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Abstract

The concepts of Boolean metric space and con-
vex combination are used to characterize polynomial
maps An −→ Am in a class of commutative Von Neu-
mann regular rings including p-rings, that we have called
CFG-rings. In those rings, the study of the category
of algebraic varieties (i.e. sets of solutions to a finite
number of polynomial equations with polynomial maps
as morphisms) is equivalent to the study of a class of
Boolean metric spaces, that we call here CFG-spaces.
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Notations and conventions

Throughout this work, (B,+, ·) will be a Boolean ring where the
operation a ∨ b = a + b + ab is the analogue for set union, the order
a ≤ b ⇔ ab = a is the analogue for set inclusion and for each a ∈ B,
ā = a + 1 is the analogue for the set complement of a.

All rings will be commutative with identity. Regular ring will mean
here commutative Von Neumann regular ring, i.e. a (commutative)
ring for which any principal ideal is generated by an idempotent, also
known as absolutely flat rings, see [6], [12]. Unless otherwise stated,
A will be a regular ring, B(A) will denote the set of the idempotent
elements of A and e : A −→ B(A) will be the map that sends each
a ∈ A to the only idempotent e(a) ∈ B(A) such that aA = e(a)A.
The set B(A) has a structure of Boolean ring with product inher-
ited from A and with the sum a+̃b = (a− b)2. For a1, . . . , an ∈ B(A)
with aiaj = 0 for i 6= j, it holds a = a1 + · · ·+ an = a1+̃ · · · +̃an =
a1 ∨ · · · ∨ an. In this case we will denote a by a1 ⊕ · · · ⊕ an.

Given a prime p ∈ Z, a p-ring is a ring A for which px = 0 and
xp = x for all x ∈ A. In particular, a Boolean ring is a 2-ring. Any
p-ring is a regular ring with e(x) = xp−1.

An algebraic variety over a ring A is a set U ⊂ An which is the set
of solutions to a finite number of polynomial equations. If U ⊂ An

and V ⊂ Am are algebraic varieties, a map f : U −→ V is called a
polynomial map if there are polynomials f1, . . . , fm ∈ A[X1, . . . Xn]
such that f(x) = (f1(x), . . . , fm(x)). When A = B is a Boolean ring
the usual terms are Boolean domain and Boolean transformation,
see [13] and [14].

Introduction

Boolean metric spaces (Definition 1.1) appeared in several works
in the 1950’s and 1960’s [2], [3], [4], [5], [7] and [8], where some au-
thors investigated the analogue for some topics in Geometry such as
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betweeness, motions or topology in some of those spaces, as Boolean
algebras and some rings where a suitable Boolean metric could be
defined. In some papers, [1], [9], [11] and [15], a special attention was
paid to p-rings, that admit a metric space structure over its ring of
idempotents. In fact, if A is a regular ring, then An is a Boolean
metric space over B(A) with the distance

d((x1, . . . , xn), (y1, . . . , yn)) = e(x1 − y1) ∨ · · · ∨ e(xn − yn).

We will show the close relation that exists between the theory
of Boolean metric spaces and the Algebraic Geometry over CFG-
rings. We define a regular ring A to be an CFG-ring if there are
x1, . . . , xn in A such that any element in A is of the form

∑
aixi

where a1, . . . an ∈ B(A) and a1 ⊕ · · · ⊕ an = 1.

In sections 1 and 2 we develop some tools concerning the structure
of Boolean metric spaces, while in sections 3 and 4 the main results
are exposed. Namely, in section 3 we prove that if A is a CFG-ring
and U is a subset of An, then U is an algebraic variety if and only if
there are x1, . . . , xn in U such that any element of x ∈ U is of the form
x =

∑n
1 aixi where a1, . . . , an ∈ B(A) and a1 ⊕ · · · ⊕ an = 1, if and

only if there is distance-preserving bijection from U onto an algebraic
variety V ⊂ Am. Also, if U ⊂ An and V ⊂ Am are algebraic varieties
over A and f : U −→ V is a map, the following are equivalent:

1. f is a polynomial map.
2. d(f(x), f(y)) ≤ d(x, y) for all x, y in U .
3. f(

∑n
1 aixi) =

∑n
1 aif(xi) for all x1, . . . , xn in U and for all

a1, . . . , an in B(A) with a1 ⊕ · · · ⊕ an = 1.

Thus, the category of algebraic varieties over an CFG-ring is equiv-
alent to the category of those Boolean metric spaces over B(A)
that are isometric to some algebraic variety, that we have called
CFG-spaces. Some special cases of these implications were known
for A = B a Boolean ring: that 1 is equivalent to 3 when U = Bn,
V = B is in Theorem 4.2 in [13], and that 1 is equivalent to 2 when
U = V = B was observed in [10].
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In section 4, we present a classification of the Boolean metric
spaces over a Boolean ring B, which is a classification of the alge-
braic varieties over a CFG-ring. We associate to each of those spaces
a finite decreasing sequence of nonzero elements of B such that two
spaces are isometric if and only if they have the same associated se-
quence.

The author wishes to thank professors Juan Mart́ınez and Manuel
Saoŕın, from University of Murcia, and Sergiu Rudeanu, from Uni-
versity of Bucharest, for their support and stimulus, and for their
help in the redaction of this article.

1. Boolean metric spaces

A. Basic definitions and examples

Definition 1.1 Let X be a set. A map d : X ×X −→ B is said to
be a Boolean metric if the following axioms hold, for all x, y, z ∈ X:

1. d(x, y) = 0 if and only if x = y.
2. d(x, y) = d(y, x).
3. d(x, z) ≤ d(x, y) ∨ d(y, z).

In that case, we will say that (X, d) is a metric space over B.

In the above definition, axiom 3 can be substituted by any of the
following:

3’. d(x, z)d(y, z) ≤ d(x, y)
3”. d(x, z) + d(z, y) ≤ d(x, y)

Some suitable subsets of modules possess structure of Boolean
metric space. We have called these subsets metrizable. Recall that
the annihilator of an element x of a module over the ring A is the
ideal Ann(x) = {a ∈ A : ax = 0}.

Definition 1.2 Let A be a regular ring, M a module over A and
X a subset of A. The set X will be said to be metrizable if for each
x, y ∈ X the ideal Ann(x− y) is a principal ideal of A.
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If X is a metrizable subset of M , for each x, y ∈ M the ideal
Ann(x− y) has a unique idempotent generator, say axy ∈ B(A).
Then, the map d(x, y) = axy is a Boolean metric on X, called the
modular metric on X. Triangular inequality follows from

Ann(x− y) ∩Ann(y − z) ⊆ Ann(x− z).

For every a ∈ A we have Ann(a) = e(a)A, so A is a metrizable
subset of itself and its modular metric is given by d(x, y) = e(x− y).
This is the same metric on A as defined in [8].

Furthermore, for every n ∈ N, An is also a metrizable subset of
itself and its modular metric is given by

d((x1, . . . , xn), (y1, . . . , yn)) = e(x1 − y1) ∨ · · · ∨ e(xn − yn).

This is a particular case of the following general construction:

Definition 1.3 Let (X1, d1), . . . , (Xn, dn) be metric spaces over B.
Then (X1 × · · · ×Xn, d) is also a metric space over B with

d((x1, . . . , xn), (y1, . . . , yn)) := d1(x1, y1) ∨ · · · ∨ dn(xn, yn)

This space will be called the product space of the spaces (Xi, di) and
d will be called the product metric of the metrics di.

The formation of products is compatible with modular metrics:

Proposition 1.4 Let Si be a metrizable subset of the A-module
Mi, for i =, 1 . . . , n. Then S = S1 × · · · × Sn is a metrizable subset
of M1 × · · · ×Mn and the modular metric in S equals the product
metric of the modular metrics in the Si’s.

Proof: Call di the modular metric in Si. For each x = (x1, . . . , xn)
and y = (y1, . . . , yn) in S

Ann(x− y) =
n⋂

i=1

Ann(xi − yi) =
n⋂

i=1

di(x, y)A

=

(
n∏

i=1

di(x, y)

)
A =

(
n∨

i=1

di(x, y)

)
A.

�
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Definition 1.5 Let X and Y be Boolean metric spaces over B. A
map f : X −→ Y is said to be

1. contractive if d(f(x), f(y)) ≤ d(x, y) for all x, y ∈ X.
2. an immersion if d(f(x), f(y)) = d(x, y) for all x, y ∈ X.
3. an isometry if it is a bijective immersion.

Contractive maps play the rôle of morphisms in the category of
Boolean metric spaces over B, while isometries are the isomorphisms.
Observe that immersions are always into.

Theorem 1.6 Every metric space X over B is isometric to a metriz-
able subset of a B-module. Furthermore, if we fix x0 ∈ X there is a
metrizable subset S of a B-module M such that 0 ∈ S and an isom-
etry g : X −→ S such that g(x0) = 0.

Proof: We define f : X −→ BX by f(x) = (d(x, z))z∈X . To prove
that f(X) is metrizable and that f : X −→ f(X) is an isometry, it
is enough to see that Ann(f(x)− f(y)) = d(x, y)B for all x, y ∈ X.
If a ∈ Ann(f(x) + f(y)) then,

a(d(x, z) + d(y, z))z∈X = 0,

so for z = x, we have ad(y, x) = 0 and therefore a ≤ d(x, y). Con-
versely, suppose a ∈ d(x, y)B, then

a(d(x, z) + d(z, y)) ≤ ad(x, y) = 0,

for all z ∈ X, so a ∈ Ann(f(x) + f(y)). For the last assertion, take
h : f(X) −→ f(X) + f(x0) given by h(x) = x + f(x0). Then, h is
an isometry between f(X) and the metrizable set S = f(X) + f(x0)
because Ann(h(x)− h(y)) = Ann(x− y) for all x, y. Hence, the map
g = h ◦ f is an isometry between X and S that verifies g(x0) = 0. �

B. Convex combinations and convex closures

Unless otherwise stated, X will be a metric space over B.
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Definition 1.7 Let x1, . . . , xn ∈ X and let a1, . . . , an ∈ B such that
a1 ⊕ · · · ⊕ an = 1. We will say that x ∈ X is a convex combination of
x1, . . . , xn with coefficients a1, . . . , an if aid(x, xi) = 0 for i = 1, . . . , n.

Proposition 1.8 If x ∈ X is a convex combination of x1, . . . , xn

with coefficients a1, . . . , an, then for all y ∈ X

d(x, y) =
n⊕

i=1

aid(xi, y)

Proof: For all i = 1, . . . , n, since aid(x, xi) = 0, we have aid(xi, y) =
ai(d(x, xi) + d(xi, y)) ≤ aid(x, y) ≤ ai(d(x, xi) ∨ d(xi, y)) = aid(xi, y),
so aid(x, y) = aid(xi, y) and hence, we have d(x, y) = (

∑
i ai)d(x, y) =∑

i aid(xi, y). �

Proposition 1.9 If x and y are convex combinations of x1, . . . , xn

with coefficients a1, . . . , an, then x = y.

Proof: By Proposition 1.8

d(x, y) =
n∑

i=1

aid(x, xi) =
n∑

i=1

ai

n∑
j=1

ajd(xjxi) =
n∑

i=1

n∑
j=1

aiajd(xj , xi)

Note that if i 6= j then aiaj = 0 and if i = j then d(xj , xi) = 0, so all
the terms in the above sum are zero, and therefore d(x, y) = 0. �

Lemma 1.10 Let S be a metrizable subset of an A-module M .
Then,

conv(S) = {a1x1 + · · ·+ anxn ∈ M : xi ∈ S ai ∈ B(A)
⊕

i

ai = 1}

is also a metrizable subset of M .

Proof: Take x, y ∈ conv(S), x =
∑n

1 aixi and y =
∑m

1 bjyj . Call
cij = aibj . Then,

⊕
i,j cij = 1 and x =

∑
i,j cijxi and y =

∑
i,j cijyj .

Hence, Ann(x− y) = Ann(
∑

i,j cij(xi − yj)) =
∑

i,j cijAnn(xi − yj)
which is a principal ideal because every Ann(xi − yj) is principal (re-
call that, for regular rings, any finitely generated ideal is principal).

�
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The following proposition will show that, when X is a metrizable
subset of a module, convex combinations in (X, d) are exactly the
corresponding linear combinations in the module.

Proposition 1.11 Let S be a metrizable subset of an A-module,
x, x1, . . . , xn ∈ S and a1, . . . , an ∈ B such that

⊕n
i=1 ai = 1. Then, x

is a convex combination of x1, . . . , xn with coefficients a1, . . . , an if
and only if x = a1x1 + · · ·+ anxn.

Proof: Suppose x = a1x1 + · · ·+ anxn. We must check that, for
each i ∈ {1, . . . , n}, aid(x, xi) = 0. It is clear that ai ∈ Ann(x− xi) =
d(x, xi)A, so ai ≤ d(x, xi) and hence, aid(x, xi) = 0.

Conversely, suppose x ∈ S is a convex combination of x1, . . . , xn

with coefficients a1, . . . , an . Let y =
∑n

1 aixi ∈ conv(S), which is
metrizable, by Lemma 1.10. The implication that we have already
proved, tells us that y is a convex combination of x1, . . . , xn with
coefficients a1, . . . , an in conv(S). The same holds for x, so by Propo-
sition 1.9, x = y. �

In general, in any metric space X, we will denote by
∑n

i=1 aixi

or by a1x1 + · · ·+ anxn the convex combination of x1, . . . , xn with
coefficients a1, . . . , an, if it exists.

Recall that Theorem 1.6 allows us to identify any metric space
X over B with a metrizable subset of a B-module, and then, by
Theorem 1.11, convex combinations are just the corresponding lin-
ear combinations in the module and the metric is the modular metric.

Contractive maps can be characterized as those that preserve con-
vex combinations.

Theorem 1.12 For a map f : X −→ Y between two metric spaces
(X, d) and (Y, d′) the following are equivalent:

1. f is contractive.
2. For all x, x1, . . . , xn ∈ X and a1, . . . , an ∈ B with

⊕n
1 ai = 1,

if x =
∑

aixi, then f(x) =
∑

aif(xi).
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Proof: (1 ⇒ 2) Let x =
∑

i aixi. Then, for every i, we have 0 =
aid(x, xi) ≥ aid(f(x), f(xi)) , so f(x) =

∑
aif(xi).

(2 ⇒ 1) Given x, y ∈ X, x = d(x, y)x + d(x, y)y. Hence, by our as-
sumption f(x) = d(x, y)f(x) + d(x, y)f(y) and making use of Propo-
sition 1.8 we have finally

d(f(x), f(y)) = d(x, y)d(f(x), f(y)) + d(x, y)d(f(y), f(y))

= d(x, y)d(f(x), f(y))

and therefore d(f(x), f(y)) ≤ d(x, y). �

Given x1, . . . , xn ∈ X and a1, . . . , an ∈ B with
⊕

ai = 1, there
may exist no convex combination of the xi’s with coefficients ai’s. So
we have the next definition:

Definition 1.13 A metric space (X, d) over B is said to be convex
if given any x1, . . . , xn ∈ X and any a1, . . . , an ∈ B with

⊕
ai = 1,

there exists in X the convex combination of the xi’s with coefficients
the ai’s.

This notion of convexity is different from the defined in [3].

Definition 1.14 A convex closure of a metric space X is a convex
metric space Y ⊇ X such that any element in Y is a convex combi-
nation of elements of X.

Observe that every metric space X over B has a convex closure,
because X is isometric to a metrizable subset S of B-module and in
this case, the set conv(S) of Lemma 1.10 is a convex closure of S.

Theorem 1.15 Let X ⊆ X̄ and Y ⊆ Ȳ be convex closures. Each
contractive map f : X −→ Y extends to a unique contractive map
f̄ : X̄ −→ Ȳ . Furthermore,

1. f̄ is immersion if and only if f is, and if f is isometry, so is
f̄ .

2. For two contractive maps f : X −→ Y and g : Y −→ Z we
have gf = ḡf̄ .

Proof: For each element x ∈ X̄, choose an expression of x as a
convex combination of elements of X, like x =

∑
i aixi. If we want f̄
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to be contractive it must be defined like f̄(x) =
∑

i aif(xi) ∈ Ȳ . This
proves uniqueness. For existence we must check that, so defined, f̄ is
contractive. We take x, y ∈ X̄, and their corresponding expressions
x =

∑
aixi and y =

∑
bjyj with xi, yj ∈ X:

d(f̄(x), f̄(y)) =
⊕

aibjd(f(xi), f(yj)) ≤
⊕

aibjd(xi, yj) = d(x, y)

If f is immersion then the inequality turns into an equality, and we
deduce that f̄ is an immersion. Property (2) is trivial and from this,
using f−1, we deduce that if f is isometry so is f̄ . �

As a corollary, we get that the convex closure of a metric space is
unique, up to isometry, since if X ⊆ X1, X2 are two convex closures
of X, then 1X extend to an isometry f : X1 −→ X2.

In the sequel conv(X) will denote a convex closure of X. We finish
by stating some elementary properties of convex spaces and convex
closures.

Let X and Y be convex metric spaces over B and U ⊆ X. Then,
the following hold:

1. The set of all convex combinations of elements of U in X is
a convex closure of U(In this situation, the notation conv(U)
will refer to this set).

2. If f : X −→ Y is contractive, then f(conv(U)) = conv(f(U)).
3. If X1, . . . , Xn are metric spaces over B, then conv(X1)× · · · ×

conv(Xn) is a convex closure of X1 × · · · ×Xn.

2. CFG-spaces

Definition 2.1 A metric space X over B will be said to be a CFG-
space (convex finitely generated space) if it is the convex closure of
a finite subspace.

Observe that

1. If X is a CFG-space and f : X −→ Y is contractive, then f(X)
is a CFG-space.
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2. The product of a finite number of CFG-spaces is a CFG-space.

For technical reasons, it is convenient to work with pointed metric
spaces. (X, 0) is said to be a (pointed) metric space if X is a met-
ric space over B and 0 ∈ X. A map f : (X, 0) −→ (Y, 0′) will mean a
map f : X −→ Y such that f(0) = 0′, and expressions like x ∈ (X, 0)
will mean simply x ∈ X.

Throughout this section, we fix a convex metric space (X, 0). By
Theorem 1.6, it is not restrictive to suppose that X is a metrizable
convex subset of a B-module M and that 0 is the zero element of
M . In (X, 0) we will use the following notations:r For x ∈ X, |x| := d(0, x).r If x1, . . . , xn ∈ X and a1, . . . , an ∈ B are such that aiaj = 0

whenever i 6= j, then we have an element of X:

a1x1 + · · ·+ anxn = a00 + a1x1 + · · ·+ anxn

where a0 = 1 + a1 + · · · an (note that the right expression
represents an element of X since a0 ⊕ · · · ⊕ an = 1 and X

is a convex space). Such a combination will be called an
orthogonal combination. As a particular case, ax = ax + ā0
for x ∈ X, a ∈ B.r For x ∈ X, Bx := {ax : a ∈ B} = conv(0, x).r For x, y ∈ X, x ? y := d(x, y)x.

Note that any contractive map f : (X, 0) −→ (Y, 0′) preserves or-
thogonal combinations. In the following lemma, we state some ele-
mentary properties:

Lemma 2.2 Let x, y ∈ X and a, b ∈ B. Then:

1. The maps || : (X, 0) −→ (B, 0) and x ? : (X, 0) −→ (X, 0) are
contractive, so both preserve orthogonal combinations.

2. ax = bx if and only if a + b ∈ |x|B (if and only if a + |x|B =
b + |x|B).

3. ax = 0 if and only if a ≤ |x|, and ax = x if and only if a ≥ |x|.
4. The operation (?) is commutative.
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Proof: For property 1, the function x ? can be expressed as a
composition of y 7→ d(x, y), b 7→ b̄ and b 7→ bx and all of them are
contractive.

Property 2: Suppose X is a metrizable subset of a B-module.
Then, ax = bx if and only if a + b ∈ Ann(x− 0) = d(x, 0)B.

Property 3 follows from 2.
For property 4, x ? y = y ? x if and only if d(x, y)x + d(x, y)0 =

d(x, y)y + d(x, y)0. This equality is easily checked verifying that the
distance between the two terms is zero using Proposition 1.8. �

Lemma 2.3 Bx ∩By = B(x ? y) for all x, y ∈ X.

Proof: Just by the definition of ? we have B(x ? y) ⊆ Bx, and sym-
metrically, since ? is commutative, B(x ? y) ⊆ By, so one inclusion is
proved. Now suppose u ∈ Bx ∩By. Then u = ax = by, and if we call
c = ab then cx = bax = bu = bby = u = aax = au = aby = cy. Thus,
cx = u = cy, and that implies c ∈ Ann(x− y) = d(x, y)B (suppose
X is a subset of a module) and u = cx = cd(x, y)x = c(x ? y). �

Proposition 2.4 For two elements x, y ∈ X the following are equiv-
alent:

1. x ? y = 0
2. Bx ∩By = {0}
3. d(x, y) = |x| ∨ |y|

In this case, x and y will be said to be orthogonal and we will write
x ⊥ y.

Proof: (1 ⇔ 2) is a direct consequence of Lemma 2.3. For (1 ⇔ 3),
we have (1) if and only if 0 = |x ? y| = d(x, y)|x| and, by symmetry, if
and only if d(x, y)|x| = 0 = d(x, y)|y|, which is equivalent to |x|, |y| ≤
d(x, y), and |x| ∨ |y| ≤ d(x, y). The converse of the latter inequality
is always true by axiom 3 of Boolean metric spaces. �

For x, y ∈ (B, 0), we have x ? y = d(x, y)x = (x + y + 1)x = xy, so
this concept of orthogonality corresponds to disjointness in B.
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Definition 2.5 A finite subset R ⊆ X will be said to be orthogonal
if every two different elements in R are orthogonal, and 0 6∈ R. If,
moreover, X = conv(R ∪ {0}), R will be said to be a reference system
or a referential of (X, 0).

Proposition 2.6 Let R = {x1, . . . , xn} be a reference system of (X, 0)
and x ∈ X. There is a unique tuple (a1, . . . , an) ∈ Bn satisfying the
three following properties:

1. aiaj = 0 whenever i 6= j.
2.

∑n
1 aixi = x.

3. ai ≤ |xi| for i = 1, . . . , n.

Such a tuple will be called the tuple of coordinates of x with respect
to R.

Proof: Uniqueness: If
∑n

1 aixi =
∑n

1 bixi in those conditions, mul-
tiplying by aibj , i 6= j, we obtain aibjxi = aibjxj ∈ Bxi ∩Bxj = {0}
so for each i, aixi = ai(

∑
j bj)xi = aibixi, and symmetrically bixi =

aibixi = aixi, so by Lemma 2.2 ai + bi ∈ |xi|B, and also ai + bi ∈
|xi|B since the ai and bi’s are assumed to verify property 3. So
ai + bi = 0 for all i.

Existence: Since X = conv{0, x1 . . . , xn}, we can find b1, . . . , bn ∈
B verifying 1 and 2. Now set ai = |xi|bi. The ai’s satisfy trivially 1
and 3. Using Lemma 2.2 we deduce from ai + bi = |xi|bi ∈ |xi|B that
aixi = bixi for all i. So

∑n
1 aixi =

∑n
1 bixi = x. �

Proposition 2.7 Let R = {x1, . . . , xn} be a referential of (X, 0)
and (Y, 0′) a convex metric space. Then, f : R −→ Y is extensible
to a (unique) contractive map f̂ : (X, 0) −→ (Y, 0′) if and only if
|f(xi)| ≤ |xi| for i = 1, . . . , n.

Proof: Define f on R ∪ {0} by f(0) = 0′. By Theorem 1.15, f ad-
mits such an extension if and only if it is contractive. If f is con-
tractive, it is clear that |f(xi)| ≤ |xi| for i = 1, . . . , n, so one way
is proved. Conversely, suppose |f(xi)| ≤ |xi| for every i. Then, for
all i 6= j, since xi and xj are orthogonal, we have last equality in
d(f(xi), f(xj)) ≤ |f(xi)| ∨ |f(xj)| ≤ |xi| ∨ |xj | = d(xi, xj). �
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We check now that any CFG-space possesses a reference system.

Theorem 2.8 Suppose X = conv{0, x1, . . . , xn} and that the set
{x1, . . . , xs} is orthogonal. Then, there exist as+1, . . . , an ∈ B such
that {x1, . . . , xs, as+1xs+1, . . . , anxn} \ {0} is a referential of (X, 0).

Proof: Let r = card{(i, j) : xi ? xj 6= 0}. We make induction on r.
We suppose that the theorem holds for any value lower than r > 0.
We take xi, xj with xi ? xj 6= 0 and suppose, without loss of general-
ity that i, s < j. Let a := d(xi, xj). Since axj ? xi = ad(xi, xj)xi = 0,
we have axj ⊥ xi. Also, xj = a(axj) + āxi, and from this we deduce
that conv{0, xi, xj} = conv{0, xi, axj} and therefore:

X = conv{0, x1, . . . , xj−1, axj , xj+1, . . . , xn}

Making use of the induction hypothesis, the proof is complete (in
this system of generators there is at least one orthogonal pair more,
since xi ⊥ axj). �

Corollary 2.9 Let {x1, . . . , xs} be an orthogonal subset of the CFG-
space (X, 0). Then, there exist xs+1, . . . , xn ∈ X such that {x1, . . . , xn}
is a referential of (X, 0).

In particular, any CFG-space (X, 0) has a reference system.

Definition 2.10 For U ⊆ X, U⊥ = {x ∈ X : x ⊥ y ∀y ∈ U}.

Proposition 2.11 For two CFG-spaces (U, 0) ⊆ (X, 0), the space
U⊥ is a CFG-space and conv(U ∪ U⊥) = X.

Proof: Let {x1, . . . , xm} be a reference system of (U, 0) that we
can extend to a reference system {x1, . . . , xn} of (X, 0). We prove
that U⊥ = conv{0, xm+1, . . . , xn}. Take x ∈ U⊥, x =

∑n
1 aixi. Then,

for j = 1, . . . ,m we have 0 = xj ? x =
∑n

1 ai(xi ? xj) = ajxj . Hence,
x =

∑m
1 aixi. �

Proposition 2.12 Let (U, 0) ⊂ (X, 0) be two CFG-spaces, (Y, 0′) a
convex metric space and f : (U, 0) → (Y, 0′) and g : (U⊥, 0) → (Y, 0′)
contractive maps. Then, there is a unique contractive map f ⊥ g :
(X, 0) → (Y, 0′) that extends f and g.
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Proof: We take a referential of (U, 0) and another one of (U⊥, 0).
The union is a referential of (X, 0). Applying Theorem 2.7 the propo-
sition is proved. �

3. Algebraic Geometry over CFG-rings

Definition 3.1 A regular ring A is said to be a CFG-ring if, equipped
with its modular metric, it is a CFG-space over B(A).

In this case, An (which is a metrizable A-module for which the
product metric and the modular metric coincide) is a CFG-space
over B(A) too. If p is a prime number, any p-ring is a CFG-ring
because if A is a p-ring, then A = conv{0, 1, . . . , p− 1}. A proof of
this fact can be found in [15] (Corollary 1). There are CFG-rings that
are not p-rings. For instance, take K a finite field and Ω a set. Then,
KΩ is regular and it is easy to see that the set of constant tuples
constitute a finite system of generators of KΩ, so KΩ is a CFG-ring.
The aim of this section is to prove Theorem 3.8.

Lemma 3.2 Let R be a ring and f : Rn −→ R a polynomial func-
tion. For every x1, . . . , xm ∈ Rn and every e1, . . . , en ∈ B(R) such
that e1 ⊕ · · · ⊕ · · · en = 1, we have f(

∑
i eixi) =

∑
i eif(xi).

Proof: Let S be the set of all maps g : Rn −→ R verifying the
conclusion of the lemma. It is straightforward to check that the pro-
jections πi : Rn −→ R are in S (that proves the lemma for the poly-
nomials X1, . . . , Xn), that constant maps are in S, and that the sums
and products of maps in S lie in S. Any polynomial map is a sum
of products of constants and the variables Xi’s. �

Lemma 3.3 Let A be a CFG-ring. A map f : An −→ Am is con-
tractive if and only if it is a polynomial map.

Proof: f is contractive if and only if all its components are, and
the same holds about f being a polynomial map, so we can assume
m = 1. The ‘if’ part is a consequence of Lemma 3.2, Theorem 1.12,
and Proposition 1.11. For the ‘only if’ part, we assume that f(0) = 0
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(it is sufficient to prove this case, just considering for an arbitrary f ,
the composition h ◦ f where h : A −→ A is h(x) = x + f(0)). Take
{x1, . . . , xr} a referential of (An, 0). We prove first the case n = 1:

Case n = 1. Consider the polynomial gi(x) = x
∏

j 6=i(x− xj) for
i = 1, . . . , r. Then,

e(gi(xi)) = e(xi)
∏
j 6=i

e(xi − xj) = e(xi)
∏
j 6=i

d(xi, xj)

= e(xi)
∏
j 6=i

(|xi| ∨ |xj |) = |xi| = e(xi)

Therefore, for each i = 1, . . . , n there is a unit ai of A such that
gi(xi) = aie(xi). Consider the polynomial map g : A −→ A given by

g(x) =
r∑

i=1

a−1
i f(xi)gi(x)

Since A = conv{0, x1, . . . , xr} and f and g are contractive, we prove
that g(x) and f(x) coincide for x = 0, x1, . . . , xr. It is clear that
g(0) = 0 = f(0) because gi(0) = 0. For x = xj ,

g(xj) =
r∑

i=1

a−1
i f(xi)gi(xj)

and since gi(xj) = 0 whenever i 6= j,

gi(xj) = a−1
j f(xj)gj(xj) = f(xj)e(xj)

and this equals f(xj) because |f(xj)| ≤ |xj | = e(xj).
General case: As a consequence of the case n = 1, we find that

e : A −→ A is a polynomial map, and therefore, for v ∈ An, the
map d(∼, v) : An −→ A is polynomial too, since if v = (a1, . . . , an)
then d(x, v) = e(x1 − a1) ∨ · · · ∨ e(xn − an) (recall that x ∨ y = x +
y − xy for x, y ∈ B(A)). Hence, we can construct polynomial maps
for i = 1, . . . , r given by Gi(x) = |x|

∏
j 6=i d(x, xj). We define G(x) =∑r

i=1 f(xi)Gi(x). and we are going to see that G and f coincide on
{0, x1, . . . , xr}, so that, since both are contractive and this set gen-
erates An, that will prove that f = G, so f is a polynomial map.
It is clear that G(0) = 0 = f(0) because Gi(0) = 0 for all i. Since
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Gi(xj) = 0 if i 6= j,

G(xi) = f(xi)Gi(xi) = f(xi)|xi|
∏
i6=j

d(xi, xj)

= f(xi)|xi|
∏
j 6=i

|xi| ∨ |xj | = f(xi)|xi| = f(xi)

where the last equality follows from the fact that |f(xi)| ≤ |xi|. �

Lemma 3.4 Let (X, 0) = conv(H) be a convex metric space with
0 ∈ H, and let f : (X, 0) → (Y, 0′) be contractive. Then

f−1(0′) = conv{0, |f(x)|x : x ∈ H}

Proof: One inclusion is clear because all the elements that appear
in the right term are in the convex set f−1(0′). For the converse,
if x ∈ f−1(0′), in particular it is in X, so it can be expressed like
x =

∑n
i=1 aixi with xi ∈ H, and aiaj = 0 whenever i 6= j. Then,

0 = |f(x)| = a1|f(x1)| ⊕ · · · ⊕ an|f(xn)|,

and therefore ai|f(xi)| = 0, so ai = ai|f(xi)| for all i = 1, . . . , n. Fi-
nally,

x =
n∑

i=1

aixi =
n∑

i=1

ai|f(xi)|xi ∈ conv{0, |f(x1)|x1, . . . , |f(xn)|xn}.

�

Note that a convex subset of a CFG-space need not be a CFG-
space. For instance, B = conv{0, 1} is a CFG-space, and those ideals
of B that are not finitely generated are convex subsets that are not
CFG-spaces.

Lemma 3.5 Let X be a CFG-space. Then Y ⊆ X is a CFG-space
if and only if there exists a contractive map f : X → B such that
Y = f−1(0).

Proof: One way is a direct consequence of Lemma 3.4. For the
converse, suppose Y is a CFG-space. If Y = ∅ it is trivial and if not,
take 0′ ∈ Y and {u1, . . . , uk} a referential in (Y, 0′) that we extend to
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a referential of (X, 0′), {u1, . . . , un}. By Theorem 2.7 we can define a
contractive map f : (X, 0′) → (B, 0) such that f(ui) = 0 if i ≤ k and
f(ui) = |ui| if i > k. It is clear that Y ⊂ f−1(0) and for the other
inclusion suppose x ∈ f−1(0) has coordinates (a1, . . . , an). Then

0 = f(x) = f(
n∑

i=1

aiui) =
n⊕

i=1

aif(ui) =
n⊕

i=k+1

ai|ui| =
n⊕

i=k+1

ai

so ai = 0 for i > k, and x =
∑k

i=1 aiui ∈ conv{0′, u1, . . . , uk} = Y .
�

Corollary 3.6 If Y, Z are CFG-spaces contained in the space X,
then Y ∩ Z is a CFG-space.

Proof: If Y = f−1(0) and Z = g−1(0) with f, g : conv(Y ∪ Z) → B

contractive maps, then Y ∩ Z = (f ∨ g)−1(0). �

Corollary 3.7 Let f : X → Y be a contractive map between CFG-
spaces. If Z ⊂ Y is a CFG-space, then f−1(Z) is a CFG-space too.

Proof: Let g : Y → B be such that K = g−1(0). Then f−1(K) =
(g ◦ f)−1(0), so it is a CFG-space. �

Theorem 3.8 Let A be a CFG-ring.

1. A subset U ⊆ An is an algebraic variety if and only if U is a
CFG-metric subspace of An.

2. A map f : U −→ V between two algebraic varieties is a poly-
nomial map if and only if it is contractive.

Proof: If U is an algebraic variety then, U =
⋂k

1 f−1
k (0) where

fi : An −→ A are polynomial maps, and therefore, by Lemma 3.3,
contractive maps. Using Lemma 3.5 and Corollary 3.6 we deduce that
U is a CFG-space. Conversely, If U is a CFG-space, by Lemma 3.5,
there is a contractive map f : An −→ B(A) with U = f−1(0). Then
U = g−1(0) where g is the composition An −→ B(A) ↪→ A, that is
contractive and therefore polynomial, again by Lemma 3.3.
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Suppose f : U −→ V is contractive, choose some u ∈ U and con-
sider f : (U, u) −→ (V, f(u)) and k : (U⊥, u) −→ (V, f(u)) the con-
stant map. Since U and An are CFG-spaces and V is convex, we can
consider, by Proposition 2.12, f ⊥ k : An −→ Am that is contractive,
and therefore, a polynomial map, that extends f . The converse is a
direct consequence of Lemma 3.3. �

4. Structure Theorem for CFG-spaces

We shall classify now CFG-spaces up to isomorphism. Reference
systems do not give good isomorphism invariants, since they are
not unique up to isometry (for instance, {1} and {a, ā} are non-
isometric referentials of (B, 0)). The right concept for this purpose
is the following:

Definition 4.1 A referential {x1, . . . , xn} of (X, 0) is said to be a
base of (X, 0) if |x1| ≥ |x2| ≥ · · · ≥ |xn|.

We will prove that there exists a base for any pointed CFG-space
(X, 0), and that they are unique in the sense of Theorem 4.6 below.
We prove uniqueness first, and existence afterwards.

Definition 4.2 Let k > 0 be an integer and X a metric space over
B. The k-ideal of X (denoted by Ik(X)) is the ideal of B generated
by

{
∏

0≤i<j≤k

d(ui, uj) : u0, . . . , uk ∈ X}.

If Ik(X) is principal, we will denote by αk(X) its generator.

Lemma 4.3 If X = conv(H), then Ik(H) = Ik(X) for all k ∈ N.

Proof: If U is any Boolean metric space, the map fU : Uk+1 → B

given by fU (u0, . . . , uk) =
∏

0≤i<j≤k d(ui, uj) is contractive because
it is a composition of distance functions and a polynomial function
(the product). With this notation, Ik(U) is the ideal generated by
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the image of fU , and

Im(fX) = fX(Xk+1) = fX(conv(Hk+1)) = conv(fX(Hk+1))

= conv(Im(fH))

so both images generate the same ideal. �

Lemma 4.4 Let X be a CFG-space. Then Ik(X) is principal for
all k ∈ N and there exists n ∈ N such that Ik(X) = 0 for all k ≥ n.
Hence, αk(X) exists for all k ∈ N and αk(X) = 0 for k ≥ n.

Proof: Suppose X = conv(H) with H finite. Then, Ik(X) = Ik(H)
is always a finitely generated ideal of B, so it is principal, and if we
take n = card(H), 0 = Ik(H) = Ik(X) if k ≥ n. �

Lemma 4.5 Let {x1, . . . , xn} be a base of (X, 0). Then, αk(X) =
|xk| for k ≤ n and αk(X) = 0 if k > n.

Proof: By Lemma 4.3, αk(X) = αk(H) where H = {0, x1, . . . , xn}.
If k > n, it is trivial that αk(H) = 0. If k ≤ n, call yi’s to the reorder-
ing of the xi’s such that 0 = |y0| ≤ |y1| ≤ · · · ≤ |yn| (yr = xn−r+1 if
r > 0). For i < j we have d(yi, yj) = |yi| ∨ |yj | = |yj |, by orthogonal-
ity. We wonder whether Ik(H) = |xk|B(= |yn−k+1|B). One inclusion
is because

|yn−k+1| =
∏

n≥i>n−k

|yi| =
∏

n≥i>j≥n−k

d(yi, yj)

is one of the generators of Ik(H). For the other inclusion we shall
check that all the generators of Ik(H) are in the ideal |yn−k+1|B.
Take U = {u0, . . . , uk} ⊆ H. By a cardinality argument, there must
exist indices r < s ≤ n− k + 1 such that yr, ys ∈ U , so∏

0≤i<j≤k

d(ui, uj) ≤ d(yr, ys) = |ys| ≤ |yn−k+1|

�
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Theorem 4.6 If {x1, . . . , xn} is a base of (X, 0) and {y1, . . . , ym}
is a base of (X, 0′), then n = m and |xi| = |yi| for i = 1, . . . , n. More-
over, there exists an isometry f : (X, 0) −→ (X, 0′) such that f(xi) =
yi for i = 1, . . . , n.

Proof: By Lemma 4.5, we know that n = max{k : αk(X) 6= 0} =
m and |xi| = αi(X) = |yi|. About the last assertion, there exists a
contractive map f : (X, 0) −→ (X, 0′) such that f(xi) = yi for i =
1, . . . , n, by virtue of Proposition 2.7. It is an isometry because we
can find its inverse in an analogue way g : (X, 0′) −→ (X, 0) with
g(yi) = xi. �

Lemma 4.7 If (V, 0) ⊂ (X, 0) are CFG-spaces and V ⊥ = {0}, then
V = X.

Proof: A reference system of (V, 0), {x1, . . . , xm} can be extended
to a referential of (X, 0), {x1, . . . , xn}. Then, xm+1, . . . , xn ∈ V ⊥ =
{0}, so V = conv{0, x1, . . . , xm} = conv{0, x1, . . . , xn} = X. �

Lemma 4.8 Let X be a CFG-space and f : X −→ B contractive.
Then, there exists u ∈ X such that f(u) = max{f(x) : x ∈ X}.

Proof: Suppose X = conv{x0, . . . , xn}. The set f(X) ⊆ B is closed
under the operation (∨), because it is convex and a ∨ b = aa + āb.
Hence, there exists u ∈ X such that f(u) = f(x0) ∨ · · · ∨ f(xn). If
x ∈ X, we express it as a convex combination x =

∑
i aixi and f(x) =⊕

i aif(xi) =
∨

i aif(xi) ≤
∨

i f(xi) = f(u). �

Theorem 4.9 Any CFG-space (X, 0) possesses a base.

Proof: We define by recursion a sequence (xn)∞n=1 in X and a se-
quence (Un)∞n=1 of CFG-spaces contained in X:r x1 is such that |x1| = max{|x| : x ∈ X}; U1 = conv{0, x1}r Given xi and Ui for i < n, we take xn such that |xn| =

max{|x| : x ∈ U⊥
n−1} and Un := conv{0, x1, . . . , xn}

Note that those maximums exist by virtue of Lemma 4.8, since U⊥
n−1

is a CFG-space by Proposition 2.11. The xi’s form an orthogonal set
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and verify |xi| ≥ |xj | whenever i < j. Therefore, {x1, . . . , xn} \ {0}
is a base of (Un, 0). Since X is a CFG-space, by Lemma 4.4, there
must exist some k > 0 with 0 = αk(X) ≥ αk(Uk) = |xk|. So, taking r

the largest integer such that |xr| 6= 0, we have, just by the definition
of xr+1 = 0, that U⊥

r = {0}. Therefore, by Lemma 4.7, Ur = X and
we have already shown that {x1, . . . , xr} \ {0} is a base of (Ur, 0). �

Theorem 4.10 Two CFG-spaces X and Y are isometric if and
only if αk(X) = αk(Y ) for all k ∈ N.

Proof: Suppose αk(X) = αk(Y ) for all k. Choose 0 ∈ X, 0′ ∈ Y and
bases {x1, . . . , xn} and {y1, . . . , ym} of (X, 0) and (Y, 0′) respectively.
Then, n = max{k : αk(X) = αk(Y ) 6= 0} = m and we can construct
an isometry like in the proof of Theorem 4.6. �
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