On the monotonicity of the isoperimetric quotient for parallel bodies (arXiv:2003.14182)

Christian Richter & Eugenia Saorín Gómez

Institute of Mathematics, Friedrich Schiller University of Jena, Germany & ALTA institute for Algebra, Geometry, Topology and their Applications, University of Bremen, Germany

christian.richter@uni-jena.de & esaoring@uni-bremen.de

Monotonicity of the relative isoperimetric quotient of parallel bodies

Let \mathcal{K}^n denote the family of all full-dimensional convex bodies in \mathbb{R}^n , and let $E \in \mathcal{K}^n$ be a fixed gauge body. The inradius of K w.r.t. E is $r(K; E) = \max\{r \ge 0 : \text{ there is some } x \in \mathbb{R}^n \text{ such that } x + rE \subseteq K\}$. The parallel bodies of K w.r.t. E are

 $K_{\lambda} = \begin{cases} \{x \in \mathbb{R}^{n} : x + |\lambda| E \subseteq K\} & \text{for } -r(K; E) \leq \lambda \leq 0 & \text{(inner parallel bodies),} \\ K + \lambda E & \text{for } \lambda \geq 0 & \text{(outer parallel bodies).} \end{cases}$

Main results

Theorem 3. If $\Omega \subseteq \mathbb{S}^{n-1}$ determines K, the relative isoperimetric quotient function

$$\mathbf{I}^{\Omega}(\lambda) = \frac{\mathbf{S}(K(\Omega, \lambda); E)^n}{\mathrm{vol}(K(\Omega, \lambda))^{n-1}}$$

of the family $(K(\Omega, \lambda))_{\lambda > -r(K;E)}$ is monotonically decreasing on $(-r(K;E),\infty)$. Moreover, the following are equivalent for all $-r(K;E) < \lambda_0 < \lambda_1 < \infty$: (*i*) $I^{\Omega}(\lambda_0) = I^{\Omega}(\lambda_1)$, (*ii*) $K(\Omega, \lambda_0)$ is homothetic to $K(\Omega, \lambda_1)$, (iii) $K(\Omega, \lambda_1)$ is homothetic to a tangential body of E, (iv) $I^{\Omega}(\lambda)$ is constant on $(-r(K; E), \lambda_1]$.

Figure 1: Inner and outer parallel bodies of a Euclidean semi-disc K relative to a Euclidean disc $E = B_2$ and to a square E = S.

The relative quermassintegrals $W_i(K; E)$, $0 \le i \le n$, of K w.r.t. E are defined by the relative Steiner formula for the volume of the Minkowski sum $K + \lambda E$,

$$\operatorname{vol}(K + \lambda E) = \sum_{i=0}^{n} \binom{n}{i} \operatorname{W}_{i}(K; E) \lambda^{i}, \qquad \lambda \ge 0.$$

In particular, $S(K; E) = n W_1(K; E)$ is the relative surface area (see e.g. [3, Section 5.1.2]). The relative isoperimetric quotient [5], a quantity that is invariant under homothetic scaling of K, is

$$I(K; E) = \frac{S(K; E)^n}{\operatorname{vol}(K)^{n-1}}.$$

The body K is a tangential body of $E \subseteq K$ if through every boundary point of K there is a supporting hyperplane of K that also supports E [8, p. 149].

Figure 2: Some tangential bodies of a Euclidean disc (left) and of a triangle (right).

If $\lambda_1 > 0$, the equivalent conditions (i)-(iv) are satisfied if and only if K is homothetic to E^{Ω} and, consequently, if and only if $I(\lambda) = I(E^{\Omega}; E) = n^n \operatorname{vol}(E^{\Omega})$ for all $\lambda \in (-r(K; E), \infty)$

The shape of $K(\Omega, \lambda)$ tends to E^{Ω} (up to homothety) as $\lambda \to \infty$. This yields the following.

Corollary 4. Let $\Omega \subseteq \mathbb{S}^{n-1}$ be a set that contains the origin in the interior of its convex hull. Then a convex body $K_0 \in \mathcal{K}^n$ is a minimizer of the relative isoperimetric quotient $I(\cdot; E)$ among all convex bodies $K \in \mathcal{K}^n$ that are determined by Ω if and only if K_0 is homothetic to the tangential body E^{Ω} of E. In particular, that minimal quotient is $I(E^{\Omega}; E) = n^n \operatorname{vol}(E^{\Omega}).$

Remark 5. If $E = B_n$, Corollary 4 concerns the classical isoperimetric quotient as mentioned in Remark 2(b). For that case the claim is a well-known result [8, p. 385], that goes back to Lindelöf and Minkowski [6, 7] for finite Ω and to Aleksandrov [1] for general Ω .

For $E = B_n$ and $\Omega = \mathbb{S}^{n-1}$, we obtain the isoperimetric inequality for arbitrary convex bodies.

Isoperimetric-type quotients of quermassintegrals 3

Here we ask for the monotonicity of all quotients

$$\frac{\mathbf{W}_j(K_{\lambda}; E)^{n-i}}{\mathbf{W}_i(K_{\lambda}; E)^{n-j}}, \qquad 0 \le i < j < n$$

Note that Theorem 1 covers the particular case $\frac{W_1(K_{\lambda}; E)^n}{W_0(K_{\lambda}; E)^{n-1}} = \frac{1}{n^n} \frac{S(K_{\lambda}; E)^n}{\operatorname{vol}(K_{\lambda})^{n-1}}.$ The body $K \in \mathcal{K}^n$ belongs to the class \mathcal{R}_j , $0 \le j \le n-1$, if

 $\frac{\mathrm{a}}{\mathrm{d}\lambda} \mathrm{W}_i(K_{\lambda}; E) = (n-i) \mathrm{W}_{i+1}(K_{\lambda}; E)$

Main result

Theorem 1. *The relative isoperimetric quotient function*

 $I(\lambda) = \frac{S(K_{\lambda}; E)^n}{\operatorname{vol}(K_{\lambda})^{n-1}}$

is monotonically decreasing on $(-r(K; E), \infty)$.

Moreover, the following are equivalent for all $-r(K; E) < \lambda_0 < \lambda_1 < \infty$:

(*i*) $I(\lambda_0) = I(\lambda_1)$,

(*ii*) K_{λ_0} is homothetic to K_{λ_1} ,

(iii) K_{λ_1} is homothetic to a tangential body of E,

(iv) I(λ) is constant on $(-r(K; E), \lambda_1]$.

If $\lambda_1 > 0$, the equivalent conditions (i)-(iv) are satisfied if and only if K is homothetic to E and, consequently, if and only if $I(\lambda) = n^n \operatorname{vol}(E)$ for all $\lambda \in (-\operatorname{r}(K; E), \infty)$.

Remark 2. (a) The monotonicity for $\lambda \ge 0$ is not new, see [5, Remark 4.4]. (b) When the gauge body E is the Euclidean unit ball B_n , we obtain the classical surface area $S(K; B_n) =$ S(K) and the isoperimetric quotient function amounts to $I(\lambda) = \frac{S(K_{\lambda})^n}{\operatorname{vol}(K_{\lambda})^{n-1}}$. Even in that central case the monotonicity for inner parallel bodies, i.e. for $\lambda < 0$, seems to be not present in the literature.

Monotonocity for related families and isoperimetric problems

Let Ω be a subset of the Euclidean unit sphere \mathbb{S}^{n-1} containing the origin in the interior of its convex hull. Let $K^{\Omega} = \bigcap_{u \in \Omega} H^{-}_{u,h_{K}(u)}$, whence $K \subseteq K^{\Omega} \in \mathcal{K}^{n}$. Then K is determined by Ω if $K^{\Omega} = K$ [8, pp. 385, 411].

for all $0 \le i \le j$ and $-r(K; E) \le \lambda < \infty$. Note that $\mathcal{R}_{n-1} \subseteq \mathcal{R}_{n-2} \subseteq \ldots \subseteq \mathcal{R}_1 \subseteq \mathcal{R}_0 = \mathcal{K}^n$, and the inclusions are strict in general [4].

Main results

Theorem 6. Let $0 \le i < j < n$, and suppose that $K \in \mathcal{R}_{j-1}$. Then the function

$$\mathbf{I}_{i,j}(\lambda) = \frac{\mathbf{W}_j(K_{\lambda}; E)^{n-i}}{\mathbf{W}_i(K_{\lambda}; E)^{n-j}}$$

is monotonically decreasing on $(-r(K; E), \infty)$. Moreover, if E is smooth, the following are equivalent for all $-r(K; E) < \lambda_0 < \lambda_1 < \infty$: (i) $I_{i,j}(\lambda_0) = I_{i,j}(\lambda_1)$, (ii) K_{λ_0} is homothetic to K_{λ_1} , (iii) K_{λ_1} is homothetic to an (n-j)-tangential body of E (cf. [8, p. 86]), (*iv*) $I_{i,j}(\lambda)$ *is constant on* $(-r(K; E), \lambda_1]$. If E is smooth and $\lambda_1 > 0$, conditions (i)-(iv) are satisfied if and only if K is homothetic to E and, consequently, if and only if $I_{i,j}(\lambda) = \operatorname{vol}(E)^{j-i}$ for all $\lambda \in (-\operatorname{r}(K; E), \infty)$. The above monotonicity is shown in [5] under the stronger assumption that $K \in \mathcal{R}_i$. **Corollary 7.** Let $0 \le i < j < n$ and let E be smooth. Then a convex body $K_0 \in \mathcal{R}_{j-1}$ is a minimizer of the

quotient $\frac{W_j(\cdot; E)^{n-i}}{W_i(\cdot; E)^{n-j}}$ among all convex bodies $K \in \mathcal{R}_{j-1}$ if and only if K_0 is homothetic to E.

References

[1] A. D. Alexandrov, Zur Theorie der gemischten Volumina von konvexen Körpern, III: Die Erweiterung

 $(B_2)^{\Omega}$ T^{Ω} $S^{\Omega} = S$ $R^{\Omega} = R$

Figure 3: Bodies K^{Ω} for $\Omega = \{(\pm 1, 0), (0, \pm 1)\}$ and K being a Euclidean disc, a triangle, a square and a rectangle. The square and the rectangle are determined by Ω , whereas the disc and the triangle are not.

When Ω determines K, we define

 $K(\Omega, \lambda) = \bigcap_{u \in \Omega} H^{-}_{u, h_{K}(u) + \lambda h_{E}(u)}, \qquad \lambda \ge -\operatorname{r}(K; E).$

This generalizes the family $(K_{\lambda})_{\lambda \ge -r(K;E)}$ of parallel bodies in so far as $K(\Omega, \lambda) = K_{\lambda}$ for $-r(K;E) \le C_{\lambda}$ $\lambda \leq 0$ whenever Ω determines K and $K(\mathbb{S}^{n-1}, \lambda) = K_{\lambda}$ for all $\lambda \geq -r(K; E)$.

 \mathbb{S}^1 \mathbb{S}^1 \mathbb{S}^1 Ω_2 KKK $K(\Omega_3,1)$ $K(\Omega_1,1)$ $K(\Omega_2,1)$ $K(\Omega_3, 2)$ $K(\Omega_1,2)$ $K(\Omega_2,2)$

Figure 4: Examples of $K(\Omega, \lambda)$, $\lambda = 1, 2$, with K being a square, $E = B_2$ being a Euclidean disc and different choices of $\Omega \subseteq \mathbb{S}^1$.

- zweier Lehrsätze Minkowskis über die konvexen Polyeder auf beliebige konvexe Flächen (in Russian), *Mat. Sbornik N. S.* **3** (1938), 27–46.
- [2] T. Bonnesen and W. Fenchel, Theorie der konvexen Körper. Springer, Berlin, 1934, 1974. English translation: Theory of convex bodies. Edited by L. Boron, C. Christenson and B. Smith. BCS Associates, Moscow, ID, 1987.
- [3] H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957.
- [4] M. A. Hernández Cifre, E. Saorín, On differentiability of quermassintegrals, Forum Math. 22 (1) (2010), 115–126.
- [5] M. A. Hernández Cifre, E. Saorín, Isoperimetric relations for inner parallel bodies, *Commun. Anal. Geom.* (to appear) https://arxiv.org/abs/1910.05367
- [6] L. Lindelöf, Propriétés générales des polyèdres qui, sous une étendue superficielle donnée, renferment le plus grand volume, Bull. Acad. Sci. St. Pétersbourg 4 (1869), 257–269. Extract: Math. Ann. 2 (1870), 150-159.
- [7] H. Minkowski, Allgemeine Lehrsätze über die convexen Polyeder, Nachr. Ges. Wiss. Göttingen, 198–219. Gesammelte Abhandlungen, vol. II, pp. 103–121, Teubner, Leipzig, 1911.
- [8] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Second Expanded Edition, Cambridge University Press, Cambridge, 2014.