SUPPORTING INFORMATION

Unravelling the Effects of Non-Target Ions in Two Polarizable Interface Systems: A General Analytical Theory

E. Laborda1, J.M.Olmos1, C.Serna3, E.Millán-Barrios2, A.Molina1*

1Departamento de Química Física, Facultad de Química, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain

2Laboratorio de Electroquímica, Departamento de Química, Facultad de Ciencias, Universidad de los Andes, 5101 Mérida, Venezuela
Table of contents

S1. Current-potential response in single pulse techniques for Scheme 2

S2. General solution of the problem for the application of an arbitrary sequence of potential pulses

S3. Effect of the diffusive transport of the compensating ion in the response of Scheme 4

S4. Quantitative analysis of two well-separated signals in Scheme 5
S1. Current-potential response in single pulse techniques for Scheme 2

In Scheme 2 of the main text, there are a target ion \((X^{z_x})\) in the outer aqueous phase and a compensating ion \((Y^{z_y})\) in the organic and inner aqueous phases, respectively. The variations of their concentrations during the application of a constant potential \(E_i = E_{out}^{(i)} - E_{inn}^{(i)}\) are given by the following differential equations system (see Figure S1):

\[
\begin{align*}
\frac{\partial c_X^{(i)\text{out}}}{\partial t_i} &= D_x^{w} \frac{\partial^2 c_X^{(i)\text{out}}}{\partial x^2} \\
\frac{\partial c_X^{(i)\text{inner}}}{\partial t_i} &= D_x^{o} \frac{\partial^2 c_X^{(i)\text{inner}}}{\partial x^2} \\
\frac{\partial c_Y^{(i)\text{inner}}}{\partial t_i} &= D_y^{o} \frac{\partial^2 c_Y^{(i)\text{inner}}}{\partial x^2} \\
\frac{\partial c_Y^{(i)\text{out}}}{\partial t_i} &= D_y^{w} \frac{\partial^2 c_Y^{(i)\text{out}}}{\partial x^2}
\end{align*}
\]

(A1)

where \(0 \leq t_i \leq \tau\) (\(\tau\) being the duration of the constant potential pulse \(E_i\)). Provided that the thickness of the organic solution is large enough (\(d\) in Figure S1), the boundary conditions of system (A1) are as follows:

\[x = -\infty \quad \text{W}_{\text{out}} \quad \text{O} \quad \text{W}_{\text{inn}} \quad x = +\infty\]

\[X^{z_x} \rightarrow \quad \text{(O}_{\text{out}}) \quad \text{(O}_{\text{inn}}) \quad Y^{z_y} \rightarrow \]

\[x = 0 \quad \text{Bulk} \quad \text{organic} \quad \text{solution} \quad x = d\]

\(x = d\)

Figure S1. Bulk organic solution refers to distances far from the outer \((x = 0)\) and inner \((x = d)\) interfaces where the concentration profiles of ionic species are unaltered.
Outer interface

\[
\begin{align*}
\begin{cases}
 x \leq 0, t_i = 0 \\
 x \to -\infty, t_i \geq 0
\end{cases} & \quad c^{(1)W_{\text{out}}}_x = c^{*W_{\text{out}}}_x \quad (A2) \\
0 \leq x \leq \text{bulk organic solution}, t_i = 0 & \quad c^{(1)Q_{\text{out}}}_x = 0 \quad (A3) \\
x \to \text{bulk organic solution}, t_i \geq 0 & \quad c^{(1)Q_{\text{out}}}_x = 0 \\
x = 0, t_i > 0 &
\end{align*}
\]

\[
D^W_X \left(\frac{\partial c^{(1)W_{\text{out}}}_x}{\partial x} \right)_{x=0} = D^O_X \left(\frac{\partial c^{(1)Q_{\text{out}}}_x}{\partial x} \right)_{x=0} \quad (A4)
\]

\[
c^{(1)Q_{\text{out}}}_x(0) = c^{(1)W_{\text{out}}}_x(0)e^{\eta_{\text{out,1}}^X} \quad (A5)
\]

Inner interface

\[
\begin{align*}
\begin{cases}
 x \geq d, t_i = 0 \\
 x \to \infty, t_i \geq 0
\end{cases} & \quad c^{(1)W_{\text{inn}}}_y = c^{*W_{\text{inn}}}_y \quad (A6) \\
\text{bulk organic solution} \leq x \leq d, t_i = 0 & \quad c^{(1)Q_{\text{inn}}}_y = c^{*Q}_y \quad (A7) \\
x \to \text{bulk organic solution}, t_i \geq 0 & \quad c^{(1)Q_{\text{inn}}}_y = c^{*Q}_y \\
x = d, t_i > 0 &
\end{align*}
\]

\[
D^W_Y \left(\frac{\partial c^{(1)W_{\text{inn}}}_y}{\partial x} \right)_{x=d} = D^O_Y \left(\frac{\partial c^{(1)Q_{\text{inn}}}_y}{\partial x} \right)_{x=d} \quad (A8)
\]

\[
c^{(1)Q_{\text{inn}}}_y(d) = c^{(1)W_{\text{inn}}}_y(d)e^{\eta_{\text{inn,1}}^Y} \quad (A9)
\]

where \(d \) is the thickness of the organic layer (see Figure S1) and

\[
\eta_{\text{out,1}}^i = \frac{z_iF}{RT} \left(E^{(i)} - \Delta \phi_i^0 \right) ; \quad \eta_{\text{inn,1}}^i = \frac{z_iF}{RT} \left(E^{(i)} - \Delta \phi_i^0 \right) \quad (A10)
\]

with \(\Delta \phi_i^0 \) being the formal transfer potential of species \(i \) \((i = X,Y) \) from water to the organic solution. Other variables in Eqs.(A1)-(A10) have their usual meaning. Note that the above mathematical problem (Eqs.(A1)-(A9)) also applies for Scheme 1 by making \(c^{*Q}_y = 0 \).
As can be inferred from Eqs. (A4)-(A5) and (A8)-(A9), the interface concentrations \(c^{(1)\text{out}}_X(0), \ c^{(1)\text{out}}_Y(0), \ c^{(1)\text{out}}_X(d) \) and \(c^{(1)\text{out}}_Y(d) \) are not a function of the time. Thus, the solutions for the differential equation system (A1) are given by [1]:

\[
\begin{align*}
 c^{\text{out}}_X(x, t) &= e^{t} c^{\text{out}}_X(0) [c^{\text{out}}_X(0) - c^{\text{out}}_X(x)] \text{erfc} \left(s^{\text{out}}_X \right) \\
 c^{\text{out}}_X(x, t) &= e^{t} c^{\text{out}}_X(0) \text{erfc} \left(s^{\text{out}}_X \right) \\
 c^{\text{out}}_Y(x, t) &= e^{t} c^{\text{out}}_Y(d) [c^{\text{out}}_Y(d) - c^{\text{out}}_Y(x)] \text{erfc} \left(s^{\text{out}}_Y \right) \\
 c^{\text{out}}_Y(x, t) &= e^{t} c^{\text{out}}_Y(d) \text{erfc} \left(s^{\text{out}}_Y \right)
\end{align*}
\]

(A11)

with

\[
\begin{align*}
 s^{\text{out}}_X &= \frac{x}{2\sqrt{D^W_x t}}; \quad s^{\text{out}}_X = \frac{x}{2\sqrt{D^W_x t}}; \quad s^{\text{out}}_Y = \frac{x-d}{2\sqrt{D^W_y t}}; \quad s^{\text{out}}_Y = \frac{x-d}{2\sqrt{D^W_y t}}
\end{align*}
\]

(A12)

By inserting Eqs. (A11) in the conditions (A4) and (A8) it is readily obtained that

\[
\begin{align*}
 \frac{c^{(1)\text{out}}_X(0)}{c^{\text{out}}_X} &= 1 - \frac{I^{(d)}}{I_{d,x}} \\
 \frac{c^{(1)\text{out}}_X(d)}{c^{\text{out}}_X} &= \frac{\delta x \cdot \sum_x D^W_x}{\sum_y D^W_y} \frac{I^{(d)}}{I_{d,x}} \\
 \frac{c^{(1)\text{out}}_Y(0)}{c^{\text{out}}_Y} &= \frac{\sum_x D^W_x}{\sum_y D^W_y} \frac{I^{(d)}}{I_{d,x}} \\
 \frac{c^{(1)\text{out}}_Y(d)}{c^{\text{out}}_Y} &= \frac{\delta y \cdot \sum_y D^W_y}{\sum_x D^W_x} \frac{I^{(d)}}{I_{d,x}}
\end{align*}
\]

(A13)

where

\[
I^{(d)}_1 = -z_x \cdot \sum_x D^W_x \left(\frac{\partial c^{(1)\text{out}}_X}{\partial x} \right)_{x=0} = -z_y \cdot \sum_y D^W_y \left(\frac{\partial c^{(1)\text{out}}_Y}{\partial x} \right)_{x=d}
\]

(A14)

and \(I_{d,x} \) is the limiting diffusion current for the transfer of \(X_{\text{out}} \) from phase \(W_{\text{out}} \)

\[
I_{d,x} = z_x F A_{\text{out}} D^W_x \frac{D^W_x}{\pi t_1}
\]

(A15)

By combining Eqs. (A5), (A9) and (A13), expressions for the interfacial potential differences (\(E^{(\text{out})}_1 \) and \(E^{(\text{inn})}_1 \)) are obtained as a function of the current that crosses the 2Pls-system
\[E_{1}^{\text{out}} = \Delta \phi_{X}^{\psi} + \frac{RT}{z_{X}F} \ln \left(\frac{1}{\gamma_{X}} \right) + \frac{RT}{z_{X}F} \ln \left(\frac{I_{1}^{(H)}}{I_{d,X}^{\text{out}} - I_{1}^{(H)}} \right) \]
(A16)

\[E_{1}^{\text{inn}} = \Delta \phi_{Y}^{\psi} + \frac{RT}{z_{Y}F} \ln \left(\frac{c_{X}^{*} - z_{X} A_{\text{out}}}{c_{X}^{\text{inn}} + z_{X} A_{\text{inn}}} \right) \left(\frac{D_{X}^{W}}{D_{X}^{W}} \right) \left(\frac{D_{1}^{W}}{D_{d,X}^{\text{out}}} \right) \]
(A17)

where

\[\gamma_{X} = \sqrt{\frac{D_{X}^{O}}{D_{X}^{W}}} \]
(A18)

Finally, by subtracting Eqs. (A16) and (A17) it is immediately obtained the relationship between the potential applied \(E_{1} \) and the current \(I_{1} \) (Eq. (15) of the main text).
S2. General solution of the problem for the application of an arbitrary sequence of potential pulses

When an arbitrary sequence of \(p \) pulses of potentials \(E_1, E_2, ..., E_n, ..., E_p \) is applied to a system composed by an organic layer embedded between two aqueous solutions that contain an arbitrary number of transferable species, the variations of the concentrations of all the ionic species during the \(m \)-th pulse (\(m = 2, 3, ..., p \)) are given by the following differential equation system:

\[
\frac{\partial c_i^{(m)\alpha}}{\partial t_m} = D_i^\alpha \frac{\partial^2 c_i^{(m)\alpha}}{\partial x^2}; \quad \alpha = W_{\text{out}}, W_{\text{inn}}, O_{\text{out}}, O_{\text{inn}}
\]

where \(0 \leq t_m \leq \tau \) (\(\tau \) being the duration of the potential pulses). The solutions of system (A19) are subjected to the following boundary conditions:

Outer interface

\[
\begin{align*}
\{ & x \leq 0, t_m = 0 \\
& x \to -\infty, t_m \geq 0 \}
\end{align*}
\]

\[c_i^{(m)W_{\text{out}}} = c_i^{(m-1)W_{\text{out}}} \] \hspace{1cm} (A20)

\[
\begin{align*}
\{ & 0 \leq x \leq \text{bulk organic solution, } t_m = 0 \\
& x \to \text{bulk organic solution, } t_m \geq 0 \}
\end{align*}
\]

\[c_i^{(m)O_{\text{out}}} = c_i^{(m-1)O_{\text{out}}} \] \hspace{1cm} (A21)

\[
\begin{align*}
\{ & x = 0, t_m > 0 \}
\end{align*}
\]

\[D_i^W \left(\frac{\partial c_i^{(m)W_{\text{out}}}}{\partial x} \right)_{x=0} = D_i^O \left(\frac{\partial c_i^{(m)O_{\text{out}}}}{\partial x} \right)_{x=0} \] \hspace{1cm} (A22)

\[c_i^{(m)O_{\text{out}}}(0) = c_i^{(m)W_{\text{out}}}(0)e^\tau_{\text{out}, m} \] \hspace{1cm} (A23)

Inner interface

\[
\begin{align*}
\{ & x \geq d, t_m = 0 \\
& x \to \infty, t_m \geq 0 \}
\end{align*}
\]

\[c_i^{(m)W_{\text{inn}}} = c_i^{(m-1)W_{\text{inn}}} \] \hspace{1cm} (A24)

\[
\begin{align*}
\{ & \text{bulk organic solution } \leq x \leq d, t_m = 0 \\
& x \to \text{bulk organic solution, } t_m \geq 0 \}
\end{align*}
\]

\[c_i^{(m)O_{\text{inn}}} = c_i^{(m-1)O_{\text{inn}}} \] \hspace{1cm} (A25)
\[x = d, \ t_m > 0 \]

\[D_i^W \left(\frac{\partial c_i^{(m)W_{\text{inn}}}}{\partial x} \right)_{x=d} = D_i^O \left(\frac{\partial c_i^{(m)O_{\text{inn}}}}{\partial x} \right)_{x=d} \]

(A26)

\[c_i^{(m)O_{\text{inn}}}(d) = c_i^{(m)W_{\text{inn}}}(d) e^{\eta_{\text{inn},m}} \]

(A27)

where \(i \) refers to the different transferable species, \(c_i^{(m-1)\alpha} \) are the solutions determined for the previous pulse and

\[\eta_{\text{out},m}^i = \frac{z_i F}{RT} \left(F_{\text{out}}^{(m)} - \Delta \phi_i^W \right) ; \quad \eta_{\text{inn},m}^i = \frac{z_i F}{RT} \left(F_{\text{inn}}^{(m)} - \Delta \phi_i^O \right) \]

(A28)

with \(E_m = E_{\text{out}}^{(m)} - E_{\text{inn}}^{(m)} \). The current response is calculated from

\[I_m = -\sum_i z_i F A_{\text{out}}^W D_i^W \left(\frac{\partial c_i^{(m)W_{\text{out}}}}{\partial x} \right)_{x=0} = -\sum_i z_i F A_{\text{inn}}^W D_i^W \left(\frac{\partial c_i^{(m)W_{\text{inn}}}}{\partial x} \right)_{x=d} \]

(A29)

In order to solve the above problem, the solutions of the system (A19) can be expressed as

\[c_i^{(m)\alpha}(x,t) = c_i^{(m-1)\alpha}(x,t) + \tilde{c}_i^{(m)\alpha}(x,t_m) ; \quad m = 2,3,...p \]

(A30)

where

\[t = m\tau \]

(A31)

\[c_i^{(m-1)\alpha}(x,t) = c_i^{(1)\alpha}(x,t) + \sum_{j=2}^{m-1} \tilde{c}_i^{(j)\alpha}(x,t_{jm}) \]

(A32)

with

\[t_{jm} = (m-j+1)\tau \]

(A33)

Thus, by inserting Eq.(A30) in (A19)-(A27) the problem is expressed only in terms of the unknown partial solutions \(\tilde{c}_i^{(m)\alpha} \):

\[\frac{\partial \tilde{c}_i^{(m)\alpha}}{\partial t_m} = D_i^W \frac{\partial^2 \tilde{c}_i^{(m)\alpha}}{\partial x^2} ; \quad \alpha = W_{\text{out}}, W_{\text{inn}}, M_{\text{(out)}}, M_{\text{(inn)}} \]

(A34)
Outer interface

\begin{align}
& x \leq 0, t_m = 0 \\
& x \rightarrow -\infty, t_m \geq 0 \quad \Rightarrow \quad \tilde{c}_i^{(m)W_{\text{out}}} = 0 \\
& 0 \leq x \leq \text{bulk organic solution}, t_m = 0 \\
& x \rightarrow \text{bulk organic solution}, t_m \geq 0 \quad \Rightarrow \quad \tilde{c}_i^{(m)\Omega_{\text{out}}} = 0 \\
& x = 0, t_m > 0 \quad \Rightarrow \\
& D_i^W \left(\frac{\partial \tilde{c}_i^{(m)W_{\text{out}}}}{\partial x} \right)_{x=0} = D_i^O \left(\frac{\partial \tilde{c}_i^{(m)\Omega_{\text{out}}}}{\partial x} \right)_{x=0} \\
& \tilde{c}_i^{(m)\Omega_{\text{out}}} (0) - \tilde{c}_i^{(m)W_{\text{out}}} (0) e^{\eta_{\text{out},m}} = \frac{c_i^{W_{\text{out}}}}{1 + \gamma_e e^{\eta_{\text{out},m-1}}} (e^{\eta_{\text{out},m}} - e^{\eta_{\text{out},m-1}}) \\
\end{align}

Inner interface

\begin{align}
& x \geq d, t_m = 0 \\
& x \rightarrow \infty, t_m \geq 0 \quad \Rightarrow \quad \tilde{c}_i^{(m)W_{\text{out}}} = 0 \\
& \text{bulk organic solution} \leq x \leq d, t_m = 0 \\
& x \rightarrow \text{bulk organic solution}, t_m \geq 0 \quad \Rightarrow \quad \tilde{c}_i^{(m)\Omega_{\text{in}}} = 0 \\
& x = d, t_m > 0 \quad \Rightarrow \\
& D_i^W \left(\frac{\partial \tilde{c}_i^{(m)W_{\text{out}}}}{\partial x} \right)_{x=d} = D_i^O \left(\frac{\partial \tilde{c}_i^{(m)\Omega_{\text{in}}}}{\partial x} \right)_{x=d} \\
& \tilde{c}_i^{(m)\Omega_{\text{in}}} (d) - \tilde{c}_i^{(m)W_{\text{out}}} (d) e^{\eta_{\text{in},m}} = \frac{c_i^{W_{\text{out}}}}{1 + \gamma_e e^{\eta_{\text{in},m-1}}} (e^{\eta_{\text{in},m}} - e^{\eta_{\text{in},m-1}}) \\
\end{align}

where

\[\gamma_e = \frac{D_i^O}{\sqrt{D_i^W}} \]

By using the procedure indicated on [2], the following expression is obtained for the current associated with the transfer of the species \(i \) across the outer and inner liquid|liquid interfaces during the \(m \)-th potential pulse:
where the different variables are defined in the main text (Eqs.(2)-(7)). The condition of equal currents at both interfaces implies that

\[
\sum_i I^\text{out}_{d,j}(\tau) \sum_{j=1}^{m} \frac{Z^\text{out}_{i,j}}{\sqrt{m-j+1}} = \sum_i I^\text{inn}_{d,j}(\tau) \sum_{j=1}^{m} \frac{Z^\text{inn}_{i,j}}{\sqrt{m-j+1}}
\]

where the subscript \(i \) refers to the different transferable species. By considering Eqs. (A22), (A26), (A29) and (A30) it can be inferred that [2]

\[
\sum_i I^\text{out}_{d,j}(\tau) Z^\text{out}_{i,m} = \sum_i I^\text{inn}_{d,j}(\tau) Z^\text{inn}_{i,m}
\]

Thus, the unknown potential differences \(E^\text{out}_m \) and \(E^\text{inn}_m \) at the outer and inner interfaces can be obtained by solving Eq.(A46) and then the current response can be calculated from (A45).
S3. Effect of the diffusive transport of the compensating ion in the response of Scheme 4

Figure S2. $c_X^{SW} = c_X^{SW} = 1$ mM, $c_Y^{SW} = c_Y^{SW}$, $z_X = 1$, $z_Y = -1$, $D_X^w = D_Y^w = D_Y^0 = 10^{-5}$ cm2 s$^{-1}$, $A_{vac} = A_{inn} = 0.1$ cm2, $f = 1$ Hz, $\Delta E_{sw} = 25$ mV, $E_s = 10$ mV. $E_{index} = (E_1 + E_2) / 2$, with E_1 and E_2 corresponding to the pulse with odd index and to the consecutive pulse with even index that comprises each cycle in cSWV, respectively [3].
S4. Quantitative analysis of two well-separated signals in Scheme 5

In Scheme 5 of the main text, the analyte X^{z_x} is present initially in both aqueous phases that also contain two compensating ions Y^{z_y} and R^{z_z}. Provided that

$$|z_y| c_{A_{\text{out/in}}}^{*} \sqrt{D_y^W} / \kappa \sqrt{D_x^W} \geq 1 \left(c_{Y_{\text{out}}}^{w_{\text{wet}}} = c_{Y_{\text{wet}}}^{w_{\text{wet}}} = c_y^{*} \text{ and } c_{X_{\text{out}}}^{w_{\text{wet}}} = c_{X_{\text{wet}}}^{w_{\text{wet}}} = c_x^{*} \right)$$

and the differences $\Delta \phi_{X}^{0} - \Delta \phi_{Y}^{0}$ and $\Delta \phi_{Y}^{0} - \Delta \phi_{R}^{0}$ are positive enough, two well-separated signals are obtained for the transfer of X^{z_x} from each aqueous phase fully compensated by the ion Y^{z_y} from the opposite one (see Figure 5b of the main text). These signals are totally independent of each other, X^{z_x} being transferred from phase W_{out} to positive potentials ($E_{\text{out}} > E_{\text{inn}}$) and from phase W_{inn} to negative potentials ($E_{\text{out}} < E_{\text{inn}}$). Note that this situation is also found for Scheme IV when $\Delta \phi_{X}^{0} - \Delta \phi_{Y}^{0}$ is positive enough (see Section S3).

The signal developed at positive potentials is described by Scheme 1 of the main text (see Figure S3a), its half-wave potential $E_{1/2}^{(1)}$ being given by Eq.(11) of the main text (provided that the current is limited by the transfer of species X^{z_x}). On the other hand, the signal obtained at negative potentials corresponds to the situation shown in Figure S3b. In this case, by using the procedure detailed in Section S1, the following expression is derived between the applied potential ($E_{1}^{(1)}$) and the current measured ($I_{1}^{(1)}$) in single pulse step techniques:

![Figure S3. Independent ion transfer processes of Scheme 5 occurring at positive (S3a) and negative potentials (S3b) when the differences $\Delta \phi_{X}^{0} - \Delta \phi_{Y}^{0}$ and $\Delta \phi_{Y}^{0} - \Delta \phi_{R}^{0}$ are positive enough.](image-url)
\[E_1^{(i)} = \left(\Delta \phi_Y - \Delta \phi_X^{(i)} \right) + \frac{RT}{z_Y F} \ln \left(\lambda \right) - \frac{RT}{z_X F} \ln \left(\frac{1}{\gamma_X} \right) - \frac{RT}{z_X F} \ln \left(\frac{I_{d,X}^{(i)}}{I_{\text{out}} - I_{d,X}^{(i)}} \right) \] (A47)

By making \(I_1^{(i)} = I_{d,X}^{\text{out}} / 2 \) in the above equation, it is immediately obtained that

\[E_{1/2}^{(i)} = \left(\Delta \phi_Y - \Delta \phi_X^{(i)} \right) - \frac{RT}{z_X F} \ln \left(\frac{1}{\gamma_X} \right) + \frac{RT}{z_Y F} \ln \left(\frac{-z_X}{2 z_Y} \frac{A_{\text{inn}}}{A_{\text{out}}} \sqrt{D_{X}^{W}} \right) \] (A48)

in such a way that the subtraction of Eqs. (11) and Eq.(A48) leads to Eq.(19). It is worth highlighting that the values of the half-wave potentials in 2PI systems differ from the peak potentials in cSWV, unlike the case of 1PI systems [4]. Thus, the values of \(\Delta E_{1/2} \) provided by Eq.(19) are related to the \(\Delta E_{\text{peak}} \) -values by the following expression:

\[\Delta E_{\text{peak}} = \Delta E_{1/2} + a \frac{RT}{F} \] (A49)

where \(a \) is a constant that depends on \(z_X, z_Y, c_Y^{*} / c_X^{*} \) and the amplitude (\(\Delta E_{\text{peak}} \)) employed in cSWV. For example, Eq.(A49) with \(a = 0.934 \) applies for \(z_X = \left| z_Y \right| = 1 \), \(\Delta E_{\text{peak}} = 25 \text{ mV} \) and a large excess of species \(Y^{z_Y} \) (\(c_Y^{*} / c_X^{*} \geq 20 \)) [5], although it also yields very accurate results when the concentrations of species \(X^{z_X} \) and \(Y^{z_Y} \) are similar (error less than 1 mV, see Table S1). A comparative study between the variation of \(\Delta E_{\text{peak}} \) and \(\Delta E_{1/2} \) with the above parameters can be found in Table S1.
<table>
<thead>
<tr>
<th>E_{sw}</th>
<th>$E_{sw} = 25 \text{mV}$</th>
<th>$E_{sw} = 50 \text{mV}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z_X, Z_R</td>
<td>$c_Y \approx c_X$</td>
<td>$c_Y \gg c_X$</td>
</tr>
<tr>
<td>1, -1</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>2, -2</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>1, -2</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>2, -1</td>
<td>0</td>
<td>22</td>
</tr>
</tbody>
</table>

Table S1. Differences $\Delta E_{peak} - \Delta E_{1/2}$ (mV) between the peak potentials in CSWV (determined from Eq.(1)) and the half-wave potentials (calculated from Eq.(19)) for the two-well separated signals obtained for Scheme 5. $\Delta \phi_X^o - \Delta \phi_Y^o > 100 \text{mV}$, $\Delta \phi_Y^o - \Delta \phi_R^o > 200 \text{ mV}$, $D_X^w = D_X^o = D_Y^w = D_Y^o$.

14
References

