is Li-Yorke chaotic

Fix a hypercyclic vector $x \in X$ for $\{T_t\}_{t \geq 0}$ and consider $\Gamma := \{\lambda x ; |\lambda| \leq 1\}$ as a scrambled set.
Can we find many of these points?

Definition

A C_0-semigroup $\{T_t\}_{t \geq 0}$ is said to be **Li-Yorke chaotic** if there exists an uncountable subset $\Gamma \subset X$, called the **scrambled** set, such that for every pair $x, y \in \Gamma$ of distinct points we have that

$$\liminf_{t \to \infty} ||T_t x - T_t y|| = 0 \quad \text{and} \quad \limsup_{t \to \infty} ||T_t x - T_t y|| > 0.$$

Every hypercyclic C_0-semigroup is Li-Yorke chaotic

Fix a hypercyclic vector $x \in X$ for $\{T_t\}_{t \geq 0}$ and consider $\Gamma := \{\lambda x; |\lambda| \leq 1\}$ as a scrambled set.
Definition (Upper density)

Given a subset $B \subset \mathbb{R}^+_0$ we define its upper density as

$$\text{Dens}(B) := \limsup_{t \to \infty} \frac{\mu(B \cap [0, t])}{t},$$

where μ stands for the Lebesgue measure on \mathbb{R}^+_0.
Definition (Distributional Chaos)

A C_0-semigroup $\{T_t\}_{t \geq 0}$ in $L(X)$ with a scrambled set S is **distributionally chaotic** on S if there is some $\delta > 0$ such that for each $\epsilon > 0$ and each pair $x, y \in S$ of distinct points we have

$$\overline{\text{Dens}}(\{s \geq 0 : \|T_s x - T_s y\| > \delta\}) = 1 \quad \text{and} \quad (1)$$

$$\overline{\text{Dens}}(\{s \geq 0 : \|T_s x - T_s y\| < \epsilon\}) = 1. \quad (2)$$

If the scrambled set S is dense on X, then $\{T_t\}_{t \geq 0}$ is said to be **densely distributionally chaotic**.
Distributional chaos

Definition (Distributional Chaos)

A C_0-semigroup $\{T_t\}_{t \geq 0}$ in $L(X)$ with a scrambled set S is distributionally chaotic on S if there is some $\delta > 0$ such that for each $\varepsilon > 0$ and each pair $x, y \in S$ of distinct points we have

\[
\overline{\text{Dens}}(\{s \geq 0 : \|T_s x - T_s y\| > \delta\}) = 1 \quad \text{and} \quad \overline{\text{Dens}}(\{s \geq 0 : \|T_s x - T_s y\| < \varepsilon\}) = 1.
\]

If the scrambled set S is dense on X, then $\{T_t\}_{t \geq 0}$ is said to be densely distributionally chaotic.
Definition (Distributional Chaos)

A C_0-semigroup $\{T_t\}_{t \geq 0}$ in $L(X)$ with a scrambled set S is distributionally chaotic on S if there is some $\delta > 0$ such that for each $\varepsilon > 0$ and each pair $x, y \in S$ of distinct points we have

$$\overline{\text{Dens}}(\{s \geq 0 : ||T_s x - T_s y|| > \delta\}) = 1 \quad \text{and}$$

$$\overline{\text{Dens}}(\{s \geq 0 : ||T_s x - T_s y|| < \varepsilon\}) = 1.$$ \hspace{1cm} (1)

If the scrambled set S is dense on X, then $\{T_t\}_{t \geq 0}$ is said to be densely distributionally chaotic.
Distributional chaos consists on the existence of certain $\delta > 0$ such that for every pair $x, y \in S$ and for all $\varepsilon > 0$,

there are $m, n \in \mathbb{R}^+$ large enough such that for every $x, y \in S$, $x \neq y$ such that

1. the measure of the set of indexes in $[0, m]$ such that $||T_t x - T_t y|| \geq \delta$ is greater than $(1 - \varepsilon)m$

2. the measure of the set of indexes in $[0, n]$ such that $||T_t x - T_t y|| < \varepsilon$ is greater than $(1 - \varepsilon)n$
Distributional chaos consists on the existence of certain $\delta > 0$ such that for every pair $x, y \in S$ and for all $\varepsilon > 0$,

there are $m, n \in \mathbb{R}^+$ large enough such that for every $x, y \in S$, $x \neq y$ such that

1. the measure of the set of indexes in $[0, m]$ such that $||T_t x - T_t y|| \geq \delta$ is greater than $(1 - \varepsilon)m$
2. the measure of the set of indexes in $[0, n]$ such that $||T_t x - T_t y|| < \varepsilon$ is greater than $(1 - \varepsilon)n$
Distributional chaos consists on the existence of certain $\delta > 0$ such that for every pair $x, y \in S$ and for all $\epsilon > 0$,

there are $m, n \in \mathbb{R}^+$ large enough such that for every $x, y \in S$, $x \neq y$ such that

1. the measure of the set of indexes in $[0, m]$ such that $\|T_t x - T_t y\| \geq \delta$ is greater than $(1 - \epsilon)m$

2. the measure of the set of indexes in $[0, n]$ such that $\|T_t x - T_t y\| < \epsilon$ is greater than $(1 - \epsilon)n$
Distributional chaos consists on the existence of certain $\delta > 0$ such that for every pair $x, y \in S$ and for all $\varepsilon > 0$,

there are $m, n \in \mathbb{R}^+$ large enough such that for every $x, y \in S$, $x \neq y$ such that

1. the measure of the set of indexes in $[0, m]$ such that $\| T_t x - T_t y \| \geq \delta$ is greater than $(1 - \varepsilon)m$
2. the measure of the set of indexes in $[0, n]$ such that $\| T_t x - T_t y \| < \varepsilon$ is greater than $(1 - \varepsilon)n$
Definition (Distributional irregular vector)

Taking \(y = 0 \), if there is some \(x \in X \) such that these conditions hold for any \(\delta, \epsilon > 0 \),

\[
\text{Dens}\left(\{s \geq 0 : \|T_s x - T_s y\| > \delta\}\right) = 1 \quad \text{and} \quad \text{Dens}\left(\{s \geq 0 : \|T_s x - T_s y\| < \epsilon\}\right) = 1.
\]

then the vector \(x \in X \) is said to be distributionally irregular.
Definition (Distributional irregular vector)

Taking $y = 0$, if there is some $x \in X$ such that these conditions hold for any $\delta, \varepsilon > 0$,

$$\text{Dens}(\{ s \geq 0 : \| T_s x - T_s y \| > \delta \}) = 1 \quad \text{and} \quad \text{Dens}(\{ s \geq 0 : \| T_s x - T_s y \| < \varepsilon \}) = 1.$$ \hfill (3)

then the vector $x \in X$ is said to be distributionally irregular.

$$\text{Dens}(\{ s \geq 0 : \| T_s x - T_s y \| > \delta \}) = 1 \quad \text{and} \quad \text{Dens}(\{ s \geq 0 : \| T_s x - T_s y \| < \varepsilon \}) = 1.$$ \hfill (4)
Definition (Distributional irregular vector)

Taking \(y = 0 \), if there is some \(x \in X \) such that these conditions hold for any \(\delta, \varepsilon > 0 \),

\[
\overline{\text{Dens}}(\{ s \geq 0 : \| T_s x - T_s y \| > \delta \}) = 1 \quad \text{and} \quad \overline{\text{Dens}}(\{ s \geq 0 : \| T_s x - T_s y \| < \varepsilon \}) = 1.
\]

then the vector \(x \in X \) is said to be **distributionally irregular**.
The operator case

Hypercyclicity and Devaney chaos have been intensively studied during the last 20 years.

Distributional chaos, Li-Yorke chaos and distributionally irregular vectors have been introduced for the operator case by

- Martínez, Oprocha & Peris in JMAA (2009).
- Oprocha in TAMS (2009).
- Bermúdez, Bonilla, Martínez & Peris In JMAA (2011).
- Bermúdez, Bonilla, Müller & Peris (Preprint).

Here we will treat them for C_0-semigroups.
Hypercyclicity and Devaney chaos have been intensively studied during the last 20 years.

Distributional chaos, Li-Yorke chaos and distributionally irregular vectors have been introduced for the operator case by

- Martínez, Oprocha & Peris in JMAA (2009).
- Oprocha in TAMS (2009).
- Bermúdez, Bonilla, Martínez & Peris In JMAA (2011).
- Bermúdez, Bonilla, Müller & Peris (Preprint).

Here we will treat them for C_0-semigroups.
The dynamics of the translation C_0-semigroup

Consider the space $L^p_\rho(\mathbb{R}^+)$, $1 \leq p < \infty$.

Rolewicz’69
If $\rho(s) := a^{-s}$, $a > 1$, then the translation C_0-semigroup is hypercyclic.

Desch, Schappacher & Webb ’97
\[\liminf_{s \to \infty} \rho(s) = 0 \iff \text{Hypercyclicity.} \]

deLaubenfels & Emamirad ’01
\[\int_0^\infty \rho(s) < \infty \iff \text{Devaney chaos.} \]

Barrachina & Peris ’12
If there is $B \subset \mathbb{R}$ has positive upper density and $\int_B \rho(s) < \infty \Rightarrow \text{Distributional chaos.}$

Distributionally chaos does not imply Devaney chaos nor hypercyclicity.
The dynamics of the translation C_0-semigroup

Consider the space $L^p_\rho(\mathbb{R}^+), ~1 \leq p < \infty$.

<table>
<thead>
<tr>
<th>Source</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rolewicz'69</td>
<td>If $\rho(s) := a^{-s}, a > 1$, then the translation C_0-semigroup is hypercyclic.</td>
</tr>
<tr>
<td>Desch, Schappacher & Webb '97</td>
<td>$\liminf_{s \to \infty} \rho(s) = 0 \iff$ Hypercyclicity.</td>
</tr>
<tr>
<td>deLaubenfels & Emamirad '01</td>
<td>$\int_0^\infty \rho(s) < \infty \iff$ Devaney chaos.</td>
</tr>
<tr>
<td>Barrachina & Peris '12</td>
<td>If there is $B \subset \mathbb{R}$ has positive upper density and $\int_B \rho(s) < \infty \Rightarrow$ Distributional chaos.</td>
</tr>
</tbody>
</table>

Distributionally chaos does not imply Devaney chaos nor hypercyclicity.
Consider the space $L^p_{\rho}(\mathbb{R}^+)$, $1 \leq p < \infty$.

Rolewicz’69

If $\rho(s) := a^{-s}$, $a > 1$, then the translation C_0-semigroup is hypercyclic.

Desch, Schappacher & Webb ’97

$$\liminf_{s \to \infty} \rho(s) = 0 \iff \text{Hypercycllicity.}$$

deLaubenfels & Emamirad ’01

$$\int_0^{\infty} \rho(s) < \infty \iff \text{Devaney chaos.}$$

Barrachina & Peris ’12

If there is $B \subset \mathbb{R}$ has positive upper density and $\int_B \rho(s) < \infty \Rightarrow \text{Distributional chaos.}$

Distributionally chaos does not imply Devaney chaos nor hypercyclicity.

J.A. Conejero 2012
The dynamics of the translation C_0-semigroup

Consider the space $L_p^\rho(\mathbb{R}^+), 1 \leq p < \infty$.

Rolewicz’69

If $\rho(s) := a^{-s}, a > 1$, then the translation C_0-semigroup is hypercyclic.

Desch, Schappacher & Webb ’97

$\liminf_{s \to \infty} \rho(s) = 0 \iff$ Hypercyclicality.

deLaubenfels & Emamirad ’01

$\int_0^\infty \rho(s) < \infty \iff$ Devaney chaos.

Barrachina & Peris ’12

If there is $B \subset \mathbb{R}$ has positive upper density and $\int_B \rho(s) < \infty \Rightarrow$ Distributional chaos.

Distributionally chaos does not imply Devaney chaos nor hypercyclicity.
The dynamics of the translation \(C_0 \)-semigroup

Consider the space \(L^p_\rho(\mathbb{R}^+) \), \(1 \leq p < \infty \).

Rolewicz’69

If \(\rho(s) := a^{-s}, a > 1 \), then the translation \(C_0 \)-semigroup is hypercyclic.

Desch, Schappacher & Webb ’97

\[\liminf_{s \to \infty} \rho(s) = 0 \iff \text{Hypercyclicity.} \]

deLaubenfels & Emamirad ’01

\[\int_0^\infty \rho(s) < \infty \iff \text{Devaney chaos.} \]

Barrachina & Peris ’12

If there is \(B \subset \mathbb{R} \) has positive upper density and \(\int_B \rho(s) < \infty \) \(\Rightarrow \) Distributional chaos.

Distributionally chaos does not imply Devaney chaos nor hypercyclicity.
The dynamics of the translation C_0-semigroup

Consider the space $L_p^\rho(\mathbb{R}^+)\text{, } 1 \leq p < \infty$.

Rolewicz’69
If $\rho(s) := a^{-s}, a > 1$, then the translation C_0-semigroup is hypercyclic.

Desch, Schappacher & Webb ’97
$\liminf_{s \to \infty} \rho(s) = 0 \iff$ Hypercyclicity.

deLaubenfels & Emamirad ’01
$\int_0^\infty \rho(s) < \infty \iff$ Devaney chaos.

Barrachina & Peris ’12
If there is $B \subset \mathbb{R}$ has positive upper density and $\int_B \rho(s) < \infty \Rightarrow$ Distributional chaos.

Distributionally chaos does not imply Devaney chaos nor hypercyclicity.
Theorem (Conejero, Müller & Peris '07)

If there is a hypercyclic vector $x \in X$ for $\{T_t\}_{t \geq 0}$, then x is a hypercyclic vector for any single operator T_{t_0} with $t_0 > 0$.

$$\{T_t x : t \geq 0\} \text{ is dense in } X \iff \{T_{nt_0} x : n \in \mathbb{N}\} \text{ is dense in } X \text{ for any } t_0 > 0.$$

This extends a former result by Oxtoby & Ulam '41.
Theorem (Conejero, Müller & Peris ’07)

If there is a hypercyclic vector \(x \in X \) for \(\{ T_t \}_{t \geq 0} \), then \(x \) is a hypercyclic vector for any single operator \(T_{t_0} \) with \(t_0 > 0 \).

\[
\{ T_t x : t \geq 0 \} \text{ is dense in } X \iff \{ T_{nt_0} x : n \in \mathbb{N} \} \text{ is dense in } X \text{ for any } t_0 > 0.
\]

This extends a former result by Oxtoby & Ulam ’41.
Theorem (Conejero, Müller & Peris '07)

If there is a hypercyclic vector \(x \in X \) for \(\{ T_t \}_{t \geq 0} \), then \(x \) is a hypercyclic vector for any single operator \(T_{t_0} \) with \(t_0 > 0 \).

\[
\{ T_t x : t \geq 0 \} \text{ is dense in } X \Leftrightarrow \{ T_{nt_0} x : n \in \mathbb{N} \} \text{ is dense in } X \text{ for any } t_0 > 0.
\]

This extends a former result by Oxtoby & Ulam '41.
This is not the general situation for Devaney chaotic C_0-semigroups:

Theorem (Bayart & Bermúdez ’09)

There are examples of Devaney chaotic C_0-semigroups such that no operator $t_0 > 0$ is Devaney chaos.

Based on a result by Conejero, Martínez & Peris ’12 on the existence of certain chaotic operators with a prescribed set of periods we have:

Theorem (Muñoz-Fernández, Seoane-Sepúlveda, Weber ’12)

Let $c > 0$. Then there exists a uniformly continuous, chaotic semigroup $\{T_t\}_{t \geq 0}$ such that the set of periods of the semigroup is $[c, \infty)$.

For which subsets $P \subset (0, \infty)$ there exists a chaotic C_0-semigroup whose set of periods is P?
This is not the general situation for Devaney chaotic C_0-semigroups:

Theorem (Bayart & Bermúdez ’09)

There are examples of Devaney chaotic C_0-semigroups such that no operator $t_0 > 0$ is Devaney chaos.

Based on a result by Conejero, Martínez & Peris ’12 on the existence of certain chaotic operators with a prescribed set of periods we have:

Theorem (Muñoz-Fernández, Seoane-Sepúlveda, Weber ’12)

*Let $c > 0$. Then there exists a uniformly continuous, chaotic semigroup $\{T_t\}_{t \geq 0}$ such that the set of periods of the semigroup is $[c, \infty)$.***

For which subsets $P \subset (0, \infty)$ there exists a chaotic C_0-semigroup whose set of periods is P?
This is not the general situation for Devaney chaotic C_0-semigroups:

Theorem (Bayart & Bermúdez ’09)

There are examples of Devaney chaotic C_0-semigroups such that no operator $t_0 > 0$ is Devaney chaos.

Based on a result by Conejero, Martínez & Peris ’12 on the existence of certain chaotic operators with a prescribed set of periods we have:

Theorem (Muñoz-Fernández, Seoane-Sepúlveda, Weber ’12)

*Let $c > 0$. Then there exists a uniformly continuous, chaotic semigroup $\{T_t\}_{t \geq 0}$ such that the set of periods of the semigroup is $[c, \infty)$.***

For which subsets $P \subset (0, \infty)$ there exists a chaotic C_0-semigroup whose set of periods is P?
This is not the general situation for Devaney chaotic C_0-semigroups:

Theorem (Bayart & Bermúdez ’09)

There are examples of Devaney chaotic C_0-semigroups such that no operator $t_0 > 0$ is Devaney chaos.

Based on a result by Conejero, Martínez & Peris ’12 on the existence of certain chaotic operators with a prescribed set of periods we have:

Theorem (Muñoz-Fernández, Seoane-Sepúlveda, Weber ’12)

Let $c > 0$. Then there exists a uniformly continuous, chaotic semigroup $\{T_t\}_{t \geq 0}$ such that the set of periods of the semigroup is $[c, \infty)$.

For which subsets $P \subset (0, \infty)$ there exists a chaotic C_0-semigroup whose set of periods is P?
Discrete & continuous dynamics

What is happening with distributional chaos?

Theorem (Albanese, Barrachina, Mangino & Peris '12)

- \(\{ T_t \}_{t \geq 0} \) is distributionally chaotic.
- \(T_t \) is distributionally chaotic for any \(t > 0 \).
- \(T_t \) is distributionally chaotic for some \(t > 0 \).

The definition of distributional chaos for an operator \(T \in L(X) \) is similar: we just have to replace the operators \(T_s \) by the powers of a given operator \(T \) and the upper densities in \(\mathbb{R}^+ \) by upper densities in \(\mathbb{N} \).

Albanese, Barrachina, Mangino & Peris '12

For \(C_0 \)-semigroups it can be seen that distributional chaos coincides with the existence of a distributional irregular vector.
Introduction
Dynamics of the translation C_0-semigroup

Results on linear dynamics
Examples of distributionally chaotic C_0-semigroups

Discrete & continuous dynamics

What is happening with distributional chaos?

Theorem (Albanese, Barrachina, Mangino & Peris ’12)

- $\{T_t\}_{t\geq 0}$ is distributionally chaotic.
- T_t is distributionally chaotic for any $t > 0$.
- T_t is distributionally chaotic for some $t > 0$.

The definition of distributional chaos for an operator $T \in L(X)$ is similar: we just have to replace the operators T_s by the powers of a given operator T and the upper densities in \mathbb{R}^+_0 by upper densities in \mathbb{N}.

Albanese, Barrachina, Mangino & Peris ’12

For C_0-semigroups it can be seen that distributional chaos coincides with the existence of a distributional irregular vector.
What is happening with distributional chaos?

Theorem (Albanese, Barrachina, Mangino & Peris ’12)

- \(\{ T_t \}_{t \geq 0} \) is distributionally chaotic.
- \(T_t \) is distributionally chaotic for any \(t > 0 \).
- \(T_t \) is distributionally chaotic for some \(t > 0 \).

The definition of distributional chaos for an operator \(T \in L(X) \) is similar: we just have to replace the operators \(T_s \) by the powers of a given operator \(T \) and the upper densities in \(\mathbb{R}^+_0 \) by upper densities in \(\mathbb{N} \).

For \(C_0 \)-semigroups it can be seen that distributional chaos coincides with the existence of a distributional irregular vector.
What is happening with distributional chaos?

Theorem (Albanese, Barrachina, Mangino & Peris ’12)

- \(\{ T_t \}_{t \geq 0} \) is distributionally chaotic.
- \(T_t \) is distributionally chaotic for any \(t > 0 \).
- \(T_t \) is distributionally chaotic for some \(t > 0 \).

The definition of distributional chaos for an operator \(T \in L(X) \) is similar: we just have to replace the operators \(T_s \) by the powers of a given operator \(T \) and the upper densities in \(\mathbb{R}^+_0 \) by upper densities in \(\mathbb{N} \).

Albanese, Barrachina, Mangino & Peris ’12

For \(C_0 \)-semigroups it can be seen that distributional chaos coincides with the existence of a distributional irregular vector.
Introduction
Dynamics of the translation C_0-semigroup
Results on linear dynamics
Examples of distributionally chaotic C_0-semigroups

Discrete & continuous dynamics

What is happening with distributional chaos?

Theorem (Albanese, Barrachina, Mangino & Peris ’12)

- $\{T_t\}_{t \geq 0}$ is distributionally chaotic.
- T_t is distributionally chaotic for any $t > 0$.
- T_t is distributionally chaotic for some $t > 0$.

The definition of distributional chaos for an operator $T \in L(X)$ is similar: we just have to replace the operators T_s by the powers of a given operator T and the upper densities in \mathbb{R}_0^+ by upper densities in \mathbb{N}.

Albanese, Barrachina, Mangino & Peris ’12

For C_0-semigroups it can be seen that distributional chaos coincides with the existence of a distributional irregular vector.
Introduction

Dynamics of the translation C_0-semigroup

Results on linear dynamics

Examples of distributionally chaotic C_0-semigroups

Discrete & continuous dynamics

What is happening with distributional chaos?

Theorem (Albanese, Barrachina, Mangino & Peris ’12)

- $\{T_t\}_{t\geq 0}$ is distributionally chaotic.
- T_t is distributionally chaotic for any $t > 0$.
- T_t is distributionally chaotic for some $t > 0$.

The definition of distributional chaos for an operator $T \in L(X)$ is similar: we just have to replace the operators T_s by the powers of a given operator T and the upper densities in \mathbb{R}_0^+ by upper densities in \mathbb{N}.

Albanese, Barrachina, Mangino & Peris ’12

For C_0-semigroups it can be seen that distributional chaos coincides with the existence of a distributional irregular vector.
Definition (Upper density)

Given a subset $B \subset \mathbb{N}$ we define its upper density as

$$\overline{\text{Dens}}(B) := \limsup_{n \to \infty} \frac{|B \cap [1, n]|}{n},$$

where $|\cdot|$ stands for the counting measure on \mathbb{N}.
How to determine Devaney chaos?

Kitai '82, Gethner & Shapiro'91, Bès, Peris '99

Godefroy & Shapiro '91 Bernal-González '99

Theorem (Eigenvalue criterion for Devaney chaos)

Suppose that the sets

\[X_0 := \text{span}\{x \in X : \lambda \text{ with } \Re(\lambda) < 0, T_t x = e^{\lambda t} x, \forall t \geq 0\}, \]

\[X_1 := \lambda \text{ with } \Re(\lambda) > 0, T_t x = e^{\lambda t} x, \forall t \geq 0\}, \]

\[X_p := \text{span}\{x \in X : \exists \lambda \in \mathbb{Q}, T_t x = e^{\pi \lambda t} x, \forall t \geq 0\} \]

are dense in \(X \), then \(\{T_t\}_{t \geq 0} \) is Devaney chaotic.
How to determine Devaney chaos?

Kitai ’82, Gethner & Shapiro’91, Bès, Peris ’99

Godefroy & Shapiro ’91 Bernal-González ’99

Theorem (Eigenvalue criterion for Devaney chaos)

Suppose that the sets

\[X_0 := \text{span}\{x \in X : \lambda \text{ with } \Re(\lambda) < 0, T_t x = e^{\lambda t} x, \forall t \geq 0\}, \]
\[X_1 := \lambda \text{ with } \Re(\lambda) > 0, T_t x = e^{\lambda t} x, \forall t \geq 0\}, \]
\[X_p := \text{span}\{x \in X : \exists \lambda \in \mathbb{Q}, T_t x = e^{\pi \lambda it} x, \forall t \geq 0\} \]

are dense in \(X \), then \(\{T_t\}_{t \geq 0} \) is Devaney chaotic.
How to determine Devaney chaos?

Kitai '82, Gethner & Shapiro'91, Bès, Peris '99

Godefroy & Shapiro '91 Bernal-González '99

Theorem (Eigenvalue criterion for Devaney chaos)

Suppose that the sets

\[X_0 := \text{span}\{x \in X : \lambda \text{ with } \Re(\lambda) < 0, T_t x = e^{\lambda t} x, \forall t \geq 0\}, \]
\[X_1 := \{\lambda \text{ with } \Re(\lambda) > 0, T_t x = e^{\lambda t} x, \forall t \geq 0\}, \]
\[X_p := \text{span}\{x \in X : \exists \lambda \in \mathbb{Q}, T_t x = e^{\pi \lambda i t} x, \forall t \geq 0\} \]

are dense in \(X\), then \(\{T_t\}_{t \geq 0}\) is Devaney chaotic.
How to determine Devaney chaos?

Kitai '82, Gethner & Shapiro'91, Bès, Peris '99
Godefroy & Shapiro '91 Bernal-González '99

Theorem (Eigenvalue criterion for Devaney chaos)

Suppose that the sets

\[X_0 := \text{span}\{ x \in X : \lambda \text{ with } \Re(\lambda) < 0, T_t x = e^{\lambda t} x, \forall t \geq 0 \}, \]

\[X_1 := \lambda \text{ with } \Re(\lambda) > 0, T_t x = e^{\lambda t} x, \forall t \geq 0 \}, \]

\[X_p := \text{span}\{ x \in X : \exists \lambda \in \mathbb{Q}, T_t x = e^{\pi \lambda t} x, \forall t \geq 0 \} \]

are dense in \(X \), then \(\{ T_t \}_{t \geq 0} \) is Devaney chaotic.
How to determine Devaney chaos?

Kitai '82, Gethner & Shapiro '91, Bès, Peris '99

Godefroy & Shapiro '91 Bernal-González '99

Theorem (Eigenvalue criterion for Devaney chaos)

Suppose that the sets

\[X_0 := \text{span}\{x \in X : \lambda \text{ with } \Re(\lambda) < 0, T_t x = e^{\lambda t} x, \forall t \geq 0\}, \]
\[X_1 := \lambda \text{ with } \Re(\lambda) > 0, T_t x = e^{\lambda t} x, \forall t \geq 0\}, \]
\[X_p := \text{span}\{x \in X : \exists \lambda \in \mathbb{Q}, T_t x = e^{\pi \lambda it} x, \forall t \geq 0\} \]

are dense in \(X \), then \(\{T_t\}_{t \geq 0} \) is Devaney chaotic.
How to determine Devaney chaos?

Last result can be expressed in terms of the infinitesimal generator.

Theorem (Eigenvalue criterion for Devaney chaos)

Suppose that the sets

\[X_0 := \text{span}\{x \in X : \exists \lambda \text{ with } \Re(\lambda) < 0, Ax = \lambda x\}, \]
\[X_1 := \text{span}\{x \in X : \exists \lambda \text{ with } \Re(\lambda) > 0, Ax = \lambda x\}, \]
\[X_p := \text{span}\{x \in X : \exists \lambda \in i\mathbb{Q}, Ax = \lambda x\} \]

are dense in \(X \), then \(\{T_t\}_{t \geq 0} \) is Devaney chaotic.
How to determine Devaney chaos?

Last result can be expressed in terms of the infinitesimal generator.

Theorem (Eigenvalue criterion for Devaney chaos)

Suppose that the sets

\[
X_0 := \text{span}\{x \in X : \exists \lambda \text{ with } \Re(\lambda) < 0, Ax = \lambda x\},
\]

\[
X_1 := \text{span}\{x \in X : \exists \lambda \text{ with } \Re(\lambda) > 0, Ax = \lambda x\},
\]

\[
X_p := \text{span}\{x \in X : \exists \lambda \in i\mathbb{Q}, Ax = \lambda x\}
\]

are dense in \(X \), then \(\{T_t\}_{t \geq 0} \) is Devaney chaotic.
How to determine Devaney chaos?

Last result can be expressed in terms of the infinitesimal generator.

Theorem (Eigenvalue criterion for Devaney chaos)

Suppose that the sets

\[X_0 := \text{span}\{x \in X : \exists \lambda \text{ with } \Re(\lambda) < 0, Ax = \lambda x\}, \]

\[X_1 := \text{span}\{x \in X : \exists \lambda \text{ with } \Re(\lambda) > 0, Ax = \lambda x\}, \]

\[X_p := \text{span}\{x \in X : \exists \lambda \in i\mathbb{Q}, Ax = \lambda x\} \]

are dense in \(X \), then \(\{T_t\}_{t \geq 0} \) is Devaney chaotic.
How to determine distributional chaotic?

Theorem (Albanese, Barrachina, Mangino & Peris ’12)

If there exist a dense subset $X_0 \subset X$ with $\lim_{t \to \infty} T_t x = 0$ for each $x \in X_0$, and a measurable subset $B \subset \mathbb{R}_0^+$ with $\text{Dens}(B) = 1$. If either

1. $\int_B \frac{1}{\|T_t\|} < \infty$ or
2. $\int_B \frac{1}{\|T_t\|^2} < \infty$ when X is a complex Hilbert space,

then it is distributionally chaotic.

Furthermore, $\{T_t\}_{t \geq 0}$ has a dense manifold whose non-null elements zero vectors are distributionally irregular vectors (it is said to have a dense distributionally irregular manifold).
Introduction
Dynamics of the translation C_0-semigroup
Results on linear dynamics
Examples of distributionally chaotic C_0-semigroups

How to determine distributional chaos?

Theorem (Albanese, Barrachina, Mangino & Peris '12)

If there exist a dense subset $X_0 \subset X$ with $\lim_{t \to \infty} T_t x = 0$ for each $x \in X_0$, and a measurable subset $B \subset \mathbb{R}_0^+$ with $\text{Dens}(B) = 1$. If either

1. $\int_B \frac{1}{\|T_t\|} < \infty$ or

2. $\int_B \frac{1}{\|T_t\|^2} < \infty$ when X is a complex Hilbert space,

then it is distributionally chaotic.

Furthermore, $\{T_t\}_{t \geq 0}$ has a dense manifold whose non-null elements zero vectors are distributionally irregular vectors (it is said to have a dense distributionally irregular manifold).
How to determine distributional chaos?

Theorem (Albanese, Barrachina, Mangino & Peris '12)

*If there exist a dense subset $X_0 \subset X$ with $\lim_{t \to \infty} T_t x = 0$ for each $x \in X_0$, and a measurable subset $B \subset \mathbb{R}^+_0$ with $\text{Dens}(B) = 1$. If either

1. $\int_B \frac{1}{\|T_t\|} < \infty$ or

2. $\int_B \frac{1}{\|T_t\|^2} < \infty$ when X is a complex Hilbert space,*

then it is distributionally chaotic.

Furthermore, $\{T_t\}_{t \geq 0}$ has a dense manifold whose non-null elements zero vectors are distributionally irregular vectors (it is said to have a dense distributionally irregular manifold).
How to determine distributional chaos?

Theorem (Albanese, Barrachina, Mangino & Peris ’12)

If there exist a dense subset $X_0 \subset X$ with $\lim_{t \to \infty} T_t x = 0$ for each $x \in X_0$, and a measurable subset $B \subset \mathbb{R}^+_0$ with $\overline{\text{Dens}}(B) = 1$. If either

1. $\int_B \frac{1}{\|T_t\|} < \infty$ or
2. $\int_B \frac{1}{\|T_t\|^2} < \infty$ when X is a complex Hilbert space,

then it is distributionally chaotic.

Furthermore, $\{T_t\}_{t \geq 0}$ has a dense manifold whose non-null elements zero vectors are distributionally irregular vectors (it is said to have a dense distributionally irregular manifold).
How to determine distributional chaos?

Theorem

If the following conditions hold:

1. There exists a dense subset $X_0 \subset X$ with $\lim_{t \to \infty} T_t x = 0$, for each $x \in X_0$, and
2. there exists some $\lambda \in \sigma_p(A)$ with $\Re(\lambda) > 0$,

then $\{T_t\}_{t \geq 0}$ is distributionally chaotic. Furthermore, it admits a dense distributionally irregular manifold.

Remark

If a C_0-semigroup verifies the eigenvalue criterion, then it is Devaney chaotic and distributionally chaotic. Furthermore, it admits a dense distributionally irregular manifold.
How to determine distributional chaos?

Theorem

If the following conditions hold:

1. There exists a dense subset $X_0 \subset X$ with $\lim_{t \to \infty} T_t x = 0$, for each $x \in X_0$, and
2. there exists some $\lambda \in \sigma_p(A)$ with $\Re(\lambda) > 0$,

then $\{T_t\}_{t \geq 0}$ is distributionally chaotic. Furthermore, it admits a dense distributionally irregular manifold.

Remark

If a C_0-semigroup verifies the eigenvalue criterion, then it is Devaney chaotic and distributionally chaotic. Furthermore, it admits a dense distributionally irregular manifold.
How to determine distributional chaos?

Theorem

If the following conditions hold:

1. There exists a dense subset $X_0 \subset X$ with $\lim_{t \to \infty} T_t x = 0$, for each $x \in X_0$, and

2. there exists some $\lambda \in \sigma_p(A)$ with $\Re(\lambda) > 0$,

then $\{T_t\}_{t \geq 0}$ is distributionally chaotic. Furthermore, it admits a dense distributionally irregular manifold.

Remark

If a C_0-semigroup verifies the eigenvalue criterion, then it is Devaney chaotic and distributionally chaotic. Furthermore, it admits a dense distributionally irregular manifold.
A pair of examples:

Desch, Schappacher & Webb '97

Consider the following PDE in $L^2(\mathbb{R}^+, \mathbb{C})$:

\[u_t(x, t) = au_{x,x}(x, t) + bu_x(x, t) + cu(x, t), \]
\[u(0, t) = 0 \text{ for } t \geq 0, \]
\[u(x, 0) = f(x) \text{ for } x \geq 0, \text{ with some } f \in X \]

$Au := au_{x,x}(x, t) + bu_x(x, t) + cu(x, t)$,

and $a, b, c > 0$ with $c < b^2/2a < 1$.

The solution semigroup (which has A as infinitesimal generator) is Devaney chaotic, and it is also distributionally chaotic.
A pair of examples:

Desch, Schappacher & Webb '97

Consider the following PDE in $L^2(\mathbb{R}^+, \mathbb{C})$:

$$u_t(x,t) = a u_{xx}(x,t) + b u_x(x,t) + c u(x,t),$$

$$u(0,t) = 0 \text{ for } t \geq 0,$$

$$u(x,0) = f(x) \text{ for } x \geq 0, \text{ with some } f \in X$$

$$Au := a u_{xx}(x,t) + b u_x(x,t) + c u(x,t),$$

and $a, b, c > 0$ with $c < b^2/2a < 1$.

The solution semigroup (which has A as infinitesimal generator) is Devaney chaotic, and it is also distributionally chaotic.
A pair of examples:

Desch, Schappacher & Webb '97

Consider the following PDE in $L^2(\mathbb{R}^+, \mathbb{C})$:

\[u_t(x, t) = au_{xx}(x, t) + bu_x(x, t) + cu(x, t), \]
\[u(0, t) = 0 \text{ for } t \geq 0, \]
\[u(x, 0) = f(x) \text{ for } x \geq 0, \text{ with some } f \in X \]

\[Au := au_{xx}(x, t) + bu_x(x, t) + cu(x, t), \]

and $a, b, c > 0$ with $c < b^2/2a < 1$.

The solution semigroup (which has A as infinitesimal generator) is Devaney chaotic, and it is also distributionally chaotic.
A pair of examples:

Desch, Schappacher & Webb '97

Consider the following PDE in $L^2(\mathbb{R}^+, \mathbb{C})$:

$$u_t(x, t) = au_{xx}(x, t) + bu_x(x, t) + cu(x, t),$$
$$u(0, t) = 0 \text{ for } t \geq 0,$$
$$u(x, 0) = f(x) \text{ for } x \geq 0, \text{ with some } f \in X$$

$Au := au_{xx}(x, t) + bu_x(x, t) + cu(x, t),$

and $a, b, c > 0$ with $c < b^2/2a < 1$.

The solution semigroup (which has A as infinitesimal generator) is Devaney chaotic, and it is also distributionally chaotic.
Consider the following PDE in $L^2(\mathbb{R}^+, \mathbb{C})$:

$$u_t(x, t) = u_{x,x}(x, t) + bu_x(x, t) + cu(x, t),$$

$$u(0, t) = 0 \text{ for } t \geq 0,$$

$$u(x, 0) = f(x) \text{ for } x \geq 0, \text{ with some } f \in X$$

$Au := u_{x,x}(x, t) + bu_x(x, t) + cu(x, t),$

and $b > 0$ with $c > b/2$.

The solution semigroup (which has A as infinitesimal generator) is Devaney chaotic, and it is also distributionally chaotic.
Conejero & Mangino '10

Consider the following PDE in $L^2(\mathbb{R}^+, \mathbb{C})$:

\[
\begin{align*}
 u_t(x, t) &= u_{xx}(x, t) + bu_x(x, t) + cu(x, t), \\
 u(0, t) &= 0 \quad \text{for } t \geq 0, \\
 u(x, 0) &= f(x) \quad \text{for } x \geq 0, \text{ with some } f \in X \\
\end{align*}
\]

$Au := u_{xx}(x, t) + bu_x(x, t) + cu(x, t),$

and $b > 0$ with $c > b/2$.

The solution semigroup (which has A as infinitesimal generator) is Devaney chaotic, and it is also distributionally chaotic.
Conejero & Mangino ’10

Consider the following PDE in $L^2(\mathbb{R}^+, \mathbb{C})$:

$$u_t(x, t) = u_{x,x}(x, t) + bxu_x(x, t) + cu(x, t),$$

$$u(0, t) = 0 \quad \text{for } t \geq 0,$$

$$u(x, 0) = f(x) \quad \text{for } x \geq 0, \text{ with some } f \in X$$

$$Au := u_{x,x}(x, t) + bxu_x(x, t) + cu(x, t),$$

and $b > 0$ with $c > b/2$.

The solution semigroup (which has A as infinitesimal generator) is Devaney chaotic, and it is also distributionally chaotic.
Example

Conejero & Mangino ’10

Consider the following PDE in $L^2(\mathbb{R}^+, \mathbb{C})$:

$$ u_t(x, t) = u_{x,x}(x, t) + bu_x(x, t) + cu(x, t), $$
$$ u(0, t) = 0 \text{ for } t \geq 0, $$
$$ u(x, 0) = f(x) \text{ for } x \geq 0, \text{ with some } f \in X $$

$Au := u_{x,x}(x, t) + bu_x(x, t) + cu(x, t),$

and $b > 0$ with $c > b/2$.

The solution semigroup (which has A as infinitesimal generator) is Devaney chaotic, and it is also distributionally chaotic.
Devaney chaos is sometimes proved in a constructive way or reducing the problem to the translation C_0-semigroup.
Example 1

\[
\begin{aligned}
\frac{\partial u}{\partial t} &= \zeta(x) \frac{\partial u}{\partial x} + h(x)u \\
u(0,x) &= f(x)
\end{aligned}
\]

(5)

with \(h, \zeta \) bounded and continuous functions on \(\mathbb{R}_0^+ \). If \(\zeta(x) = 1 \),

\[
T_t f(x) = \exp \left(\int_x^{x+t} h(s) \, ds \right) f(x+t), \text{ for } f \in X.
\]

If we define \(\rho(x) = \exp \left(-\int_0^x h(s) \, ds \right) \) and \(\phi(f)(x) = (\rho(x))^{1/p} f(x) \), we have:

\[
\begin{array}{ccc}
L_p^\rho(\mathbb{R}_0^+, \mathbb{C}) & \xrightarrow{T_t} & L_p^\rho(\mathbb{R}_0^+, \mathbb{C}) \\
\phi & \downarrow & \phi \\
L_p(\mathbb{R}_0^+, \mathbb{C}) & \xrightarrow{T_t} & L_p(\mathbb{R}_0^+, \mathbb{C})
\end{array}
\]

(6)

If \(h(x) \) is constant and equal to 1 Devaney and dist. chaos.
If \(h(x) = -1 \) if \(x \in [n^2, n^2 + 1[\) for some \(n \in \mathbb{N} \), and \(h(x) = 1 \) elsewhere, dist. chaos but not Devaney chaos.
Example 1

\[
\begin{align*}
&\frac{\partial u}{\partial t} = \zeta(x) \frac{\partial u}{\partial x} + h(x)u \\
&u(0,x) = f(x)
\end{align*}
\]

with \(h, \zeta \) bounded and continuous functions on \(\mathbb{R}^+_0 \). If \(\zeta(x) = 1 \),

\[
T_t f(x) = \exp \left(\int_x^{x+t} h(s) \, ds \right) f(x+t), \text{ for } f \in X.
\]

If we define \(\rho(x) = \exp(-\int_0^x h(s) \, ds) \) and \(\phi(f)(x) = (\rho(x))^{1/p} f(x) \), we have:

\[
L^p_\rho(\mathbb{R}^+_0, \mathbb{C}) \xrightarrow{\tau_t} L^p_\rho(\mathbb{R}^+_0, \mathbb{C}) \quad \phi \\
\downarrow \quad \downarrow \phi
\]

\[
L^p(\mathbb{R}^+_0, \mathbb{C}) \xrightarrow{T_t} L^p(\mathbb{R}^+_0, \mathbb{C})
\]

If \(h(x) \) is constant and equal to 1 Devaney and dist. chaos.
If \(h(x) = -1 \) if \(x \in [n^2, n^2 + 1[\) for some \(n \in \mathbb{N} \), and \(h(x) = 1 \) elsewhere, dist. chaos but not Devaney chaos.
Example 1

\[
\begin{aligned}
\begin{cases}
\frac{\partial u}{\partial t} &= \xi(x) \frac{\partial u}{\partial x} + h(x)u \\
u(0, x) &= f(x)
\end{cases}
\end{aligned}
\]

(5)

with \(h, \xi \) bounded and continuous functions on \(\mathbb{R}^+ \). If \(\xi(x) = 1 \),

\[T_t f(x) = \exp \left(\int_x^{x+t} h(s)ds \right) f(x + t), \text{ for } f \in X. \]

If we define \(\rho(x) = \exp(-\int_0^x h(s)ds) \) and \(\phi(f)(x) = (\rho(x))^{1/p} f(x) \), we have:

\[
\begin{aligned}
L^p_{\rho}(\mathbb{R}^+, \mathbb{C}) &\xrightarrow{\tau_t} L^p_{\rho}(\mathbb{R}^+, \mathbb{C}) \\
\phi &\downarrow \quad \downarrow \phi \\
L^p(\mathbb{R}^+, \mathbb{C}) &\xrightarrow{T_t} L^p(\mathbb{R}^+, \mathbb{C})
\end{aligned}
\]

(6)

If \(h(x) \) is constant and equal to 1 Devaney and dist. chaos.

If \(h(x) = -1 \) if \(x \in [n^2, n^2 + 1[\) for some \(n \in \mathbb{N} \), and \(h(x) = 1 \) elsewhere, dist. chaos but not Devaney chaos.
Example 1

\[
\begin{aligned}
&\begin{cases}
\frac{\partial u}{\partial t} = \zeta(x) \frac{\partial u}{\partial x} + h(x)u \\
u(0,x) = f(x)
\end{cases} \\
&\text{with } h, \zeta \text{ bounded and continuous functions on } \mathbb{R}^+_0. \text{ If } \zeta(x) = 1,
\end{aligned}
\]

\[
T_t f(x) = \exp \left(\int_x^{x+t} h(s)ds \right) f(x+t), \text{ for } f \in X.
\]

If we define \(\rho(x) = \exp(-\int_0^x h(s)ds) \) and \(\phi(f)(x) = (\rho(x))^{1/p} f(x) \), we have:

\[
\begin{array}{ccc}
L^p_\rho(\mathbb{R}^+_0, \mathbb{C}) & \xrightarrow{\tau_t} & L^p_\rho(\mathbb{R}^+_0, \mathbb{C}) \\
\phi & \downarrow & \phi \\
L^p(\mathbb{R}^+_0, \mathbb{C}) & \xrightarrow{T_t} & L^p(\mathbb{R}^+_0, \mathbb{C})
\end{array}
\]

If \(h(x) \) is constant and equal to 1 Devaney and dist. chaos.
If \(h(x) = -1 \) if \(x \in [n^2, n^2 + 1] \) for some \(n \in \mathbb{N} \), and \(h(x) = 1 \) elsewhere, dist. chaos but not Devaney chaos.
Example 2

Take \(\rho : [0,1] \rightarrow \mathbb{R}^+ \) continuous s.t. there are \(M \geq 1 \) and \(w \in \mathbb{R} \) verifying

\[
\rho(x) \leq Me^{\omega t} \rho(e^{\gamma t} x) \quad \text{for all } x \in [0,1] \text{ and } t > 0.
\]

\[S_t f(x) = f(e^{\gamma t} x) \quad \text{for } t \geq 0 \text{ and } f \in L_p^\rho([0,1], \mathbb{C}), 1 \leq p < \infty.\]

- \(X_0 \) as the set of continuous functions on \([0,1]\) with \(g(0) = 0 \).
- \(\lim_{t \to \infty} S_t x = 0 \) for every \(x \in X_0 \).
- \(\|S_t\|^{-1}_p \rho \) can be integrated respect to \(t \) on \([0,\infty)\).
Example 2

Take $\rho : [0, 1] \to \mathbb{R}^+$ continuous s.t. there are $M \geq 1$ and $w \in \mathbb{R}$ verifying

$$\rho(x) \leq Me^{\omega t} \rho(e^{\gamma t} x) \text{ for all } x \in [0, 1] \text{ and } t > 0.$$

$$S_t f(x) = f(e^{\gamma t} x) \text{ for } t \geq 0 \text{ and } f \in L^p_{\rho}([0, 1], \mathbb{C}), 1 \leq p < \infty.$$

- X_0 as the set of continuous functions on $[0, 1]$ with $g(0) = 0$.
- $\lim_{t \to \infty} S_t x = 0$ for every $x \in X_0$.
- $\|S_t\|_{p, \rho}^{-1}$ can be integrated respect to t on $[0, \infty)$.
Example 2

Take $\rho : [0, 1] \to \mathbb{R}^+$ continuous s.t. there are $M \geq 1$ and $w \in \mathbb{R}$ verifying

$$\rho(x) \leq Me^{\omega t} \rho(e^{\gamma t} x) \text{ for all } x \in [0, 1] \text{ and } t > 0.$$

$$S_t f(x) = f(e^{\gamma t} x) \text{ for } t \geq 0 \text{ and } f \in L^p_\rho([0, 1], \mathbb{C}), 1 \leq p < \infty.$$

- X_0 as the set of continuous functions on $[0, 1]$ with $g(0) = 0$.
- $\lim_{t \to \infty} S_t x = 0$ for every $x \in X_0$.
- $\|S_t\|_{p, \rho}^{-1}$ can be integrated respect to t on $[0, \infty)$.

Example 2

Take $\rho : [0,1] \to \mathbb{R}^+$ continuous s.t. there are $M \geq 1$ and $w \in \mathbb{R}$ verifying

$$\rho(x) \leq Me^{\omega t} \rho(e^{\gamma t} x) \text{ for all } x \in [0,1] \text{ and } t > 0.$$

$$S_t f(x) = f(e^{\gamma t} x) \text{ for } t \geq 0 \text{ and } f \in L^p_\rho([0,1], \mathbb{C}), 1 \leq p < \infty.$$

- X_0 as the set of continuous functions on $[0,1]$ with $g(0) = 0$.
- $\lim_{t \to \infty} S_t x = 0$ for every $x \in X_0$.
- $\|S_t\|_{\rho,\rho}^{-1}$ can be integrated respect to t on $[0,\infty)$.
Take \(\rho : [0, 1] \to \mathbb{R}^+ \) continuous s.t. there are \(M \geq 1 \) and \(w \in \mathbb{R} \) verifying

\[
\rho(x) \leq Me^{\omega t} \rho(e^{\gamma t} x) \quad \text{for all } x \in [0, 1] \text{ and } t > 0.
\]

\[
S_t f(x) = f(e^{\gamma t} x) \quad \text{for } t \geq 0 \text{ and } f \in L^p_\rho([0, 1], \mathbb{C}), 1 \leq p < \infty.
\]

- \(X_0 \) as the set of continuous functions on \([0, 1]\) with \(g(0) = 0 \).
- \(\lim_{t \to \infty} S_t x = 0 \) for every \(x \in X_0 \).
- \(\|S_t\|_{p, \rho}^{-1} \) can be integrated respect to \(t \) on \([0, \infty)\).
Example 3

\[
\begin{aligned}
\frac{\partial u}{\partial t} &= \xi(x) \frac{\partial u}{\partial x} + h(x)u \\
u(0,x) &= f(x)
\end{aligned}
\]

(7)

Take the case \(\xi(x) = \gamma x, \gamma < 0\) and \(h\) continuous. If there is \(\delta > 0\) s.t. \(\Re(h(x)) \geq 0\) for \(0 \leq x \leq \delta\), then

\[T_t f(x) = \exp \left(\int_0^t h(e^{\gamma(t-r)}x)f(e^{\gamma t}x) \right) \text{ for } t \geq 0,\]

Define \(\rho(x) = \exp\{1/\gamma\int_x^1 (h(s)/s)ds\}\) and set \(\phi(f)(x) = (\rho(x))^{1/p}f(x)\):

\[
\begin{align*}
L_p^\rho([0,1], \mathbb{C}) &\xrightarrow{S_t} L_p^\rho([0,1], \mathbb{C}) \\
\downarrow & \quad \downarrow \\
L^p([0,1], \mathbb{C}) &\xrightarrow{T_t} L^p([0,1], \mathbb{C})
\end{align*}
\]

(8)

then we have distributional chaos.
Example 3

\[
\begin{aligned}
\frac{\partial u}{\partial t} &= \zeta(x) \frac{\partial u}{\partial x} + h(x)u \\
u(0, x) &= f(x)
\end{aligned}
\]
(7)

Take the case \(\zeta(x) = \gamma x, \gamma < 0 \) and \(h \) continuous. If there is \(\delta > 0 \) s.t. \(\Re(h(x)) \geq 0 \) for \(0 \leq x \leq \delta \), then

\[
T_{t}f(x) = \exp \left(\int_{0}^{t} h(e^\gamma(t-r)) x(f(e^\gamma r x) \right) \text{ for } t \geq 0,
\]

Define \(\rho(x) = \exp \left\{ \frac{1}{\gamma} \int_{x}^{1} (h(s)/s) ds \right\} \) and set \(\phi(f)(x) = (\rho(x))^{1/p}f(x) \):

\[
L_p^p([0, 1], \mathbb{C}) \xrightarrow{S_t} L_p^p([0, 1], \mathbb{C}) \xrightarrow{\phi} L_p^p([0, 1], \mathbb{C}) \\
L^p([0, 1], \mathbb{C}) \xrightarrow{T_t} L^p([0, 1], \mathbb{C})
\]
(8)

then we have distributional chaos.
Example 3

\[
\begin{aligned}
\begin{cases}
\frac{\partial u}{\partial t} &= \zeta(x) \frac{\partial u}{\partial x} + h(x)u \\
u(0,x) &= f(x)
\end{cases}
\end{aligned}
\]
(7)

Take the case \(\zeta(x) = \gamma x\), \(\gamma < 0\) and \(h\) continuous. If there is \(\delta > 0\) s.t. \(\Re(h(x)) \geq 0\) for \(0 \leq x \leq \delta\), then

\[
T_t f(x) = \exp \left(\int_0^t h(e^\gamma(t-r)x)f(e^\gamma t x) \right) \quad \text{for } t \geq 0,
\]

Define \(\rho(x) = \exp \left\{ \left(1/\gamma \right) \int_x^1 \left(h(s)/s \right) ds \right\} \) and set \(\phi(f)(x) = (\rho(x))^{1/p} f(x)\):

\[
\begin{array}{c}
L^p_p([0,1], \mathbb{C}) \xrightarrow{S_t} L^p_p([0,1], \mathbb{C}) \\
\phi \downarrow \quad \quad \quad \quad \quad \downarrow \phi
\end{array}
\]

\[
L^p([0,1], \mathbb{C}) \xrightarrow{T_t} L^p([0,1], \mathbb{C})
\]
(8)

then we have distributional chaos.
Example 4

\[
\begin{aligned}
\frac{\partial u}{\partial t} &= \zeta(x) \frac{\partial u}{\partial x} + h(x)u \\
u(0, x) &= f(x)
\end{aligned}
\] (9)

Take the case \(\zeta(x) = 1, \ h(x) = \frac{kx}{1 + x^k}. \)

\[T_t f(x) = \frac{1 + (x + t)^k}{1 + x^k} f(x + t) \text{ for } x, \geq 0, \ t \geq 0, \]

If we define \(\rho(x) = \frac{1}{1 + x^k} \) and set \(\phi(f)(x) = (\rho(x))^{1/p} f(x), \) we have:

\[
\begin{array}{ccc}
L_p^p(\mathbb{R}_0^+, \mathbb{C}) & \xrightarrow{\tau_t} & L_p^p(\mathbb{R}_0^+, \mathbb{C}) \\
\phi & & \phi \\
L^p(\mathbb{R}_0^+, \mathbb{C}) & \xrightarrow{T_t} & L^p(\mathbb{R}_0^+, \mathbb{C})
\end{array}
\] (10)

Again, as \(\int_0^\infty \rho(x)dx < \infty, \) then it is distributionally chaotic.
Example 4

\[\begin{cases} \frac{\partial u}{\partial t} = \zeta(x) \frac{\partial u}{\partial x} + h(x)u \\ u(0,x) = f(x) \end{cases} \]

Take the case \(\zeta(x) = 1, \) \(h(x) = \frac{kx}{1+x^k}. \)

\[T_t f(x) = \frac{1+(x+t)^k}{1+x^k} f(x+t) \] for \(x, \geq 0, t \geq 0, \)

If we define \(\rho(x) = \frac{1}{1+x^k} \) and set \(\phi(f)(x) = (\rho(x))^{1/p} f(x), \) we have:

\[\begin{aligned} L^p_{\rho}(\mathbb{R}^+_0, \mathbb{C}) \xrightarrow{T_t} \ & L^p_{\rho}(\mathbb{R}^+_0, \mathbb{C}) \\ \phi \downarrow & \quad \phi \\ \downarrow & \quad \downarrow \\ L^p(\mathbb{R}^+_0, \mathbb{C}) \xrightarrow{T_t} \ & L^p(\mathbb{R}^+_0, \mathbb{C}) \end{aligned} \]

Again, as \(\int_0^{\infty} \rho(x) dx < \infty, \) then it is distributionally chaotic.
Example 4

\[
\begin{cases}
\frac{\partial u}{\partial t} = \zeta(x) \frac{\partial u}{\partial x} + h(x)u \\
u(0, x) = f(x)
\end{cases}
\]

(9)

Take the case \(\zeta(x) = 1, \ h(x) = \frac{ks}{1 + x^k} \).

\[
T_t f(x) = \frac{1 + (x + t)^k}{1 + x^k} f(x + t) \text{ for } x, t \geq 0.
\]

If we define \(\rho(x) = \frac{1}{1 + x^k} \) and set \(\phi(f)(x) = (\rho(x))^{1/p} f(x) \), we have:

\[
L_p^\rho(\mathbb{R}_0^+, \mathbb{C}) \xrightarrow{T_t} L_p^\rho(\mathbb{R}_0^+, \mathbb{C})
\]

\[
\phi \downarrow \phi
\]

(10)

Again, as \(\int_0^\infty \rho(x)dx < \infty \), then it is distributionally chaotic.
Example 4

\[
\begin{cases}
\frac{\partial u}{\partial t} = \zeta(x) \frac{\partial u}{\partial x} + h(x)u \\
u(0, x) = f(x)
\end{cases}
\] \hspace{1cm} (9)

Take the case \(\zeta(x) = 1, \ h(x) = \frac{kx}{1 + x^k} \).

\[T_tf(x) = \frac{1 + (x + t)^k}{1 + x^k} f(x + t) \] for \(x, \geq 0, t \geq 0 \),

If we define \(\rho(x) = \frac{1}{1 + x^k} \) and set \(\phi(f)(x) = (\rho(x))^{1/p} f(x) \), we have:

\[
\begin{align*}
L^p_\rho(\mathbb{R}^+_0, \mathbb{C}) & \xrightarrow{\tau_t} L^p_\rho(\mathbb{R}^+_0, \mathbb{C}) \\
\phi & \downarrow \\
L^p(\mathbb{R}^+_0, \mathbb{C}) & \xrightarrow{T_t} L^p(\mathbb{R}^+_0, \mathbb{C})
\end{align*}
\] \hspace{1cm} (10)

Again, as \(\int_0^\infty \rho(x)dx < \infty \), then it is distributionally chaotic.
Some open questions:

Last example was already known to be Devaney chaotic (El Mourchid ’06) but it cannot be applied the Eigenvalue criterion.

There is a weaker version by Desch, Schappacher & Webb ’97, and restated by El Mourchid.

Theorem (El Mourchid ’06)

Let X be a complex separable Banach space, and let $\{T_t\}_{t \geq 0}$ be a C_0-semigroup on X with infinitessimal generator $(A, D(A))$. Assume that there are $a < b$ and continuous functions $f_j : [a, b] \rightarrow X, j \in J$, such that

1. $f_j(s) \in \ker(isI - A)$ for every $s \in [a, b], j \in J$,
2. $\text{span}\{ f_j(s); s \in [a, b], j \in J \}$ is dense in X.

Then the semigroup $\{T_t\}_{t \geq 0}$ is Devaney chaotic.
Some open questions:

Last example was already known to be Devaney chaotic (El Mourchid '06) but it cannot be applied the Eigenvalue criterion.

There is a weaker version by Desch, Schappacher & Webb '97, and restated by El Mourchid.

Theorem (El Mourchid '06)

Let X be a complex separable Banach space, and let $\{T_t\}_{t \geq 0}$ be a C_0-semigroup on X with infinitesimal generator $(A, D(A))$. Assume that there are $a < b$ and continuous functions $f_j : [a, b] \to X, j \in J$, such that

1. $f_j(s) \in \ker(isl - A)$ for every $s \in [a, b], j \in J$,
2. $\text{span}\{f_j(s); s \in [a, b], j \in J\}$ is dense in X.

Then the semigroup $\{T_t\}_{t \geq 0}$ is Devaney chaotic.
Some open questions:

Last example was already known to be Devaney chaotic (El Mourchid ’06) but it cannot be applied the Eigenvalue criterion.

There is a weaker version by Desch, Schappacher & Webb ’97, and restated by El Mourchid.

Theorem (El Mourchid ’06)

Let X be a complex separable Banach space, and let $\{T_t\}_{t \geq 0}$ be a C_0-semigroup on X with infinitessimal generator $(A,D(A))$. Assume that there are $a < b$ and continuous functions $f_j : [a,b] \to X, j \in J$, such that

1. $f_j(s) \in \ker(isI - A)$ for every $s \in [a,b], j \in J$,
2. $\text{span}\{f_j(s); s \in [a,b], j \in J\}$ is dense in X.

Then the semigroup $\{T_t\}_{t \geq 0}$ is Devaney chaotic.
Some open questions:

Question 1
Do these hypothesis imply the existence of distributional chaos?

This question could have a positive answer, but it is also unknown whether Devaney chaos imply distributional chaos on C_0-semigroups.

Question 2
Are there examples of Devaney chaotic C_0-semigroups which are not distributionally chaotic?
Some open questions:

Question 1
Do these hypothesis imply the existence of distributional chaos?

This question could have a positive answer, but it is also unknown whether Devaney chaos imply distributional chaos on C_0-semigroups.

Question 2
Are there examples of Devaney chaotic C_0-semigroups which are not distributionally chaotic?
Thank you very much for your attention.