Weakly compactly generated Banach spaces and some of their relatives classified by using projectional skeletons

V. Montesinos
Joint work with M. Fabian, Praha

1Instituto de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, Spain
Supported in part by MICINN MTM 2014-57838-C2-2-P (Spain)

NonLinear Functional Analysis
October 17-20, 2017
1. Weakly compactly generated spaces
2. Projections
3. Projectional Resolutions of the Identity
4. Projectional Skeletons
5. Projectional Generators
6. WLD spaces
7. WCG spaces
8. SWCG spaces
WCG space \equiv \exists \ \text{w-compact total.}
WCG space $\equiv \exists w$-compact total.

Positive examples:

- separable,
- reflexive,
- $c_0(\Gamma)$,
- $L_1(\mu)$ for μ-finite.
WCG space $\equiv \exists$ w-compact total.

Positive examples:
- separable,
- reflexive,
- $c_0(\Gamma)$,
- $L_1(\mu)$ for μ-finite.

Negative examples:
- If Γ uncountable, then $\ell_1(\Gamma)$ not WCG.
- ℓ_∞ not WCG (every w-compact is $\|\cdot\|$-separable).
WCG space $\equiv \exists \; w$-compact total.

Positive examples:
- separable,
- reflexive,
WCG space \iff \exists w\text{-compact}
total.

Positive examples:
• separable,
• reflexive,
• $c_0(\Gamma)$,
WCG space $\equiv \exists w$-compact total.

Positive examples:
- separable,
- reflexive,
- $c_0(\Gamma)$,
- $L_1(\mu)$ for μ σ-finite.
WCG space $\equiv \exists$ \textit{w}-compact total.

Positive examples:
- separable,
- reflexive,
- $c_0(\Gamma)$,
- $L_1(\mu)$ for μ σ-finite.

Negative examples:
- If Γ uncountable, then $\ell_1(\Gamma)$ not WCG.
- ℓ_∞ not WCG (every \textit{w}-compact is $\|\cdot\|$-separable).
WCG space \equiv \exists \text{ w-compact total.}

Positive examples:
• separable,
• reflexive,
• \(c_0(\Gamma) \),
• \(L_1(\mu) \) for \(\mu \sigma \)-finite.

Negative examples:
• If \(\Gamma \) uncountable, then \(\ell_1(\Gamma) \) not WCG.
WCG space $\equiv \exists$ w-compact total.

Positive examples:
- separable,
- reflexive,
- $c_0(\Gamma)$,
- $L_1(\mu)$ for μ σ-finite.

Negative examples:
- If Γ uncountable, then $\ell_1(\Gamma)$ not WCG.
- ℓ_∞ not WCG (every w-compact is $\| \cdot \|$-separable).
A fundamental contribution of Amir and Lindenstrauss (1968) for WCG spaces: To split the space in a well ordered set of projections.
A fundamental contribution of Amir and Lindenstrauss (1968) for WCG spaces: To split the space in a well ordered set of projections.
How to build a projection?
A fundamental contribution of Amir and Lindenstrauss (1968) for WCG spaces: To split the space in a **well ordered set of projections**.

How to build a projection?

Lemma

For a Banach space X, closed linear subspaces $V \subset X$, $Y \subset X^*$, the following conditions are equivalent (TFAE):

1. $X = V \oplus Y^\perp$, and $P : X \to V$ has norm $\leq r$.
2. V separates points of Y.
3. $V^\perp \cap Y$ is the r-norm closure of V^\perp.

We say that the couple (V, Y) gives an r-bounded projection P.
A fundamental contribution of Amir and Lindenstrauss (1968) for WCG spaces: To split the space in a well ordered set of projections.

How to build a projection?

Lemma

Let X be a Banach space, $V \subset X$, $Y \subset X^*$, closed linear subspaces. TFAE:

(i) $X = V \oplus Y_\perp$, $P : X \to V$ has norm $\leq r$.

(ii) V separates points of Y, $W^* (V_\perp \cap Y_w^*) = \{0\}$, and $B_Y r$-norms $V (\|v\| \leq r \sup \langle v, B_Y \rangle, v \in V)$.

We say that the couple (V, Y) gives an r-bounded projection $P_V \times Y$ (on V).
A fundamental contribution of Amir and Lindenstrauss (1968) for WCG spaces: To split the space in a well ordered set of projections. How to build a projection?

Lemma

Let X be a Banach space, $V \subset X$, $Y \subset X^*$, closed linear subspaces. TFAE:

(i) $X = V \oplus Y_\perp$, $P : X \to V$ has norm $\leq r$.

(ii) V separates points of \overline{Y}^{w^*}.

We say that the couple (V, Y) gives an r-bounded projection $P: V \times Y$ (on V).
A fundamental contribution of Amir and Lindenstrauss (1968) for WCG spaces: To split the space in a well ordered set of projections.

How to build a projection?

Lemma

Let X be a Banach space, $V \subset X$, $Y \subset X^*$, closed linear subspaces. TFAE:

1. $X = V \oplus Y_{\perp}$, $P : X \to V$ has norm $\leq r$.
2. V separates points of \overline{Y}^w (i.e., $V_{\perp} \cap \overline{Y}^w = \{0\}$), and

We say that the couple (V, Y) gives an r-bounded projection $P_{V \times Y}$.
A fundamental contribution of Amir and Lindenstrauss (1968) for WCG spaces: To split the space in a well ordered set of projections.

How to build a projection?

Lemma

\(X \) Banach, \(V \subset X, Y \subset X^* \), closed linear subspaces. TFAE:

(i) \(X = V \oplus Y_{\perp} \), \(P : X \to V \) has norm \(\leq r \).

(ii) \(V \) separates points of \(\overline{Y}^{w*} \) \((V_{\perp} \cap \overline{Y}^{w*} = \{0\}) \), and \(B_Y \) \(r \)-norms \(V \)
A fundamental contribution of Amir and Lindenstrauss (1968) for WCG spaces: To split the space in a well ordered set of projections.

How to build a projection?

Lemma

X Banach, $V \subset X$, $Y \subset X^*$, closed linear subspaces. TFAE:

(i) $X = V \oplus Y_\perp$, $P : X \to V$ has norm $\leq r$.

(ii) V separates points of \overline{Y}^{w^*} ($V_\perp \cap \overline{Y}^{w^*} = \{0\}$), and B_Y r-norms $V(\|v\| \leq r \sup \langle v, B_Y \rangle, v \in V)$.
A fundamental contribution of Amir and Lindenstrauss (1968) for WCG spaces: To split the space in a well ordered set of projections.

How to build a projection?

Lemma

\[X \text{ Banach, } V \subset X, \ Y \subset X^*, \text{ closed linear subspaces. TFAE:} \]

(i) \(X = V \oplus Y \perp, \ P : X \to V \text{ has norm } \leq r. \)

(ii) \(V \text{ separates points of } \overline{Y}^{w*} \) \((V \perp \cap \overline{Y}^{w*} = \{0\} \), and \(B_Y r\text{-norms } V(\|v\| \leq r \sup \langle v, B_Y \rangle, \ v \in V). \)

We say that the couple \((V, Y) \) gives an \(r \)-bounded projection \(P_{V \times Y} \) (on \(V \)).

X Banach space, μ first ordinal with cardinal $\text{dens}(X)$.

X Banach space, μ first ordinal with cardinal $dens(X)$.

$\{P_\alpha : \omega_0 \leq \alpha \leq \mu\}$ projections.

(i) $P_{\omega_0} = 0$, $P_{\mu} = Id_X$.

(ii) $\|P_\alpha\| = 1$, $\forall \alpha \in (\omega_0, \mu]$.

(iii) $dens(P_\alpha(X)) \leq |\alpha|$, $\forall \alpha \in [\omega_0, \mu]$.

(iv) $P_\alpha P_\beta = P_{\min\{\alpha, \beta\}}$, $\forall \alpha \in [\omega_0, \mu]$.

(v) For $x \in X$, $\alpha \mapsto P_\alpha(x)$ continuous.
Amir–Lindenstrauss’68: Building a \textbf{Projectional Resolution of the Identity}.

X Banach space, μ first ordinal with cardinal $\text{dens}(X)$.

$\{P_\alpha : \omega_0 \leq \alpha \leq \mu\}$ projections.

(i) $P_{\omega_0} = 0$, $P_\mu = \text{Id}_X$.
Amir–Lindenstrauss’68: Building a **Projectional Resolution of the Identity**.

X Banach space, μ first ordinal with cardinal $\text{dens}(X)$.

\[\{ P_\alpha : \omega_0 \leq \alpha \leq \mu \} \] projections.

(i) $P_{\omega_0} = 0$, $P_\mu = \text{Id}_X$.

(ii) $\| P_\alpha \| = 1$, $\forall \alpha \in (\omega_0, \mu]$.

X Banach space, μ first ordinal with cardinal $\text{dens}(X)$.

$\{ P_{\alpha} : \omega_0 \leq \alpha \leq \mu \}$ projections.

(i) $P_{\omega_0} = 0$, $P_{\mu} = \text{Id}_X$.

(ii) $\| P_{\alpha} \| = 1$, $\forall \alpha \in (\omega_0, \mu]$.

(iii) $\text{dens}(P_{\alpha}(X)) \leq |\alpha|$, $\forall \alpha \in [\omega_0, \mu]$.

X Banach space, μ first ordinal with cardinal $\text{dens}(X)$.

$\{P_\alpha : \omega_0 \leq \alpha \leq \mu\}$ projections.

(i) $P_{\omega_0} = 0$, $P_\mu = \text{Id}_X$.

(ii) $\|P_\alpha\| = 1$, $\forall \alpha \in (\omega_0, \mu]$.

(iii) $\text{dens}(P_\alpha(X)) \leq |\alpha|$, $\forall \alpha \in [\omega_0, \mu]$.

(iv) $P_\alpha P_\beta = P_{\min\{\alpha, \beta\}}$, $\forall \alpha \in [\omega_0, \mu]$.

V. Montesinos

WCG by means of skeletons.

X Banach space, μ first ordinal with cardinal $\text{dens}(X)$.

$\{P_{\alpha} : \omega_0 \leq \alpha \leq \mu\}$ projections.

(i) $P_{\omega_0} = 0$, $P_{\mu} = \text{Id}_X$.

(ii) $\|P_{\alpha}\| = 1$, $\forall \alpha \in (\omega_0, \mu]$.

(iii) $\text{dens}(P_{\alpha}(X)) \leq |\alpha|$, $\forall \alpha \in [\omega_0, \mu]$.

(iv) $P_{\alpha}P_{\beta} = P_{\min\{\alpha, \beta\}}$, $\forall \alpha \in [\omega_0, \mu]$.

(v) For $x \in X$, $\alpha \rightarrow P_{\alpha}(x)$ continuous.
A very recent tool: Projectional Skeletons

X Banach. **Projectional skeleton (PS)** (Kubiś, 2009)

V. Montesinos

WCG by means of skeletons
X Banach. **Projectional skeleton (PS)** (Kubiś, 2009)
\[(P_\gamma : \gamma \in \Gamma) \] bounded linear projections on \(X \), \(\Gamma \) a directed upwards and \(\sigma \)-complete set st
A very recent tool: Projectional Skeletons

\(X \) Banach. **Projectional skeleton (PS)** (Kubiś, 2009)
\((P_\gamma : \gamma \in \Gamma) \) bounded linear projections on \(X \), \(\Gamma \) a directed upwards and \(\sigma \)-complete set st

(i) \(P_\gamma X \) separable \(\forall \gamma \in \Gamma \),
A very recent tool: Projectional Skeletons

X Banach. **Projectional skeleton (PS)** (Kubiś, 2009)

$(P_\gamma : \gamma \in \Gamma)$ bounded linear projections on X, Γ a directed upwards and σ-complete set st

1. $P_\gamma X$ separable $\forall \gamma \in \Gamma$,
2. $X = \bigcup_{\gamma \in \Gamma} P_sX$,
3. $\|P_\gamma\| \leq r$ γ-skeleton.

(see, e.g., Kakol–Kubiś–López Pellicer book).

V. Montesinos WCG by means of skeletons
A very recent tool: Projectional Skeletons

X Banach. **Projectional skeleton (PS)** (Kubiś, 2009)

$(P_\gamma : \gamma \in \Gamma)$ bounded linear projections on X, Γ a directed upwards and σ-complete set st

(i) $P_\gamma X$ separable $\forall \gamma \in \Gamma$,

(ii) $X = \bigcup_{\gamma \in \Gamma} P_\gamma X$,

(iii) $P_\gamma \circ P_\beta = P_\gamma = P_\beta \circ P_\gamma$ whenever $\gamma, \beta \in \Gamma$ and $\gamma \leq \beta$, and
A very recent tool: Projectional Skeletons

X Banach. **Projectional skeleton (PS) (Kubiś, 2009)**

$(P_\gamma : \gamma \in \Gamma)$ bounded linear projections on X, Γ a directed upwards and σ-complete set st

(i) $P_\gamma X$ separable $\forall \gamma \in \Gamma$,

(ii) $X = \bigcup_{\gamma \in \Gamma} P_s X$,

(iii) $P_\gamma \circ P_\beta = P_\gamma = P_\beta \circ P_\gamma$ whenever $\gamma, \beta \in \Gamma$ and $\gamma \leq \beta$, and

(iv) If $\gamma_n \nearrow \gamma$ in Γ, then $P_\gamma X = \bigcup_{n \in \mathbb{N}} P_{\gamma_n} X$.

\Box
A very recent tool: Projectional Skeletons

X Banach. **Projectional skeleton (PS)** (Kubiś, 2009)

($P_\gamma : \gamma \in \Gamma$) bounded linear projections on X, Γ a directed upwards and σ-complete set st

(i) $P_\gamma X$ separable $\forall \gamma \in \Gamma$,
(ii) $X = \bigcup_{\gamma \in \Gamma} P_\gamma X$,
(iii) $P_\gamma \circ P_\beta = P_\gamma = P_\beta \circ P_\gamma$ whenever $\gamma, \beta \in \Gamma$ and $\gamma \leq \beta$, and
(iv) If $\gamma_n \nearrow \gamma$ in Γ, then $P_\gamma X = \bigcup_{n \in \mathbb{N}} P_{\gamma_n} X$.

$P_\gamma \circ P_\beta = P_\beta \circ P_\gamma$ commutative.
A very recent tool: Projectional Skeletons

X Banach. **Projectional skeleton (PS)** (Kubiś, 2009)

$(P_\gamma : \gamma \in \Gamma)$ bounded linear projections on X, Γ a directed upwards and σ-complete set st

(i) $P_\gamma X$ separable $\forall \gamma \in \Gamma$,

(ii) $X = \bigcup_{\gamma \in \Gamma} P_sX$,

(iii) $P_\gamma \circ P_\beta = P_\gamma = P_\beta \circ P_\gamma$ whenever $\gamma, \beta \in \Gamma$ and $\gamma \leq \beta$, and

(iv) If $\gamma_n \nearrow \gamma$ in Γ, then $P_\gamma X = \bigcup_{n \in \mathbb{N}} P_{\gamma_n}X$.

$P_\gamma \circ P_\beta = P_\beta \circ P_\gamma$ commutative.

$\|P_\gamma\| \leq r$ r-skeleton.

(see, e.g., Kakol–Kubiś–López Pellicer book).
Assume X has a projectional skeleton. Then:

- X admits an r-PRI for some r.
- X linearly and continuously injects into $c_0(\text{dens } X)$.
- X has a Markushevich basis, (thus ℓ_∞ does not admit a PS);
- $X < \text{LUR}$ (modulo S. Troyanski and V. Zizler).
Assume X has a projectional skeleton. Then:
- X admits an r-PRI for some r.
Assume X has a projectional skeleton. Then:

- X admits an r-PRI for some r.
- X linearly and continuously injects into $c_0(\text{dens } X)$.
- X has a Markushevich basis, (thus ℓ_∞ does not admit a PS);
- X <LUR> (modulo S. Troyanski and V. Zizler).
Assume X has a projectional skeleton. Then:

- X admits an r-PRI for some r.
- X linearly and continuously injects into $c_0(\text{dens } X)$.
- X has a Markushevich basis, (thus ℓ_∞ does not admit a PS);

and
Assume X has a projectional skeleton. Then:

- X admits an r-PRI for some r.
- X linearly and continuously injects into $c_0(\text{dens } X)$.
- X has a Markushevich basis, (thus ℓ_∞ does not admit a PS);
- and
- $X <\text{LUR}>$ (modulo S. Troyanski and V. Zizler).
A Projectional Generator (PG) (Orihuela, Valdivia, and precursors John, Zizler, Vašák, Gul’ko, Fabian, Plichko)
A Projectional Generator (PG) (Orihuela, Valdivia, and precursors John, Zizler, Vašák, Gul’ko, Fabian, Plichko) is (N, Φ), where $N \subset X^*$ 1-norming, \mathbb{Q}-linear, $\Phi : N \to 2^X$, at most countably-valued, st $\forall B \subset N$, $B \neq \emptyset$, \mathbb{Q}-linear,
A Projectional Generator (PG) (Orihuela, Valdivia, and precursors John, Zizler, Vašák, Gul’ko, Fabian, Plichko) is

\[(N, \Phi)\], where \(N \subset X^*\) 1-norming, \(\mathbb{Q}\)-linear, \(\Phi : N \to 2^X\), at most countably-valued, st \(\forall B \subset N, B \neq \emptyset, \mathbb{Q}\)-linear,

\[\Phi(B)^\perp \cap \overline{B}^{w^*} = \{0\}.\]
A Projectional Generator (PG) (Orihuela, Valdivia, and precursors John, Zizler, Vašák, Gul’ko, Fabian, Plichko) is

\[(N, \Phi)\], where \(N \subseteq X^* \) 1-norming, \(\mathbb{Q} \)-linear, \(\Phi : N \rightarrow 2^X \), at most countably-valued, st \(\forall B \subset N, \ B \neq \emptyset, \ \mathbb{Q} \)-linear,

\[\Phi(B) \perp \cap \overline{B}^{w*} = \{0\}. \]

Theorem (Orihuela, Valdivia)

\((N, \Phi) \overset{PG}{\Rightarrow} PRI.\)
Natural examples of PG’s

- \((WCG)\) \(K \subset X\) w-K that generates \(X\).
Natural examples of PG’s

- (WCG) $K \subset X$ w-K that generates X. Put $\Phi(x^*) \in K$ where x^* attains the maximum
Natural examples of PG’s

- (WCG) \(K \subset X \) \(w \)-K that generates \(X \). Put \(\Phi(x^*) \in K \) where \(x^* \) attains the maximum \(\Rightarrow (X^*, \Phi) \) PG.
Natural examples of PG’s

- (WCG) $K \subset X$ w-K that generates X. Put $\Phi(x^*) \in K$ where x^* attains the maximum $\Rightarrow (X^*, \Phi)$ PG.

Corollary

X WCG, K w-compact generates X
Natural examples of PG’s

- **(WCG)** $K \subset X$ w-K that generates X. Put $\Phi(x^*) \in K$ where x^* attains the maximum $\Rightarrow (X^*, \Phi)$ PG.

Corollary

X WCG, K w-compact generates X $\Rightarrow X$ has a PRI fixing K.
Natural examples of PG’s

- (WCG) $K \subset X$ w-K that generates X. Put $\Phi(x^*) \in K$ where x^* attains the maximum $\Rightarrow (X^*, \Phi)$ PG.

Corollary

X WCG, K w-compact generates X $\Rightarrow X$ has a PRI fixing K.

- (WCG, SWCG, WCD, WLD, 1-Pličko) X Banach,
Natural examples of PG’s

- (WCG) $K \subset X$ w-K that generates X. Put $\Phi(x^*) \in K$ where x^* attains the maximum $\Rightarrow (X^*, \Phi)$ PG.

Corollary

X WCG, K w-compact generates X $\Rightarrow X$ has a PRI fixing K.

- (WCG, SWCG, WCD, WLD, 1-Pličko) X Banach, $M \subset X$ linearly dense,
• **(WCG)** $K \subset X$ w-K that generates X. Put $\Phi(x^*) \in K$ where x^* attains the maximum $\Rightarrow (X^*, \Phi)$ PG.

Corollary

X WCG, K w-compact generates $X \Rightarrow X$ has a PRI fixing K.

• **(WCG, SWCG, WCD, WLD, 1-Pličko)** X Banach, $M \subset X$ linearly dense, $N \subset X^*$ 1-norming,
Natural examples of PG’s

- **(WCG)** $K \subset X$ w-K that generates X. Put $\Phi(x^*) \in K$ where x^* attains the maximum $\Rightarrow (X^*, \Phi)$ PG.

Corollary

X WCG, K w-compact generates X \Rightarrow X has a PRI fixing K.

- **(WCG, SWCG, WCD, WLD, 1-Pličko)** X Banach, $M \subset X$ linearly dense, $N \subset X^*$ 1-norming, $\forall x^* \in N$, supp$_Mx^*$ countable.
Natural examples of PG’s

- **(WCG)** $K \subset X$ weak-K that generates X. Put $\Phi(x^*) \in K$ where x^* attains the maximum $\Rightarrow (X^*, \Phi)$ PG.

Corollary

X WCG, K weak-compact generates X $\Rightarrow X$ has a PRI fixing K.

- **(WCG, SWCG, WCD, WLD, 1-Pličko)** X Banach, $M \subset X$ linearly dense, $N \subset X^*$ 1-norming, $\forall x^* \in N$, $\text{supp}_M x^*$ countable $\Rightarrow (N, \text{supp}_M)$ PG.

V. Montesinos

WCG by means of skeletons
Natural examples of PG’s

• (WCG) $K \subset X$ w-K that generates X. Put $\Phi(x^*) \in K$ where x^* attains the maximum $\Rightarrow (X^*, \Phi)$ PG.

Corollary

X WCG, K w-compact generates X $\Rightarrow X$ has a PRI fixing K.

• (WCG, SWCG, WCD, WLD, 1-Pličko) X Banach, $M \subset X$ linearly dense, $N \subset X^*$ 1-norming, $\forall x^* \in N$, $\text{supp}_M x^*$ countable $\Rightarrow (N, \text{supp}_M) \text{ PG}$. This is exactly the class of 1-Pličko spaces.
Natural examples of PG’s

- **(WCG)** $K \subset X$ w-K that generates X. Put $\Phi(x^*) \in K$ where x^* attains the maximum $\Rightarrow (X^*, \Phi)$ PG.

Corollary

X WCG, K w-compact generates $X \Rightarrow X$ has a PRI fixing K.

- **(WCG, SWCG, WCD, WLD, 1-Pličko)** X Banach, $M \subset X$ linearly dense, $N \subset X^*$ 1-norming, $\forall x^* \in N$, supp Mx^* countable $\Rightarrow (N, \text{supp } M)$ PG.

 This is exactly the class of 1-Pličko spaces.

 Particular case: X with M-basis st $\forall x^* \in X^*$, supp Mx^* is countable.

 This class is exactly WLD, i.e., X with (B_{X^*}, w^*) Corson.
Recall the definition of a PS:

\[\Gamma : \gamma \in \Gamma \text{ projections } X \rightarrow X, \text{ where } \gamma \in \Gamma \text{ partially ordered, directed upwards, } \sigma\text{-complete}, \]

(i) \[\mathcal{P}_\gamma X \text{ separable}, \forall \gamma \in \Gamma. \]

(ii) \[X = \bigcup_{\gamma \in \Gamma} \mathcal{P}_\gamma X. \]

(iii) \[\mathcal{P}_\gamma \circ \mathcal{P}_\beta = \mathcal{P}_\beta \circ \mathcal{P}_\gamma = \mathcal{P}_\gamma \text{ if } \gamma \leq \beta, \]

(iv) \[\mathcal{P}_\gamma X = \bigcup \mathcal{P}_{\gamma_n} X \text{ if } \gamma_n \uparrow \gamma. \]

Problem Characterize \(X \) having PS.

\[\mathcal{S}(X) \text{ separable subspaces of } X, \mathcal{S} \subseteq \subseteq (X \times X^*) := \{ V \times Y : V \in \mathcal{S}(X), Y \in \mathcal{S}(X^*) \} \text{ (rectangles).} \]

\[\mathcal{R} \subseteq \subseteq (X, X^*) \text{ rich subfamily (directed upwards, cofinal, } \sigma\text{-complete).} \]
Recall the definition of a **PS**:
\[\{ P_\gamma : \gamma \in \Gamma \} \] projections \(X \to X \), where \(\gamma \in \Gamma \) partially ordered, directed upwards, \(\sigma \)-complete,
(i) \(P_\gamma X \) separable, \(\forall \gamma \in \Gamma \).
(ii) \(X = \bigcup_{\gamma \in \Gamma} P_\gamma X \).
(iii) \(P_\gamma \circ P_\beta = P_\beta \circ P_\gamma = P_\gamma \) if \(\gamma \leq \beta \), and
(iv) \(P_\gamma X = \bigcup P_{\gamma_n} X \) if \(\gamma_n \uparrow \gamma \).
Recall the definition of a PS:
\(\{ P_\gamma : \gamma \in \Gamma \} \) projections \(X \to X \), where \(\gamma \in \Gamma \) partially ordered, directed upwards, \(\sigma \)-complete,
(i) \(P_\gamma X \) separable, \(\forall \gamma \in \Gamma \).
(ii) \(X = \bigcup_{\gamma \in \Gamma} P_\gamma X \).
(iii) \(P_\gamma \circ P_\beta = P_\beta \circ P_\gamma = P_\gamma \) if \(\gamma \leq \beta \), and
(iv) \(P_\gamma X = \bigcup P_{\gamma_n}X \) if \(\gamma_n \nearrow \gamma \).

Problem

Characterize \(X \) having PS.
Recall the definition of a PS: \(\{ P_\gamma : \gamma \in \Gamma \} \) projections \(X \to X \), where \(\gamma \in \Gamma \) partially ordered, directed upwards, \(\sigma \)-complete,

(i) \(P_\gamma X \) separable, \(\forall \gamma \in \Gamma \).
(ii) \(X = \bigcup_{\gamma \in \Gamma} P_\gamma X \).
(iii) \(P_\gamma \circ P_\beta = P_\beta \circ P_\gamma = P_\gamma \) if \(\gamma \leq \beta \), and
(iv) \(P_\gamma X = \bigcup P_{\gamma_n} X \) if \(\gamma_n \uparrow \gamma \).

Problem

Characterize \(X \) having PS.

\(S(X) \) separable subspaces of \(X \),
\(S_{\square}(X \times X^*) := \{ V \times Y : V \in S(X), Y \in S(X^*) \} \) (rectangles).
Recall the definition of a PS:
\[\{ P_\gamma : \gamma \in \Gamma \} \text{ projections } X \to X, \text{ where } \gamma \in \Gamma \text{ partially ordered, directed upwards, } \sigma\text{-complete,} \]

(i) \(P_\gamma X \) separable, \(\forall \gamma \in \Gamma \).
(ii) \(X = \bigcup_{\gamma \in \Gamma} P_\gamma X \).
(iii) \(P_\gamma \circ P_\beta = P_\beta \circ P_\gamma = P_\gamma \) if \(\gamma \leq \beta \), and
(iv) \(P_\gamma X = \bigcup P_{\gamma_n} X \) if \(\gamma_n \nearrow \gamma \).

Problem

Characterize \(X \) having PS.

\(S(X) \) separable subspaces of \(X \),
\(S_\square(X \times X^*) := \{ V \times Y : V \in S(X), Y \in S(X^*) \} \) (rectangles).
\(\mathcal{R} \subset S_\square(X, X^*) \) rich subfamily (directed upwards, cofinal, \(\sigma\)-complete).
Theorem

X with a PG (D, ϕ), $D \subset X^*$ r-norming. Then $\exists \mathcal{R}$ rich in $S_\Box(X \times X^*)$ giving r-bounded projections.
Theorem

\(X \) with a PG \((D, \phi)\), \(D \subset X^*\) r-norming. Then \(\exists \mathcal{R} \) rich in \(S_\square(X \times X^*) \) giving r-bounded projections.

Theorem

\(D \subset X^*\) r-norming, \(\mathcal{R} \) rich in \(S_\square(X \times X^*) \), giving r-bounded projections. Then \(\{ P_\gamma : \gamma \in \mathcal{R} \} \) PS with \(D \subset \bigcup_{\mathcal{R}} P_\gamma^* X^* \).
Theorem

X with a PG (D, ϕ), $D \subset X^*$ r-norming. Then $\exists \mathcal{R}$ rich in $S_{\square}(X \times X^*)$ giving r-bounded projections.

Theorem

$D \subset X^*$ r-norming, \mathcal{R} rich in $S_{\square}(X \times X^*)$, giving r-bounded projections. Then $\{P_\gamma : \gamma \in \mathcal{R}\}$ PS with $D \subset \bigcup_{\mathcal{R}} P^*_\gamma X^*$.

Corollary

X with r-PG. Then X has an r-PS.
Theorem

X Banach, $M \subset X$ linearly dense, $D \subset X^*$ st

- $\forall x^* \in D$, $\Phi(x^*) := \text{supp}_M x^*$ countable.
Theorem

X Banach, $M \subset X$ linearly dense, $D \subset X^*$ st

$\forall x^* \in D$, $\Phi(x^*) := \text{supp}_M x^*$ countable. Then

$R := \{ V \times Y \in S_\square (X \times D) : M \setminus V \subset Y_\perp \}$ is rich in $S_\square (X \times D)$.
Theorem

X Banach, $M \subset X$ linearly dense, $D \subset X^*$ st

• $\forall x^* \in D, \Phi(x^*) := \text{supp}_M x^*$ countable. Then
 $\mathcal{R} := \{ V \times Y \in S_{\square}(X \times D) : M \setminus V \subset Y_{\perp} \}$ is rich in $S_{\square}(X \times D)$.

• If moreover D is r-norming, Γ rich in $S_{\square}(X \times D)$ given by (D, Φ).
Theorem

X with a PG (D, ϕ), $D \subset X^*$ r-norming. Then $\exists \mathcal{R}$ rich in $S_\square(X \times X^*)$ giving r-bounded projections.

Theorem

X Banach, $M \subset X$ linearly dense, $D \subset X^*$ st

• $\forall x^* \in D$, $\Phi(x^*) := \text{supp}_M x^*$ countable. Then
 $\mathcal{R} := \{V \times Y \in S_\square(X \times D) : M \setminus V \subset Y_\perp\}$ is rich in $S_\square(X \times D)$.

• If moreover D is r-norming, Γ rich in $S_\square(X \times D)$ given by (D, Φ).
Theorem

\[X \text{ with a PG } (D, \phi), \ D \subset X^* \text{ r-norming. Then } \exists \ R \text{ rich in } S(\Box(X \times X^*)) \text{ giving } r\text{-bounded projections.} \]

Theorem

\[X \text{ Banach, } M \subset X \text{ linearly dense, } D \subset X^* \text{ st} \]

- \(\forall x^* \in D, \Phi(x^*) := \text{supp}_M x^* \text{ countable. Then} \)

\[R := \{ V \times Y \in S(\Box(X \times D)) : M \setminus V \subset Y_\perp \} \text{ is rich in } S(\Box(X \times D)). \]

- **If moreover** \(D \) **is r-norming,** \(\Gamma \) **rich in** \(S(\Box(X \times D)) \) **given by** \((D, \Phi) \). **Then** \(\text{PS generated by } R \cap \Gamma \text{ is commutative.} \)
X WCG, then (B_{X^*}, w^*) is an Eberlein compact.
X WCG, then (B_{X^*}, w^*) is an Eberlein compact. Even more, is a compact in a Σ-product (i.e., a Corson compact).
X WCG, then (B_{X^*}, w^*) is an Eberlein compact. Even more, is a compact in a Σ-product (i.e., a Corson compact). This property characterizes the WLD spaces.
Theorem

\[X \text{ WLD} \iff \exists \text{ commutative PS.} \]
\{ P_\gamma : \gamma \in \Gamma \} \text{ PS. Then } P_{\gamma_n}^* x^* \overset{w^*}{\rightarrow} P_\gamma x^* \text{ whenever } \gamma_n \uparrow \gamma, \forall x^* \in X^*.
{P_\gamma : \gamma \in \Gamma} \text{ PS. Then } P_{\gamma_n}^* x^* \xrightarrow{w^*} P_\gamma x^* \text{ whenever } \gamma_n \nearrow \gamma, \\
\forall x^* \in X^*.
\text{A } \subset X \text{ bounded, } \varepsilon \geq 0,
\{ P_\gamma : \gamma \in \Gamma \} \text{ PS. Then } P_{\gamma_n}^* x^* \xrightarrow{w^*} P_\gamma x^* \text{ whenever } \gamma_n \nearrow \gamma, \\
\forall x^* \in X^*.

A \subset X \text{ bounded, } \varepsilon \geq 0, \text{ a PS } (P_\gamma : \gamma \in \Gamma) \text{ in } X \text{ is } A-\varepsilon\text{-shrinking if } \forall x^* \in X^*,

\text{if } \varepsilon = 0, \text{ A-shrinking.}

Theorem (Fabian–M.)

TFAE:

(i) X WCG.

(ii) $\exists A \subset X$ closed abs.convex, bounded, lin. dense, and a PS $P_\gamma : \gamma \in \Gamma$ in X is $A-\varepsilon$-shrinking.
Characterizing WCG by skeletons

\{P_{\gamma} : \gamma \in \Gamma\} \text{ PS. Then } P_{\gamma_n}^* x^* \xrightarrow{w^*} P_{\gamma} x^* \text{ whenever } \gamma_n \uparrow \gamma, \forall x^* \in X^*.

A \subset X \text{ bounded, } \varepsilon \geq 0, \text{ a PS } (P_{\gamma} : \gamma \in \Gamma) \text{ in } X \text{ is } A-\varepsilon\text{-shrinking if } \forall x^* \in X^*,

\limsup_{j \to \infty} \rho_A(P_{\gamma_j}^* x^*, P_{\sup_{\gamma_i}}^* x^*) \leq \varepsilon \|x^*\|;

whenever \gamma_n \uparrow \gamma.
\{P_\gamma : \gamma \in \Gamma\} \text{ PS. Then } P_{\gamma_n}^* x^* \overset{w^*}{\to} P_\gamma x^* \text{ whenever } \gamma_n \uparrow \gamma, \forall x^* \in X^*.

If } A \subset X \text{ bounded, } \varepsilon \geq 0, \text{ a PS } (P_\gamma : \gamma \in \Gamma) \text{ in } X \text{ is } A-\varepsilon-\text{shrinking if } \forall x^* \in X^*,

\limsup_{j \to \infty} \rho_A(P_{\gamma_j}^* x^*, P_{\sup \gamma_i}^* x^*) \leq \varepsilon \|x^*\|;

\text{ whenever } \gamma_n \uparrow \gamma.

If } \varepsilon = 0, \text{ } A\text{-shrinking.}
Characterizing WCG by skeletons

$\{P_\gamma : \gamma \in \Gamma\}$ PS. Then $P_{\gamma_n}^* x^* \overset{w^*}{\to} P_\gamma x^*$ whenever $\gamma_n \rightharpoonup \gamma$, $\forall x^* \in X^*$.

$A \subset X$ bounded, $\varepsilon \geq 0$, a PS $(P_\gamma : \gamma \in \Gamma)$ in X is A-ε-shrinking if $\forall x^* \in X^*$,

$$\limsup_{j \to \infty} \rho_A(P_{\gamma_j}^* x^*, P_{\sup \gamma_i}^* x^*) \leq \varepsilon \|x^*\|;$$

whenever $\gamma_n \rightharpoonup \gamma$.

if $\varepsilon = 0$, A-shrinking.

Theorem (Fabian–M.)

TFAE:

(i) X WCG.

V. Montesinos WCG by means of skeletons
\{P_\gamma : \gamma \in \Gamma\} \text{ PS. Then } P_{\gamma_n}^* x^* \xrightarrow{w^*} P_\gamma x^* \text{ whenever } \gamma_n \uparrow \gamma, \\
\forall x^* \in X^*.

A \subset X \text{ bounded, } \varepsilon \geq 0, \text{ a PS } (P_\gamma : \gamma \in \Gamma) \text{ in } X \text{ is } A-\varepsilon\text{-shrinking if } \forall x^* \in X^*,

\limsup_{j \to \infty} \rho_A(P_{\gamma_j}^* x^*, P_{\sup_{\gamma_i}}^* x^*) \leq \varepsilon \|x^*\|;

\text{ whenever } \gamma_n \uparrow \gamma.

\text{ if } \varepsilon = 0, \text{ A-shrinking.}

Theorem (Fabian–M.)

* TFAE:
 (i) X WCG.
 (ii) $\exists A \subset X$ closed abs.convex, bounded, lin. dense, and a PS A-shrinking, fixing A.
$X \subset WCG$, (in short SWCG) not always WCG (Rosenthal).
$X \subset WCG$, (in short SWCG) not always WCG (Rosenthal).

X SWCG $\iff (B_{X^*}, w^*)$ Eberlein compact.
$X \subset \text{WCG}$, (in short \textbf{SWCG}) not always \text{WCG} (Rosenthal).

$X \text{ SWCG} \iff (B_{X^*}, w^*) \text{ Eberlein compact}$.

$C(K) \text{ SWCG} \iff C(K) \text{ WCG} \iff K \text{ Eberlein compact}$

\textbf{Theorem (Fabian–M.)}

TFAE:

(i) $X \text{ SWCG}$.

(ii) \exists PS, \exists \{A_n \subset B_X\} \text{ closed abs.convex, lin. dense}, \exists \{\varepsilon_n\} \text{ st } \forall n \in \mathbb{N}, \text{ the PS is } A_n\text{-}\varepsilon_n\text{-shrinking, fixes } A_n, \text{ and } \bigcup \varepsilon_n < \varepsilon \Rightarrow A_n = B_X$, \forall \varepsilon > 0.
$X \subset WCG$, (in short SWCG) not always WCG (Rosenthal).
X SWCG $\iff (B_{X^*}, w^*)$ Eberlein compact.
$C(K)$ SWCG $\iff C(K)$ WCG $\iff K$ Eberlein compact (Amir–Lindenstrauss, Benyamini–Rudin–Wage).

Theorem (Fabian–M.)

TFAE:

(i) X SWCG.
Characterizing SWCG by skeletons

$X \subset WCG$, (in short SWCG) not always WCG (Rosenthal).

X SWCG $\iff (B_{X^*}, w^*)$ Eberlein compact.

$C(K)$ SWCG $\iff C(K)$ WCG $\iff K$ Eberlein compact (Amir–Lindenstrauss, Benyamini–Rudin–Wage).

Theorem (Fabian–M.)

TFAE:

(i) X SWCG.

(ii) \exists PS,
Characterizing SWCG by skeletons

\[X \subset WCG, \text{(in short SWCG)} \text{not always WCG (Rosenthal)}.
\]

\[X \text{ SWCG} \iff (B_{X^*}, w^*) \text{ Eberlein compact.} \]

\[C(K) \text{ SWCG} \iff C(K) \text{ WCG} \iff K \text{ Eberlein compact}
\]

Theorem (Fabian–M.)

TFAE:

(i) \(X \text{ SWCG.} \)

(ii) \(\exists PS, \exists \{A_n \subset B_X\} \text{ closed abs.convex, lin. dense,} \)
Characterizing SWCG by skeletons

$X \subset \text{WCG}$, (in short SWCG) not always WCG (Rosenthal).

$X \text{ SWCG} \iff (B_{X^*}, w^*)$ Eberlein compact.

$C(K) \text{ SWCG} \iff C(K) \text{ WCG} \iff K$ Eberlein compact

Theorem (Fabian–M.)

TFAE:

(i) X SWCG.

(ii) \exists PS, $\exists \{A_n \subset B_X\}$ closed abs.convex, lin. dense, $\exists\{\epsilon_n\}$ st

$\forall n \in \mathbb{N}$, the PS is A_n-ϵ_n-shrinking, fixes A_n, and $\bigcup_{\epsilon_n < \epsilon} A_n = B_X$, $\forall \epsilon > 0$.

V. Montesinos WCG by means of skeletons
Theorem (Fabian–M.–Zizler’2004)

X Banach. TFAE:

(i) X SWCG.

(ii) $\forall \varepsilon > 0, \exists X = \bigcup_{n=1}^{\infty} X_{\varepsilon n}$ is ε-w-compact, $\forall n \in \mathbb{N}$.
Theorem (Fabian–M.–Zizler’2004)

X Banach. TFAE:
(i) X SWCG.
(ii) $\forall \varepsilon > 0, \exists X = \bigcup_{n=1}^{\infty} X_n^\varepsilon$ st X_n^ε is ε-w-compact, $\forall n \in \mathbb{N}$.
Theorem (Fabian–M.–Zizler’2004)

X Banach. TFAE:

(i) X SWCG.

(ii) $\forall \varepsilon > 0$, $\exists X = \bigcup_{n=1}^{\infty} X_n^\varepsilon$ st X_n^ε is ε-w-compact, $\forall n \in \mathbb{N}$.
An M-basis \((\Gamma, \Gamma')\) is **shrinking** if \(\Gamma^*\) is \(\| \cdot \|\)-total.
An M-basis \((\Gamma, \Gamma')\) is shrinking if \(\Gamma^*\) is \(\| \cdot \|\)-total.

Theorem

\[X \text{ WCG Asplund} \iff \exists \text{ shrinking M-basis.} \]
an M-basis is σ-shrinking if $\Gamma = \bigcup_{n=1}^{\infty} \Gamma_n$ st $\forall U \in \mathcal{N}(0)$ in $(X^{**}, \| \cdot \|)$, $\forall \gamma \in \Gamma$, $\exists n \in \mathbb{N}$ st $\gamma \in \Gamma_n$, $\Gamma'_n \subset U$ (derivative in (X^{**}, w^*)).
an M-basis is \(\sigma \)-shrinking if \(\Gamma = \bigcup_{n=1}^{\infty} \Gamma_n \) st \(\forall U \in \mathcal{N}(0) \) in \((X^{**}, \| \cdot \|)\), \(\forall \gamma \in \Gamma \), \(\exists n \in \mathbb{N} \) st \(\gamma \in \Gamma_n \), \(\Gamma'_n \subset U \) (derivative in \((X^{**}, w^*)\)).

Theorem (Fabian–M.–Zizler’2005)

TFAE

(i) \(X \) SWCG.
an M-basis is \(\sigma \)-shrinking if \(\Gamma = \bigcup_{n=1}^{\infty} \Gamma_n \) st \(\forall U \in \mathcal{N}(0) \) in \((X^{**}, \| \cdot \|)\), \(\forall \gamma \in \Gamma \), \(\exists n \in \mathbb{N} \) st \(\gamma \in \Gamma_n \), \(\Gamma'_n \subset U \) (derivative in \((X^{**}, w^*)\)).

Theorem (Fabian–M.–Zizler’2005)

\(TFAE \)

(i) \(X \) SWCG.
(ii) \(\exists \sigma \)-shrinking \(M \)-basis.
an M-basis is \(\sigma \)-shrinking if \(\Gamma = \bigcup_{n=1}^{\infty} \Gamma_n \) st \(\forall U \in \mathcal{N}(0) \) in \((X^{**}, \| \cdot \|)\), \(\forall \gamma \in \Gamma \), \(\exists n \in \mathbb{N} \) st \(\gamma \in \Gamma_n \), \(\Gamma'_n \subset U \) (derivative in \((X^{**}, w^*)\)).

Theorem (Fabian–M.–Zizler'2005)

\textit{TFAE}

(i) \(X \) SWCG.

(ii) \(\exists \ \sigma \)-shrinking M-basis.

(iii) \((B_{X^*}, w^*)\) Eberlein compact.
an M-basis is σ-shrinking if $\Gamma = \bigcup_{n=1}^{\infty} \Gamma_n$ st $\forall U \in \mathcal{N}(0)$ in $(X^{**}, \| \cdot \|)$, $\forall \gamma \in \Gamma$, $\exists n \in \mathbb{N}$ st $\gamma \in \Gamma_n$, $\Gamma'_n \subset U$ (derivative in (X^{**}, ω^*)).

Theorem (Fabian–M.–Zizler’2005)

TFAE

(i) X SWCG.

(ii) $\exists \sigma$-shrinking M-basis.

(iii) (B_{X^*}, ω^*) Eberlein compact.

Moreover, every M-basis is σ-shrinking.
Three more open problems

Problem
Characterize \mathcal{K}-analytic Banach spaces by using skeletons.
Three more open problems

Problem
Characterize \mathcal{K}-analytic Banach spaces by using skeletons.

Problem
Characterize Vašak (i.e., weakly countably determined) spaces by using skeletons.
Problem
Characterize \mathcal{K}-analytic Banach spaces by using skeletons.

Problem
Characterize Vašak (i.e., weakly countably determined) spaces by using skeletons.

Problem
Characterize Banach spaces simultaneously Asplund and 1-Pličko by using skeletons.

M. Fabian; V. Montesinos.
WCG spaces and their subspaces grasped by projectional skeletons.
To appear.