ZASSENHAUS CONJECTURE ON TORSION UNITS HOLDS FOR SL(2, p) AND SL(2, p^2)

ÁNGEL DEL RÍO AND MARIANO SERRANO

Abstract. H.J. Zassenhaus conjectured that any unit of finite order and augmentation 1 in the integral group ring $\mathbb{Z}G$ of a finite group G is conjugate in the rational group algebra $\mathbb{Q}G$ to an element of G. We prove the Zassenhaus Conjecture for the groups $\text{SL}(2, p)$ and $\text{SL}(2, p^2)$ with p a prime number. This is the first infinite family of non-solvable groups for which the Zassenhaus Conjecture has been proved. We also prove that if $G = \text{SL}(2, p^f)$, with f arbitrary and u is a torsion unit of $\mathbb{Z}G$ with augmentation 1 and order coprime with p then u is conjugate in $\mathbb{Q}G$ to an element of G. By known results, this reduces the proof of the Zassenhaus Conjecture for this groups to prove that every unit of $\mathbb{Z}G$ of order multiple of p and augmentation 1 has actually order p.

1. Introduction

For a finite group G, let $V(\mathbb{Z}G)$ denote the group of units of augmentation 1 in $\mathbb{Z}G$. We say that two elements of $\mathbb{Z}G$ are rationally conjugate if they are conjugate in the units of $\mathbb{Q}G$. The following conjecture stated by H.J. Zassenhaus [Zas74] (see also [Seh93, Section 37]) has centered the research on torsion units of integral group rings during the last decades:

Zassenhaus Conjecture: If G is a finite group then every torsion element of $V(\mathbb{Z}G)$ is rationally conjugate to an element of G.

The relevance of the Zassenhaus Conjecture is that it describes the torsion units of the integral group ring of $\mathbb{Z}G$ provided it holds for G. Recently, Eisele and Margolis announced a metabelian counterexample to the Zassenhaus Conjecture [EM18]. Nevertheless, the Zassenhaus Conjecture holds for large classes of solvable groups, e.g. for nilpotent groups [Wei91], groups possessing a normal Sylow subgroup with abelian complement [Her06] or cyclic-by-abelian groups [CMR13]. In contrast with these results, the list of non-solvable groups for which the Zassenhaus Conjecture has been proved is very limited [LP89, DJPM97, Her07, Her08, BH08, BKL08, BM17c, RS17]. For example, the Zassenhaus Conjecture has only been proved for sixty-two simple groups, all of them of the form $\text{PSL}(2, q)$ (see the proof of Theorem C in [BM18] and [MRS18]).

The goal of this paper is proving the following theorem:

Theorem 1.1. Let $G = \text{SL}(2, q)$ with q an odd prime power and let u be a torsion element of $V(\mathbb{Z}G)$ of order coprime with q. Then u is rationally conjugate to an element of G.

As a consequence of Theorem 1.1 and known results we will obtain the following theorem which provides the first positive result on the Zassenhaus Conjecture for an infinite series of non-solvable groups.

Theorem 1.2. The Zassenhaus Conjecture holds for $\text{SL}(2, p^f)$ with p a prime number and $f \leq 2$.

In Section 2 we prove a number theoretical result relevant for our arguments. Known results on $V(\mathbb{Z}G)$ and properties of $V(\mathbb{Z}\text{SL}(2, q))$ are collected in Section 3. A particular case of Theorem 1.1 is proved in Section 4. Finally in Section 5 we prove Theorem 1.1.
2. Number theoretical preliminaries

We use the standard notation for the Euler totient function φ and the Möbius function μ. Moreover, $\mathbb{Z}_{\geq 0}$ denotes the set of non-negative integers. Let n be a positive integer. Then $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$, ζ_n denotes a complex primitive n-th root of unity, $\Phi_n(X)$ denotes the n-th cyclotomic polynomial, i.e. the minimal polynomial of ζ_n over \mathbb{Q}, and for a prime integer p let $v_p(n)$ denote the valuation of n at p, i.e. the maximum non-negative integer m with $p^m \mid n$. If F/K is a finite field extension then $\text{Tr}_{F/K} : F \to K$ denotes the standard trace map. We will frequently use the following formula for d a divisor of n [Mar16, Lemma 2.1]:

\begin{equation}
\text{Tr}_{\mathbb{Q}(\zeta_n)/\mathbb{Q}(\zeta_d)} = \mu(d) \frac{\varphi(n)}{\varphi(d)}.
\end{equation}

We reserve the letter p to denote a positive prime integer and for every positive integer n we set

$$n' = \prod_{p \mid n} p \quad \text{and} \quad n_p = p^{v_p(n)}.$$

If moreover $x \in \mathbb{Z}$ then we set

$$(x : n) = \text{representative of the class of } x \text{ modulo } n \text{ in the interval } \left(-\frac{n}{2}, \frac{n}{2}\right);$$

$$|x : n| = \text{the absolute value of } (x : n);$$

$$\gamma_n(x) = \prod_{\substack{p \mid n \implies \frac{n_p}{n_p} \neq \frac{1}{2} \mod n_p}} p \quad \text{and} \quad \bar{\gamma}_n(x) = \prod_{\substack{p \mid n \implies \frac{n_p}{n_p} \leq \frac{1}{2} \mod n_p}} p = \begin{cases} 2\gamma_n(x), & \text{if } |x : n_2| = \frac{n_2}{2}; \\ \gamma_n(x), & \text{otherwise}. \end{cases}$$

The next lemma collects two facts which follow easily from the definitions.

Lemma 2.1. Let p be a prime dividing n and let $x, y \in \mathbb{Z}$. Then the following conditions hold:

1. If $p \mid \bar{\gamma}_n(x)$ then $(x : \frac{n_p}{p}) \equiv x \mod n_p$.
2. Let $d \mid n'$ such that $x \equiv y \mod \frac{n}{d}$. If d divides both $\bar{\gamma}_n(x)$ and $\bar{\gamma}_n(y)$ then $x \equiv y \mod n$.

For integers x and y we define the following equivalence relation on \mathbb{Z}:

$$x \sim_n y \iff x \equiv \pm y \mod n.$$

We denote by Γ_n the set of these equivalence classes.

If x, y and n are integers with $n > 0$ then let

$$\delta^{(n)}_{x,y} = \begin{cases} 1, & \text{if } x \sim_n y; \\ 0, & \text{otherwise}; \end{cases} \quad \text{and} \quad \kappa^{(n)}_{x} = \begin{cases} 2, & \text{if } x \equiv 0 \mod n \text{ or } x \equiv \frac{n}{2} \mod n; \\ 1, & \text{otherwise}. \end{cases}$$

For an integer x (or $x \in \Gamma_n$) we set

$$\alpha^{(n)}_x = \zeta_n^x + \zeta_n^{-x}.$$

Observe that $\mathbb{Q}(\alpha^{(n)}_1)$ is the maximal real subfield of $\mathbb{Q}(\zeta_n)$ and $\mathbb{Z}[\alpha^{(n)}_1]$ is the ring of integers of $\mathbb{Q}(\alpha^{(n)}_1)$. If $n \neq n_2$ then let p_0 denote the smallest odd prime dividing n. Then let

$$\mathbb{B}_n = \left\{ x \in \mathbb{Z}_n : \text{for every } p \mid n, \text{ either } |x : n_p| > \frac{n_p}{2} \text{ or } p = 2, n \neq n_2, |x : n_2| = \frac{n_2}{4}, n_{p_0} \mid x \text{ and } (x : n_2) \cdot (x : n_{p_0}) > 0 \right\}$$

and

$$\mathbb{B}_n = \begin{cases} \{ \alpha^{(n)}_b : b \in \mathbb{B}_n \}, & \text{if } n \neq n_2; \\ \{1\} \cup \{ \alpha^{(n)}_b : b \in \mathbb{B}_n \}, & \text{otherwise.} \end{cases}$$
For \(b \in \mathbb{B}_n \) and \(x \in \mathbb{Z} \) let
\[
\beta_{b,x}^{(n)} = \begin{cases}
-1, & \text{if } n \neq n_2, |x : n_2| = \frac{n_2}{4} \text{ and } (x : n_2) \cdot (b : n_{p_0}) < 0; \\
1, & \text{otherwise}.
\end{cases}
\]

The following proposition extends Proposition 3.5 of [MRS18]. The first statement implies that \(\mathcal{B}_n \) is a \(\mathbb{Q} \)-basis of \(\mathbb{Q}(\alpha_1^{(n)}) \). For \(x \in \mathbb{Q}(\alpha_1^{(n)}) \) and \(b \in \mathbb{B}_n \) we use \(C_b(x) \) to denote the coefficient of \(\alpha_b^{(n)} \) in the expression of \(x \) in the basis \(\mathcal{B}_n \).

Proposition 2.2. Let \(n \) be a positive integer. Then

1. \(\mathcal{B}_n \) is a \(\mathbb{Z} \)-basis of \(\mathbb{Z}[\alpha_1^{(n)}] \).
2. If \(b \in \mathbb{B}_n \) and \(i \in \mathbb{Z} \) then \(C_b(\alpha_i^{(n)}) = \kappa_i^{(n)} \cdot \mu(\gamma(i)) \cdot \beta_{b,i}^{(n)} \cdot \zeta_{b,i}^{(n/\gamma(i))} \).

Proof. We only prove the proposition in the case \(n \neq n_2 \), as the proof in the case \(n = n_2 \) is similar (actually simpler). It is easy to see that \(|\mathcal{B}_n| \leq \frac{\varphi(n)}{2} = [\mathbb{Q}(\alpha_1^{(n)}) : \mathbb{Q}] \). Thus it is enough to prove the following equality
\[
\zeta_n^i = \mu(\gamma(i)) \sum_{\substack{b \equiv i \mod n/\gamma(i) \\ b \in \mathbb{B}_n}} \beta_{b,i}^{(n)} \zeta_n^b
\]
which easily implies the desired expression of \(\alpha_i^{(n)} \).

Indeed, for every \(p \mid n \) let \(\zeta_{np} \) denote the \(p \)-th part of \(\zeta_n \), i.e. \(\zeta_{np} \) is a primitive \(n_p \)-th root of unity and \(\zeta_n = \prod_{p \mid n} \zeta_{np} \). Let \(J \) be the set of tuples \((j_p)_p \) satisfying the following conditions:

- If \(p \mid \gamma(i) \) then \(j_p \in \{1, \ldots, p - 1\} \).
- If \(p = 2 \) and \(|i : n_2| = \frac{n_2}{4} \) then \(j_2 = \begin{cases}
1, & \text{if } (i : n_2) \cdot (i + j_p \frac{n_{p_0}}{p_0} : n_{p_0}) < 0; \\
0, & \text{otherwise}.
\end{cases} \)

For every \(j \in J \) let \(b_j \in \mathbb{Z}_n \) given by
\[
b_j \equiv \begin{cases}
i + j_p \frac{n_p}{p} \mod n_p, & \text{if } p \mid \gamma(i); \\
i \mod n_p, & \text{otherwise}.
\end{cases}
\]

Then \(\{b_j : j \in J\} \) is the set of elements in \(\mathbb{B}_n \) satisfying \(i \equiv b \mod n/\gamma(i) \). From
\[
0 = \zeta_n^i \left(1 + \zeta_{np}^\frac{n_p}{p} + \zeta_{np}^{2n_p/p} + \cdots + \zeta_{np}^{(p-1)n_p/p} \right)
\]
we obtain \(\zeta_{np}^i = -\sum_{j_p=1}^{p-1} \zeta_{np}^{i+j_p \frac{n_p}{p}} \). Therefore, if \(|i : n_2| \neq \frac{n_2}{4} \) then \(\gamma(i) = \bar{\gamma}(i) \), \(\beta_{b,i}^{(n)} = 1 \) for every \(b \in \mathbb{B}_n \) and
\[
\zeta_n^i = \prod_{p \mid n} \zeta_{np}^i \cdot \prod_{p \mid \gamma(i)} \left(-\sum_{j_p=1}^{p-1} \zeta_{np}^{i+j_p \frac{n_p}{p}} \right) = \mu(\gamma(i)) \sum_{j \in J} \beta_{b,j}^{(n)} \zeta_n^j = \mu(\gamma(i)) \sum_{b \equiv i \mod n/\gamma(i)} \beta_{b,i}^{(n)} \zeta_n^b.
\]
This gives the desired equality in this case.

Suppose that \(|i : n_2| = \frac{n_2}{4} \). Then \(\zeta_{n_2}^i = \beta_{b,j}^{(n)} \zeta_{n_2}^j \) for every \(j \in J \). Then a small modification of the argument in the previous paragraph gives
\[
\zeta_n^i = \zeta_{n_2}^i \prod_{p \mid n} \zeta_{np}^i \cdot \prod_{p \mid \gamma(i)} \left(-\sum_{j_p=1}^{p-1} \zeta_{np}^{i+j_p \frac{n_p}{p}} \right) = \mu(\gamma(i)) \sum_{j \in J} \beta_{b,j}^{(n)} \zeta_n^j = \mu(\gamma(i)) \sum_{b \equiv i \mod n/\gamma(i)} \beta_{b,i}^{(n)} \zeta_n^b.
\]
3. Group theoretical preliminaries

Let G be a finite group. We denote by $Z(G)$ the center of G. If $g \in G$ then $|g|$ denotes the order of g, $\langle g \rangle$ denotes the cyclic group generated by g, and g^G denotes the conjugacy class of g in G. If R is a ring then RG denotes the group ring of G with coefficients in R. If $\alpha = \sum_{g \in G} \alpha_g g$ is an element of a group ring RG, with each $\alpha_g \in R$, then the partial augmentation of α at g is defined as

$$\varepsilon_g(\alpha) = \sum_{h \in g^G} \alpha_h.$$

We collect here some known results on partial augmentations of an element u of order n in $V(\mathbb{Z}G)$.

(A) [JR16, Proposition 1.5.1] (Berman-Higman Theorem). If $g \in Z(G)$ and $u \neq g$ then $\varepsilon_g(u) = 0$.

(B) [Her07, Theorem 2.3] If $g \in G$ and $\varepsilon_g(u) \neq 0$ then $|g|$ divides n.

(C) [MRSW87, Theorem 2.5] u is rationally conjugate to an element of G if and only if $\varepsilon_g(u^d) \geq 0$ for all $g \in G$ and all divisors d of n.

(D) [LP89, Her07] Let F be a field of characteristic $t \geq 0$ with $t \nmid n$. Let ρ be an F-representation of G. If $t \neq 0$ then let ξ_n be a primitive n-th root of unity in F, so that if $t = 0$ then $\xi_n = \zeta_n$. Let T be a set of representatives of the conjugacy classes of t-regular elements of G (all the conjugacy classes if $t = 0$). Let χ denote the character afforded by ρ if $t = 0$, and the t-Brauer character of G afforded by ρ if $t > 0$ (using a group isomorphism associating ξ_n to ζ_n). Then for every integer ℓ, the multiplicity of ξ_n^ℓ as eigenvalue of $\rho(u)$ is

$$\frac{1}{n} \sum_{x \in T} \sum_{d \mid n} \varepsilon_x(u^d) Tr_{\mathbb{Q}(\xi_n^d)/\mathbb{Q}}(\chi(x) \zeta_n^{-\ell d}).$$

In the remainder of the paper we fix an odd prime power q and let $G = \text{SL}(2, q)$, $\overline{G} = \text{PSL}(2, q)$ and let $\pi : G \to \overline{G}$ denote the natural projection, which we extend by linearity to a ring homomorphism $\pi : \mathbb{Z}G \to \mathbb{Z}\overline{G}$.

We collect some group theoretical properties of G and \overline{G} (see e.g. [Dor71, Theorem 38.1]).

(E) G has a unique element J of order 2 and $q + 4$ conjugacy classes. More precisely, if p is the prime dividing q then 2 of the classes are formed by elements of order p, another 2 are formed by elements of order $2p$ and q classes are formed by elements of order dividing $q + 1$ or $q - 1$. Furthermore, if g and h are p-regular elements of G and $|h|$ divides $|g|$ then h is conjugate in G to an element of $\langle g \rangle$ and two elements of $\langle g \rangle$ are conjugate in G if and only if they are equal or mutually inverse.

(F) Let C be a conjugacy class of \overline{G} formed by elements of order n. If $n = 2$ then $\pi^{-1}(C)$ is the only conjugacy class of G formed by elements of order 4. Otherwise, $\pi^{-1}(C)$ is the union of two conjugacy classes C_1 and C_2 of G with $C_2 = JC_1$. Furthermore, if n is multiple of 4 then the elements of C_1 and C_2 have order $2n$ while if n is not multiple of 4 then one of the classes C_1 or C_2 is formed by elements of order n.

The following proposition collects some consequences of these facts.

Proposition 3.1. Let $G = \text{SL}(2, q)$ and let u be a torsion element of $V(\mathbb{Z}G)$. Set $\overline{G} = \text{PSL}(2, q)$ and $n = |u|$. Then the following statements holds:

1. J is the unique element of order 2 in $V(\mathbb{Z}G)$.
2. $|\pi(u)| = \frac{n}{\gcd(2, n)}$.
3. If $4 \nmid n$ and $\pi(u)$ is rationally conjugate to an element of \overline{G} then u is rationally conjugate to an element of G.
4. If $\gcd(n, q) = 1$ and either $n = 4$ or $4 \nmid n$ then u is rationally conjugate to an element of G.
5. If $\gcd(n, q) = 1$ then G has an element of order n.
6. Suppose that $q = p^f$ with p prime, $f \leq 2$ and $p \mid n$. Then u is rationally conjugate to an element of G.

(7) If \(\rho \) is a representation of \(G \) and \(\zeta \) is a root of unity of order dividing \(n \) then \(\zeta \) and \(\zeta^{-1} \) have the same multiplicity as eigenvalues of \(\rho(u) \).

Proof. (1) is a direct consequence of (A) and (E).

(2) By the main result of [Mar17], if \(\pi(u) = 1 \) then \(u^2 = 1 \) and hence either \(u = 1 \) or \(u = J \), by (1). Then (2) follows.

(3) Suppose that \(n \) is not multiple of 4. If \(n \) is even then the order of \(Ju \) is odd, by (1). Thus, we may assume without loss of generality that the order of \(u \) is odd. If \(\varepsilon_g(u) \neq 0 \) then \(|g| \) is odd, by (B), and hence \(\varepsilon_g(u) = \varepsilon_{\pi(g)}(\pi(u)) \geq 0 \), by (F). Thus \(u \) is rationally conjugate to an element of \(G \).

(4) Let \(q = p^k \) where \(p \) is an odd prime number and \(p \not| n \). By (E), \(G \) has a unique conjugacy class \(C \) formed by elements of order 4 and a unique element of order 2. Thus, by (A) and (B), if \(n = 4 \) then \(\varepsilon_g(u) = 0 \) for every \(g \not\in C \), and hence \(u \) is rationally conjugate to an element of \(G \), by (C).

If \(4 \not| n \) then \(|\pi(u)| \) is coprime with \(2q \), by (2), and hence \(\pi(u) \) is rationally conjugate to an element of \(\overline{G} \), by [MRS18, Theorem 1.1]. Then \(u \) is rationally conjugate to an element of \(G \) by (3). (5) is a consequence of (2) and [Her07, Proposition 6.7].

(6) In this case \(|\pi(u)| = p \) by (2) and [BM17b, Theorem A]. Then \(n \) is either \(p \) or \(2p \), by (2), and \(\pi(u) \) is rationally conjugate to an element of \(\overline{G} \), by [Her07, Proposition 6.1]. Thus \(u \) is rationally conjugate to an element of \(G \), by (3).

(7) is a consequence of (E) and the formula in (D). \(\square \)

Observe that for \(q \) odd, Theorem 1.2 follows at once from Theorem 1.1 and statement (6) of Proposition 3.1. On the other hand \(\text{SL}(2,2) \cong S_3 \) and \(\text{SL}(2,4) \cong A_5 \) for which the Zassenhaus Conjecture is well known. So in the remainder of the paper we concentrate on proving Theorem 1.1. For that from now on \(t \) denotes the prime dividing \(q \) (we want to use freely the letter \(p \) to denote an arbitrary prime) and we introduce some \(t \)-Brauer characters of \(G \).

Let \(g \) be an element of \(G \) of order \(n \) with \(t \not| n \) and let \(\xi_n \) denote a primitive \(n \)-th root of unity in a field \(F \) of characteristic \(t \). Adapting the proof of [Mar16, Lemma 1.2] we deduce that for every positive integer \(m \) there is an \(F \)-representation \(\Theta_m \) of \(G \) of degree \(1 + m \) such that

\[
\Theta_m(g) = \begin{cases}
\text{diag} \left(1, \xi_n^2, \xi_n^{-2}, \ldots, \xi_n^m, \xi_n^{-m} \right), & \text{if } 2 \mid m; \\
\text{diag} \left(\xi_n, \xi_n^{-1}, \xi_n^3, \xi_n^{-3}, \ldots, \xi_n^m, \xi_n^{-m} \right), & \text{if } 2 \nmid m.
\end{cases}
\]

In particular, the restriction to \(\langle g \rangle \) of the \(t \)-Brauer character associated to \(\Theta_m \) is given by

\[
\chi_m(g^i) = \sum_{j=-m}^{m} \xi_n^{ij}.
\]

4. **Prime power order**

In this section we prove the following particular case of Theorem 1.1.

Proposition 4.1. Let \(G = \text{SL}(2,q) \) with \(q \) an odd prime power and let \(u \) be a torsion element of \(V(\mathbb{Z}G) \). If the order of \(u \) is a prime power and it is coprime with \(q \) then \(u \) is rationally conjugate to an element of \(G \).

Proof. By Proposition 3.1.(4) we may assume that \(|u| = 2^r \) with \(r \geq 3 \). We argue by induction on \(r \). So we assume that units of order \(2^k \) with \(1 \leq k \leq r - 1 \) are rationally conjugate to an element of \(G \). By Proposition 3.1.(5) and (E), \(G \) has an element \(g_0 \) of order \(2^r \) such that \(\{g_0^k : k = 0, 1, 2, \ldots, 2^{r-1}\} \) is a set of representatives of the conjugacy classes of \(G \) with order a divisor of \(2^r \). By (B), the only possible non-zero partial augmentations of
\begin{align*}
\text{if } 0 \leq h \leq r - 2 \text{ and } 2^{r-1} \nmid \ell \text{ then } B(\chi_{2^h}, \ell) &= \begin{cases}
2^{r-1}, & \text{if } h \geq 1; \\
0, & \text{if } h = 0;
\end{cases}
\end{align*}

and

\begin{align*}
\text{if } 0 \leq h \leq r - 3, 2^h \nmid \ell \text{ and } 2^{r-1} \nmid \ell \text{ then } B(\chi_{2^h}, \ell) &= \begin{cases}
2^{r-1}, & \text{if } \ell \equiv \pm 2^h \text{ mod } 2^{r-1}; \\
0, & \text{otherwise}.
\end{cases}
\end{align*}

In both cases we argue by induction on \(h \) with the cases \(h = 0 \) and \(h = 1 \) being straightforward. Suppose that \(1 < h \leq r - 2, 2^{r-1} \nmid \ell \) and \(B(\chi_{2^h}, \ell) = 2^{r-1} \). If \(j \) is even, then straightforward calculations show that

\begin{align*}
\sum_{k=0}^{r-1} \Tr_{\mathbb{Q}(\zeta_{2^k})/\mathbb{Q}} (\zeta_{2^k}^{2h-1+j} + \zeta_{2^k}^{-2h-1-j}) = 0.
\end{align*}

This implies that \(B(\chi_{2^h}, \ell) = B(\chi_{2^{h-1}}, \ell) + \sum_{j=2}^{2^{h-1}} \sum_{k=0}^{r-1} \Tr_{\mathbb{Q}(\zeta_{2^k})/\mathbb{Q}} (\zeta_{2^k}^{2h-1+j} + \zeta_{2^k}^{-2h-1-j}) = 2^{r-1} \). This finishes the proof of (4.4).

Suppose that \(1 < h \leq r - 3, 2^h \nmid \ell \) and \(2^{r-1} \nmid \ell \). In this case the induction hypothesis implies \(B(\chi_{2^h}, \ell) = 0 \).

Arguing as in the previous paragraph we get

\begin{align*}
B(\chi_{2^h}, \ell) &= \sum_{j=2}^{2h-1} \sum_{k=0}^{r-1} \Tr_{\mathbb{Q}(\zeta_{2^k})/\mathbb{Q}} \left(\zeta_{2^k}^{2h-1+j} + \zeta_{2^k}^{-2h-1-j} \right) \zeta_{2^k}^{-\ell}.
\end{align*}

However, if \(j \) is even and smaller than \(2^{h-1} \) then

\begin{align*}
\sum_{k=0}^{2^{h-1}} \Tr_{\mathbb{Q}(\zeta_{2^k})/\mathbb{Q}} \left(\zeta_{2^k}^{2h-1+j} + \zeta_{2^k}^{-2h-1-j} \right) \zeta_{2^k}^{-\ell} = 0.
\end{align*}

Therefore, having in mind that \(\zeta_{2^{h+2}}^2 + \zeta_{2^{h+2}}^{-2h} = 0 \) we have

\begin{align*}
B(\chi_{2^h}, \ell) = \sum_{k=0}^{h} \Tr_{\mathbb{Q}(\zeta_{2^k})/\mathbb{Q}} \left(\zeta_{2^k}^{2h} + \zeta_{2^k}^{-2h} \right) \zeta_{2^k}^{-\ell} + 2^{h+1} + \sum_{k=h+3}^{r-1} \Tr_{\mathbb{Q}(\zeta_{2^k})/\mathbb{Q}} \left(\zeta_{2^k}^{2h} + \zeta_{2^k}^{-2h} \right) \zeta_{2^k}^{-\ell},
\end{align*}

where \(\epsilon = 1 \) if \(2^{h+1} \nmid \ell \) and \(\epsilon = -1 \) otherwise. Then the claim follows using the following equalities that can be proved by straightforward calculations:

\begin{align*}
\sum_{k=0}^{h} \Tr_{\mathbb{Q}(\zeta_{2^k})/\mathbb{Q}} \left(\zeta_{2^k}^{2h} + \zeta_{2^k}^{-2h} \right) \zeta_{2^k}^{-\ell} &= 2^{h+1} \quad \text{and} \\
\sum_{k=h+3}^{r-1} \Tr_{\mathbb{Q}(\zeta_{2^k})/\mathbb{Q}} \left(\zeta_{2^k}^{2h} + \zeta_{2^k}^{-2h} \right) \zeta_{2^k}^{-\ell} &= \begin{cases}
0, & \text{if } 2^{h+1} \nmid \ell; \\
2^{r-1} - 2^{h+2}, & \text{if } 2^{h+1} \nmid \ell \text{ and } \ell \equiv \pm 2^h \text{ mod } 2^{r-1}; \\
-2^{h+2}, & \text{if } 2^{h+1} \nmid \ell \text{ and } \ell \not\equiv \pm 2^h \text{ mod } 2^{r-1}.
\end{cases}
\end{align*}

This finishes the proof of (4.5).
We now prove, by induction on h, that the following two statements hold for any integer $0 \leq h \leq r - 3$:

\[(4.6) \quad \sum_{k \in X_h} (\varepsilon_k - \varepsilon_{k+2^{r-h-1}}) = \pm 1, \quad \text{where } X_h = \{i \in \{1, \ldots, 2^{r-2}\} : i \equiv \pm 1 \mod 2^{r-h}\};\]

\[(4.7) \quad \varepsilon_i \equiv \varepsilon_j \mod 2^{r-h-1} \text{ if } i \equiv \pm j \mod 2^{r-h-1} \text{ and } i \not\equiv 0, \pm 1 \mod 2^{r-h-1} \text{ then } \varepsilon_i = \varepsilon_j;\]

and that the next one holds for every $0 \leq h \leq r - 2$:

\[(4.8) \quad \text{if } i \equiv 0 \mod 2^{r-h-1} \text{ then } \varepsilon_i = 0.\]

Observe that $X_0 = \{1\}$. Fix an integer i. Then for every integer k we have

\[
\text{Tr}_{Q(\zeta_{2^r})/Q} \left(\left(\zeta_{2^r}^k + \zeta_{2^r}^{-k} \right) \zeta_{2^r}^{-i} \right) = \begin{cases}
2^{r-1}, & \text{if } k \equiv i \mod 2^r; \\
-2^{r-1}, & \text{if } k \equiv 2^{r-1} - i \mod 2^r; \\
0, & \text{otherwise.}
\end{cases}
\]

Thus $A(\chi_1, i) = 2^{r-1} (\varepsilon_i - \varepsilon_{i + 2^{r-1}})$ and hence for $h = 0$, (4.6) and (4.7) follows at once from (4.2), (4.3) and (4.5). Moreover, for $h = 0$ (4.8) is clear because $\varepsilon_{2^{r-1}} = 0$.

Suppose $0 < h \leq r - 3$ and (4.6), (4.7) and (4.8) hold for h replaced by $h - 1$. Suppose also that $i \not\equiv 0 \mod 2^{r-h-1}$. To prove (4.6) and (4.7) we first compute $A(\chi_{2^h}, 2^h i)$ which we split in three summands:

\[
A(\chi_{2^h}, 2^h i) = \sum_{k=1}^{2^{r-1}-1} \varepsilon_k \text{Tr}_{Q(\zeta_{2^r})/Q} \left(\zeta_{2^r}^{-2^h i} \right) + \sum_{j=2}^{2^{h-2}-2^{r-h-1}-1} \sum_{k=1}^{2^{r-1}-1} \varepsilon_k \text{Tr}_{Q(\zeta_{2^r})/Q} \left(\left(\zeta_{2^r}^k + \zeta_{2^r}^{-k} \right) \zeta_{2^r}^{-2^h i} \right)
\]

\[+ \sum_{k=1}^{2^{r-1}-1} \varepsilon_k \text{Tr}_{Q(\zeta_{2^r})/Q} \left(\zeta_{2^r}^{2^h (k-i)} + \zeta_{2^r}^{-2^h (k+i)} \right).
\]

We now prove that the first two summands are 0. This is clear for the first one because $2^{r-1} \nmid 2^h i$. To prove that the second summand is 0 let $2 \leq j \leq 2^h - 2$ and $2 \mid j$. Observe that $2^h \mid j$. Thus, if k is odd then the order of $\zeta_{2^r}^{kj - 2^h i}$ is multiple of 2^{r-h-1} and, as $h \leq r - 3$, we deduce that $\text{Tr}_{Q(\zeta_{2^r})/Q} \left(\zeta_{2^r}^{kj - 2^h i} \right) = \text{Tr}_{Q(\zeta_{2^r})/Q} \left(\zeta_{2^r}^{-kj + 2^h i} \right) = 0$. Thus we only have to consider the summands with k even. Actually we can exclude also the summands with $2^{r-h} \mid k$ because, by the induction hypothesis on (4.8), for such k we have $\varepsilon_k = 0$. For the remaining values of k (i.e. k even and not multiple of 2^{r-h}) we have $\varepsilon_k = \varepsilon_i$ if $k \equiv l \mod 2^{r-h-1}$, by the induction hypothesis on (4.7). So, we can rewrite $\sum_{k=1}^{2^{r-1}-1} \varepsilon_k \text{Tr}_{Q(\zeta_{2^r})/Q} \left(\left(\zeta_{2^r}^k + \zeta_{2^r}^{-k} \right) \zeta_{2^r}^{-2^h i} \right)$ as

\[
\sum_{l \in \mathbb{Z}_{2^{r-h-1}}} \varepsilon_l \text{Tr}_{Q(\zeta_{2^r})/Q} \left(\left(\zeta_{2^r}^{-2^h i} \sum_{a=0}^{2^{h-1}} (\zeta_{2^r}^{-2^h i}) a \right) + \zeta_{2^r}^{-2^h i} \left(\sum_{a=0}^{2^{h-1}} (\zeta_{2^r}^{-2^h i}) a \right) \right),
\]

which is 0 because $\zeta_{2^r}^{-2^h i}$ is a root of unity different from 1 and of order dividing 2^h, as j is even but not multiple of 2^h. This finishes the proof that the first two summands are 0. To finish the calculation of $A(\chi_{2^h}, 2^h i)$ we compute

\[
\text{Tr}_{Q(\zeta_{2^r})/Q} \left(\zeta_{2^r}^{2^h (k-i)} + \zeta_{2^r}^{-2^h (k+i)} \right) = \begin{cases}
2^{r-1}, & \text{if } k \in X_{h,i}; \\
-2^{r-1}, & \text{if } k - 2^{r-h-1} \in X_{h,i}; \\
0, & \text{otherwise,}
\end{cases}
\]

where $X_{h,i} = \{k \in \{1, \ldots, 2^{r-2}\} : k \equiv \pm i \mod 2^{r-h}\}$. So we have proved the following:

\[
A(\chi_{2^h}, 2^h i) = 2^{r-1} \sum_{k \in X_{h,i}} (\varepsilon_k - \varepsilon_{k+2^{r-h-1}}).
\]
Then (4.6) follows from (4.3), (4.5) and the previous formula. Using (4.2) we also obtain that \(\sum_{k \in X_{h,i}} \varepsilon_k = \sum_{k \in X_{h,i}} \varepsilon_{k+2^{r-h}-1} \) if \(i \not\equiv \pm 1 \mod 2^{r-h-1} \). However, in this case the induction hypothesis for (4.7) means that the \(\varepsilon_k \) with \(k \in X_{h,i} \) are all equal and the \(\varepsilon_{k+2^{r-h}-1} \) with \(k \in X_{h,i} \) are all equal. Hence (4.7) follows.

In order to deal with (4.8), assume that \(0 < h \leq r - 2 \). By induction hypothesis on (4.8) we have \(\varepsilon_k = 0 \) if \(2^{r-h} \mid k \), and by the induction hypothesis on (4.7), we have that \(\varepsilon_k \) is constant on the set \(X \) formed by integers \(1 \leq k \leq 2^{r-1} \) such that \(k \equiv 2^{r-h-1} \mod 2^{r-h} \). We will use these two facts without specific mention. Arguing as before we have

\[
A(\chi_{2^h},0) = \sum_{k=1}^{2^{r-1}-1} \varepsilon_k \text{Tr}_{Q(\zeta_{2^h})/Q} \left(1 + \zeta_{2^h}^h \zeta_{2^h}^{-h} \right) + \sum_{k=1}^{2^{r-1}-1} \varepsilon_k \text{Tr}_{Q(\zeta_{2^h})/Q} \left(\sum_{j=1}^{2^{h-1}-1} (\zeta_{2^h}^{2j} + \zeta_{2^h}^{-2j}) \right)
\]

\[
= \sum_{k=1,2^{r-h} \mid k} \varepsilon_k \text{Tr}_{Q(\zeta_{2^h})/Q} \left(1 + \zeta_{2^h}^h \zeta_{2^h}^{-h} \right).
\]

As

\[
\text{Tr}_{Q(\zeta_{2^h})/Q} \left(1 + \zeta_{2^h}^h \zeta_{2^h}^{-h} \right) = \begin{cases} 2^{r-1}, & \text{if } 2^{r-h-1} \mid k; \\ -2^{r-1}, & \text{if } 2^{r-h-1} \nmid k \text{ and } 2^{r-h} \mid k; \end{cases}
\]

we obtain

\[
A(\chi_{2^h},0) = 2^{r-1} \left(\sum_{2^{r-h-1} \mid k} \varepsilon_k - \sum_{2^{r-h-1} \nmid k} \varepsilon_k \right) = 2^{r-1} \left(1 - 2 \sum_{k \in X} \varepsilon_k \right) = 2^{r-1} (1 - 2 |X| \varepsilon_k).
\]

From (4.3) and (4.4) we deduce that if \(k \in X \) then \(1 - 2 \varepsilon_k = \pm 1 \) and hence \(\varepsilon_k = 0 \), since \(|X| = 2^{r-h-1} \geq 2 \), as \(h \leq r - 2 \). This finishes the proof of (4.8).

To finish the proof of the proposition it is enough to show that \(\varepsilon_i \neq 0 \) for exactly one \(i \in \{1, \ldots, 2^{r-1} - 1\} \). If \(i \) is even then \(\varepsilon_i = 0 \), by (4.8) with \(h = r - 2 \).

We claim that if \(\varepsilon_i \neq 0 \) then \(i \equiv \pm 1 \mod 2^{r-1} \). Otherwise, there are integers \(2 \leq v \leq r - 2 \) and \(2 < i < 2^{r-1} - 1 \) satisfying \(i \not\equiv \pm 1 \mod 2^{v+1} \) and \(\varepsilon_i \neq 0 \). We choose \(v \) minimum with this property for some \(i \). Then (1) \(\varepsilon_k = 0 \) for every \(k \not\equiv \pm 1 \mod 2^v \) and (2) \(i \equiv \pm (k + 2^v) \mod 2^{v+1} \) for every \(k \in X_{r-v-1} \). (1) implies that \(\sum_{k \in X_{r-v-1}} (\varepsilon_k + \varepsilon_{k+2^v}) = 1 \). On the other hand \(1 \leq r - v - 1 \leq r - 3 \) and hence applying (4.6) and (4.7) with \(h = r - v - 1 \) we deduce from (2) that \(\varepsilon_i = \varepsilon_{k+2^v} \) for every \(k \in X_{r-v-1} \) and \(\sum_{k \in X_{r-v-1}} (\varepsilon_k - \varepsilon_{k+2^v}) = \pm 1 \). Using \(|X_{r-v-1}| = 2^{r-v-1} \) and \(\varepsilon_i \neq 0 \) we deduce that \(2^{r-v} \varepsilon_i = 2 \sum_{k \in X_{r-v-1}} \varepsilon_k + 2^{r-v} = 2 \), in contradiction with \(2 \leq r - v \). This finishes the proof of the claim.

Then the only possible non-zero partial augmentations of \(u \) are \(\varepsilon_1 \) and \(\varepsilon_{2^{r-1}-1} \). Hence \(\varepsilon_1 + \varepsilon_{2^{r-1}-1} = 1 \) and, by applying (4.6) with \(h = 0 \) we deduce that \(\varepsilon_1 - \varepsilon_{2^{r-1}-1} = \pm 1 \). Therefore, either \(\varepsilon_1 = 0 \) or \(\varepsilon_{2^{r-1}-1} = 0 \), i.e. \(\varepsilon_i \neq 0 \) for exactly one \(i \in \{1, \ldots, 2^{r-1} - 1\} \), as desired.

5. Proof of Theorem 1.1

In this section we prove Theorem 1.1. Recall that \(G = \text{SL}(2,q) \) with \(q = t^f \) and \(t \) an odd prime number, \(G = \text{PSL}(2,q) \), \(\pi : G \rightarrow G \) is the natural projection and \(u \) is an element of order \(n \) in \(V(ZG) \) with \(\gcd(n,q) = 1 \). We have to show that \(u \) is rationally conjugate to an element of \(G \). By Proposition 3.1.(4), we may assume that \(n \) is multiple of 4 and by Proposition 4.1 that \(n \) is not a prime power. Moreover, we may also assume that \(n \neq 12 \) because this case follows easily from known results and the HeLP Method. Indeed, if \(n = 12 \) then \(\pi(u) \) has order 6, by Proposition 3.1.(2) and hence \(\pi(u) \) is rationally conjugate to an element of \(G \), by [Her07, Proposition 6.6]. Using this and the fact that \(G \) has a unique conjugacy class for each of the orders 3, 4 or 6 and two conjugacy classes of elements of order 12, and applying (D) with \(\chi = \chi_1 \) and \(\ell = 1,5 \) it easily follows that all the partial augmentations of \(u \) are non-negative. This can be also obtained using the GAP Package [BM17a],
In the remainder we follow the strategy of the proof of the main result of [MRS18]. The difference with the arguments of that paper is twofold: On the one hand, in our case \(n \) is even (actually multiple of 4) and this introduces some difficulties not appearing in [MRS18] where \(n \) was odd. On the other hand for \(\text{SL}(2, q) \) we have more Brauer characters than for \(\text{PSL}(2, q) \) and this will help to reduce some cases.

As the order \(n \) of \(u \) is fixed throughout, we simplify the notation of the Section 2 by setting

\[
\gamma = \gamma_n, \quad \bar{\gamma} = \bar{\gamma}_n, \quad \alpha_x = \alpha_x^{(n)}(n), \quad \kappa_x = \kappa_x^{(n)}, \quad \beta_{h,x} = \beta_{h,x}^{(n)}, \quad \mathcal{B} = \mathcal{B}_n, \quad \mathcal{B} = \mathcal{B}_n.
\]

We argue by induction on \(n \). So we also assume that \(u^d \) is rationally conjugate to an element of \(G \) for every divisor \(d \) of \(n \) with \(d \neq 1 \).

We will use the representations \(\Theta_m \) and \(t \)-Brauer characters \(\chi_m \) introduced in (3.1). Observe that the kernel of \(\Theta_m \) is trivial if \(m \) is odd, and otherwise it is the center of \(G \). Using this and the induction hypothesis on \(n \) it easily follows that the order of \(\Theta_m(u) \) is \(\frac{n}{2} \) if \(m \) is even, while, if \(m \) is odd then the order of \(\Theta_m(u) \) is \(n \). Combining this with Proposition 3.1.(7) we deduce that \(\Theta_1(u) \) is conjugate to \(\text{diag}(\zeta, \zeta^{-1}) \) for a suitable primitive \(n \)-th root of unity \(\zeta \). Hence there exists an element \(g_0 \in G \) of order \(n \) such that \(\Theta_1(g_0) \) and \(\Theta_1(u) \) are conjugate. The element \(g_0 \in G \) and the primitive \(n \)-th root of unity \(\zeta \) will be fixed throughout and from now on we abuse the notation and consider \(\zeta \) both as a primitive \(n \)-th root of unity in a field of characteristic \(t \) and as a complex primitive \(n \)-th root of unity. Then

\[
\Theta_m(g_0) \text{ is conjugate to } \begin{cases}
\text{diag} \left(1, \zeta^2, \zeta^{-2}, \ldots, \zeta^m, \zeta^{-m} \right), & \text{if } 2 \mid m; \\
\text{diag} \left(\zeta, \zeta^{-1}, \zeta^3, \zeta^{-3}, \ldots, \zeta^m, \zeta^{-m} \right), & \text{if } 2 \nmid m;
\end{cases}
\]

and

\[
\chi_m(g_0^j) = \sum_{j=-m \text{ mod } 2}^m \zeta^{ij} = \begin{cases}
1 + \alpha_{2i} + \alpha_{4i} + \cdots + \alpha_{mi}, & \text{if } 2 \mid m; \\
\alpha_i + \alpha_{3i} + \cdots + \alpha_{mi}, & \text{if } 2 \nmid m.
\end{cases}
\]

By the induction hypothesis on \(n \), if \(c \) is a divisor of \(n \) with \(c \neq 1 \) then \(u^c \) is rationally conjugate to \(g_0^i \) for some \(i \) and hence \(\zeta^c = \zeta^{\pm i} \). Therefore \(c \sim_n i \) and hence \(u^c \) is conjugate to \(g_0^c \).

By (E), two elements of \(\langle g_0 \rangle \) are conjugate in \(G \) if and only if they are equal or mutually inverse. Moreover, every element \(g \in G \), with \(g^n = 1 \), is conjugate to an element of \(\langle g_0 \rangle \). Therefore \(x \mapsto (g_0^x)^G \) induces a bijection from \(\Gamma_n \) to the set of conjugacy classes of \(G \) formed by elements of order dividing \(n \). For an integer \(x \) (or \(x \in \Gamma_n \)) we set

\[
\varepsilon_x = \varepsilon_{g_0^x}(u) \quad \text{and} \quad \lambda_x = \sum_{i \in \Gamma_n} \varepsilon_i \alpha_{ix}.
\]

Our main tool is the following lemma whose proof is exactly the same as the one of Lemma 4.1 in [MRS18]. We also collect Corollary 3.3 of this paper.

Lemma 5.1. \(u \) is rationally conjugate to \(g_0 \) if and only if \(\lambda_i = \alpha_i \), for any positive integer \(i \).

For a positive integer \(n \) and a subfield \(F \) of \(\mathbb{Q}(\zeta_n) \), let \(\Gamma_F \) denote a set of representatives of equivalence classes of the following equivalence relation defined on \(\mathbb{Z} \):

\[
x \sim y \quad \text{if and only if} \quad \zeta_n^x \text{ and } \zeta_n^y \text{ are conjugate in } \mathbb{Q}(\zeta_n) \text{ over } F.
\]

Corollary 5.2. Let \(n \) be a positive integer, let \(F \) be a subfield of \(\mathbb{Q}(\zeta_n) \) and let \(R \) be the ring of integers of \(F \). For every \(x \in \Gamma_F \) let \(B_x \) be an integer and for every integer \(i \) define

\[
\omega_i = \sum_{x \in \Gamma_F} B_x T_{\mathbb{Q}(\zeta_n)/F}(\zeta_n^{ix}).
\]

Let \(d \) be a divisor of \(n \) such that \(\omega_q = 0 \) for every prime power \(q \) dividing \(d \) with \(q \neq 1 \). Then \(\omega_d \in d \cdot R \).
By Lemma 5.1, in order to achieve our goal it is enough to prove that \(\lambda_i = \alpha_i \) for every positive integer \(i \). We argue by contradiction, so we assume that \(\lambda_d \neq \alpha_d \) for some positive integer \(d \) which we assume to be minimal with this property. Observe that if \(\lambda_i = \alpha_i \) and \(j \) is an integer such that \(\gcd(i, n) = \gcd(j, n) \), then there exists \(\sigma \in \text{Gal}(\mathbb{Q}(\alpha)/\mathbb{Q}) \) such that \(\sigma(\alpha_i) = \alpha_j \) and applying \(\sigma \) to the equation \(\lambda_i = \alpha_i \) we obtain \(\lambda_j = \alpha_j \). This implies that \(d \) divides \(n \). Note that \(\alpha_1 = \lambda_1 \), by our choice of \(g_0 \), and hence \(d \neq 1 \). Moreover, \(d \neq n \) because \(\lambda_n = 2 \sum_{x \in \Gamma_n} \varepsilon_x = 2 = \alpha_n \) as the augmentation of \(u \) is 1.

We claim that

\[
\lambda_d = \alpha_d + d \tau \quad \text{for some } \tau \in \mathbb{Z}[\alpha_1].
\]

Indeed, for any \(x \in \Gamma_n \) let \(B_x = \varepsilon_x - 1 \) if \(x \sim n \) and \(B_x = \varepsilon_x \) otherwise. Then for any integer \(i \) we have

\[
\lambda_i - \alpha_i = \sum_{x \in \Gamma_n} B_x \text{Tr}_{\mathbb{Q}(\xi)/\mathbb{Q}(\alpha)}(\xi^i x).
\]

The claim then follows by applying Corollary 5.2 with \(F = \mathbb{Q}(\alpha_1) \), \(R = \mathbb{Z}[\alpha_1] \) and \(\omega_i = \lambda_i - \alpha_i \). Observe that in the notation of that corollary \(\Gamma_n = \Gamma_F \).

By (5.1) we have

\[
\chi_d(g_0) = \sum_{i \equiv d \mod 2} \alpha_i \quad \text{and} \quad \chi_d(u) = \sum_{x \in \Gamma_n} \varepsilon_x \chi_d(g_0^x) = \sum_{x \in \Gamma_n} \varepsilon_x \sum_{i \equiv d \mod 2} \alpha_i \nu_x = \sum_{i \equiv d \mod 2} \lambda_i.
\]

Combining this with (5.2) and the minimality of \(d \), we deduce that \(\chi_d(u) = \chi_d(g_0) + d \tau \). Furthermore, \(\tau \neq 0 \), as \(\lambda_d \neq \alpha_d \). Therefore

\[
C_b(\chi_d(u)) \equiv C_b(\chi_d(g_0)) \mod d \quad \text{for every } b \in \mathbb{B}
\]

and

\[
d \leq |C_{b_0}(\chi_d(u)) - C_{b_0}(\chi_d(g_0))| \quad \text{for some } b_0 \in \mathbb{B}.
\]

The bulk of our argument relies on an analysis of the eigenvalues of \(\Theta_d(u) \) and the induction hypothesis on \(n \) and \(d \). More precisely, we will use (5.4) and (5.5) to obtain a contradiction by comparing the eigenvalues of \(\Theta_d(g_0) \) and \(\Theta_d(u) \). Of course, we do not know the eigenvalues of the latter. However we know the eigenvalues of \(\Theta_d(u^c) \) for every \(c \mid n \) with \(c \neq 1 \), because we know the eigenvalues of \(\Theta_d(g_0) \) and \(u^c \) is conjugate to \(g_0^c \).

This provides information on the eigenvalues of \(\Theta_d(u) \). For example, recall that if \(\xi \) is an eigenvalue of \(\Theta_d(u) \) then \(\xi \) and \(\xi^{-1} \) have the same multiplicity as eigenvalues of \(\Theta_d(u) \). Therefore, if \(3 \leq h \) then the sum of the multiplicities of the eigenvalues of \(\Theta_d(u) \) of order \(h \) is even. Moreover, for every \(t \)-regular element \(g \) of \(G \), the multiplicity of 1 as eigenvalue of \(\Theta_d(g) \) is congruent modulo 2 with the degree \(d + 1 \) of \(\chi_d \). As \(n \) is not a prime power there is an odd prime \(p \) dividing \(n \). By the induction hypothesis \(\Theta_d(u^p) \) is rationally conjugate to \(\Theta_d(g_0^p) \).

Thus the multiplicity of -1 as eigenvalue of \(\Theta_d(u^p) \) is even. As the latter is the sum of the multiplicities as eigenvalues of \(\Theta_d(u) \) of -1 and the elements of order \(2p \), we deduce that the multiplicity of -1 as eigenvalue of \(\Theta_d(u) \) is even. Using this we can see that \(\Theta_d(u) \) is conjugate to \(\text{diag}(\zeta^\nu, \zeta^{\nu+1}, \ldots, \zeta^{\nu+\delta}) \) for integers \(\nu, \ldots, \nu+\delta \) such that \(\nu-i = -\nu_i \) for every \(i \).

Let \(X_d = \{ i : 1 \leq i \leq d, i \equiv d \mod 2 \} \). Then, by (5.3) and Proposition 2.2, we have for every \(b \in \mathbb{B} \)

\[
C_b(\chi_d(u)) - C_b(\chi_d(g_0)) = \sum_{i \in X_d} \left(\kappa_{n/i} \cdot \beta_{b,i} \cdot \mu(\gamma(i)) \cdot \delta_{b,i}^{(n/i)}(\nu_i) - \kappa_i \cdot \beta_{b,i} \cdot \mu(\gamma(i)) \cdot \delta_{b,i}^{(n/i)}(i) \right).
\]

Moreover, if \(c \mid n \) with \(c \neq 1 \) then the lists \((\nu_i)_{i \in X_d} \) and \((c\bar{c})_{i \in X_d} \) represent the same elements in \(\Gamma_n \), up to ordering, and hence \((\nu_i)_{i \in X_d} \) and \((i)_{i \in X_d} \) represent the same elements of \(\Gamma_{\frac{n}{2}} \), up to ordering. We express this by writing \((\nu(X_d)) \sim_{\frac{n}{2}} (X_d) \). This provides restrictions on \(d \), \(n \) and the \(\nu_i \).

The following two lemmas are variants of Lemmas 4.2 and 4.3 of [MRS18].
Lemma 5.3. (1) Let $i \in X_d$. If $\kappa_i \ne 1$ then $n = 2d$ and $i = d$. If $\kappa_i \ne 1$ then $\frac{n}{d}$ is the smallest prime dividing n and $\kappa_{\nu_j} = 1$ for every $j \in X_d \setminus \{i\}$.

(2) If $d > 2$ then n is not divisible by any prime greater than d. In particular, if d is prime then $\kappa_{\nu_j} = 1$ for every $i \in X_d$.

Proof. Let p denote the smallest prime dividing n.

(1) The first statement is clear. Suppose that $\kappa_{\nu_j} \ne 1$. Then either $p = 2$ and $\nu_j \equiv 0 \pmod{\frac{n}{2}}$ or $\nu_j \equiv 0 \pmod{n}$. As $(X_d) \sim \frac{n}{p} (\nu(X_d))$ we deduce that $k \equiv 0 \pmod{\frac{n}{p}}$ for some $k \in X_d$. Therefore $d = k = \frac{n}{p}$ and for every $j \in X_d \setminus \{i\}$ we have $\nu_j \equiv 0 \pmod{\frac{n}{p}}$. Thus $\kappa_{\nu_j} = 1$.

(2) Suppose that q is a prime divisor of n with $d < q$. Then $\frac{n}{d} \ne p$ and therefore, by (1), $\kappa_i = \kappa_{\nu_j} = 1$ for every $i \in X_d$. Thus, by (5.5) and (5.6), it is enough to show that $\delta_{\nu_j}^{(n/\gamma)}(i) \ne 0$ for at most one $i \in X_d$ and $\delta_{\nu_j}^{(n/\gamma)}(i) \ne 0$ for at most one $i \in X_d$. Observe that if $i \in X_d$ then $q \mid i$ and hence $\frac{n}{\gamma(i)}$ is multiple of q. Moreover, if i and j are different elements of X_d then i and j have the same parity and $-q < i - j < i + j < 2q$. Therefore $i \not\sim_q j$. Thus either $\delta_{\nu_j}^{(n/\gamma)}(i) = 0$ or $\delta_{\nu_j}^{(n/\gamma)}(i) = 0$. As $(X_d) \sim_q (\nu(X_d))$, this also proves that $\delta_{\nu_j}^{(n/\gamma)}(i) = 0$ or $\delta_{\nu_j}^{(n/\gamma)}(i) = 0$. □

We obtain an upper bound for $|C_b(\chi_d(u)) - C_b(\chi_d(g_0))|$ in terms of the number of prime divisors $P(d)$ of d.

Lemma 5.4. For every $b \in \mathbb{B}$ we have $|C_b(\chi_d(u)) - C_b(\chi_d(g_0))| \le 2 + 2P(d)+1$.

Proof. Using (5.6) it is enough to prove that $\sum_{\nu \in X_d} \kappa_i \delta_{\nu_j}^{(n/\gamma)}(i) \le 1 + 2P(d)$ and $\sum_{i \in X_d} \kappa_i \delta_{\nu_j}^{(n/\gamma)}(i) \le 1 + 2P(d)$.

This is a consequence of Lemma 5.3.(1) and the following inequalities for every e dividing d':

$$\left| \left\{ i \in X_d : \gcd(d,e) = 1, \delta_{\nu_j}^{(n/\gamma)}(i) = 1 \right\} \right| \le 1, \quad \left| \left\{ i \in X_d : \gcd(d,e) = 0, \delta_{\nu_j}^{(n/\gamma)}(i) = 1 \right\} \right| \le 1.$$

We prove the second inequality, only using that $(\nu(X_d)) \sim_d (X_d)$. This implies the first inequality by applying the second one to $u = g_0$.

Let $Y_e = \left\{ i \in X_d : \gcd(d,e) = 1, \delta_{\nu_j}^{(n/\gamma)}(i) = 1 \right\}$. By changing the sign of some ν_j's, we may assume without loss of generality that if $\delta_{\nu_j}^{(n/\gamma)}(i) = 1$ then $b \equiv \nu_j \pmod{\frac{n}{\gamma(i)}}$. Thus, if $i \in Y_e$ then $b \equiv \nu_j \pmod{\frac{n}{\gamma(i)}}$. We claim that if $i, j \in Y_e$ then $\nu_i \equiv \nu_j \pmod{d}$. Indeed, let p be prime divisor of d. If $n_p \ne d_p$ or $p \mid e$ then clearly $\nu_i \equiv \nu_j \pmod{d_p}$. Otherwise, i.e. $n_p = d_p$ and $p \mid e$, then p divides both $\gamma(i)$ and $\gamma(j)$ and $\nu_i \equiv \nu_j \pmod{d_p}$. Therefore, by Lemma 2.1.(2), $\nu_i \equiv \nu_j \pmod{d_p}$, as desired. As $(\nu(X_d)) \sim_d (X_d)$ and the elements of X_d represent different classes in Γ_d we deduce that $|Y_e| \le 1$. This finishes the proof of the lemma. □

We are ready to finish the proof of Theorem 1.1. Recall that we are arguing by contradiction.

By (5.5) and Lemma 5.4 we have $d \le 2 + 2P(d)+1$ and, using this, it is easy to show that $d \le 6$ or $d = 10$. Indeed, if $P(d) \ge 3$ then $2 + 2P(d)+1 \ge d \ge 2 \cdot 3 \cdot 5 \cdot 2P(d)-3 > 14 + 2P(d)+1$, a contradiction. Thus $P(d) = 2$ and $d \le 10$ or $P(d) = 1$ and $d \le 5$. Hence d is either 2, 3, 4, 5, 6 or 10. We deal with these cases separately.

Suppose that $d = 2$. Then $\nu_2 \sim_{\nu_2} 2$ for every prime p. By the assumptions on n and Lemma 5.3.(1), this implies that $\kappa_2 = \kappa_{\nu_2} = 1$, $\gamma(2) = \nu(2)$ and $\beta_{\nu_1,2} = \beta_{\nu_1,\nu_2}$. Therefore $|C_{b_0}(\chi_2(u)) - C_{b_0}(\chi_2(g_0))| = \mu(\gamma(2)) \left(\delta_{\nu_1,\nu_2}^{(n/\gamma)(2)} - \delta_{\nu_1,\nu_2}^{(n/\gamma)(2)} \right) \le 1$, contradicting (5.5).

Suppose that $d = 3$. By Lemma 5.3 and the assumptions on n, we have $\kappa_i = \kappa_{\nu_j} = 1$ for every $i \in X_3$ and $\nu_i = 6$. If $2^4 \mid n$ or $3^2 \mid n$ then $\left\{ i = 1, 3 : \delta_{\nu_1,3}^{(n/\gamma)}(i) = 1 \right\} \le 1$ and $\left\{ i = 1, 3 : \delta_{\nu_1,\nu_j}^{(n/\gamma)}(i) = 1 \right\} \le 1$, which implies $|C_{b_0}(\chi_3(u)) - C_{b_0}(\chi_3(g_0))| \le 2$, contradicting (5.5). Thus $n = 24$, since n is neither 12 nor a prime power and it is multiple of 4. In this case we have $\gamma(1) = \gamma(2) = 2, \gamma(3) = \gamma(2) = 3, \beta_{\nu_1,3} = \beta_{\nu_1,\nu_3} = 1$ and $C_{b_0}(\chi_3(g_0)) = -\delta_{\nu_1}^{(12)} - \delta_{\nu_3}^{(8)}$ for every $b \in \mathbb{B}$. We may assume that $3 \mid \nu_3$ and $3 \nmid \nu_1$ because $(\nu(X_3)) \sim_3 (X_3)$. Suppose that $\nu_3 \sim_3 3$ and $\nu_1 \sim_3 1$. Then $\gamma(\nu_1) = \nu(\nu_1) = 2, \gamma(\nu_3) = \gamma(\nu_3) = 3, \beta_{\nu_0,\nu_3} = 1 = \delta_{\nu_0,\nu_3} = 0$, which implies $|C_{b_0}(\chi_3(u)) - C_{b_0}(\chi_3(g_0))| \le 2$, contradicting (5.5). Suppose now that $\nu_3 \sim_3 1$ and $\nu_1 \sim_3 3$. This implies that $\nu_1 \equiv \pm 3 \pmod{8}$ and $\nu_1 \equiv \pm 1 \pmod{3}$ (because $3 \mid \nu_3$ but $3 \nmid \nu_1$). Thus either $\nu_1 \equiv \pm 11 \pmod{24}$ or

\[11\]
ν₁ ≡ ±5 mod 24. As (ν(X₃)) ~₁₂ (X₃), we deduce that the only possibility is ν₁ ≡ ±11 mod 24. In this case we have γ(ν₁) = γ(ν₁) = 1 and γ(ν₃) = γ(ν₃) = 6. Hence C₁₁(χ₃(u)) = C₁₁(χ₃(g₀)) = δ₁₂(4) + δ₁₂(12) + δ₁₂(8) = 4, contradicting (5.4).

Suppose that d = 4. By Lemma 5.3 and the assumptions on n, we have κᵢ = κᵢ = 1 for every i ∈ X₄ and n' = 6. If 3³ | n or 2³ | n then \(\left| \left\{ i = 2, 4 : \delta_{b,i}^{(n/3)(i)} = 1 \right\} \right| \leq 1 \) which implies |C₀(χₙ(u)) − C₀(χₙ(g₀))| ≤ 3, contradicting (5.5). Thus n = 36. In this case we have γ(2) = 1 = β₀,2 = β₀,4 and γ(4) = 2, which implies |C₀(χₙ(g₀))| ≤ 1 and hence |C₀(χₙ(u)) − C₀(χₙ(g₀))| ≤ 3, contradicting again (5.5).

Suppose that d = 5. Since (ν(X₅)) ~₁₂ (X₅), there is exactly one νᵢ which is divisible by 5, say ν₅. In particular, for i ≠ 5 we have 5 ∣ \(n/n(ν_i) \) and 5 ∣ \(n/n(ν_i) \). Moreover, if j is an integer not multiple of 5 then \(\left| \left\{ i = 1, 3 : ν_i \sim_j \right\} \right| \leq 1 \). This implies that \(\left| \left\{ i = 1, 3 : \delta_{b,i}^{(n/5)(i)} = 1 \right\} \right| \leq 1 \) and \(\left| \left\{ i = 1, 3 : \delta_{b,i}^{(n/5)(ν_i)} = 1 \right\} \right| \leq 1 \). On the other hand, as n ≠ 10, we deduce that κᵢ = 1 for every i ∈ X₅, by Lemma 5.3.(1). Therefore, using (5.5) and (5.6), we deduce that κᵢ = 2, in contradiction with Lemma 5.3.(1).

Suppose that d = 6. By Lemma 5.3, we have n’ | 30 and κᵢ = κᵢ = 1 for every i ∈ X₆ because n ≠ 12. If 25 | n, or 9 | n or 8 | n then we have \(\left| \left\{ i = 2, 4, 6 : \delta_{b,i}^{(n/5)(i)} = 1 \right\} \right| \leq 2 \) and \(\left| \left\{ i = 2, 4, 6 : \delta_{b,i}^{(n/5)(ν_i)} = 1 \right\} \right| \leq 2 \). This implies that |C₀(χ₆(u)) − C₀(χ₆(g₀))| ≤ 4, yielding a contradiction with (5.5). Therefore n = 60 and hence β₀,2 = β₀,4 = β₀,6 = 1, γ(2) = 1, γ(4) = 4, and γ(6) = 6. This implies that |C₀(χ₆(ν₆))| ≤ 2 and hence |C₀(χ₆(u)) − C₀(χ₆(g₀))| ≤ 5, yielding a contradiction with (5.5).

Suppose that d = 10. If 5 | \(n/n(ν_i) \) for some i ∈ X₁₀ then n₅ = (γ(νᵢ))₅ = 5 and hence 5 | i. The same also holds for νᵢ. Therefore, if 5 | i then 5 | \(n/n(ν_i) \) and if 5 | νᵢ then 5 | \(n/n(ν_i) \). Thus \(\left| \left\{ i ∈ X₁₀ : 5 | i, \delta_{b,i}^{(n/5)(ν_i)} = 1 \right\} \right| \leq 2 \). This implies that |C₀(χ₁₀(ν₁)) − C₀(χ₁₀(g₀))| ≤ 8, contradicting (5.5).

REFERENCES

Email address: adelrio@um.es

Email address: mariano.serrano@um.es

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MURCIA.