Bringing partial differential equations to life for students

This content has been downloaded from IOPscience. Please scroll down to see the full text.

2015 Eur. J. Phys. 36 035026

(http://iopscience.iop.org/0143-0807/36/3/035026)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 155.54.213.13
This content was downloaded on 02/04/2015 at 09:10

Please note that terms and conditions apply.
Bringing partial differential equations to life for students

María José Cano¹, Eliseo Chacón-Vera² and Francisco Esquembre²

¹ Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, E-30.100, Murcia, Spain
² Departamento de Informática y Automática, ETSI de Informática de la UNED, C/Juan del Rosal, 16, E-28040 Madrid, Spain

E-mail: mjcanovicente@gmail.com

Received 7 December 2014
Accepted for publication 20 February 2015
Published 1 April 2015

Abstract

Teaching partial differential equations (PDEs) carries inherent difficulties that an interactive visualization might help overcome in an active learning process. However, the generation of this kind of teaching material implies serious difficulties, mainly in terms of coding efforts. This work describes how to use an authoring tool, Easy Java Simulations, to build interactive simulations using FreeFem++ (Hecht F 2012 J. Numer. Math. 20 251) as a PDE solver engine. It makes possible to build simulations where students can change parameters, the geometry and the equations themselves getting an immediate feedback. But it is also possible for them to edit the simulations to set deeper changes. The process is illustrated with some basic examples. These simulations show PDEs in a pedagogic manner and can be tuned by no experts in the field, teachers or students. Finally, we report a classroom experience and a survey from the third year students in the Degree of Mathematics at the University of Murcia.

Keywords: authoring tools and methods, physical modelling, improving classroom teaching

1. Introduction

Partial differential equations (PDEs) are a core part of the curriculum of any applied studies nowadays. They describe all kinds of physical phenomena and applications in all sorts of fields. However, teaching PDEs is a difficult task due to a number of reasons:
The equations are intrinsically a complicated matter and it is not simple to handle an easy introduction to the field [15].

A typical approach to this field leads to the analytic solution of the basic transport, diffusion and wave equations with constant coefficients. This is not a simple task and might obscure the real meaning of the models at hand. Moreover, it does not lead straight away to some meaningful imagery of the studied phenomenon [5].

A common strategy is the separation of variables method which requires some knowledge of Fourier series. This adds more noise to the picture [15].

Solutions are not numbers but functions, a conceptual jump for students that is better understood by using graphical visualizations [18].

Exact resolution of most of the PDEs is not possible and one has to resort to numerical techniques, like finite differences or finite elements [18]. These tools are far beyond a basic course.

Similar difficulties are found when teaching basic physics courses, see [14] for a detailed reflection. The didactic and pedagogic implications are the permanent need for student feedback to detect conceptual failures and the proposal is the combination of blackboard lectures, analysis of solutions and computer lab sessions [11, 15, 19].

Particularly interesting is the concept of interactive engagement. The student interacts in real time tuning the parameters, learning and feeling the reactions of the solutions of the model. This is followed by exchange and discussion of ideas with peers and teacher [10].

Computer simulations give the student the opportunity to create the solution of a particular equation and play with it. Through interactivity, students can predict a situation, understand the role of the different parameters and terms in an equation and have a visual idea of the whole process. This also helps the construction of mental models away from the complexity of the mathematical equations, [12, 19] and [20].

As a consequence, our purpose in this work is to offer an interactive engagement of the student with the models via computer simulations.

There exist some tools for the resolution and visualization of PDEs. Some of them require a licence to be bought, like MATLAB, Mathematica or MAPLE, and others require a steep learning curve in terms of coding for students and teachers, like OpenFoam [16], Elmer [2] or FreeFem++ [6]. All of them offer restricted interaction possibilities.

Interactivity is the main asset of the simulations created with the authoring tool Easy Java Simulations (EJS) [3], however only ordinary differential equation solvers were available in the distribution up to this date. For this reason, we have connected this tool to a PDE solver and chosen the finite element solver FreeFem++ because it gives full control of the equations and boundary conditions of the problem at hand.

This research has been tested in a classroom setting on the 3rd year of the mathematics degree at the University of Murcia. Students had a two-hour computer lab session where the most basic physical phenomena of diffusion, reaction and transport where observed and tested.

Models were classified in terms of the typical differential operators and, henceforth, they studied the elastic membrane for the Laplace operator, the heat equation with reaction and the wave equation.

Activities were proposed for individual study with a guideline that set up the main steps in the learning process for each model: observation, prediction and testing.

The whole process of combining EJS with FreeFem++ is introduced in section 2. In subsections 2.1–2.4 we follow the process of building a simulation that solves and plots the solution of a simple PDE, the Dirichlet problem for Laplace operator. On the way, we detail
three fundamental aspects: definition and resolution of the equations in FreeFem++ language from EJS, storage of the data and graphic visualization. The full capabilities of interactivity are shown in a complete example in subsection 2.5. In section 3 we report our results with students in a lab experience and present two more examples of simulations. Finally, in the last section we gather our conclusions.

2. Materials and methods

2.1. A few words on FreeFem++: script construction

FreeFem++ is a C++-like computer language dedicated to the finite element method. It is developed and maintained by Frédéric Hecht from the Jacques–Louis Lions Laboratory at the University of Pierre et Marie Curie in Paris. This language gives total control on the PDE problem and nowadays there exists a very active community of users. For documentation and examples we refer the reader to the web sites [6] and wiki [7]. In the following, we give the basic commands that are needed to describe our Dirichlet problem.

A PDE gives the evolution in time and space of a quantity in a region of interest. This region could be defined by the parametric description of its boundary. For example, a square is

\begin{align*}
\text{border } a(t=0,1) \{ x=t; y=0; label=1; \} ; \\
\text{border } b(t=0,1) \{ x=1; y=t; label=2; \} ; \\
\text{border } c(t=1,0) \{ x=t; y=1; label=3; \} ; \\
\text{border } d(t=1,0) \{ x=0; y=t; label=4; \} ;
\end{align*}

Next, a triangulation is generated on this domain and it is determined by arbitrary interval partitions on each boundary border like this:

\begin{align*}
\text{mesh } Th = \text{buildmesh}(a(20) + b(30) + c(10) + d(40));
\end{align*}

Freefem++ also includes some shortcuts to generate the most common domains. It is the case of

\begin{align*}
\text{mesh } Th = \text{square}(20, 20);
\end{align*}

which determines a 20 × 20 uniform triangulation on the unit square domain.

For our example problem we will take the computational domain \(\Omega = (0, 1) \times (0, 1) \) with boundary \(\delta \Omega = \Gamma_1 \cup \Gamma_2 \cup \Gamma_3 \cup \Gamma_4 \) and a triangulation as described above. Our full problem for the Laplace operator with Dirichlet boundary conditions is

\begin{align*}
\begin{cases}
-\Delta u &= f, \quad \text{in } \Omega, \\
\quad u &= 0, \quad \text{on } \Gamma_1 \cup \Gamma_2 \cup \Gamma_3, \\
\quad u &= 1, \quad \text{on } \Gamma_4.
\end{cases}
\end{align*}

(1)

In FreeFem++ PDEs must be written in variational form: find \(u \in V \) such that

\begin{align*}
\int_\Omega V u \cdot V v = \int_\Omega f v, \quad \forall \ v \in V,
\end{align*}

(2)

where \(V \) is a proper function space [1]. Then, the full FreeFem++ script is

```
mesh Th = square(20, 20); // triangulation
fespace Vh(Th, P1); // P1 finite elements
Vh u, v; // two functions from Vh space
func f = 0; // expression for function f
problem laplace(u, v) =
   // bilinear part from (2)
   int2d(Th)(dx(u)*dx(v) + dy(u)*dy(v)) // right side from (2)
   + int2d(Th)(-f*v)
   // Dirichlet boundary condition
   + on(1, 2, 3, u = 0) + on(4, u = 1);
laplace; // solves PDE
plot(u); // visualizes the solution
```

A front end user might work with FreeFem++ in two manners: either in terminal mode or by using the integrated environment FreeFem++-cs [13], written by Antoine Le Hyaric. This second version also allows a remote TCP-IP connection with another computer or a high performance server.

2.2. A few words on Easy Java Simulations

We choose Easy Java Simulations [4] because it meets all the requirements for an interactive engagement methodology. This open-source tool allows the generation of interactive simulations in a simple way and it was developed with an emphasis in teaching versatility. The user can change parameters and other aspects of these simulations and get a real-time visualization of the results.

Usually, an interactivity like that is obtained after a complicated coding process. A high programming level is needed to create the view and graphical interface and it hinders changes. This is not the case with EJS, to begin with, the teacher can supply students with closed simulations as applets with an interface that allows some changes in the model. Once students are familiar with the simulation they could read the code inside thanks to the modular conception of the software.

Each simulation consists of three stages and each one has a different panel window: description, model and view.

The description panel is basically an HTML editor that permits the creation of one or more tabs of information about the simulation. Besides a description of the model, it is possible to add activities and questions that help on its use.

The model panel, figure 1, is the central point of the simulation. It is subdivided into six subpanels where the model is implemented in a guided and structured way. We briefly describe them now.

- **Variables** subpanel takes care of the variables by means of a menu where, for each variable, we give name, initial value and type.
- **Initialization** subpanel might include, if needed, lines of code to set up these variables.
- **Evolution** subpanel might include lines of code to set up ordinary differential equations or any other model.
- **Fixed relations** subpanel stores pieces of code to be run on each step.
Custom subpanel might include functions defined by the user to be called from other parts of the simulation.

Elements is the final and more interesting subpanel. These elements serve to connect EJS with other libraries and allow external contributions to EJS.

The panel view, figure 2, allows the construction of a graphical interface from a large variety of elements included in EJS just by a drag and drop process.

The connection of FreeFem++ with EJS has been made working on the subpanel elements and the panel view. These modifications are described in the next two subsections.

2.3. The FreeFem++ element in EJS

In the subpanel elements we have the connection with FreeFem++. Inside elements there are different folders containing all the elements. In particular, in the external folder the FreeFem icon is found. Adding a new element to the simulation is made by a drag-and-drop process of the FreeFem icon to the list of elements on the left-hand side of the window, figure 3.

The properties of this element, and of any other, can be changed by a double click on it, see the bottom-left of figure 3. In this way, a property menu is displayed with three parts.

- The first group has three text fields that set up the connection with the computer that runs FreeFem++. This connection can be local or remote. To connect with a remote server it is necessary to give the URL address on the corresponding field. Otherwise, when the fields
are left empty a local call is made.

In the remote case, a username and password to secure the access can be specified.

- The text editor allows the introduction of a FreeFem++ script, as in the one in listing 1. True interactivity is obtained when EJS variables are parsed inside this script by using $(). For instance, we could create an EJS text variable (first subpanel on the model panel) with the name fExpression and initialize it to 0 or any other value. Then we could use this variable in the FreeFem++ script listing 1 replacing line 4 with func \(f=$(fExpression); // expression for function f. \) In this way, each time the script is run, the current value is taken. Later, we could link this variable fExpression to a text field in the view of our simulation. This will allow the user to introduce new expressions for \(f \) from our simulation view.

- Finally, there is a field to write comments or details on the element.

Now the freeFem element can be run from any part of the simulation, for instance from the initialization subpanel (second one from the panel model) by using

```
Script Output output = freeFem.runScript();
```

The function runScript from the freeFem element gives back a Java object of type ScriptOutput. This could be saved in a EJS variable of the same type, in our example in the variable output. This object stores all information created during the running of the script in FreeFem++, for example, the state of the connection and all the data needed for the
visualization of the functions and objects inserted inside a function plot from the FreeFem script.

This information has been encapsulated in Java objects to ease their access and use in other places in the simulations, like from the initialization, evolution or even from the view panel.

In this way, each ScriptOutput object has a list of objects of the type PlotOutput, one for each order plot in the script. Each one of these PlotOutput could even contain one or more parts of a graphical output, in the form of PDEData objects. Each PDEData is a triangulation or a solution.

To obtain the graphs stored in our variable output we have to read each of the PDEData inside; for this purpose we use the function getData:

\[
PDEData p = \text{output.getData}(\text{plotNum}, \text{dataNum});
\]

Here plotNum will be an integer that points to each plot of the script, the first one starting from 0. The parameter dataNum will be another integer value that gives the place that the triangulation or the solution has in the list of arguments for the selected plot; these arguments are also ordered from 0.

Figure 3. FreeFem element in EJS.
Finally, we include in the panel initialization the following lines:

```java
output = freeFem.runScript();
solution = output.getData(0, 0);
```

In this way the solution of our problem is available everywhere in the variable solution of type PDEData.

2.4. Visualization in EJS

According to panel view figure 2, we describe now the way the visualization is constructed. The right-hand side has three groups of icons. These icons are the view elements which serve to instantiate different view Java objects in a simple way. The first group includes windows, containers and others elements to design the interface, the second group has a large variety of objects to make plots and graphics in two dimensions and, finally, the third group has 3D graphic elements. To include a new element in our simulation the icon is selected by a single click and added to the view tree on the left-hand side.

The code inside some of these elements comes from the visualization library in Open Source Physics [17].

Bearing in mind that simplicity and versatility are the main principles in EJS, we have included two new view elements that simplify the visualization of triangulations and solutions in our simulations. They are called Mesh2D and Mesh3D and are marked in figure 4.

The data to plot is inserted in the Data field of the property menu of these two new elements by using the name of the PDEData variable obtained after the FreeFem++ computation. Although this process can also be made by using Java variables with the convenient data. Our software will plot the mesh of the problem and the contour line view of the solution.

To finish our simulation we use some of the view elements as follows:

1. Add a Frame element.
2. Add a DrawingPanel3D and a PlottingPanel to this Frame (according to the screen resolution it could be necessary to enlarge the Frame in the preview window of EJS to show both panels).
3. Add the Mesh2D element to the PlottingPanel (this yields the 2D view of the solution).
4. Add the Mesh3D element to the DrawingPanel3D (this yields the 3D view of the solution).

The tree of elements in the view panel would look as in figure 2 and the resulting simulation is shown in figure 5.

For a better understanding of the different values in the contour line plot, a legend can be attached (show legend option in the property menu) which match the colour and the solution value. Furthermore, an advanced configuration of the colour allows one to set the number of levels (levels) and the colour under and above this range (floor colour and ceil colour).
The autoscale option equally distribute the different levels between the minimum and maximum values of the solution. In this way, even if the solution changes, all the range of colours are used. If we want to state a fixed relation between values and colours, then the option AutoscaleZ must be set to false.

Finally, some numeric or text fields or even sliders could be added to the interface (field and TextField elements) to increase the interactivity of our simulation.

Thus far, our simple example has been concluded and our short overview of the software also. In the next subsection we show an example with much greater interactivity in a more sketchy way.

2.5. A fully interactive simulation

The applet FF01_EllipticExample (download at [8]) is the sort of simulation a student might work with. It reproduces the behaviour of an elastic membrane totally or partially attached to a circular rigid support under the effect of a load. Solving the Laplace equation with convenient boundary conditions we obtain the displacement of the membrane in the vertical direction.

Let the elastic membrane be attached to \(\Gamma = \partial \Omega \), the boundary of the 2D domain \(\Omega \), and suppose that a force \(f(x) \, dx \) is applied on each surface element \(dx = dx_1 \, dx_2 \). Then the membrane displacement solves

\[-\Delta \varphi(x) = f(x) \quad \text{in} \ \Omega.\]

The boundary conditions for this model could be of Dirichlet type (the membrane is totally fixed on \(\Gamma \)) and of Dirichlet–Neumann type (only partially attached):

1. Dirichlet type: in the case of a planar domain \(\Omega \), the boundary condition is

\[\varphi(x) = 0, \quad \text{on} \ \Gamma \]

and when \(\Omega \) is not planar but at an elevation \(z = z(x_1, x_2) \) then the boundary condition is

\[\varphi(x) = z, \quad \text{on} \ \Gamma. \]
2. Dirichlet–Neumann type: when one section of the membrane’s boundary Γ_N, where $\Gamma = \Gamma_D \cup \Gamma_N$, is not attached, the variation $g(x)$ of the displacement in the normal direction is given by

$$\frac{\partial}{\partial n} \varphi(x) = \vec{n} \cdot \nabla \varphi(x) = g(x) \quad \text{on } \Gamma_N$$

and then the full set of boundary conditions are

$$\varphi(x) = z \quad \text{on } \Gamma_D, \quad \frac{\partial}{\partial n} \varphi(x) = g(x) \quad \text{on } \Gamma_N.$$

The boundary condition on Γ_N is called of Neumann type, and we require $\Gamma_D \neq \emptyset$ for the problem to be well posed.

2.5.1. Playing the simulation. By default initially the simulation shows the solution to the problem

$$-\Delta \varphi(x) = -6, \quad \text{in } \Omega,$$

$$\varphi(x) = 0, \quad \text{on } \Gamma,$$

calculated on a mesh generated from a discretization over the boundary by using 30 uniformly distributed points. In figure 6 you see the computational domain Ω with its discretization and the 2D and 3D view of the solution. This solution is shown in a contour line plot and a different colour is assigned to each of these values (from the highest value in red to the lowest in blue). Check the legend in a different window (figure 7) to see the correspondence.

The top of the simulation is divided in three subpanels that allow one to modify the original setting of the problem:

(1.) Domain: left panel.

(2.) Equation: central panel.

(3.) Boundary conditions: right panel.

2.5.2. User interaction.

(1) Changes on the view: the viewpoint of the 3D plot can be changed using the mouse pointer. Also it is possible to zoom by pressing the Shift key at the same time the mouse is clicking and dragging.

(a) Changes on the domain:

(b) Shape and size: in the left panel the boundary of the domain Ω is described as a level set equation. There we can change the size and shape of the domain going from a circle to an ellipse by just changing the length of the blue arrows. Also by setting a different numerical value in the fields labelled as axes A and B. The field is filled in yellow until the intro key is pressed and the change is applied only then.

(c) Discretization: this is set by a uniform partition of the boundary. The number of points is set by the numeric field points and the larger this value the more accurate the computed solution is.

(2) Changes on the equations: a different expression to function $f = f(x, y)$ can be given in the central panel field. Some examples of correct analytical expressions are:

$$2x, x^2, \sin(x + y), -4\sin(2\pi x^2y), x^2 + y^2, ...$$
Changes on the boundary conditions: initially the simulations solve the problem with homogenous Dirichlet boundary conditions. This can be changed to a non-homogenous Dirichlet conditions in the field for Γ_D. Using the slider we can set a portion of the boundary as Γ_N then a new field to give the Neumann boundary condition appears.

3. Results

Traditionally the subject of PDEs imparted in the mathematics degree at the University of Murcia, has been carried out by theoretical lectures and solving some problem sets. Last year, we designed a two-hour long computer lab session to introduce this software.

3.1. Getting started

Simulations were available in a web site in two versions: the first to be run with a local FreeFem++ and the second on a multicore remote server.

As the interaction with all of the simulations is quite similar, students were introduced first to the use of numerical fields, sliders and how to zoom and rotate the graphics.

We worked on the three paradigmatic models: diffusion, transport and wave motion. Students previously had detailed documentation with a description of the models and some

Figure 6. Solution of $-\Delta \varphi = -6$ with $\varphi = 0$ at its boundary. 30 points discretization over the boundary Ω.

Figure 7. Legend shows the correspondence between colours and the value of the computed solution.
activities were proposed. A first set of questions offered the opportunity to get familiar with both simulation and models, while the following ones were focused on making conjectures on changes in the model and checking them with the simulation. Finally, some more difficult questions, where a higher abstraction level was needed, were posed.

3.2. Simulations and activities

The first simulation was the one we presented before in section 2.5 and we succinctly describe now the other two simulations (download at [8]):

FF03 Convection Diffusion: simulates diffusion of heat in a rectangular perforated metallic sheet. The initial temperature is 0 °C in all the domain. Then, a 100 °C temperature is applied on the left-hand side and temperature flows freely towards the right-hand side while the other straight sides are insulated. Here the heat transmission is modelled by the diffusion operator and the effects of transport and reaction are included.

Some of the activities proposed here were as follows.
- Identification of the type of boundary conditions applied on each piece of boundary.
- Filling in a table with the time to achieve a certain temperature level on a particular portion of the block when the transport and reaction effects are null.
- Guessing the behaviour produced by an increase in the transport effect.
- Studying the numerical stability of the model by using the Peclet number.
- Guessing the configuration of different parameters to achieve the temperature distribution shown in a given figure.

FF04 Waves Equation: shows the vibrations of a membrane attached by its border to a horizontal plane. Initially, the membrane is pulled from its centre to an initial position and let then vibrate. This initial position is set by the solution of a Poisson problem.

Some of the activities proposed here were as follows.
- Studying the initial position of the membrane and the velocity of the wave propagation depending on the parameters values.
- Detection of the loss of precision due to the iterative calculation of the numerical solution.

![Figure 8. Questions marks on the session development, visualization and interactivity of the simulations.](image)
3.3. Session evaluation

At the end of the session a short survey was handed out to the students. They were asked about the experience and some good marks on it were given. Our students offer their opinion about the session, the visualization of the models, interactivity of the simulations and concepts acquisition. They scored from 1 to 5, being 1 ‘poor’ and 5 ‘plenty’. The results are shown in figures 8 and 9.

To summarize, students positively qualified the session, pointing out:

- Positively, the simulations were easy to be played with and activities were clearly posed.
- Also positively, but with a lower mark, they stated that the session had improved their insight into the matter.
- Visualization of the models and their interpretation were well evaluated and students suggested it had been crucial in their understanding.
- Interactivity with the simulations was simple and the degree of freedom wide enough.
- Lower marks were given against knowledge acquisition. This might be due to the students’ insecurity.
- Also difficult was to associate models and the different boundary condition or the different operators, the most ambitious questions in the survey.

4. Conclusions

This paper shows the design of a set of interactive simulations to teach PDEs and the result of a practical session for an introductory course on the subject. We have built simulations for the diffusion, reaction and transport equations offering a high interactivity performance.

The building aspects of these simulations are the combination of EJS and FreeFem++ softwares. Thanks to EJS, students get simple interfaces which allow interaction with the models and, moreover, these simulations are distributed as independent applets.

The advance software FreeFem++ was used to numerically solve the equations but this process can be shadowed to the students. The computational work can be done in the local computer of the student or in a remote server.

A complete set of activities that goes with each of the simulations guide the students to the model. It makes them speculate about its behaviour and check the real effect of some changes. In this way they better assimilate the physical meaning of each PDE operator.

Figure 9. Questions marks on knowledge acquisition.
Acknowledgments

We thank Professor Francisco Balibrea for his collaboration in making possible the lab session. This work was partially funded by Fundación Séneca, the Regional Research Agency of the Region of Murcia, Spain through a grant 16007/BSCE/10 and by the Spanish Government project MTM2012-36124-C02-01.

References