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Antigenic variation allows African trypanosomes to develop

chronic infections in mammalian hosts. This process results

from the alternative occurrence of transcriptional switching

and DNA recombination targeted to a telomeric locus that

contains the gene of the variant antigen and is subjected to

mono-allelic expression control. So far, the identification of

mechanisms and factors involved still resists technological

developments and genome sequencing.
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Abbreviations

ES expression site

ESAG expression site-associated gene

ESB expression site body

VSG variant surface glycoprotein

Introduction
African trypanosomes, the causative agents of human

sleeping sickness, are favorite model organisms for mole-

cular parasitologists, particularly for the spectacular

mechanism of antigenic variation that develops when

these parasites divide in the blood of their mammalian

hosts. The entire trypanosome surface is covered with a

homogeneous and dense coat made of approximately five

million dimers of a single antigen termed variant surface

glycoprotein (VSG) that is repeatedly changed in a frac-

tion of the population. This allows these trypanosomes to

escape antibody-mediated killing and repopulate the

host, resulting in the development of long-lasting chronic

infection. The basic rules of this system are now well

defined [1–5]. The trypanosome genome contains hun-

dreds of VSG genes (VSGs), only one of which is

expressed at a time. This occurs in one of several poly-

cistronic transcription units contained in specialised loci

termed VSG expression sites (ESs), which are all telo-

meric. Thus, antigenic variation occurs either by tran-

scriptional switching between different ESs (in situ
activation), or by VSG recombination within the active

ES. However, despite numerous high-tech developments,

none of the molecular players involved in these processes

have been characterised so far, except RNA polymerase,

which unexpectedly turned out to be RNA Pol I. In

particular, a central question still remains unanswered:

how is only a single ES active at a time? Interestingly, this

question may also include the genes encoding the major

surface antigen replacing the VSG in the insect-specific

procyclic form of the parasite, termed procyclin. Indeed,

not only are the expression of VSG and procyclin strictly

mutually exclusive, but the procyclin genes are also

transcribed by RNA Pol I. This review focuses on the

most recent advances on these questions.

Subnuclear localisation
In eukaryotic organisms, the interphase nucleus is orga-

nised in functional subcompartments reflecting the

steady-state association of its residents within the nucleo-

plasmic space. In Trypanosoma brucei, the active ES of

long slender (rapidly dividing) bloodstream forms was

found to be present in a specialised region termed expres-

sion site body (ESB) [6], which was clearly distinct from

the nucleolus and had no preferential location in the

nucleus. No such structure was detected for silent ESs.

In slender forms, telomeres are clustered into several

discrete spots distributed within the nucleoplasm,

although a single ESB appears to recruit the full tran-

scriptional machinery [7]. In bloodstream short stumpy

(non-dividing) and procyclic forms in which the VSG is

inactive, telomeres redistributed towards the nuclear

periphery [8]. Therefore, it is possible that the central

position of telomeres in long slender forms reflects the

association of those regions with nuclear subcompart-

ments active in transcription. According to a working

hypothesis developed below, one may envisage that a

competition for transcription factors establishes the

unique status of the ESB. In both stumpy and procyclic

forms, the telomeres, including the ESs, would not have

access to the transcriptional machinery. Such a develop-

mentally regulated global change of nuclear organisation

was also observed during the differentiation of T. cruzi
proliferative forms into non-dividing forms, where it was

linked to a general inhibition of transcription [9].

Telomere silencing: unlikely
A particular subnuclear localisation, close to the nuclear

envelope, has been associated with telomere silencing in
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yeast [10]. Horn and Cross confirmed this type of control

in trypanosomes, showing that transcription promoters are

repressed when engineered to be inserted close to telo-

meres [11,12]. However, recent data argue against the

involvement of this mechanism in the control of antigenic

variation. First, the bloodstream ES promoters are too

distant from telomeres to be repressed this way. More-

over, the knock down of genes homologous to those

involved in telomeric silencing in yeast (yeast KU genes)

did not impair trypanosome antigenic variation [13].

Finally, repression of ES promoters has been observed

in circular bacterial artificial chromosomes (BACs) that

were devoid of telomeric repeats [14�].

Chromatin modification: nothing relevant
so far
Genes for enzymes able to modify chromatin proteins,

such as histone deacetylases or acetyl transferases, are

present in the trypanosome genome [15–17]. However,

analysis of sensitivity to DNase and nucleosome spacing

did not reveal chromatin difference between promoter

regions from active and silent ESs [18], although the

conformation of chromatin was clearly more open along

the active ES than in silent ESs [19,20]. On the other

hand, general differences in chromatin structure between

bloodstream and procyclic forms [21,22] may possibly

account for the transient release of ES repression that

was observed during cellular differentiation between

bloodstream and procyclic forms [23]. This also points

to different repression mechanisms on ESs in blood-

stream and procyclic stages. Finally, extensive studies

of a modified base (b-D-glucosyl-hydroxylmethyl-uracil)

termed J have so far not pointed to linkage to antigenic

variation, despite the presence of this base in inactive but

not active ESs. Instead, the available evidence has sug-

gested a role as an epigenetic label of repeated DNA or

heterochromatin [24,25].

Gene recombination: still no full explanation
The genomic rearrangements associated with antigenic

variation [1] are clearly driven by homologous recombina-

tion, most frequently gene conversion. Several recombi-

nase candidates have been identified by homology

searches in the current databases. So far, only the knock-

out of a RAD51 homologue had an effect on antigenic

variation [26]. In yeast, RAD51 catalyses the transfer of

single-stranded DNA ends into double-stranded DNA. In

trypanosomes, this knockout reduced the rate of antigenic

variation by both DNA recombination and in situ activa-

tion (transcriptional switching) [26]. These findings sug-

gested that RAD51 is involved in the system, but is not

essential. Moreover, its effect on the transcriptional

switching between ESs is puzzling and suggests, among

other possibilities, that cryptic DNA recombination could

be involved in transcriptional switching. Analysis of other

putative players was disappointing. Thus, ablation of

homologues of enzymes involved in double-strand break

repair (MRE11) [27,28], mismatch repair (MSH2,

MLH1) [29] or the non-homologous end-joining pathway

of DNA repair (KU70, KU80) [13] did not affect antigenic

variation, even though they had various effects on recom-

bination, telomere length and resistance to DNA-dama-

ging agents.

ES and promoter structure
The ESs contain polycistronic transcription units whose

structure had been initially modeled on only a few exam-

ples [1–5]. The recent characterisation of more ESs

uncovered some variation [30], suggesting so far that only

two expression-site-associated genes (ESAGs), namely

ESAG6 and ESAG7, are indispensable. This finding is

in keeping with the important function of the products of

these genes, namely the two subunits of the transferrin

receptor, and with the fact that these genes seem to be

present only in ESs. It was also established that the 50 bp

repeats preceding all ESs act as a boundary insulating

these particular transcription units from the rest of the

chromosome [31].

The ES promoters were known to contain a 70 bp

sequence necessary for basal transcription [32]. In situ
deletional analysis now indicated that this sequence is

sufficient for the control of antigenic variation and that no

extra cis-acting element is present. Thus, these promoters

are very simple and do not appear to contain regulatory

elements [18,33], as also supported by their efficient

replacement by a ribosomal promoter [34].

Transcription: RNA processing/elongation
is the key
Since the formal demonstration that RNA Pol I is active

on the ESs [35�], it is clear that transcription on these sites

has the unique feature of pulling together, at least func-

tionally, the polymerase normally used to synthesize

rRNA and the RNA elongation/processing machinery

usually associated with RNA Pol II. The controls operat-

ing on this transcription remain controversial, but so far

not a single piece of evidence has suggested promoter

regulation. Instead, some evidence has argued against it,

pointing to modulation of RNA elongation and proces-

sing. First, no difference of chromatin organisation was

noted between promoters of active and silent ESs, sug-

gesting similar occupancy by the transcriptional machin-

ery [18]. Second, the silent ESs from both bloodstream

and procyclic forms were found to be actively transcribed

in their promoter-proximal region [36,37], giving rise to

transcripts that are not polyadenylated and are retained

within the nucleus [38]. Third, reporter genes inserted at

the beginning of silent ESs appeared to be transcribed,

but this only led to low production of functional proteins

[18]. Fourth, experimental treatments mimicking the

environmental conditions that trigger the cellular differ-

entiation of bloodstream into procyclic forms showed

striking opposite effects on RNA elongation over the
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ESs and procyclin units [39]. Fifth, a recent report indi-

cated that inhibition of DNA synthesis or induction of

DNA damage leads to transcriptional stimulation of at

least some silent ESs of bloodstream forms, with all signs

of incomplete elongation [40�]. Finally, the silencing of

the active ES that occurs during the transformation of

bloodstream forms from proliferative long slender into

non-dividing short stumpy forms was shown to involve

progressive in situ stalling of RNA polymerase on the ES,

also pointing to regulation at the RNA elongation level

[41�]. Altogether, these observations suggest that envir-

onmentally controlled RNA processing on the ESs leads

Figure 1
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A model for the mutually exclusive control of VSG and procyclin, the respective major surface antigens of the bloodstream and procyclic (insect)

stages of Trypanosoma brucei. An estimated 20 VSGs are located in telomeric sites, ESs, which are competent for transcription. Two families of

repeats, the telomeric repeats (black circles) and 50 bp repeats (black squares) define the boundaries of the ESs. Only one ES is active at a time,

ensuring the homogeneity of the surface coat. The ESs harbour polycistronic transcription units containing several ESAGs. ESAG7 and ESAG6 are the

first and most conserved genes of these units, and encode the two subunits of the transferrin receptor. The procyclin genes (Pa and Pb) are

transcribed together with other genes (PAGs, for procyclin-associated genes) in four loci, only one of which is represented here. The exact

genomic location of these loci is not known, but they are not telomeric. The figure represents three successive developmental stages of the

parasite life cycle, namely (a) the bloodstream form (BF) slender, (b) the BF stumpy and (c) the procyclic form (PF) RNA Pol I (blue beads) seems to

be permanently recruited in all units [38]. Full transcription (full green arrow) requires the association of RNA Pol I with an ‘RNA factory’ (RNA

elongation/processing/export machinery, represented by the red/mauve beads). This would only occur in one locus at a time, either the active ES in

slender forms or the procyclin loci in procyclic forms, the other units showing abortive transcription (green dotted arrows). In bloodstream long

slender forms, this machinery is concentrated in the ESB [6]. The cellular differentiation into stumpy forms would trigger the decoupling between

RNA polymerase and the RNA factory [41�]. Following modification induced by environmental signalling, the RNA factory would be redirected

to the procyclin loci (perhaps in another body), ensuring the mutually exclusive expression of the stage-specific antigens.
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to differential RNA elongation that sensitively controls

the access of the VSG by RNA polymerase. Interestingly,

transcription of the VSG appears to exclude that of the

procyclin genes, and vice-versa. Thus, it is possible that

the same transcription machinery inversely controls these

transcription units (Figure 1).

At this point, the fact that at least some silent ESs are

partially transcribed can be considered as generally

accepted. Based on studies involving cells with multiple

tagged ESs, a model has postulated the existence, besides

the active ES, of a single silent ES in a ‘preactive’ state

[42,43]. Therefore, the issue is now to decide if transcripts

are synthesized from different silent ESs in each cell, or

whether each cell within a cloned population contains a

single ‘preactive’ ES that may differ between cells. Single

cell PCR should allow the discrimination between these

questions.

Studies on the VSG inactivation that takes place during

the cellular differentiation of long slender into short

stumpy forms suggested a cell cycle arrest-linked decou-

pling between RNA polymerase and the mRNA factory

[41�]. This decoupling would be relieved with the cell re-

entry into the S-phase upon differentiation in procyclic

forms, justifying the abrupt RNA changes that take place

during this latter phase [44]. In organisms relying entirely

on post-transcriptional regulation to switch genetic ex-

pression [45,46], re-coupling transcription with a post-

transcriptional machinery that would have undergone

signalling-dependent modification (Figure 1) would

account for a global change of the pattern of transcripts,

ensuring cellular differentiation.

Challenges and mysteries
So far, the control steps and the molecular players

involved in both recombination and mono-allelic tran-

scriptional control remain obscure. While it appears that

trypanosomal counterparts of yeast homologous recombi-

nation factors such as RAD51 [26] are involved, others

such as MRE11 [27,28] are not. Does that mean that a

specialised recombination pathway is dedicated to anti-

genic variation? And how does the knockout of a homo-

logous recombination factor impair transcriptional

switching? This may suggest a role of cryptic recombina-

tion in this process or, alternatively, a secondary function

of RAD51 or RAD51-interacting proteins could be

involved. If the VSG promoter permanently recruits the

basal transcription machinery, the composition of this

machinery as well as that of the RNA elongation/proces-

sing complex remain to be characterised. The ESB [6] is

an obvious candidate for this machinery. But then again,

is this body created by the action of transcription (tran-

scription of the active ES has to happen somewhere!) or is

it a self-sustained structure, as suggested by its resistance

to DNase treatment? Does the ESB have a preferential

location in the nucleus and does it change during the

parasitic cycle? Is there a bona fide chromatin modification

other than J or is the open state of the active ES only

related to the presence of RNA Pol I? Does J restrict the

access of the RNA factory? Is the ESB the limiting factor

that restricts the physical access to a single ES at a time

[47]? Does this necessitate crosstalk between ESs and

does that support the postulate of a preactive ES ready to

take over [42]? Does the apparent crosstalk between ESs

and procyclin loci imply that, in procyclic forms, the latter

are also organised in a specialised and unique body?

Lastly, questions on the evolutionary advantages of this

system still remain. Why are there several ESs? Would it

be because this provides the parasite with the capability

to construct new VSGs through gene conversion targeted

to the active ES, and then to store these new sequences in

the genome upon transcriptional inactivation of the ES?

Does the presence of multiple ESs confer an extended

host range through the variability of the ESAG battery?

Does the telomeric location of the ESs, a rule for con-

tingency genes in many organisms, relate to better effi-

ciency of genetic recombination and capacity for

reversible silencing?

Conclusions
Completion of the T. brucei genome sequencing, expected

in August 2004, will clarify several aspects of the antigenic

variation system, such as the structure and number of the

ESs and the VSG gene arrays. It will probably also allow

the identification of new putative factors involved. The

workability of RNAi and the recent development of tests

enabling the assessment of ES (in)activation [38,40�,48]

and the measurement of DNA recombination efficiencies

[26–29] should complement this effort.
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