Distortion of Lipschitz Functions on $c_0(\Gamma)$

Matěj Novotný

Faculty of Electrical Engineering
Czech Technical University in Prague

17.10.2017
Introduction

Definition

Let X be a Banach space and $f : S_X \to \mathbb{R}$. We say f is oscillation stable if for every infinite dimensional subspace $Z \subset X$ and every $\varepsilon > 0$ there exists an infinite dimensional subspace $Y \subset Z$ such that $|f(x) - f(y)| \leq \varepsilon$ for every $x, y \in S_Y$.
Definition

Let X be a Banach space and $f : S_X \to \mathbb{R}$. We say f is **oscillation stable** if for every infinite dimensional subspace $Z \subset X$ and every $\varepsilon > 0$ there exists an infinite dimensional subspace $Y \subset Z$ such that $|f(x) - f(y)| \leq \varepsilon$ for every $x, y \in S_Y$.

Definition

A function $f : S_X \to \mathbb{R}$ is said to be **distorted** if there exists an $\varepsilon > 0$ such that for every infinite dimensional subspace Y of X there exist $x, y \in S_Y$ such that $|f(x) - f(y)| > \varepsilon$.
Theorem (Gowers)
Every Lipschitz function $f: c_0 \rightarrow \mathbb{R}$ is oscillation stable.

Theorem (Odell, Schlumprecht)
There is a distorted Lipschitz function on ℓ_1. For every $1 < p < \infty$, there is a distorted equivalent norm on ℓ_p.
Theorem (Gowers)

Every Lipschitz function \(f : S_{c_0} \to \mathbb{R} \) is oscillation stable.
Theorem (Gowers)

Every Lipschitz function $f : S_{c_0} \to \mathbb{R}$ is oscillation stable.

Theorem (Odell, Schlumprecht)

There is a distorted Lipschitz function on ℓ_1. For every $1 < p < \infty$, there is a distorted equivalent norm on ℓ_p.
Nonseparable case

Definition

Let \((X, \|\cdot\|)\) be a Banach space with a symmetric (possibly uncountable) Schauder basis \(\{e_\gamma\}_{\gamma \in \Gamma}\), where \(\Gamma\) is any nonempty set. We say that a function \(f: X \to \mathbb{R}\) is symmetric if the value \(f(x)\) is preserved under any permutation of the coordinates of \(x\).

Theorem (Hájek, N.)

There is a \(1\)-Lipschitz symmetric function \(F: S_{c_0}(\Gamma) \to \mathbb{R}\), taking values in \([0, 1]\), such that for every nonseparable subspace \(Y \subseteq c_0(\Gamma)\) there are points \(x, y \in S_Y\) such that \(|F(x) - F(y)| > \frac{1}{4}\).
Nonseparable case

Definition

Let $(X, \| \cdot \|)$ be a Banach space with a symmetric (possibly uncountable) Schauder basis $\{ e_\gamma \}_{\gamma \in \Gamma}$, where Γ is any nonempty set. We say that a function $f : X \to \mathbb{R}$ is symmetric if the value $f(x)$ is preserved under any permutation of the coordinates of x.

Theorem (Hájek, N.)

There is a 1-Lipschitz symmetric function $F : c_0(\Gamma) \to \mathbb{R}$, taking values in $[0, 1]$, such that for every nonseparable subspace $Y \subseteq c_0(\Gamma)$ there are points $x, y \in S_Y$ such that $|F(x) - F(y)| > \frac{1}{4}$.

Matěj Novotný (CTU in Prague)
Nonseparable case

Definition
Let \((X, \| \cdot \|)\) be a Banach space with a symmetric (possibly uncountable) Schauder basis \(\{e_\gamma\}_{\gamma \in \Gamma}\), where \(\Gamma\) is any nonempty set. We say that a function \(f : X \to \mathbb{R}\) is symmetric if the value \(f(x)\) is preserved under any permutation of the coordinates of \(x\).

Theorem (Hájek, N.)
There is a 1-Lipschitz symmetric function \(F : S_{c_0(\Gamma)} \to \mathbb{R}\), taking values in \([0,1]\), such that for every nonseparable subspace \(Y \subseteq c_0(\Gamma)\) there are points \(x, y \in SY\) such that \(|F(x) - F(y)| > \frac{1}{4}\).
Definition

On $c_{00}(\omega_1)$ define equivalence $x \sim y$ whenever $|\text{supp } x| = |\text{supp } y|$ and there exists a bijection $f : \text{supp } x \rightarrow \text{supp } y$ such that $x(\gamma) = y(f(\gamma))$. We call every equivalence class $[x] \in X := c_{00}(\omega_1)/\sim$ a shape.
Definition

On $c_{00}(\omega_1)$ define equivalence $x \sim y$ whenever $|\text{supp } x| = |\text{supp } y|$ and there exists a bijection $f : \text{supp } x \rightarrow \text{supp } y$ such that $x(\gamma) = y(f(\gamma))$. We call every equivalence class $[x] \in X := c_{00}(\omega_1)/\sim$ a shape.

Notation

Let us denote by $L = \{S_i\}_{i=1}^{\infty}$ the sequence of all shapes of norm one with finite support and rational coordinates.
Proof

Definition

On \(c_{00}(\omega_1) \) define equivalence \(x \sim y \) whenever \(|\text{supp} \, x| = |\text{supp} \, y| \) and there exists a bijection \(f : \text{supp} \, x \to \text{supp} \, y \) such that \(x(\gamma) = y(f(\gamma)) \). We call every equivalence class \([x] \in X := c_{00}(\omega_1)/\sim \) a shape.

Notation

Let us denote by \(L = \{S_i\}_{i=1}^{\infty} \) the sequence of all shapes of norm one with finite support and rational coordinates.

Lemma (Modified extension formula)

Suppose \((M,d)\) is a metric space and \(g : S \to \mathbb{R} \) a \(K \)-Lipschitz function on some \(S \subseteq M \), taking values only in the interval \([0,1]\). Then the following formula defines a \(K \)-Lipschitz function \(\overline{g} : M \to \mathbb{R} \), taking values only in \([0,1]\) such that \(\overline{g}|_S = g \).

\[
\overline{g}(x) = \min \left\{ \inf_{y \in S} \{g(y) + Kd(x,y)\} , 1 \right\} . \tag{1}
\]
Thank you for your attention.