Startpage >> Main >> Example


The boundary \((x,0)\) for \(0<x<1\) is built according to the parametric curve \begin{align} x(t)&=\frac{\exp(\alpha t)-1}{\exp\alpha-1},&& 0<t<1\\ y(t)&=0,&& 0<t<1 \end{align} with \(\alpha=5\). The uniform partition on the \(t\in (0,1)\) leads to a non-uniform partition on \((x(t),y(t))\). The larger \(\alpha\) the denser the node distribution near \((0,0)\).

download weightedborders.edp or return to 2D examples

real z=5;
border a(t=0,1){x=(exp(z*t)-1)/(exp(z)-1);y=0;};
border b(t=0,1){x=1;y=t;label=1;};
border c(t=0,1){x=1-t;y=1;label=1;};
border d(t=1,0){x=0;y=(exp(z*t)-1)/(exp(z)-1);label=1;};
int n=10;
mesh th=buildmesh(a(4*n)+b(n)+c(n)+d(4*n));

return to 2D examples

Page last modified on June 27, 2018, at 03:30 PM