Extended Eigenvalues for bilateral weighted shifts

F. León-Saavedra

Universidad de Cádiz

fernando.leon@uca.es

Joint work with M. Lacruz, L.J. Muñoz, S. Petrovic, Zabeti

XIII encuentro Red Análisis Funcional. Cáceres 2017

March 8, 2017
Contents

1. Introduction

2. Extended eigenvalues for Cesàro operators
 - Extended eigenvalues for C_∞.
 - Extended eigenvalues for C_1 and C_0.

3. Extended Eigenvalues for bilateral weighted shifts

4. Some open questions
Introduction

Extended eigenvalues for Cesàro operators
Extended Eigenvalues for bilateral weighted shifts
Some open questions

Definition

If \(AX = \lambda XA \) for some \(X \neq 0 \), \(\lambda \) is called an extended eigenvalue and \(X \) an (extended) eigenoperator of \(A \).

Scott Brown (1979) and Kim, Moore and Pearcy (1979), independently.

If an operator \(A \) on a Banach space has a non-zero compact eigenoperator, then \(A \) has a nontrivial, hyperinvariant subspace.

Lomonosov (1973)

If \(A \) commutes with a non-zero compact operator then \(A \) has a non-trivial hyperinvariant subspace.
Extended eigenvalue has taken on a life of its own.

- Further results of Lomonosov-type [4, 5].
- Studies of the extended eigenvalues and eigenoperators for interesting classes of naturally occurring operators [1, 2, 3, 1, 2]

We continue this latter thread

Introduction
Extended eigenvalues for Cesàro operators
Extended Eigenvalues for bilateral weighted shifts
Some open questions

Extended eigenvalues for C_∞.
Extended eigenvalues for C_1 and C_0.

Cesàro operators on ℓ^2, $L^2[0,1]$ and $L^2[0,\infty)$

\[
(C_0 f)(n) = \frac{1}{n+1} \sum_{k=0}^{n} f(k) \quad (C_1 f)(x) = \frac{1}{x} \int_{0}^{x} f(s) \, ds
\]

\[
(C_\infty f)(x) = \frac{1}{x} \int_{0}^{x} f(s) \, ds
\]

F. León-Saavedra
Question
Extended eigenvalues for Cesàro operators?

Main Theorem
The set of extended eigenvalues for C_∞ it reduces to the singleton \{1\}, for C_1 it is the interval $(0, 1]$ and for C_0 is the interval $[1, \infty)$.
Extended eigenvalues for C_∞.

Definition

A bounded linear operator U on a complex Hilbert space H is a bilateral shift of multiplicity one provided that there is an orthonormal basis (e_n) of H such that $Ue_n = e_{n+1}$ for all $n \in \mathbb{Z}$.

Brown-Halmos- Shields. C_∞ on $L^2[0, \infty)$

They proved that C_∞ is a bounded linear operator, and they also proved that $I - C_\infty^*$ is unitarily equivalent to a bilateral shift of multiplicity one.
Theorem
Let U be a bilateral shift of multiplicity one, and let λ be a complex number with $\lambda \neq 1$. Then the equation $(I - U^*)X = \lambda X(I - U^*)$ has only the trivial solution $X = 0$.

Lemma
Let X be an operator satisfying $(I - U^*)X = \lambda X(I - U^*)$, and let $\cdots, X_{-1}, X_0, X_1, X_2, \cdots$ be the rows of the matrix of X. Then $X_{n+1} = (\lambda U + 1 - \lambda)X_n$, for all $n \in \mathbb{Z}$. Consequently, for any $m, n \in \mathbb{N}$, $X_{m+n} = (\lambda U + 1 - \lambda)^n X_m$. In particular, if $m = 0$, $X_n = (\lambda U + 1 - \lambda)^n X_0$, for all $n \in \mathbb{N}$.

F. León-Saavedra
Extended eigenvalues
The set of extended eigenvalues for the infinite continuous Cesàro operator C_∞ defined on the complex Banach space $L^p[0, \infty)$ reduces to the singleton $\{1\}$.

There exists a Schauder basis $\{e_n\}, n \in \mathbb{Z}$ on $L^q[0, \infty)$ such that $(1 - 2/qC_\infty^*)e_n = e_{n+1}$ for all $n \in \mathbb{Z}$.
Introduction
Extended eigenvalues for Cesàro operators
Extended Eigenvalues for bilateral weighted shifts
Some open questions

Tools

1. To prove that λ is an extended eigenvalue for T, there is no choice but to show the existence of an operator X_λ such that $TX_\lambda = \lambda X_\lambda T$: a) Constructively b) Using Baire Category’s theorem.

2. (Rosenblum) If $\sigma(A) \cap \sigma(B) = \emptyset$ then $X = 0$ is the only solution of the equation $AX - XB = 0$. If λ is an extended eigenvalue then $\sigma(T) \cap \sigma(\lambda T) \neq \emptyset$.

3. Semigroup techniques were used by Biswas to discard extended values for the Volterra operator.
Extended eigenvalues for C_1 and C_0.

Operators with rich point spectrum

We say that an operator T on a complex Banach space has rich point spectrum provided that $\text{int} \sigma_p(T) \neq \emptyset$, and that for every open disc $D \subset \sigma_p(T)$, the family of eigenvectors $\bigcup_{z \in D} \ker(T - z)$ is a total set.

Theorem

Let us suppose that an operator T on a complex Banach space has rich point spectrum. If λ is an extended eigenvalue for T then we have $\lambda \cdot \text{int} \sigma_p(T) \subset \text{clos} \sigma_p(T)$.
C_0^* and C_1 have rich point spectrum.

Proposition

On ℓ^p spaces the extended eigenvalues for C_0 is contained on $[1, \infty)$.

Proposition

If λ is an extended eigenvalue for C_1 on $L^p[0, 1]$ then λ is real and $0 < \lambda \leq 1$.
Extended eigenvalues for C_1 on $L^p[0, 1]$

Theorem

If $0 < \lambda \leq 1$ then λ is an extended eigenvalue for the Cesàro operator C_1 on $L^p[0, 1]$ and a corresponding extended eigenoperator is the weighted composition operator $X_0 \in B(L^p[0, 1])$ defined by

$$(X_0 f)(x) = x^{(1-\lambda)/\lambda} f(x^{1/\lambda}).$$
Extended eigenvalues for C_0 on ℓ^2

Kriete-Trutt (1974/75)

There exists a positive finite measure defined on the Borel subsets of the complex plane and supported on \overline{D} and a unitary operator $U : \ell^2 \to H^2(\mu)$ such that $C_0 = U^*(I - M_z)U$, ($H^2(\mu)$ denotes the closure of the polynomials on $L^2(\mu)$).

Theorem

If $\lambda \geq 1$ then λ is an extended eigenvalue for $I - M_z$ and a corresponding extended eigenoperator is the composition operator X defined by the expression $(Xf)(z) = f\left(\frac{\lambda - 1}{\lambda} + \frac{z}{\lambda}\right)$.

Corollary

On ℓ^2 the set of extended eigenvalues for C_0 is the subset $[1, \infty)$.
The results applies for bilateral weighted shifts

\[W e_n = w_n e_{n+1}, \quad n \in \mathbb{Z} \]

Theorem

Let us suppose that an operator \(T \) on a complex Banach space is similar to \(\alpha T \) for some complex number \(\alpha \). If \(\lambda \) is an extended eigenvalue for \(T \) then \(\lambda \alpha \) is an extended eigenvalue for \(T \).

Corollary

If \(W \) is a bilateral weighted shift then every \(\lambda \in \mathbb{T} \) is an extended eigenvalue for \(W \).

Theorem

If \(\lambda \) is an extended eigenvalue of a bilateral weighted shift \(W \) whose point spectrum has non-empty interior then \(|\lambda| = 1 \).
Question (Shields’1974)

Let W be a invertible bilateral weighted shift. Is there exist a non-trivial closed subspace invariant for W and W^{-1}? Is there exist a non trivial invariant subspace for $W + W^{-1}$?

Question

Which are the extended eigenvalues for a bilateral weighted shift and their corresponding extended eigenoperators?
Intertwining relations

Definition

A bounded operator A intertwines with a bounded operator B provided there exists a bounded operator $X \neq 0$ such that $AX = XB$.

Question

Let A, B two bilateral weighted shifts. When A intertwines with B?
Shields’74

An operator X intertwines two bilateral weighted shifts A and B with sequences of weights $(\alpha_n)n \in \mathbb{Z}$ and $(\beta_n), n \in \mathbb{Z}$ if and only if

$$\beta_j x_{i+1,j+1} = \alpha_i x_{i,j}$$

where $x_{i,j} = \langle Xe_j, e_i \rangle$ are the coefficients of the matrix of X with respect to the canonical basis on $\ell^2(\mathbb{Z})$.

Theorem

Let A and B be two injective bilateral weighted shifts with sequences of weights $(\alpha_n), n \in \mathbb{Z}$ and $(\beta_n), n \in \mathbb{Z}$. Then, A intertwines with B, if and only if there exist $k \in \mathbb{Z}$ and a constant M such that

$$\frac{|\alpha_k \cdots \alpha_{k+n-1}|}{|\beta_0 \cdots \beta_{n-1}|} \leq M \quad \text{and} \quad \frac{|\beta_1 \cdots \beta_{n-1}|}{|\alpha_{k-1} \cdots \alpha_{k-n}|} \leq M$$
Theorem
Let \(W \) be a injective bilateral weighted shift. Then, the set of extended eigenvalues for \(W \) has only one of the following pictures: \(\mathbb{C} \setminus \mathbb{D} \) or \(\mathbb{C} \setminus \{0\} \) or \(\overline{\mathbb{D}} \setminus \{0\} \), or \(\mathbb{T} \).

Theorem
Let \(A \) be an injective bilateral weighted shift and let \(\lambda \) extended eigenvalue, with \(|\lambda| \neq 1 \). Then every extended eigenoperator for \(A \) corresponding to \(\lambda \) is strictly lower triangular.

Theorem
Let \(A \) be an injective bilateral weighted shift and let \(\lambda \in \mathbb{T} \). Then every extended eigenoperator \(X \) for \(A \) corresponding to \(\lambda \) factors as \(X = D_\lambda B \) for some \(B \in \{A\}' \). (\(D_\lambda e_n = \lambda^{-n}e_n \)).
Questions

1. Show that if X is an extended eigenoperator for C_1 on $L^p[0, 1]$ then there exists $R \in \{C_1\}'$ such that $X = X_0 R$, where X_0 is a fixed eigenoperator.

2. Show that if $1 < p < \infty$ and if λ is real and $\lambda \geq 1$ then λ is an extended eigenvalue for C_0 on ℓ^p.

3. How we can weaken the conditions of intertwining in Brown and Kim-Mooore-Pearcy’s theorem on the special case of the bilateral weighted shift in order to obtain new results on hyperinvariant subspace for bilateral weighted shifts.

