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1 Monotonicity of the relative isoperimetric quotient of parallel bodies
Let Kn denote the family of all full-dimensional convex bodies in Rn, and let E ∈ Kn be a fixed gauge body.
The inradius of K w.r.t. E is r(K;E) = max{r ≥ 0 : there is some x ∈ Rn such that x + rE ⊆ K}. The
parallel bodies of K w.r.t. E are

Kλ =

{
{x ∈ Rn : x + |λ|E ⊆ K} for − r(K;E) ≤ λ ≤ 0 (inner parallel bodies),

K + λE for λ ≥ 0 (outer parallel bodies).

B2

K
K1

K−1

S

K
K1

K−1

Figure 1: Inner and outer parallel bodies of a Euclidean semi-disc K relative to a Euclidean disc E = B2 and to a square E = S.

The relative quermassintegrals Wi(K;E), 0 ≤ i ≤ n, of K w.r.t. E are defined by the relative Steiner
formula for the volume of the Minkowski sum K + λE,

vol(K + λE) =

n∑
i=0

(
n
i

)
Wi(K;E)λi, λ ≥ 0.

In particular, S(K;E) = nW1(K;E) is the relative surface area (see e.g. [3, Section 5.1.2]). The relative
isoperimetric quotient [5], a quantity that is invariant under homothetic scaling of K, is

I(K;E) =
S(K;E)n

vol(K)n−1
.

The body K is a tangential body of E ⊆ K if through every boundary point of K there is a supporting
hyperplane of K that also supports E [8, p. 149].

Figure 2: Some tangential bodies of a Euclidean disc (left) and of a triangle (right).

Main result
Theorem 1. The relative isoperimetric quotient function

I(λ) =
S(Kλ;E)n

vol(Kλ)n−1

is monotonically decreasing on (− r(K;E),∞).
Moreover, the following are equivalent for all − r(K;E) < λ0 < λ1 <∞:

(i) I(λ0) = I(λ1),
(ii) Kλ0

is homothetic to Kλ1
,

(iii) Kλ1
is homothetic to a tangential body of E,

(iv) I(λ) is constant on (− r(K;E), λ1].
If λ1 > 0, the equivalent conditions (i)-(iv) are satisfied if and only ifK is homothetic toE and, consequently,

if and only if I(λ) = nn vol(E) for all λ ∈ (− r(K;E),∞).
Remark 2. (a) The monotonicity for λ ≥ 0 is not new, see [5, Remark 4.4].

(b) When the gauge body E is the Euclidean unit ball Bn, we obtain the classical surface area S(K;Bn) =

S(K) and the isoperimetric quotient function amounts to I(λ) =
S(Kλ)n

vol(Kλ)n−1
. Even in that central case the

monotonicity for inner parallel bodies, i.e. for λ < 0, seems to be not present in the literature.

2 Monotonocity for related families and isoperimetric problems
Let Ω be a subset of the Euclidean unit sphere Sn−1 containing the origin in the interior of its convex hull. Let
KΩ =

⋂
u∈ΩH

−
u,hK(u)

, whence K ⊆ KΩ ∈ Kn. Then K is determined by Ω if KΩ = K [8, pp. 385, 411].
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Figure 3: Bodies KΩ for Ω = {(±1, 0), (0,±1)} and K being a Euclidean disc, a triangle, a square and a rectangle. The square and
the rectangle are determined by Ω, whereas the disc and the triangle are not.

When Ω determines K, we define

K(Ω, λ) =
⋂
u∈Ω

H−
u,hK(u)+λhE(u)

, λ ≥ − r(K;E).

This generalizes the family (Kλ)λ≥− r(K;E) of parallel bodies in so far as K(Ω, λ) = Kλ for − r(K;E) ≤
λ ≤ 0 whenever Ω determines K and K(Sn−1, λ) = Kλ for all λ ≥ − r(K;E).
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Figure 4: Examples of K(Ω, λ), λ = 1, 2, with K being a square, E = B2 being a Euclidean disc and different choices of Ω ⊆ S1.

Main results

Theorem 3. If Ω ⊆ Sn−1 determines K, the relative isoperimetric quotient function

IΩ(λ) =
S(K(Ω, λ);E)n

vol(K(Ω, λ))n−1

of the family (K(Ω, λ))λ>− r(K;E) is monotonically decreasing on (− r(K;E),∞).
Moreover, the following are equivalent for all − r(K;E) < λ0 < λ1 <∞:

(i) IΩ(λ0) = IΩ(λ1),
(ii) K(Ω, λ0) is homothetic to K(Ω, λ1),
(iii) K(Ω, λ1) is homothetic to a tangential body of E,
(iv) IΩ(λ) is constant on (− r(K;E), λ1].

If λ1 > 0, the equivalent conditions (i)-(iv) are satisfied if and only if K is homothetic to EΩ and, conse-
quently, if and only if I(λ) = I

(
EΩ;E

)
= nn vol

(
EΩ
)

for all λ ∈ (− r(K;E),∞)

The shape of K(Ω, λ) tends to EΩ (up to homothety) as λ→∞. This yields the following.

Corollary 4. Let Ω ⊆ Sn−1 be a set that contains the origin in the interior of its convex hull. Then a convex
body K0 ∈ Kn is a minimizer of the relative isoperimetric quotient I(·;E) among all convex bodies K ∈ Kn
that are determined by Ω if and only if K0 is homothetic to the tangential body EΩ of E. In particular, that
minimal quotient is I

(
EΩ;E

)
= nn vol

(
EΩ
)
.

Remark 5. IfE = Bn, Corollary 4 concerns the classical isoperimetric quotient as mentioned in Remark 2(b).
For that case the claim is a well-known result [8, p. 385], that goes back to Lindelöf and Minkowski [6, 7] for
finite Ω and to Aleksandrov [1] for general Ω.

For E = Bn and Ω = Sn−1, we obtain the isoperimetric inequality for arbitrary convex bodies.

3 Isoperimetric-type quotients of quermassintegrals

Here we ask for the monotonicity of all quotients

Wj(Kλ;E)n−i

Wi(Kλ;E)n−j
, 0 ≤ i < j < n.

Note that Theorem 1 covers the particular case
W1(Kλ;E)n

W0(Kλ;E)n−1
=

1

nn
S(Kλ;E)n

vol(Kλ)n−1
.

The body K ∈ Kn belongs to the classRj, 0 ≤ j ≤ n− 1, if

d

dλ
Wi(Kλ;E) = (n− i) Wi+1(Kλ;E)

for all 0 ≤ i ≤ j and − r(K;E) ≤ λ < ∞. Note that Rn−1 ⊆ Rn−2 ⊆ . . . ⊆ R1 ⊆ R0 = Kn, and the
inclusions are strict in general [4].

Main results

Theorem 6. Let 0 ≤ i < j < n, and suppose that K ∈ Rj−1. Then the function

Ii,j(λ) =
Wj(Kλ;E)n−i

Wi(Kλ;E)n−j

is monotonically decreasing on (− r(K;E),∞).
Moreover, if E is smooth, the following are equivalent for all − r(K;E) < λ0 < λ1 <∞:

(i) Ii,j(λ0) = Ii,j(λ1),
(ii) Kλ0

is homothetic to Kλ1
,

(iii) Kλ1
is homothetic to an (n− j)-tangential body of E (cf. [8, p. 86]),

(iv) Ii,j(λ) is constant on (− r(K;E), λ1].
If E is smooth and λ1 > 0, conditions (i)-(iv) are satisfied if and only if K is homothetic to E and, conse-

quently, if and only if Ii,j(λ) = vol(E)j−i for all λ ∈ (− r(K;E),∞).

The above monotonicity is shown in [5] under the stronger assumption that K ∈ Rj.
Corollary 7. Let 0 ≤ i < j < n and let E be smooth. Then a convex body K0 ∈ Rj−1 is a minimizer of the

quotient
Wj(·;E)n−i

Wi(·;E)n−j
among all convex bodies K ∈ Rj−1 if and only if K0 is homothetic to E.
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