The group of automorphisms of the rational group algebra of a finite metacyclic group

Aurora Olivieri Á. del Río and J.J. Simón∗
Departamento de Matemáticas Departamento de Matemáticas
Universidad Simón Bolívar Universidad de Murcia
Ap. Postal 89000 30100 Murcia, Spain
Caracas 1080-A, Venezuela
olivieri@usb.ve adelrio@um.es, jsimon@um.es

June 16, 2006

Abstract

We investigate the group of automorphism Aut(\(\mathbb{Q}G\)) of a rational group algebra \(\mathbb{Q}G\) of a finite metacyclic group \(G\) by first describing the simple components of the Wedderburn decomposition of \(\mathbb{Q}G\) and then investigating when two of these simple components are isomorphic.

The aim of this paper is to compute the group of automorphism Aut(\(\mathbb{Q}G\)) of a rational group algebra \(\mathbb{Q}G\) of a finite metacyclic group \(G\). Aside of the interest of understanding Aut(\(\mathbb{Q}G\)) as an important invariant of the \(\mathbb{Q}G\), another motivation is the connection of the group Aut(\(\mathbb{Q}G\)) with Zassenhaus conjectures [3, 15].

To describe the group of automorphism of a finite dimensional semisimple algebra \(A\) one can proceed as follows. Assume that \(A = \prod_{i=1}^{n} A_{ki}^{k}\), where \(A_{1}, \ldots, A_{n}\) are non-isomorphic simple algebras. For every \(i = 1, \ldots, n\) consider the symmetric group on \(k_{i}\) letters acting on \(A_{ki}^{k}\) by permutation of the components and let \(A_{ki}^{k} \rtimes S_{k_{i}}\) be the corresponding semidirect product. Then Aut(\(A\)) \(\cong \prod_{i=1}^{n} \text{Aut}(A_{i})^{k_{i}} \rtimes S_{k_{i}}\). Moreover if \(A\) is simple then Aut(\(A\)) fits into an exact sequence

\[1 \to \text{Inn}(A) \xrightarrow{i} \text{Aut}(A) \xrightarrow{r} (\text{Aut}(\mathbb{Z}(A); A); A) \to 1 \]

where \(\text{Inn}(A)\) denotes the group of inner automorphisms of \(A\); Aut(\(\mathbb{Z}(A); A\)) is the group of automorphisms of the centre \(\mathbb{Z}(A)\) of \(A\) that fix the class of \(A\) in the Brauer group of \(\mathbb{Z}(A)\) and \(i\) and \(r\) are the inclusion and restriction maps respectively [8]. Moreover, if \(A = \mathbb{Q}G\) is a rational group algebra of a finite group \(G\) then Aut(\(\mathbb{Z}(A_{i}) : A_{i}\)) \(\cong \text{Gal}(\mathbb{Z}(A_{i})/\mathbb{Q}(\xi_{m_{i}}))\) where \(m_{i}\) is the Schur index of \(A_{i}\) and \(\xi_{m_{i}}\) is an \(m_{i}\)-th primitive root of 1 (see [8] for the last isomorphism and [2] for the existence of a primitive \(m_{i}\)-th root of unity in \(Z(A_{i})\)). Therefore computing Aut(\(\mathbb{Q}G\)) for \(G\) a finite group reduces to the following two problems:

Problem 1: Compute the Wedderburn decomposition of \(\mathbb{Q}G\).

Problem 2: Recognize the components of the Wedderburn decomposition of \(\mathbb{Q}G\) that are isomorphic.

∗The second and third author have been partially supported by the D.G.I. of Spain and Fundación Séneca of Murcia
Although this method is present in previous works [3, 4, 6], the only non abelian groups for which precise information on Aut(\(QG\)) is known are metacyclic groups of type \(C_m : C_p\) with \(p\) prime [6]. The obstacle relies in the difficulty of solving Problems 1 and 2. We quote the following from [6]: “In order to generalize the results of the above metacyclic groups (that is for \(n\) prime) to the class of general metacyclic groups, we need an algorithm means to determining the entire collection of non-abelian simple components that would appear. This appears to be a complicated process to work out for a general \(m\) and \(n\)” In this paper we solve completely Problem 1 for arbitrary metacyclic groups and provide information on Problem 2 for metacyclic groups of type \(C_m : C_{pq}\), where \(p\) and \(q\) are two, non necessarily different, primes. In the way we also solve an error in [6]. This paper of Herman has been the main source of ideas.

1 Notation and Preliminaries

In this section we establish the basic notation of the paper and show the main tools to be used. We start with the following notation where \(r\) and \(m\) are coprime integers, \(p\) is a prime integer, \(G\) is a group, \(H\) is a subgroup of \(G\), \(R\) is a ring and \(E/F\) is a cyclic field extension of degree \(n\) with \(\text{Gal}(E/F) = \langle \sigma \rangle\).

\[\begin{align*}
o_m(r) &= \text{multiplicative order of } r \text{ module } m. \\
v_p &= \text{ } p\text{-adic valuation.} \\
(X) &= \text{group generated by } X \subseteq G. \\
G' &= \text{commutator of } G. \\
N_G(H) &= \text{normalizer of } H \text{ in } G. \\
Z(R) &= \text{centre of } R. \\
R^\ast &= \text{group of units of } R. \\
\text{Aut}(R) &= \text{group of automorphisms of } R. \\
R \ast_\alpha G &= R \ast G \text{ is crossed product over } G \text{ with coefficients in } R, \text{ action } \alpha \text{ and twisting } \tau \text{ [12].} \\
(E, \sigma, a) &= E \ast \langle \sigma \rangle = E[u : u^n = a, u^{-1}xu = \sigma(x), (x \in E)] = \text{cyclic algebra over } F \text{ [13, 14].} \\
N_{E/F} &= \text{norm map of the extension } E/F. \\
N^*_{E/F} &= N_{E/F}(E^\ast). \\
\xi_m &= \text{complex } m\text{-th primitive root of unity.} \\
Q_m &= \mathbb{Q}(\xi_m). \\
\sigma_r &= \text{automorphism of } \mathbb{Q}_m \text{ given by } \sigma_r(\xi_m) = \xi_m^r (\gcd(m, r)). \\
U(m, r, s) &= (Q_m, \sigma_r, \xi_m^s), \text{ with } m | s(r - 1).
\end{align*}\]

We write \(H \leq G\) (resp. \(H \trianglelefteq G\)) to mean that \(H\) is a subgroup (resp. normal subgroup) of a group \(G\).

It is well known that two cyclic \(F\)-algebras \((E, \sigma, a)\) and \((E, \sigma, b)\) are isomorphic as \(F\)-algebras if and only if \(b/a \in N^*_{E/F}\) [13, 14] and that \((E, \sigma, a)\) is split if and only if \(a \in N^*_{E/F}\). Rather than comparing cyclic algebras as \(F\)-algebras we need to compare them as rings. That is the use of the following Lemma. The notation \(R \simeq S\) for \(R\) and \(S\) rings (or algebras) means that \(R\) and \(S\) are isomorphic as rings (not necessarily as algebras).

Lemma 1.1 Let \(E/F\) be a finite cyclic field extension of degree \(n\), \(\text{Gal}(E/F) = \langle \sigma \rangle\) and \(a, b \in F^\ast\).

1. If \(\gcd(k, n) = 1\) then \((E, \sigma, a)\) and \((E, \sigma^k, a^k)\) are isomorphic as \(F\)-algebras. In particular, if \((k, o_m(r)) = 1\) then \(U(m, r, s) \simeq U(m, r^k, ks)\) as central simple algebras.
2. Every automorphism \(\tau \) of \(E \) extends to a ring isomorphism \((E, \sigma, a) \simeq (E, \tau^{-1} \sigma \tau, \tau(a)) \) (not necessarily of \(F \)-algebras). In particular, if \(\gcd(m, k) = 1 \) then \(U(m, r, s) \simeq U(m, r, ks) \).

3. If there is a ring isomorphism \(f : (E, \sigma, a) \to (E, \sigma, b) \) and a ring automorphism \(g \) of \((E, \sigma, a) \) such that \(f(x) = g(x) \) for every \(x \in F \) then \(b/a \in N_{E/F}^* \).

4. \((E, \sigma, a) \simeq M_n(F) \) if and only if \(a \in N_{E/F}^* \) if and only if \((E, \sigma, a) \) and \(M_n(F) \) are isomorphic as \(F \)-algebras.

5. If \(E'/\mathbb{Q} \) is an abelian extension then \((E, \sigma, a) \simeq (E, \sigma, b) \) if and only if there is an automorphism \(f \) of \(F \) such that \(b/f(a) \in N(E/F) \).

6. Assume now that \((E, \sigma, a) \) has index \(m \) and it is a simple quotient of a rational group algebra of a finite group. Then \(\xi_m \in F \). If there is a ring isomorphism \(f : (E, \sigma, a) \to (E, \sigma, b) \) such that \(f(\xi_m) = \xi_m \), then \(b/a \in N_{E/F}^* \).

Proof. 1 is well known. To prove 2, notice that there is a unique ring homomorphism \(f : E[u_1 | u_1^n = a, u_1^{-1}xu_1 = \sigma(x) (x \in E)] \to E[u_2 | u_2^n = \tau(a), u_2^{-1}xu_2 = \tau^{-1} \sigma \tau(x) (x \in E)] \) that extends \(\tau \) and \(f(u_1) = u_2 \) and \(f \) is obviously a ring isomorphism.

3. Just use that \(fg^{-1} \) is an isomorphism of \(F \)-algebras.

4. Is a consequence of 3 and the obvious fact that every automorphism of \(F \) extends to an automorphism of \(M_n(F) \).

5. Assume that \(E'/\mathbb{Q} \) is an abelian extension and let \(f : (E, \sigma, a) \to (E, \sigma, b) \) be a ring isomorphism. Then the restriction of \(f \) to \(F \) extends to an automorphism \(g \) of \(E \). By 2, \(g \) extends to an isomorphism \(g : (E, \sigma, a) \to (E, \sigma, f(a)) \), since \(\text{Aut}(E) \) is abelian. Then \(h = gf^{-1} : (E, \sigma, f(a)) \to (E, \sigma, b) \) is an isomorphism of \(F \)-algebras and so \(b/f(a) \in N_{E/F}^* \), by 3. Conversely, assume that there is an automorphism of \(f \) of \(E \) such that \(b/f(a) \in N_{E/F}^* \). Then \((E, \sigma, b) \simeq (E, \sigma, f(a)) \simeq (E, \sigma, a) \), by 2.

6. The existence of an \(m \)-th primitive root of unit in \(F \) is proved in [2]. Let \(f : (E, \sigma, a) \to (E, \sigma, b) \) be an isomorphism. If \(f(\xi_m) = \xi_m \), then the restriction of \(f \) to \(F \) extends to an automorphism of \((E, \sigma, a) \) [8] and 3 applies.

We recall the following lemma for future use.

Lemma 1.2 Let \(m, r, n, s, t, x, y \) and \(z \) integers such that \(\gcd(r, m) = 1 \).

1. If \(m | n \) then there exists an integer \(j \) relatively prime with \(n \) such that \(r \equiv j \mod d \).

2. If \(f \) is the smallest positive divisor \(h \) of \(x \) such that \(\gcd(x/h, y) \) divides \(z \) then every prime divisor of \(f \) is also a prime divisor of \(\frac{y}{\gcd(x/h, y)} \).

3. If \(n = o_m(r) \), \(t \mid \gcd(s, n) \) and \(m|\frac{s}{t}(r-1) \) then the Schur index \(U(m, r, s) \) divides \(n/t \).

Proof. 1 is very easy to prove.

2. Let \(p \) be a prime divisor of \(f \) and \(d = \gcd(x/h, y) \). Then \(v_p(z) < \min\{v_p(x), v_p(y)\} \) and \(v_p(f) = v_p(x) - v_p(z) \). Thus \(v_p(z) = v_p(z) < v_p(y) \) and hence \(v_p(d) = v_p(z) < v_p(y) \). We conclude that \(p \) divides \(\frac{y}{d} \).

3. The degree of \(A = U(m, r, s) \) is \(n \) and the assumption \(m|\frac{s}{t}(r-1) \) implies that \(\xi_m^{s/t} \in Z(A) \). Then \(\xi_m^{sn/t} = N_{Q_n/K}(\xi_m^{s/t}) \) and hence \(U(m, r, sn/t) \) is a split algebra. Thus the index of \(A \) is a divisor of \(n/t \) (see e.g. [14, Theorem 32.19]).
1.1 Primitive central idempotents

In this subsection we recall some results from [11]. Throughout G denotes a finite group. If $H \trianglelefteq K \trianglelefteq G$ then let

$$
\hat{K} = \frac{1}{|\hat{K}|} \sum_{k \in \hat{K}} k \in \mathbb{Q}K
$$

and

$$
\varepsilon(K, H) = \begin{cases}
\hat{K} & \text{if } K = H \\
\prod_{M/H}(\hat{H} - \hat{M}) & \text{otherwise}
\end{cases}
$$

where, in the last product, M/H runs through the minimal non trivial normal subgroups of K/H. Finally let $e(G, K, H)$ denote the sum of the different G-conjugates of $\varepsilon(K, H)$ in $\mathbb{Q}G$.

Theorem 1.3 [11] If G is a metabelian finite group and A is a maximal element of $\{B \leq G : B$ is abelian and $G' \leq B\}$ then the primitive central idempotents of $\mathbb{Q}G$ are the elements of the form $e(G, K, H)$ for (K, H) pairs of subgroups of G satisfying the following conditions:

1. K is a maximal element in the set $\{B \leq G : A \leq B$ and $B' \leq H \leq B\}$

2. K/H is cyclic.

If (K, H) is a pair of subgroups of G satisfying conditions (1) and (2) and $e = e(G, K, H)$ then $\mathbb{Q}Ge \simeq M_n(\mathbb{Q}_k \rtimes N/K)$ where $N = N_G(H)$, $n = [G : N]$, $k = [K : H]$ and if aH is a generator of K/H and $g, h \in N$, then $\sigma(gK) = \xi_k^g$ if $g^{-1}agH = a'H$ and $\tau(gK, hK) = \xi_k^g$ if $[g, h]H = a'H$ (Remark: N/K is abelian [10].)

In Section 2 we are going to use Theorem 1.3 to give a precise description of the primitive central idempotents of $\mathbb{Q}G$ for G a finite metacyclic group. We will need to decide when two pairs (H_1, K_1) and (H_1, K_1) of subgroups of G satisfying conditions (1) and (2) of Theorem 1.3 give rise to the same primitive central idempotent, i.e. $e(G, K_1, H_1) = e(G, K_2, H_2)$. In order to deal with this problem it is better to consider a more general class of pairs of subgroups.

A Shoda pair of G is a pair (K, H) of subgroups of G such that $H \trianglelefteq K$, K/H is cyclic and if $g \in G$ and $[K, g] \cap K \subseteq H$ then $g \in K$. If (K, H) is a pair of subgroups of G satisfying conditions (1) and (2) of Theorem 1.3 then (K, H) is a Shoda pair of G. If $H \trianglelefteq K \trianglelefteq G$ then (K, H) is a Shoda pair of G if and only if the induced character χ^G in G of one (resp. any) linear character χ of K with kernel H is irreducible. In that case there is a (necessarily unique) rational number α such that $\alpha e(G, K, H)$ is a primitive central idempotent of $\mathbb{Q}G$ and if λ is an irreducible character of G then $\lambda(e) \neq 0$ if and only if λ is the character of G induced by a linear character of K with kernel H [11]. Using this and [5, Theorem 45.6] it is easy to prove the following proposition.

Proposition 1.4 Let (K_1, H_1) and (K_2, H_2) be two Shoda pairs of a finite group G and let $\alpha_1, \alpha_2 \in \mathbb{Q}$ be such that $e_1 = \alpha_1 e(G, K, H)$ and $e_2 = \alpha_2 e(G, K, H)$ is a primitive central idempotent of $\mathbb{Q}G$ for $i = 1, 2$. Then $e_1 = e_2$ if and only if there is $g \in G$ such that $K_1^g \cap H_2 = H_2^g \cap K_2$.

1.2 Finite subgroups of division rings

A finite metacyclic group of type $C_m : C_n$ is a group having an normal cyclic group of order m and index n or equivalent a group given by the following presentation

$$
G_{m, r, n, s} = \langle a, b \mid a^m = 1, b^n = a^s, b^{-1}ab = a^r \rangle
$$

for m, r, n and s satisfying the following conditions:

$$
m|r - 1, \quad m|s(r - 1).
$$

(1.2)
Our second tool is Amitsur’s classification of the finite subgroups of division rings. In this section we collect the ingredients of this classification which are useful for us.

Theorem 1.5 [1] A finite metacyclic group \(G \) is isomorphic to a subgroup of a division ring if and only if there are relatively prime integers \(m \) and \(r \) such that \(G \cong G_{m,r,n,s} \) and \(U(m,r,s) \) is a division ring, where \(n = o_m(r) \) and \(s = m/\gcd(m,r-1) \). Moreover if \(m,r,n \) and \(s \) are as above then \(U(m,r,s) \) is a division ring if and only if one of the following conditions holds:

(A) \(\gcd(n,s) = 1 \), and hence \(\gcd(m,r-1,s) = 1 \),

(B) \(v_2(n) = v_2(n^2/n) = 1 \), \(2 \leq v_2(m) \leq v_2(m+1) \) and \(\gcd(n,s) = \gcd(m,r-1,s) = 2 \) and \(2^{\alpha} | r+1 \);

and one of the following conditions holds,

1. \(n = \gcd(m,r-1) = 2 \) and \(m | r+1 \),

2. for every prime divisor \(q \) of \(n \) there is a prime divisor \(p \) of \(m \) such that \(q \nmid o_m(p) \) and either
 - \(p = q = 2 \), \((B) \) holds and \(m/4 \equiv \delta \equiv 1 \) \(\mod 2 \),
 - \(p \neq 2 \) and \(\gcd(q, \frac{p^\delta - 1}{\gcd(m,r-1)}) = 1 \) or

where \(\delta = o_m(p)a/o_m(p) \) being \(m_p = m/p^{\nu_p(m)} \) and \(a \) is the minimum positive integers such that \(r^a \equiv p^2 \mod m_p \), for some \(x \):

Corollary 1.6 Let \(m \) be an odd positive integer and \(r \) and \(s \) positive integers such that \(m | s(r-1) \).

1. If \(o_m(r) \) is odd, then \(U(m,r,s) \cong U(2m,r,s) \).

2. If \(U(m,r,s) \) is a division ring then \(o_m(r) \) is odd.

Proof. 1. The degree of \(U(m,r,s) \) is \(n = o_m(r) \). Thus if \(n \) is odd then \(U(m,r,s) \cong U(2m,r,2s) \cong U(2m,r,s) \), by Lemma 1.1.

2. Assume that \(D = U(m,r,s) \) is a division ring and let \(n = o_m(r) \). The group \(G = G_{m,r,n,s} \) is a metacyclic subgroup of the group of units of \(D \) and hence \(G \) has an irreducible character whose degree coincides with the degree of \(D \) as a \(Z(D) \)-algebra which is precisely \(n \). By Theorem 1.5, \(G \cong G_{m_1,r_1,n_1,s_1} \) for \(m_1, r_1, n_1 \) and \(s_1 \) satisfying the conditions of Theorem 1.5. In particular \(mn = |G| = m_1n_1 \) and \(G \) has an abelian normal subgroup of index \(n_1 \). By Ito’s Theorem [7, Theorem 6.15] the degree of every irreducible character of \(G \) divides \(n_1 \). In particular \(n|n_1 \) and hence \(m_1|m \). If \(n \) is even then \(m_1 \) and \(r_1 \) do not satisfy the conditions of Theorem 1.5. Indeed, since \(m_1 \) is odd condition 1 does not hold. Furthermore if we take \(q = 2 \) and \(p \) is a prime divisor of \(m_1 \), then \(t = \gcd(m_1, r_1-1) \) is odd and hence \(\frac{p^\delta - 1}{t} \) is even so that condition 2 does not hold too.

2 **The Wedderburn decomposition**

In this section \(G = G_{m,r,n,s} \), a metacyclic group as in (1.1). Since \(G \) is metabelian, Theorem 1.3 applies to describe the simple components of the Wedderburn decomposition of \(\mathbb{Q}G \). In this section we are going to give a more precise description in terms of some lists of integers. In order to state the main theorem of this section we need to introduce the following notation:

5
Given a divisor \(d \) of \(n \), a divisor \(v \) of \(m \) and an integer \(i \) we set

\[
G_d = \langle a, b^d \rangle, \\
m_d = \gcd(r^d - 1, m), \\
B_d = \{(v, i, c) \in \mathbb{Z}^3 : 0 < v|m_d, 0 < dc|n, \text{ and } v|s + i \frac{n}{dc}\}, \\
o_v = o_v(r), \\
c_v = \text{smallest positive divisor } h \text{ of } \frac{n}{ac} \text{ such that } \gcd(v, \frac{n}{ac}) \text{ divides } s, \\
n_v = \frac{n}{ac}, \\
D_v = \gcd(n_v, v), \\
n_v' = \frac{n_v}{D_v}, \\
v_v' = \frac{v}{n_v'}, \\
i_v = \text{an arbitrary integer satisfying } v|s + i_vn_v, \\
o_v,i = o_v/\gcd(v,i) \text{ and } \\
H_{v,i,d} = \langle a^v, a^ib^d \rangle.
\]

By (1.2) for every \(v|m \) and \(k \in \mathbb{Z} \) one has \(s + i_v r^k n_v \equiv (s + i_v n_v) r^k \equiv 0 \mod v \) and therefore \(v_v'|i_v(r^k - 1) \). Let

\[
\alpha_{k,v} = \frac{i_v(r^k - 1)}{v_v'}.
\]

For every \(a = (v, j, t) \in \mathbb{Z}^3 \) such that \(0 < v|m, 0 < t|n_v \) and \(j \in \mathbb{Z} \) let

\[
i(a) = i_v t + v_v' j, \quad e_a = e_{v,j,t} = e(G, G_{o_v}, H_{v,i(a),o_v,c_i}) \quad \text{and} \quad S_a = S_{v,j,t} = \mathbb{Q}Ge_a.
\]

Finally set

\[
A_{m,r,n,s} = \{ (v, j, t) \in \mathbb{Z}^3 : 0 < v|m, 0 < t|n_v, 0 \leq j < D_v \text{ and } \gcd(v, j, t) = 1 \}.
\]

Now we can state the main result of this section that will be proof at the end of the section.

Theorem 2.1 Let \(G = G_{m,r,n,s} \) be the group given by the presentation (1.1), with \(m, r, n \) and \(s \) satisfying conditions (1.2) and \(\mathcal{A} = A_{m,r,n,s} \).

1. The primitive central idempotents of \(\mathbb{Q}G \) are the elements of the form \(e_a \) with \(a \in \mathcal{A} \).

2. If \(a_1 = (v_1, j_1, t_1), a_2 = (v_2, j_2, t_2) \in \mathcal{A} \) then

\[
e_{a_1} = e_{a_2} \iff v_1 = v_2, t_1 = t_2 \text{ and } j_2 \equiv j_1 r^k + \alpha_{k,v} t_1 \mod D_{v_1}, \text{ for some } k \in \mathbb{Z}.
\]

3. If \(a = (v, j, t) \in \mathcal{A} \) and \(i = i(a) \) then there are exactly \(o_{v,i} \) elements \(a' \in \mathcal{A} \) such that \(e_a = e_{a'} \), namely the elements of the form \(a' = (v, jk, t) \), with \(0 \leq k < o_{v,i} \), where \(j_k \) is the remainder modulo \(D_v \) of \(jv^k + \alpha_{k,v} t \).

4. If \(a = (v, j, t) \in \mathcal{A} \) and \(i = i(a) \) then there exist integers \(v_1, c_1, i_1 \) and \(i' \) satisfying the following conditions

\[
v_1 v + c_1 c_v t = 1 + i_1 i \quad \text{and} \quad i' v_1 v = 1 \mod c_v t.
\]

Moreover,

\[
S_a = \mathbb{Q}Ge_a \simeq M_{o_v,i}(U(vc_v t, 1 + c_1 c_v t(r^{o_v,i} - 1), i' v_1 v - i)),
\]

for every list of integers \(v_1, c_1, i_1 \) and \(i' \) satisfying (2.3).
The next lemma provides information on the groups of the form G_d and $H_{v,i,d}$.

Lemma 2.2 1. The subgroups of G containing (a) are the groups of the form G_d with $d|n$.

2. If $d|n$ then $G'_d = \langle a^{m_d} \rangle = \langle a^{m_d} \rangle$.

3. G_{o_v} is a maximal element of $\{ A \leq G : A$ is abelian and $G' \leq A \leq G \}$.

4. If $d|n$, $v|m_d$ and $i \in \mathbb{Z}$ then $H_{v,i,d} = \{ a^{\alpha b^k} : d|k$ and $j \equiv i \frac{k}{d} \mod v \}$. Moreover if $v|s + i \frac{k}{d}$ then $H_{v,i,d} \cap (a) = \langle a^v \rangle$ and $N_G(H_{v,i,d}) = G_{o_v}$.

5. Two subgroups of the form $H_{v,i,d}$ with $0 < d|n$, $0 < v|m_d$ and $v|s + i \frac{k}{d}$ are equal if and only if the v and d parameters are equal and the i parameters are congruent module $v; that is if $0 < d_j|n$, $0 < v_j|m_d$, and $i_j \in \mathbb{Z}$ ($j = 1, 2$) then

$$H_{v_1,i_1,d_1} = H_{v_2,i_2,d_2} \iff v_1 = v_2,$$
$$d_1 = d_2 \quad \text{and} \quad i_1 \equiv i_2 \mod v_1.$$

6. If $d|n$ then the subgroups of G_d containing G'_d are the groups of the form $H_{v,i,d,c}$ with $(v, i, c) \in \mathcal{B}_d$.

7. Let $(v, i, c) \in \mathcal{B}_d$ and $H = H_{v,i,d,c}$. Then G_d/H is cyclic if and only if $\gcd(v, i, c) = 1$. In that case there are integers v_1, c_1, i_1 and i' satisfying the following conditions:

$$v_1v + c_1c = 1 + i_1i \quad \text{and} \quad i'i_1 \equiv 1 \mod c \quad (2.4)$$

8. Let $d|n$ and assume that $(v, i, c) \in \mathcal{B}_d$ and $\gcd(v, i, c) = 1$. Then G_{o_v} is the unique maximal element of $\{ B \leq G : G_{o_v} \leq B', B' \leq H_{v,i,d,c} \leq B \}$. Assume that $d = o_v$ and let v_1, c_1, i_1 and i' be integers satisfying conditions (2.4). Then

$$\mathbb{Q}G_e(G, G_{o_v}, H_{v,i,o_v,c}) \simeq M_{o_v}(U(v, 1 + c_1c(r^{o_v} - 1), i'v_1v - i)).$$

Proof. 1, 2 and 3 are obvious.

4. Set $H = H_{v,i,d}$ and $K = \{ a^{i_b}b : d|k$ and $j \equiv i \frac{k}{d} \mod v \}$. By using that $v|m_d|p^d - 1$ one deduces $G'_d = \langle a^{m_d} \rangle \leq \langle a^v \rangle \leq H$ and one can easily prove that K is a subgroup of G. Then $H \leq K$ because $a^v, a^i b^k \in K$. Thus to prove that $H = K$ one can assume that K is abelian by factoring out by G'_d. If $d|k$ and $j \equiv i \frac{k}{d} \mod v$, then $a^i b^k = a^{i-k} a^{i-k} b^k/d \in H$. This proves that $H = K$.

Assume now that $v|s + i \frac{k}{d}$. If $x \in H \cap \langle a \rangle$ then $x = a^{i-b}b^k$ for j and k integers such that $n|j$ and $j \equiv i \frac{k}{d} \mod v$. Then $x = a^{i} b^k$ and $j + s \frac{k}{d} = (i + s \frac{k}{d}) \frac{k}{d} \equiv 0 \mod v$. Thus $x \in \langle a^v \rangle$ and this proves that $H \cap \langle a \rangle = \langle a^v \rangle$.

Since $G'_d \leq H \leq G_d$, $N_G(H) \supseteq G_d$ and hence $N_G(H) = G_t$ for some divisor t of d. In particular a normalizes H and, since $\langle a^v \rangle$ is normal in G, if x is a divisor of d then $H \leq G_x$ if and only if $a^{r^x} b^d = b^s a^{r^x} b^x \in H$ if and only if $a^{r^x} b^d = b^x a^{r^x} b^d \in H$ if and only if $a^{r^x} b^d = b(a^{r^x} b^d)^{-1} \in H$ if and only if $v|s(r^x - 1)$ if and only if $r^x \equiv 1 \mod v$/gcd(v, i) if and only if $o_{v,i} | x$. Therefore $t = o_{v,i}$.

5. It follows from 4, by noticing that $H_{v,i,d} \cap \langle a \rangle = \langle a^v \rangle$ and $H_{v,i,d}/\langle a^v \rangle$ is cyclic of order n/d.

Notice that if d is a divisor of n then G_d is a metacyclic group and therefore to prove 6 and 7 one may assume without loss of generality that $G = G_d$, that is $d = 1$.

6. From 4 one deduces that if $(v, i, c) \in \mathcal{B}_1(= \mathcal{B}_d)$ then $G'_d \leq \langle a^{m_d} \rangle \leq \langle a^v \rangle \leq H_{v,i,c}$. Conversely, let H be a subgroup of G containing G'_d. We want to show that $H = H_{v,i,c}$ for some $(v, i, c) \in \mathcal{B}_1$. 7
Factoring out by G' one may assume that G is abelian. Let $H \cap \langle a \rangle = \langle a^v \rangle$, with v a divisor of m. Then $H/\langle a^v \rangle \cong H(a)/\langle a \rangle \leq G/\langle a \rangle$. Since $G/\langle a \rangle$ is cyclic of order n and it is generated by $b \langle a \rangle$, $H(a)/\langle a \rangle$ is cyclic generated by $b^\nu(a)$ for some divisor c of n. Then there is $i \in \mathbb{Z}$ such that $H/\langle a^v \rangle$ is generated by $a^ib^\nu(a^v)$ and hence $H = \langle a^v, a^ib^\nu \rangle = H_{v,i,c}$. Finally, $(a^ib^\nu)^c = a^{s+i\nu} \in H \cap \langle a \rangle = \langle a^v \rangle$ and therefore $v|s + i\frac{n}{c}$.

7. Let $(v,i,c) \in B_1(= B_d)$ and set $H = H_{v,i,c}$. Then G/H has the following presentation:

\[(a,b|a^v = 1, b^c = a^i, ba = ab)\]

The order of G is vc and, by the classification of the finite abelian groups, its period is $vc/gcd(v,i,c)$. Thus G/H is cyclic if and only if $gcd(v,i,c) = 1$.

Assume that $gcd(v,i,c) = 1$. By Lemma 1.2, there is $i_1 \in \mathbb{Z}$ such that $gcd(i_1,c) = 1$ and $i_1i \equiv -1 \mod gcd(v,c)$. From this the existence of $v_1, c_1, i_1 \in G$ satisfying (2.4) follows.

Now assume that v_1, c_1, i_1 and i_1' are integers satisfying (2.4) and let $x = a^{c_1}b^{i_1}H$, $a_1 = aH$ and $b_1 = bH$ (remember that we are assuming that $d = 1$). Thus $a_1^v = a_1^{'v}b_1^{i_1} = 1$ and $x = a^{c_1}b^{i_1}$. Having in mind that G/H is cyclic one has

\[x^c = a_1^{c_1}b_1^{c_1} = a_1^{c_1-i_1} = a_1^{1-v_iv} = a_1\]

and, if $c'c + i_1' = 1$, then

\[x^{c_1} = x^{(1-c_1)c - i(1-i_1')} = x^c = x^{c_1} = a_1^{c_1-i_1'} = a_1^{1-v_iv} = a_1.

This proves that x is a generator of G/H.

8. Let $d|n$ and $(v,i,c) \in B_d$. Set $H = H_{v,i,d}$, and

\[X = \{ B \leq G : G_{ov} \leq B, B' \leq H \leq B \}\]

Since $o_v|o_m$, $G_{ov} \leq G_{ov}$. Moreover, since $v|m$, one has $o_v|d$ and therefore

\[G_{ov} = \langle a^{v-o_v} \rangle \leq \langle a^v \rangle \leq H \leq G_d \leq G_{ov}.

This proves that $G_{ov} \in X$. Let $B \in X$. Since $G_{ov} \leq B$ then $B = G_t$ for some divisor t of o_v. Thus $B' \leq \langle a^t \rangle \leq H \leq \langle a \rangle = \langle a^v \rangle$. This implies that $v|t - 1$ and then $o_v|t$ which implies that $B = G_t \leq G_{ov}$. We conclude that G_{ov} is the unique maximal element of X.

In the remainder of the proof we assume that $d = o_v$ and set $x = a^{c_1}b^{d_1}H$. By 4, $N = N_{G,H} = G_{ov}$, where $o = o_v,d$. Thus $[G: N] = o$, $[G_d:H] = vc$ and N/G_d is cyclic of order d/o_v generated by $b^\nu H$. By Theorem 1.3, $Q\text{Ge}(G,G_d,H) \cong M_0(Q_{vc} \mathbb{Z}_\sigma \mathbb{Z}/K)$ where σ and τ are given as in Theorem 1.3. Since N/G_d is cyclic, $Q_{vc} \mathbb{Z}_\sigma \mathbb{Z}/K$ is a cyclic algebra $\mathcal{U}(vc,u,t)$, where u and t are integers satisfying $(bH)^{-\alpha x}(bH) = x^u$ and $(b^\nu)^{d/\alpha}H = x^t$.

Using 7 one obtains $(b^\nu)^{d/\alpha}H = b^dH = x^{i_1v}v^{-1}$ and

\[(bH)^{-\alpha x}(bH) = b^{-\alpha}c_1b^{d_1}H = a^{c_1r_\alpha + i_1} = x^{c_1r_\alpha + i_1} = x^{1+c_1r_\alpha + i_1v}(i_1v) = x^{1+c_1r_\alpha + i_1v}(i_1v) = x^{1+c_1r_\alpha + i_1v}(i_1v) = x^{1+c_1r_\alpha + i_1v}(i_1v) = x^{1+c_1r_\alpha + i_1v}(i_1v)

where the last equality is a consequence of the fact that $i_1i' \equiv 1 \mod c$ and x has order vc. Thus one can take $u = 1 + cc_1(v_\alpha - 1)$ and $t = i_1v - i$ as wanted.

Now we show some relations on the numerical information attached to the group G.

Lemma 2.3 Let v be a divisor of m, t a divisor of v'_j and i an arbitrary integer.

1. $gcd(d_p,v) = D_v$ and therefore $v|s + i\frac{n}{c}$ if and only if $i = v_\alpha t + v_j'j$ for some $j \in \mathbb{Z}$.
2. If $v | s + in_v$ then $\gcd(i, c_v) = 1$, or equivalently $\gcd(i_v + v'_i j, c_v) = 1$, for every $j \in \mathbb{Z}$.

3. Every prime divisor of c_v is also a prime divisor of v'_i.

4. If $j \in \mathbb{Z}$ and $i = i_v t + v'_i j$ then

$$\gcd(v, i, c_v t) = 1 \iff \gcd(v, i, t) = 1 \iff \gcd(v, j, t) = 1.$$

Proof. 1 is obvious.

2. Let $h = \gcd(i, c_v)$. Then $v | s + \frac{i n_{o_v}}{h c_v / h}$ and hence $\gcd(v, \frac{n_{o_v}}{c_v / h}) | s$. By the definition of c_v, $\frac{c_v}{h} \geq c_v$ and hence $h = 1$.

3. Is a particular case of Lemma 1.2 for $x = \frac{n}{o_v}$, $y = v$ and $z = s$.

4. Since $\gcd(v_j, j, t) | \gcd(v, i, t) | \gcd(v, i, c_v t)$, we only have to prove that $\gcd(v, j, t) = 1$ implies $\gcd(v, i, c_v t) = 1$. By means of contradiction assume that $\gcd(v, j, t) = 1$ and $\gcd(v, i, c_v t)$ has a prime divisor p. We claim that p divides t. Indeed, otherwise p divides c_v and hence p divides v'_i, by 3. This implies that p divides $i_v t$ and hence $p | \gcd(i_v t, c_v)$ contradicting 2. So $p | t$ and hence p divides $v'_i j$ and using that p divides v and $\gcd(v, t, j) = 1$ one deduces that p divides v'_i. Therefore $\gcd(p_v) = \gcd(v_p(D_v) = v_p(\frac{n_v}{o_v})$, by 1. Thus $v_p(t) > v_p(n_v) - v_p(v)$. Since t is a divisor of n_v, $v_p(n_v) > v_p(t) > 0$, and hence $v_p(n_v) = v_p(D_v)$. Thus $v_p(D_v) = v_p(v) < v_p(n_v)$ and $v_p(t) = v_p(n_v) - v_p(D_v) = v_p(v) - v_p(t)$, a contradiction.

We have collected enough tools to prove Theorem 2.1.

Proof of Theorem 2.1. We start proving that for $a_1 = (v_1, j_1, t_1), a_2 = (v_2, j_2, t_2) \in \mathbb{Z}^3$ with $v_l | m$ and $t_l | n_v$ ($l = 1, 2$) then $e_{a_1} = e_{a_2}$ if and only if $v_1 = v_2, t_1 = t_2$ and $j_2 \equiv j_1 r^k + \alpha r^k_v \pmod{D_v}$ for some k. Statement 2 is an obvious consequence of this.

Set $i_1 = i(a_1), d_1 = o_v$, and $c_1 = c_v t_1$ ($l = 1, 2$). By Proposition 1.4, $e_{a_1} = e_{a_2}$ if and only if there is $g \in G$ such that $G_{d_2} \cap H^{a_{v_2}, i_2, d_2} = G_{d_1} \cap H^{a_{v_1}, i_1, d_2} = G_{d_1} \cap H^{a_{v_1}, i_1, d_2}$. In such case $\langle a^{v_1} \rangle = G_{d_2} \cap H^{a_{v_1}, i_1, d_1} \cap \langle a \rangle = G_{d_1} \cap H^{a_{v_1}, i_1, d_1} \cap \langle a \rangle = \langle a^{v_2} \rangle$. Thus $v_1 = v_2$ and as a consequence $d_1 = d_2$ and $H^{a_{v_1}, i_1, d_1} = G_{d_2} \cap H^{a_{v_1}, i_1, d_2} = G_{d_1} \cap H^{a_{v_1}, i_1, d_2} = H^{a_{v_1}, i_1, d_2}$. By Lemma 2.2, $N_G(H^{a_{v_1}, i_1, d_2})$ is abelian with g can be taken of the form $g = b^k$ for some $0 \leq k < o_v, i_1$. Then $H^{a_{v_1}, i_1, d_1} = H^{b^k}$. Applying Lemma 2.2 once more one deduces that c_1, c_2 or equivalently t_1, t_2, and $i_1 r^k \equiv t_2 \pmod{v_1}$. Set $v = v_1$ and $t = t_1$. Then $v | j_2 r^k - i_2 = i_v t (r^k - 1) + v'_i (j_1 r^k - j_2) = v'_i (\alpha r^k_v + j_1 r^k - j_2)$ and therefore $j_2 \equiv j_1 r^k + \alpha r^k_v \pmod{D_v}$. The converse follows by reversing the arguments.

1. By Lemma 2.2, $A = G_{d_m}$ is a maximal subgroup of G containing G' and the subgroups of G containing A are the groups of the form G_d with $d | d_m$. Since G is metabelian, by Theorem 1.3 the primitive central idempotents of QG are the elements of the form $e(G, G_d, H) \in \mathbb{Z}$ a divisor of d_m and H a subgroup of G such that G_d is maximal element in the set $X_H = \{ B \leq G : A \leq B \text{ and } B' \leq H \}$. We are going to use this in the remainder of the proof without specific mention.

First we prove that if $a = (v, j, t) \in A$ then e_a is a primitive central idempotent of QG. Set $i = i(a)$ and $H = H^{a_{v}, i, o_v, e_i}$. Notice that $(v, i, c_v t) \in B_{o_0}$ because $v | m_{o_0}, i | n_{o_0} | n$ and $v | s + \frac{n}{o_v}$. Therefore $v | n_{o_0}, o_v, c_v t | n$ and $v | s + \frac{n}{o_v}$. Moreover $\gcd(v, i, c_v t) = 1$, by Lemma 2.3, and hence G_{o_0}/H is cyclic, by statement 7 of Lemma 2.2. By statement 8 of Lemma 2.2, G_{o_0} is the unique maximal element element of X_H and we conclude that $e_a = e(G, G_{d_m}, H)$ is a primitive central idempotent of QG.

9
Conversely, let \(e \) be a primitive central idempotent of \(\mathbb{Q}G \). Thus \(e = e(G,G_d,H) \) with \(d \) a divisor of \(o_n \), \(H \) a subgroup of \(G, G_d \) a maximal element of \(X_H \) and \(G_d/H \) cyclic. By statement 6 of Lemma 2.2, \(H = H_{\lambda,i,d} \) with \((v,i,c) \in B_{\lambda} \) and \(\gcd(v,i,c) = 1 \). Moreover \(d \) by statement 8 of Lemma 2.2. Thus \((v,i,c) \in B_{\lambda,v} \), hence \(v|s + i \frac{n}{o_v}c \) and so \(\gcd(v, \frac{n}{o_v}c) \) divides \(s \) or equivalently \(c_v | c \), that is \(c = c_v t \) for some \(t | n_v \). Thus \(t | n_v' \) and \(v|s + i \frac{n}{o_v}c \). By Lemma 2.3, \(i = i_v t + v'_v j \) for some \(j \in \mathbb{Z} \)
and \(\gcd(v,j,t) = 1 \). Thus \(e = e(G,G_{\lambda,v},H_{\lambda,i,o_v,c_v}) = e_{v,j,t} \). If \(j \equiv j_1 \mod D_v \) then \(e = e_{v,j_1,t} \), by the first paragraph of the proof, and \(\gcd(v,j_1,t) = \gcd(D_v,j_1,t) = \gcd(D_v,j,t) = \gcd(v,j,t) = 1 \). Thus by replacing \(j \) by its remainder module \(D_v \), we may assume that \((v,j,t) \in \mathcal{A} \) and the proof of 1 is finished.

3. By 2, the elements of \(\mathcal{A} \) that give rise to the same idempotent than \((v,j,t) \) are the elements of the form \((v,j_1,t) \in \mathcal{A} \) with \(j_1 \equiv jr^k + \alpha_{k,v}t \mod D_v \) for some \(k \in \mathbb{Z} \). If \(i = i_v t + v'_v j_1 \) and \(i_1 = i_v t + v'_v j_1 \), then \(j_1 \equiv jr^k + \alpha_{k,v}t \mod D_v \) if and only if \(i_1 \equiv ir^k \mod v \). Therefore there are as many integers \(0 \leq j_1 < D_v \) satisfying \(j_1 \equiv jr^k + \alpha_{k,v}t \mod D_v \) as classes module \(v \) of elements of the form \(vr^k \), and this number coincides with the number of classes module \(\gcd(i,v) \) of powers of \(r \) which is equal to \(o_v,i \). Moreover this \(o_v,i \) classes module \(\gcd(i,v) \) are realized with the exponents \(0 \leq k < o_v,i \) and therefore the \(o_v,i \) different elements of \(\mathcal{A} \) that give rise to \(e_{v,j_1,t} \) are the elements of the form \((v,j_1,t) \) with \(j_1 \) running on the reminders module \(D_v \) of the elements of the form \(vr^k \), with \(0 \leq k < o_v,i \).

4. If \(a = (v,j,t) \in \mathcal{A} \) and \(i = i(t) \) then \((v,i,c_v t) \in B_{\lambda} \) and \(\gcd(v,i,t) = 1 \), by Lemma 2.3. Now statements 7 of 8 of Lemma 2.2 apply.

3 \ Aut(\mathbb{Q}G) \ for \ n = pq

The aim of this section is to provide enough information to compute \(\text{Aut}(\mathbb{Q}G) \) for \(G = G_{m,r,n,s} \) where \(n \) is the product of two primes. The case of \(n \) being prime was considered in [6]. Unfortunately there is an error in the main theorem of [6]. Our results will also correct this error along the way. Following the program explained in the introduction we first have to compute simple components of the Wedderburn decomposition of \(\mathbb{Q}G \) and then classify these simple components in isomorphism classes. The first can be done as explained in Section 2. We are going to present a more precise description of Lemma 2.2. Following the program explained in the introduction we first have to compute simple components of the Wedderburn decomposition of \(\mathbb{Q}G \) and then classify these simple components in isomorphism classes. The first can be done as explained in Section 2. We are going to present a more precise description of Proposition 3.1. Theoretically one could attack the second problem by using classical methods including the Brauer-Witt Theorem, and methods to compute local Schur indices of cyclic algebras and Hasse invariants. Unfortunately these methods are usually difficult to apply in concrete examples.

Throughout this section \(p \) and \(q \) denote prime integers, not necessarily different, \(G = G_{m,r,n,s} \) is a metacyclic group as in (1.1) with \(n = pq \) and \(\mathcal{A} = \mathcal{A}_{m,r,n,s} \). By Theorem 2.1 the primitive central idempotents of \(\mathbb{Q}G \) are parametrized by the elements of \(\mathcal{A} \). We define the following two equivalent relations in \(\mathcal{A} \):

\[
A_1 \equiv A_2 \iff S_{A_1} = S_{A_2} \quad \text{and} \quad A_1 \sim A_2 \iff S_{A_1} \simeq S_{A_2}.
\]

Solving Problem 1 of the introduction for \(G \) is equivalent to describing the partition \(\mathcal{A}/ \equiv \) and solving Problem 2 is equivalent to describe the partition \(\mathcal{A}/ \sim \).

If \(P_1 \) and \(P_2 \) are two partitions of a set then we write \(P_1 \leq P_2 \) if \(P_1 \) is less or equally fine than \(P_2 \), that is if every element of \(P_1 \) contains an element of \(P_2 \). For every \(d|n \) let \(A_d = \{a = (v,j,t) \in \mathcal{A} : o_v = d\} \). Then \(P = \{A_1,A_2,A_p,A_{pq}\} \) is a partition of \(\mathcal{A} \). If \(a_1 = (v_1,j_1,t_1), a_2 = (v_2,j_2,t_2) \in \mathcal{A} \) then the degree of \(S_{a_1} \) is \(o_v,i \) and therefore

\[
a_1 \equiv a_2 \iff a_1 \sim a_2 \iff o_{v_1} = o_{v_2}.
\]

10
Thus \(P \leq A/ \sim \leq A/ \equiv \) and hence describing \(A/ \equiv \) and \(A/ \sim \) reduces to describing \(A_k/ \equiv \) and \(A_k/ \sim \) for \(k | pq \). To avoid trivialities we do not consider \(k = 1 \) and by symmetry we also do not consider \(k = q \). So in the remaining of the paper we study the partitions \(A_k/ \equiv \) and \(A_k/ \sim \) for \(k = p \) and \(k = pq \).

3.1 \(A_p/ \equiv \) and \(A_{pq}/ \equiv \)

If \(v | m \) and \(o_v = pq \) then \(n_v' = 1 \) and therefore

\[
A_{pq} = \{(v, 0, 1) : v | m, r^p \neq 1 \neq r^q \mod v\}.
\]

By Theorem 2.1, \(A_{pq} = A_{pq}/ \equiv \), that is the \(\equiv \)-classes of \(A_{pq} \) have one element.

For every divisor \(v \) of \(m \) let \([v]\) denote the set of elements of \(A \) whose first coordinate is \(v \) and let \(Q = \{[v] : v | m, o_v = p\} \), a partition of \(A_p \). By Theorem 2.1, \(Q \leq A_p/ \equiv \) and thus describing \(A_p/ \equiv \) reduces to describing \([v]/ \equiv \) for every \(v | m \) such that \(o_v = p \).

Fix \(v | m \) such that \(o_v = p \). A simple argument shows that

\[
D_v = \begin{cases} q, & \text{if } q | v \text{ and } q | s; \\ 1, & \text{otherwise;} \end{cases} \quad \text{and} \quad n'_v = \begin{cases} 1, & \text{if } q | v; \\ q, & \text{if } q \nmid v. \end{cases}
\]

and therefore

\[
[v] = \begin{cases} \{(v, 0, 1), (v, 0, q)\} & \text{if } q \nmid v \\ \{(v, 0, 1)\} & \text{if } q | v \text{ and } q \nmid s \\ \{(v, j, 1) : 0 \leq j < q\} & \text{if } q | v \text{ and } q | s. \end{cases} \quad (3.5)
\]

Let \(a = (v, j, t) \in A_p \) and \(\overline{a} \) the \(\equiv \)-class containing \(a \). By Theorem 2.1 and (3.5), if \(q \nmid s \) or \(q \nmid v \) then \(\overline{a} = \{q\} \). Assume that \(q | s \) and \(q | v \). Then one can take \(i_v = -s/q \) and with this choice one has \(i(a) = \frac{v - s}{q} \). By Theorem 2.1, \(\overline{a} \) has cardinality \(o_{v,i(a)} \), a divisor of \(o_v = p \). Assume first that \(q | r - 1 \). Then using \(v | (r - 1)s \) one has that \(o_{v,i(a)} = 1 \) if and only if \(v | (r - 1)i(a) \) if and only if \(v | (r - 1)\frac{s}{q} \) if and only if \(q \nmid (r - 1)s \). Therefore if \(v_q(v) < v_q((r - 1)s) \) then \([v] = [v]/ \equiv \) and otherwise \([v] \) is formed by \(\equiv \)-classes of cardinality \(p \) and this implies that \(p = q \), so that \([v]/ \equiv \) has exactly one element.

Assume now that \(q \nmid r - 1 \), then \(o_{v,i(a)} = 1 \) if and only if \(v | (r - 1)i(a) \equiv (r - 1)\frac{s}{q} \) if and only if \(q | \frac{(r - 1)i(a)}{v} \) if and only if \(q | \frac{(r - 1)i(a)}{v} \). By Theorem 2.1, \(\overline{a} \) is the \(\equiv \)-class containing \(a \), and \(\overline{a} = \{v, j, 1\} \), where \(j \) is the solution of the equation \((r - 1)X = \frac{(r - 1)i(a)}{v} \mod q \). This implies that \(p | (r - 1) \) and \([v] \) is formed by one \(\equiv \)-class of cardinality \(1 \) and \(\frac{q - 1}{p} \) classes of cardinality \(p \).

The following proposition collects the information obtained about the description of \(A_p/ \equiv \) and \(A_{pq}/ \equiv \).

Proposition 3.1

1. \(A_{pq} = A_{pq}/ \equiv \).

2. If \(q \nmid s \) then \(A_p = A_p/ \equiv \).

3. Assume that \(A_p \neq A_p/ \equiv \) (and so \(q | s \)). Then every \(\equiv \)-class has either 1 or \(p \)-elements and the \(\equiv \)-classes with \(p \) elements are embedded in the sets of the form \([v]/ \equiv \) with \(v | m, o_v = p \) and \(q | v \).

 a. If \(q | r - 1 \) then \(p = q \) and the \(\equiv \)-classes with \(p \) elements are the sets of the form \([v]/ \equiv \) with \(v | m, o_v = p \) and \(v_q(v) = v_q((r - 1)s) \).
(b) If \(q \mid r - 1 \) then \(p \mid q - 1 \) and for every \(v \mid m \) such that \(q \mid v \), \([v]/\equiv \) is formed by one class with one element, namely \(\{(v,j,1)\} \) with \(0 \leq j < q \) and \((r - 1)j \equiv \frac{s(r-1)}{v} \) mod \(q \), and \((q - 1)/p \) classes with \(p \) elements.

Now we focus on the description of the \(\sim \)-classes. The Schur index of a central simple algebra \(A \) is denoted by \(\text{ind}(A) \). The index \(\text{ind}(C) \) of an equivalence class \(C \) of \(A/\sim \) is by definition \(\text{ind}(S_a) \), for \(a \) a representative of \(C \).

For every divisor \(v \) of \(m \) we choose \(i_v \) as follows:

\[
i_v = \begin{cases}
-s & \text{if } o_v = pq \text{ or } q \mid v, q \mid s \text{ and } o_v = p, \\
-s/q & \text{if } q \mid v, q \mid s \text{ and } o_v = p, \\
-sy & \text{if } q \mid v \text{ and } o_v = p
\end{cases}
\]

(3.6)

3.2 \(\mathcal{A}_{pq}/\sim \)

For every subset \(X \) of \(\mathcal{A}_{pq} \) we set \(\overline{X} = \{v : (v,0,1) \in X\} \). Let \(v \in \overline{\mathcal{A}_{pq}} \). By Theorem 2.1, and having in mind that \(n_v = 1 \) and we have taken \(i_v = -s \) then

\[S_{v,0,1} \simeq U(v,r,s). \]

The main result on the components of degree \(pq \) is the following.

Theorem 3.2 Assume that \(q \leq p \) and let \(C \) be a class of \(\mathcal{A}_{pq}/\sim \) with \(|C| \geq 2 \). Then there is an integer \(d \) such that either \(\overline{C} = \{d,2d\} \) with \(2 \mid d \) or \(q = 2 \) and one of the following conditions holds:

1. \(\overline{C} \subseteq \{3d,4d,6d\} \), with \(\gcd(6,d) = 1 \) and \(\text{ind}(C)|p \).

2. \(2p + 1 \) is prime, \(2p + 1 \mid d|r - 1 \), \(\text{ind}(C)|2 \) and one of the following conditions holds:

 (a) \(\overline{C} \subseteq \{2pd,(2p+1)d,3pd\} \) with \(2,p|d \) and if \(3pd \in \overline{C} \) then \(3 \mid d \). In this case \(\text{ind}(C) = 1 \).

 (b) \(\overline{C} \subseteq \{4pd,3pd,6pd,(2p+1)d,2(2p+1)d\} \), with \(\gcd(2p,d) = p \neq 2 \) and if \(\{3d,6d\} \cap \overline{C} \neq \emptyset \) then \(3 \mid d \). Moreover if \(4pd \in \overline{C} \) then \(\text{ind}(C) = 1 \).

 (c) \(\overline{C} \subseteq \{8d,12d,5d,10d\} \) with \(p = 2 \), \(\gcd(10,d) = 1 \) and if \(12d \in \overline{C} \) then \(3 \mid d \). Moreover if \(8d \in \overline{C} \) then \(\text{ind}(C) = 1 \).

 (d) \(\overline{C} \subseteq \{9d,18d,7d,14d\} \), with \(p = 3 \), \(\gcd(21,d) = 1 \) and if \(\overline{C} \cap \{18d,14d\} \neq \emptyset \in \overline{C} \) then \(2 \mid d \).

As a consequence one obtains the following restrictions on the cardinalities of the \(\sim \)-classes of \(\mathcal{A}_{pq} \).

Corollary 3.3 Let \(C \) be an isomorphism class of simple components of the Wedderburn decomposition of \(\mathbb{Q}G_{m,r,pq,s} \), with \(q \leq p \) prime integers formed by simple algebras of degree \(pq \). Then

1. \(|C| \leq 5 \) and if \(\text{ind}(C) = pq \) then \(|C| \leq 2 \).
2. If either \(m \) or \(pq \) is odd then \(|C| \leq 2 \).
3. If \(m \) is odd and \(\text{ind}(C) = pq \) then \(|C| = 1 \).
4. If \(3 \nmid m \) or \(2p + 1 \) is not prime then \(|C| \leq 3 \).
5. If \(\gcd(m, 6) = 1 \) then \(|C| = 1 \).

Before proving Theorem 3.2 we prove some lemmas which will be used to recognize isomorphic simple components of \(\mathbb{Q}G \). The Euler function is denoted by \(\phi \).

Lemma 3.4 If \(d \mid v \) are integers then

1. \(\phi(v) = \phi(d) \) if and only either \(d = v \) or \(d \) is odd and \(v = 2d \).
2. \(\phi(v) = p\phi(d) \) if and only if \(p = 2, \gcd(d, \frac{v}{2}) = 1 \) and \(\frac{v}{2} \) is either 3, 4 or 6.
3. \(\phi(v) = pq\phi(d) \) with \(q \leq p \) if and only if one of the following conditions holds:

 (a) \(v = pqd \) and \(p, q \mid d \).

 (b) \(v = 2pqd \), \(p, q \mid d \) and \(\gcd(2, d) = 1 \).

 (c) \(q = 2 \) and one of the following conditions holds:

 (c1) \(v = 4pd, p \mid d \) and \(\gcd(2p, d) = p \neq 2 \).

 (c2) \(v = 3pd, p \mid d \), and \(\gcd(3p, d) = p \neq 3 \).

 (c3) \(v = 6pd, p \mid d \), and \(\gcd(6p, d) = p \neq 2, 3 \).

 (c4) \(v = 8d, p = 2 \) and \(\gcd(2, d) = 1 \).

 (c5) \(v = 12d, p = 2 \) and \(\gcd(6, d) = 1 \).

 (c6) \(v = 9d, p = 3 \) and \(\gcd(3, d) = 1 \).

 (c7) \(v = 18d, p = 3 \) and \(\gcd(6, d) = 1 \).

 (c8) \(v = (2p + 1)d, 2p + 1 \) prime and \(\gcd(2p + 1, d) = 1 \).

 (c9) \(v = 2(2p + 1)d, 2p + 1 \) prime and \(\gcd(2(2p + 1), d) = 1 \).

Proof. Write \(v = p_1^{\alpha_1} \cdots p_k^{\alpha_k} q_1^{\beta_1} \cdots q_l^{\beta_l} \) and \(d = p_1^{\gamma_1} \cdots p_k^{\gamma_k} q_1^{\beta_1} \cdots q_l^{\beta_l} \) with \(p_1, \ldots, p_k, q_1, \ldots, q_l \) different primes, \(\alpha_i \geq \gamma_i \geq 1 \) for every \(1 \leq i \leq k \) and \(\beta_j \geq 1 \) for every \(1 \leq j \leq l \). Then

\[
\frac{\phi(v)}{\phi(d)} = p_1^{\alpha_1-\gamma_1} \cdots p_k^{\alpha_k-\gamma_k} q_1^{\beta_1-1} \cdots q_l^{\beta_l-1} (q_1 - 1) \cdots (q_l - 1)
\]

and the rest of the proof is elementary. \(\blacksquare \)

Lemma 3.5 Let \(V \cup \{k\} \) be a set of positive integers such that \(k = \left[\mathbb{Q}_v : \cap_{v \in V} \mathbb{Q}_v \right] \), for every \(v \in V \) and let \(d = \gcd(V) \).

1. \(k = 1 \) if and only if \(|V| = 1 \) or \(v \) is odd and \(V = \{d, 2d\} \).

2. If \(k = p \) is prime then \(p = 2, \gcd(6, d) = 1 \) and \(V \subseteq \{3d, 4d, 6d\} \).

3. If \(k = pq \) with \(q \leq p \) prime integers then \(q = 2, 2p + 1 \) is prime \(2p + 1 \nmid d \) and one of the following conditions holds:

 (a) \(2, p \mid d, V \subseteq \{2pd, 3pd, (2p + 1)d\} \) and if \(3pd \in V \) then \(3 \nmid d \).

 (b) \(\gcd(2p, d) = p \neq 2, V \subseteq \{4pd, 3pd, 6pd, (2p + 1)d, 2(2p + 1)d\} \) and if \(\{3pd, 6pd\} \cap V = \emptyset \) then \(3 \nmid d \).

 (c) \(p = 2, \gcd(10, d) = 1, V \subseteq \{8d, 12d, 5d, 10d\} \) and if \(12d \in V \) then \(3 \nmid d \).
(d) \(p = 3, \gcd(21, d) = 1, V \subseteq \{9d, 18d, 7d, 14d\} \) and if \(V \cap \{18d, 14d\} \neq \emptyset \) then \(2 \nmid d \).

Proof. Note that \(\mathbb{Q}_d = \cap_{v \in V} \mathbb{Q}_v \).

1 and the sufficient conditions in 2 and 3 are consequences of Lemma 3.4. We have to prove the necessary conditions of 2 and 3.

2. Assume that \(k = p \) is prime and let \(v_1, v_2 \in V \) such that \(\mathbb{Q}_{v_1} \neq \mathbb{Q}_{v_2} \). Then \(\mathbb{Q}_d \subseteq \mathbb{Q}_{v_1} \cap \mathbb{Q}_{v_2} \neq \mathbb{Q}_{v_i} \) and hence \(\mathbb{Q}_d = \cap_{v \in V} \mathbb{Q}_v \). By Lemma 3.4, \(p = 2 \) and \(V \subseteq \{3d, 4d, 6d\} \) with \(\gcd(6, d) = 1 \).

3. Assume now that \(k = pq \) with \(q \leq p \). We claim that there are \(v_1, v_2 \in V \) such that \(\mathbb{Q}_{v_1} \cap \mathbb{Q}_{v_2} = \mathbb{Q}_d \) for \(i = 1, 2 \). Otherwise for every \(v_1, v_2 \in V \) such that \(\mathbb{Q}_{v_1} \neq \mathbb{Q}_{v_2} \), \(\mathbb{Q}_{v_1} \cap \mathbb{Q}_{v_2} \) is either \(p \) or \(q \), which by case 2, should be 2. Thus \(q = 2 \), \(\mathbb{Q}_{v_1} \cap \mathbb{Q}_{v_2} = \mathbb{Q}_d \) with \(\gcd(6, d) = 1 \) and one can assume that \(v_1 = 4d \) and \(v_2 \in \{3d, 6d\} \). Then there is \(v_3 \in V \setminus \{4d, 3d, 6d\} \) and then \(\mathbb{Q}_{v_1} \cap \mathbb{Q}_{v_2} \cap \mathbb{Q}_{v_3} = 2p \) for every \(v \in V \). By assumption \(\mathbb{Q}_{v_1} \cap \mathbb{Q}_{v_3} \neq \mathbb{Q}_d \) and hence, using 2, we deduce that \(\mathbb{Q}_{v_1} \cap \mathbb{Q}_{v_3} = \mathbb{Q}_d \) with \(\gcd(6, d') = 1 \) and \(v_1, v_3 \in \{4d', 3d', 6d'\} \). Thus \(d' = d \) and this leads to a contradiction.

So let \(v_1, v_2 \in V \) be such that \(\mathbb{Q}_{v_1}, \mathbb{Q}_{v_1} \cap \mathbb{Q}_{v_2} = \mathbb{Q}_d \) and the pairs \((v_1, d)\) and \((v_2, d)\) satisfy one of the conditions (a), (b) or (c) of Lemma 3.4. This leads to a very big list of cases that can be reduced having in mind that \(\gcd(v_1/d, v_2/d) = 1 \). Obviously \(\{v_1, v_2\} \neq \{pqd, 2pqd\} \) and therefore \(q = 2 \) and one of the following cases holds:

(a) \(\{v_1, v_2\} = \{2pd, (2p + 1)d\} \) with \(2, p|d \).

(b) \(\{v_1, v_2\} = \{4pd, (2p + 1)d\} \) with \(\gcd(2pd, d) = \gcd(2pd, 2p + 1) = 2; \) or \(\{v_1, v_2\} = \{3pd, (2p + 1)d\} \) with \(\gcd(3pd, d) = \gcd(3pd, 2p + 1) = 3; \) or \(\{v_1, v_2\} = \{6pd, (2p + 1)d\} \) with \(\gcd(6pd, d) = \gcd(6pd, 2p + 1) = 2, 3 \).

(c) \(\{v_1, v_2\} = \{8d, 5d\} \) with \(p = 2 \); or \(\{v_1, v_2\} = \{12d, 5d\} \) with \(p = 2 \) and \(\gcd(6, d) = 1 \).

(d) \(\{v_1, v_2\} = \{9d, 7d\} \) with \(p = 3 \); or \(\{v_1, v_2\} = \{9d, 14d\} \) with \(p = 3 \) and \(\gcd(6, d) = 1 \); or \(\{v_1, v_2\} = \{18d, 7d\} \) with \(p = 3 \) and \(\gcd(6, d) = 1 \).

If \(v \in V \) then \(\mathbb{Q}_{v_1}, \mathbb{Q}_{v_1} \cap \mathbb{Q}_{v_2} \) is divisor of 2p and using all the previous information one easily obtains the desired conclusion.

Now we are ready for the

Proof of Theorem 3.2. Let \(C \) be a \(-\)-class of \(\mathcal{A}_{pq} \) with at least two elements, let \(V = \overline{C} \), \(d = \gcd(V) \) and write \(S_v = S_{v,0,1} \) for every \(v \in V \).

We claim that the centre \(K_v = \{x \in \mathbb{Q}_v : \sigma_v(x) = x\} \) of \(S_v \) is the same for every \(v \in V \). If \(v_1, v_2 \in C \) then there is a field isomorphism \(f : K_{v_1} \rightarrow K_{v_2} \). Since \(\mathbb{Q}_{v_1}/\mathbb{Q} \) is a Galois extension, \(f \) extends to an automorphism of \(\mathbb{Q}_{v_1} \). Thus \(K_2 \subseteq \mathbb{Q}_{v_1} \) and this implies that \(K_2 \subseteq K_1 \). By symmetry \(K_1 \subseteq K_2 \).

Let \(K \) be the common centre of all the \(S_v \) with \(v \in V \). Then \(K \) is a subfield of index \(pq \) in \(\mathbb{Q}_v \) for every \(v \in C \) and \(k = [\mathbb{Q}_v : \cap_{u \in V} \mathbb{Q}_u] = [\mathbb{Q}_v : \mathbb{Q}_v] \) is independent of \(v \). If \(k = 1 \) then by Lemma 3.5, \(V = \{d, 2d\} \) for some odd integer \(d \).

In the remainder of the proof we are going to use several times Lemma 3.5 without specific mention and the following argument: If \(v_1, v_2 \in C \) and \(v = \gcd(v_1, v_2) \) then \(\xi_{v_1}^s, \xi_{v_2}^s \in K \subseteq \mathbb{Q}_{v_1} \cap \mathbb{Q}_{v_2} = \mathbb{Q}_v \) and hence \(v_{\Pi_{v_1}^s} = 2s \). Moreover if \(v \) is even, then the same argument shows that \(v_{\Pi_{v_1}^{2s}} = 8s \).

Assume that \(k \neq 1 \). Then \(q = 2 \) and hence \(k = 2 = 2p \). If \(k = 2 \) then \(\gcd(6, d) = 1 \) and \(4d \in V \subseteq \{4d, 3d, 6d\} \). Then \(6|s \) (because either \(3d \) or \(6d \) belongs to \(V \)) and from \(4d, 3d|s(r - 1) \) one deduces that \(6d|s(r - 1) \). By Lemma 1.2, if \(3d \in V \) then \(\text{ind}(C) = \text{ind}(U(3d, r, s))|p \) and if \(6d \in V \) then \(\text{ind}(C) = \text{ind}(U(6d, r, s))|p \).
Assume now that $k = pq$, and so $K = K_d$, so that $d|r-1$. Then $2p+1$ is prime and one of the cases (a)-(d) of Lemma 3.5 holds. We consider the four cases separately.

(a) Since $2pd, (2p+1)d \in V$, one has $2p(2p+1)|s$ (here we use that $2|d$), and hence $(2p+1)d|\frac{s}{3p}(r-1)$. We conclude that $\text{ind}(C) = 1$.

(b) If $\{3pd, 6pd\} \cap V = \emptyset$ then $4pd, (2p+1)d \in V$ and hence $4p(2p+1)|s$ and $(2p+1)d|\frac{s}{3p}(r-1)$, concluding that $\text{ind}(C) = 1$. Otherwise $V \cap \{ (2p+1)d, 2(2p+1)d \} \neq \emptyset$ and so $3p(2p+1)|s$ and $(2p+1)d|\frac{s}{3p}(r-1)$. If $(2p+1)d \in V$ then $\text{ind}(C) = \text{ind}(U((2p+1)d, r, s))|2$. If $(2p+1)d \in V$ then r is odd and therefore $2(2p+1)d|\frac{s}{3p}(r-1)$. Then we conclude that $\text{ind}(C) = \text{ind}(U(2(2p+1)d, r, s))|2$.

(c) In this case $p = 2$ and $5d \in V$. If $8d \in V$ then $20|s$ and $5d|\frac{s}{2}(r-1)$, so that $\text{ind}(C) = 1$. If $12d \in V$ then $30|s$ and $5d|\frac{s}{2}(r-1)$ concluding that $\text{ind}(C)|2$.

(d) Similar arguments shows that $3|s$ and $v|\frac{s}{2}(r-1)$ for some $v \in V$, concluding that $\text{ind}(C)|2$.

By Theorem 3.2 the equivalence classes of A_{pq}/\sim of index pq have at most two elements and the classes with two elements are of the form $\{v, 2v\}$ with v odd. In fact if $G = G_{m, r, n, s}$ with m even and n and arbitrary odd integer then for every v/m such that v is odd and $o_m = n$ then the \sim-class containing $a = (v, o, 1) \in A_{m, r, n, s}$ contains at least two elements. Indeed, $a' = (2v, 0, 1) \in A_{m, r, n, s}$ and using Theorem 2.1 and Corollary 1.6 it is easy to see that $S_a \simeq U(v, r, s) \simeq U(2v, r, s) \simeq S_{a'}$. This contrast with [6, Corollary 3.1] which states that if $n = p$ is prime then every non commutative division ring appears at most once in the Wedderburn decomposition of QG. The following example contradicts this statement: Let $G = G_{m, r, p, s}$ with m odd and $o_m(r) = p$ odd prime and assume that G can be embedded in the group of units of a division ring. It is easy to construct such a group by using Theorem 1.5 (see Example 3.11). Then QG has a simple component that is a division ring $D \simeq U(m, r, s)$. If C_2 denotes the cyclic group of order 2, then $G_1 = G \times C_2 \simeq G_{2m, r_1, p, 2s}$ where r_1 is odd and $r_1 \equiv r \mod m$. Moreover QG has two simple components isomorphic to D, because $QG_1 \simeq (QG)^2$. The error in the proof of [6, Corollary 3.1] relies in an error in the proof of [6, Theorem 3] based in deducing that $\xi_{2d}^p = \xi_{2d}^{-p}$ is a norm from the existence of an isomorphism $(Q_d, \sigma, \xi_{2d}) \simeq (Q_{2d}, \sigma, \xi_{2d})$. This is correct if the isomorphism is an isomorphism of simple algebras but it is not if it is just a ring isomorphism (see Lemma 1.1). In fact [6, Corollary 3.1] is quite close to be true, namely a non commutative division ring appears at most twice in the Wedderburn decomposition of $QG_{m, r, p, s}$. This is a direct consequence of the following Theorem that can be easily proven using Theorem 2.1 and the subsequent Lemma 3.9.

Theorem 3.6 Let $G = G_{m, r, p, s}$ be a metacyclic group with p prime. There is a one to one correspondence $v \mapsto S_v = S_{v, 0, 1} \simeq U(v, r, s)$ from $X = \{v|m : v \not| r-1\}$ to the set of noncommutative simple components of the Wedderburn decomposition of QG. If $v_1, v_2 \in X$ then $S_{v_1} \simeq S_{v_2}$ if and only if $\text{ind}(S_{v_1}) = \text{ind}(S_{v_2})$ and one of the following conditions holds:

1. $v_1 = v_2$.
2. $\{v_1, v_2\} = \{d, 2d\}$ with $2 \not| d$.
3. $\text{ind}(S_{v_1}) = 1$, $p = 2$ and either $\{v_1, v_2\} = \{4d, 3d\}$ or $\{v_1, v_2\} = \{4d, 6d\}$.

3.3 A_p/\sim

In the remainder of the paper we study A_p/\sim. It is clear that the index of every $C \in A_p/\sim$ is either 1 or p and therefore for every $a \in A_p$, S_a is either a split algebra or a division ring. The goal
is obtaining a characterization of when two elements \(a_1, a_2 \in \mathcal{A}_p \) are \(\sim \)-equivalent. By Subsection 3.1, \(\{ \mathcal{A}_p^{p_k}, \mathcal{A}_p^{p_j}, \mathcal{A}_p^{p_j}, \mathcal{A}_p^{p_j} \} \) is a partition of \(\mathcal{A}_p \) where

\[
\mathcal{A}_p^{p_k} = \{ a = (v, j, t) \in \mathcal{A}_p : q \mid v \text{ and } o_{v, i(a)} = k \}
\]

\[
\mathcal{A}_p^{p_j} = \{ a = (v, j, t) \in \mathcal{A}_p : q \mid v \text{ and } t = k \}
\]

In order to state the main result of this section we establish the following ordering:

\(\mathcal{A}_p^p < \mathcal{A}_p^{p_k} < \mathcal{A}_p^{p_j} < \mathcal{A}_p^{p_j} \).

Theorem 3.7 Let \(X_1 \leq X_2 \) be two elements of \(\{ \mathcal{A}_p^{p_k}, \mathcal{A}_p^{p_j}, \mathcal{A}_p^{p_j}, \mathcal{A}_p^{p_j} \} \) and let \(a_1 = (v_1, j_1, t_1) \in X_1 \) and \(a_2 = (v_2, j_2, t_2) \in X_2 \). Then \(a_1 \sim a_2 \) if and only if \(\text{ind}(S_{a_1}) = \text{ind}(S_{a_2}) \) and one of the following conditions holds:

1. \(X_1 = X_2 \) and one of the following conditions holds:

 (a) \(v_1 = v_2 \).

 (b) \(\{v_1, v_2\} = \{d, 2d\} \) for \(d \) an odd integer.

 (c) \(p = 2, X_1 \neq \mathcal{A}_p^p, \text{ind}(S_{a_1}) = 1 \) and \(\{v_1, v_2\} \subseteq \{3d, 4d, 6d\} \) for \(d \) an integer such that \(\gcd(d, 6) = 1 \) and \(\mathbb{Q}_d \simeq Z(S_{a_1}) \simeq Z(S_{a_2}) \).

2. \(p = 2, X_1 = \mathcal{A}_p^p, X_2 = \mathcal{A}_p^p, \text{ind}(S_{a_1}) = 1, v_1 | (r - 1)yy \) and one of the following conditions holds:

 (a) \(qv_2 = 3v_1 \) and \(\gcd(3, v_1) = 1 \).

 (b) \(qv_2 = 4v_1 \) and \(\gcd(2, v_1) = 1 \).

 (c) \(qv_2 = 6v_1 \) and \(\gcd(6, v_1) = 1 \).

 (d) \(2qv_2 = 3v_1 \) and \(\gcd(12, v_1) = 2 \).

3. \(X_1 = \mathcal{A}_p^p, X_2 = \mathcal{A}_p^p, q | r - 1 \) and one of the following conditions holds:

 (a) \(q = 2 \) and \(v_1 = v_2 \).

 (b) \(p = 2, q = 3, \text{ind}(S_{a_1}) = 1 \) and there is \(d | r - 1 \) such that \(\gcd(6, d) = 1, v_1 = 4d \) and either \(v_2 = d \) or \(v_2 = 2d \).

4. \(X_1 = \mathcal{A}_p^p \) and \(X_2 = \mathcal{A}_p^p \) or \(X_2 = \mathcal{A}_p^p, p = q = 2 \mid s, \text{ind}(S_{a_1}) = 1 \) and there is \(d | r - 1 \) such that \(\gcd(6, d) = 1, v_1 = 2d \) and \(v_2 = 3d \).

5. \(q | s, X_1 = \mathcal{A}_p^p, X_2 = \mathcal{A}_p^p \) and one of the following conditions holds:

 (a) \(q = 2 \) and \(v_1 = 2v_2 \).

 (b) \(\text{ind}(S_{a_1}) = 1, p = 2 \) and there is \(d | r - 1 \) such that either \(q = 2, v_1 = 4d \) and \(v_2 = 3d \) or \(q = 3, v_1 = 3d \) and \(v_2 = 2d \).

6. \(q | s, r - 1, X_1 = \mathcal{A}_p^p, X_2 = \mathcal{A}_p^p \) and one of the following conditions holds:

 (a) \(v_1 = qv_2 \).

 (b) \(q \neq 2, \{v_1, qv_2\} = \{d, 2d\} \) for some \(2 \mid d \) and either \(\text{ind}(S_{a_1}) = 1 \) or \(p \neq 2 \).
(c) \text{ind}(S_{a_1}) = 1, p = 2 and there is } d | r - 1 \text{ such that } \gcd(6, d) = 1 \text{ and either } \{v_1, qv_2\} = \{4d, 3d\} \text{ or } \{v_1, qv_2\} = \{4d, 6d\}.

We start with a description of } S_a \text{ for every } a \in \mathcal{A}_p. \text{ By the election of } i_v \text{ made in (3.6), for every } a = (v, j, t) \in \mathcal{A}_p \text{ we have}

\[i(a) = i_v t + v'_j t = \begin{cases} \frac{v_j - s}{q}, & \text{if } q \nmid v \text{ and } q \nmid s \\ -s, & \text{if } q | v \text{ and } q \nmid s \\ -syt, & \text{if } q \mid v \end{cases} \]

We denote by } m' \text{ the greatest divisor of } m \text{ which is not multiple of } q. \text{ We are going to fix integers } x \text{ and } y \text{ such that}

\[xm' + yq = 1. \]

Lemma 3.8 Let } a = (v, j, t) \in \mathcal{A}_p \text{ and } s_1 = s/q^k \text{ with } k \geq 0 \text{ and } q^k | s.

1. If } q \nmid s, cq \equiv 1 \mod s \text{ and } a \in \mathcal{A}_p^{11} \text{ then } S_a \simeq \mathcal{U}(vq, 1 + (r - 1)cq, s).

2. If } q | s \text{ and } a \in \mathcal{A}_p^{11} \text{ then } S_a \simeq \mathcal{U}(v, r, \frac{s-q}{q}).

3. If } a \in \mathcal{A}_p^{\nu p} \text{ then } S_a \simeq M_p(\mathcal{Q}, v).

4. If } a \in \mathcal{A}_p^{\nu q} \text{ then } S_a \simeq \mathcal{U}(v, r, sy) \simeq \mathcal{U}(v, r, s_1).

5. If } a \in \mathcal{A}_p^{\nu y} \text{ then } S_a \simeq \mathcal{U}(vq, 1 + (r_1 - 1)yq, 1 + (s_1 - 1)yq) \simeq \mathcal{U}(vq, 1 + (r - 1)yq, 1 + (s_1 - 1)yq).

Proof. We are going to use Theorem 2.1 and the notation established in it without specific reference.

If } a \in \mathcal{A}_p^{\nu p} \text{ then } a_{c,i} = p \text{ and } c_{i}t = 1. \text{ Then } v \equiv r^{p-1} = r^{o_{c,i} - 1} \text{ and so } S_a \simeq M_p(\mathcal{Q}, v).

If } q \nmid s, cq \equiv 1 \mod s \text{ and } a \in \mathcal{A}_p^{11} \text{ then } c_{i}t = q \text{ and } i = -s. \text{ Let } c_1 = c \text{ and } i_1 \text{ be integers such that } c_1q = 1 + i_1s \text{ and set } v_1 = 0 \text{ and } i' = -s. \text{ Then } c_1, i_1, v_1 \text{ and } i' \text{ satisfy the conditions of (2.3) and hence } \mathcal{Q} e_{a} = \mathcal{U}(vq, 1 + (r - 1)cq, s).

Assume now that } q | s \text{ and } a \in \mathcal{A}_p^{11}. \text{ In this case } c_{i}t = 1 \text{ and therefore } v_1 = i_1 = i' = 0 \text{ and } c_1 = 1 \text{ satisfy the conditions of (2.3). Thus } S_a \simeq \mathcal{U}(v, r, -i(a)) = \mathcal{U}(v, r, \frac{s-v}{q}).

If } q | v \text{ then } v \equiv m', i = -syt \text{ and } c_{i}t = q. \text{ Thus the conditions of (2.3) are satisfied setting } v_1 = (1 + i)x_{m'}^i, c_{i}t = (1 + i)y \text{ and } i' = i = 1. \text{ Moreover } 1 + c_{i}c_{i}t(r - 1) - 1 + (1 - syq)yq(r - 1) \equiv 1 + yq(r - 1) \mod vq \text{ and } i'v_1v - i = (1 - syq)x_{m'} + syt \mod vq.

If } a \in \mathcal{A}_p^{11} \text{ then } t = 1 \text{ and } 1 + c_{i}c_{i}t(r - 1) \equiv 1 + yq(r - 1) \equiv r \mod v \text{ and } i'c_{i}t - i = (1 - syq)x_{m'} + sy \equiv sy \mod v. \text{ Thus } S_a \simeq \mathcal{U}(v, r, sy). \text{ Moreover, since } \gcd(q, v) = 1, S_a \simeq \mathcal{U}(v, r, sy) \simeq \mathcal{U}(v, r, s_1), \text{ by Lemma } 1.1.

If } a \in \mathcal{A}_p^{\nu y} \text{ then } t = q \text{ and therefore } i'v_1v - i = (1 - syq)x_{m'} + syq \equiv x_{m'} + syq = 1 + (s - 1)yq \mod vq. \text{ Thus } S_a \simeq \mathcal{U}(vq, 1 + (r - 1)yq, 1 + (s - 1)yq). \text{ Finally assume that } q^k | s \text{ and let } l = x_{m'} + y^{k+1}q. \text{ Then } \gcd(qv, l) = 1 \text{ and applying Lemma } 1.1 \text{ we obtain } S_a \simeq \mathcal{U}(qv, 1 + (r - 1)yq, 1 + (s - 1)yq) \simeq \mathcal{U}(qv, 1 + (r - 1)yq, 1 + (s_1 - 1)yq) = \mathcal{U}(qv, 1 + (r - 1)yq, 1 + (s_1 - 1)yq), \text{ because } l(1 + (s - 1)yq) \equiv y^{k+1}s_1 \equiv s_1 \equiv 1 + (s_1 - 1)yq \mod v \text{ and } l(1 + (s - 1)yq) \equiv x_{m'} \equiv 1 + (s_1 - 1)yq \mod q. \]

The order of a complex root of unity is its order as an element of the multiplicative group } \mathbb{C}^*. \text{ It is not difficult to prove, using Lemma } 1.1, \text{ that if } \xi_{v}^{s_1} \text{ and } \xi_{v}^{s_2} \text{ have the same order then } \mathcal{U}(v, r, s_1) \simeq \mathcal{U}(v, r, s_2).
Lemma 3.9 Let $A_1 = \mathcal{U}(m_1, r_1, s_1)$ and $A_2 = \mathcal{U}(m_2, r_2, s_2)$ be cyclic algebras of degree p and assume that $m_1 \leq m_2$.

1. If $A_1 \simeq A_2$ then one of the following conditions holds.

 (a) $m_1 = m_2$.
 (b) m_1 is odd and $m_2 = 2m_1$.
 (c) $p = 2$ and there is an integer d such that $\gcd(6, d) = 1$, $r_1 \equiv r_2 \equiv 1 \mod d$ and either \{m_1, m_2\} = \{3d, 4d\} or \{m_1, m_2\} = \{4d, 6d\}. Moreover in this case $\text{ind}(A_1) = 1$.

2. Assume that $r_1 = r_2$, $\xi_{m_1}^p$ and $\xi_{m_2}^p$ have the same order, and either $m_1 = m_2$ or m_1 and p are odd and $m_2 = 2m_1$ then $A_1 \simeq A_2$ if one of the following conditions holds:

 (a) $\text{ind}(A_1) = \text{ind}(A_2)$.
 (b) $s_1 = s_2$.

Proof. 1. Let K_i be the centre of A_i ($i = 1, 2$). If $f : A_1 \rightarrow A_2$ is an isomorphism then f induces an isomorphism $f : K_1 \rightarrow K_2$. Since $\mathbb{Q}m_i/\mathbb{Q}$ is a Galois extension f extends to an automorphism of $\mathbb{Q}m_1$. Thus $K_2 \subseteq \mathbb{Q}m_1 \cap \mathbb{Q}m_2$ and $[\mathbb{Q}m_1 : K_2] = [\mathbb{Q}m_1 : K_1] = [\mathbb{Q}m_2 : K_2]$. Similarly K_1 is a common subfield of index p in $\mathbb{Q}m_1$ and $\mathbb{Q}m_2$. Thus $[\mathbb{Q}m_1 : \mathbb{Q}m_1 \cap \mathbb{Q}m_2] = [\mathbb{Q}m_2 : \mathbb{Q}m_1 \cap \mathbb{Q}m_2]$ and this number, denoted k, is either 1 or p. By Lemma 3.5, if $k = 1$ then either $m_1 = m_2$ or m_1 is odd and $m_2 = 2m_1$ and if $k = p$ then $p = 2$ and there is an integer d such that either \{m_1, m_2\} = \{3d, 4d\} or \{m_1, m_2\} = \{4d, 6d\}.

In the latter case $\mathbb{Q}m_1 \cap \mathbb{Q}m_2 = \mathbb{Q}_d = K_1 = K_2$ and therefore $r_i \equiv 1 \mod d$. If $m_1 = 4d$ then $r_1 \equiv -1 \mod 4$ and if $m_i = 3d$ or $6d$ then $r_1 \equiv -1 \mod 3$. By changing r_1 and r_2 if needed one may assume that $r_1 = r_2$, denote r to this number, and hence $r \equiv -1 \mod 12$. By means of contradiction assume that A_1 is a division ring, and hence so is A_2. By Corollary 1.6, m_1 and m_2 are even and therefore $m_1 = 4d$ and $m_2 = 6d$. Since A_1 is a division ring, $\xi_{2d} = -\xi_d \notin N_{\mathbb{Q}m_1/\mathbb{Q}_d}^*$. However $\xi_d = \xi_{2d}^2 \in N_{\mathbb{Q}m_1/\mathbb{Q}_d}^*$ and therefore $-1 \notin N_{\mathbb{Q}m_1/\mathbb{Q}_d}^*$, $A_1 \simeq \mathcal{U}(4d, r, 2) \simeq \mathcal{U}(4d, r, 2d) = (\mathbb{Q}_d, \sigma_r, -1)$ and $A_2 \simeq \mathcal{U}(6d, r, 3) \simeq \mathcal{U}(6d, r, 3d) = (\mathbb{Q}_d, \sigma_r, -1)$. On the other hand, A_2 can be rewritten as $(\mathbb{Q}_d, \sigma_r, -1) = (\mathbb{Q}_d, \sigma_r, -3)$. Now we use statement 6 of Lemma 1.1. First notice that A_1 and A_2 are simple quotients of rational group algebras. Indeed, A_1 is a simple quotient of $\mathbb{Q}G_{4d, r, 2}$ and A_2 is a simple quotient of $\mathbb{Q}G_{4d, r, 2, 3}$. If $f : A_1 \rightarrow A_2$ is an isomorphism then $f(\xi_2) = f(-1) = -1 = \xi_2$. Thus $3 = (-3)(-1)^{-1} \notin N_{\mathbb{Q}_d/\mathbb{Q}'}$. We are going to see that this leads to a contradiction. Using Theorem 1.5 one deduces that $o_{\mathbb{Q}}(2)$ and $o_{\mathbb{Q}}(3)$ are odd. Let $f = o_{\mathbb{Q}}(3)$, p a prime of \mathbb{Q}_d above 3 and q a prime of \mathbb{Q}_d above p. It is well known that f is the residue class degree of p relative to the extension \mathbb{Q}_d/\mathbb{Q} [9]. Since f is odd, the residue class degree of q relative to the extension \mathbb{Q}_d/\mathbb{Q} is $2f$ and this shows that the completion F of \mathbb{Q}_d at p (resp. the completion $E = F[i]$ of \mathbb{Q}_d at q) is the unique unramified extension of the completion of \mathbb{Q} at 3, of degree f (resp. $2f$). Since the value of 3 at p is 1 and $[E : F] = 2$, one has that $3 \notin N_{E/F}^*$ [14, Theorem 14.1] and so $3 \notin N_{\mathbb{Q}_d/\mathbb{Q}}^*$, which is the contradiction searched.

2. Assume that the conditions of 2 holds. If $s_1 = s_2$ then $A_1 \simeq A_2$ by Corollary 1.6. Assume that $\text{ind}(A_1) = \text{ind}(A_2)$. If m_1 is odd then $\mathcal{U}(m_1, r, s_1) = \mathcal{U}(2m_1, r, 2s_1)$ and $\xi_{2m_1} = \xi_{m_1}$ have the same order. Therefore it is enough to prove the statement under the assumption that $m_1 = m_2$, denote this number by m. The centres of A_1 and A_2 are equal (call it K) and hence the statement is obvious if A_1 and A_2 are split. So assume that A_1 and A_2 are division rings. By Lemma 1.1, $a_i = \xi_{m_1}^s \notin N_{\mathbb{Q}_m/K}^*$ while $a_i^p \in N_{\mathbb{Q}_m/K}^*$. By assumption $\langle a_1^p \rangle = \langle a_2^p \rangle$ and therefore if the order of a_i^p
is w then a_1 and a_2 have order pw. Thus there exists t coprime with pw such that $a_2 = a_1^t$. By the Chinese Remainder Theorem one may assume that $\gcd(t, m)$ and so $A_1 \simeq A_2$, by Lemma 1.1.

Before proving Theorem 3.7 we need one more ingredient that is of interest in itself.

Proposition 3.10 Let v a divisor of m such that $a_v = p$ and $C = [v] \cap X$ with $X \in \{A_p^1, A_p^0, A_p^l, A_p^b\}$.

1. One of the following conditions holds:

 (a) All the elements of C are \sim-equivalent.

 (b) $p = q$, $q|r - 1$, $1 \leq v_q(v) < v_q(s)$, $X = A_p^1$, $C = [v]$ and is formed by exactly two \sim-classes C_1 and C_2: $C_1 = \{(v, k, 1)\}$ where $s \equiv vk \mod q \gcd(s, v)$. Moreover S_α is split if $a \in C_1$ and S_α is a division ring if $a \in C_2$.

2. Assume that $q|s$, $q|v$, m is even and v is odd.

 (a) if $2 \neq p \neq q$ then all the elements of $[v] \cap A_p^1$ and $[2v] \cap A_p^1$ are \sim-equivalent.

 (b) if $p = q$ then there is a bijection $f : [2v] \cap A_p^1 \rightarrow [v] \cap A_p^1$ such that $a \sim f(a)$ for every $a \in [2v]$.

Proof. 1. Assume that C/ \sim has at least two elements. By Proposition 3.1 and Lemma 3.8, $X = A_p^1$, $q|s$, $q|v$ and $q|r - 1$ and therefore $C = [v]$. If $p \neq q$ and $a = (v, j, t) \in C$ then using Lemma 1.1 one obtains $S_\alpha \simeq \mathcal{U}(v, r, s) \simeq \mathcal{U}(v, r^q, s)$, that is all the elements of C are \sim-equivalent, a contradiction. Thus $p = q$ and the degree of S_α is $p = q$ and $\xi_v^{p^2} = \xi_v$, does not depend on j. By Lemma 3.9, the cardinality of $[v]/\sim$ is at most two (and so it is exactly two) and $[v]/\sim$ is formed by a class of split algebras and another of (isomorphic) division rings.

Let $0 \leq j < p$ such that $S_{v,j,1} \simeq \mathcal{U}(v, r, \frac{s-v-1}{p})$ is not split. Since $\xi_v^s = \left(\frac{s-v}{p}\right)^p = N_{Q_v/K}(\xi_v^{p^2})$, where K denotes the centre of $S_{v,j,1}$, if w is the order of ξ_v^s then the order of $\xi_v^{p^2}$ is pw. Therefore $\langle \xi_{pw} \rangle \cap N_{Q_v/K}^* = \langle \xi_w \rangle$, because $[\langle \xi_w \rangle : \langle \xi_{pw} \rangle] = p$. Hence, if $d = \gcd(v, s)$ then $S_{v,k,1}$ is split if and only if $\left(\frac{\xi_v}{p}\right)^w = 1$ if and only if $v|\frac{s-k}{p}r$ if and only if $s \equiv vk \mod pd$, if and only if $\frac{s}{k} \equiv \frac{v}{k}$ mod q. Since $[v]/\sim$ has two elements $\frac{v}{k}$ is not a multiple of q, that is $v_q(v) \leq v_q(s)$, and therefore there is exactly one $k \in \mathbb{Z}_q$ for which $S_{v,k,1}$ is split.

2. Assume that the conditions of 2 holds. Since v is odd then $q \neq 2$ and hence $v_q(v) = v_q(2v)$. By Proposition 3.1, $[v] \cap A_p^1$ and $[2v] \cap A_p^1$ have the same cardinality (q, if $q|r - 1$ and $v_q(v) < v_q((r-1)s)$, 0 if $q|r - 1$ and 1 if $v_q(v) < v_q((r-1)s)$). Moreover, if $a_1 = (v, j_1, 1) \in [v] \cap A_p^1$ and $a_2 = (2v, j_2, 1) \in [2v] \cap A_p^1$ then $S_{a_1} \simeq \mathcal{U}(v, r, \frac{s-v}{p})$ and $S_{a_2} \simeq \mathcal{U}(v, r, \frac{2s-v}{2p})$.

(a) If $2 \neq p \neq q$ then $S_{2v,j_1,1} \simeq \mathcal{U}(2v, r^q, s) \simeq \mathcal{U}(v, r^q, s) \simeq S_{v,j_2,1}$, for every $0 \leq j_1 < q$, by Corollary 1.6.

(b) If $p = q$ then the map $f : [2v] \rightarrow [v]$ given by $f(2v, j, 1) = (v, j_1, 1)$ where j_1 is the remainder of $2j$ module q satisfies statement (ii) by Corollary 1.6.

Proof of Theorem 3.7. Write $S_1 = S_{a_1}$. If $a_1 \sim a_2$ then $\text{ind}(S_1) = \text{ind}(S_2)$. So in the remainder of the proof we assume $\text{ind}(S_1) = \text{ind}(S_2) = i$.

We first show that $a_1 \sim a_2$ if one of the cases 1-6 holds. Notice that if $i = 1$ then to prove $a_1 \sim a_2$ it is enough to show that the centres of S_1 and S_2 are isomorphic.
In case 1(a), \(S_1 \simeq S_2 \) is a consequence of Proposition 3.10.

In case 1(b), \(q \neq 2 \) because if \(X_1 = A_p^{[1]} \) or \(A_p^p \) then \(qd \) and otherwise \(q \nmid 2d \). Thus \(qd \) is odd and if \(v_1 = d \) then by using Lemma 3.8 one has that \(S_1 \simeq U(m_1, r_1, s_1) \) and \(S_2 = U(2m_1, r_1, s_1) \simeq S_1 \) with \(m_1 \) odd. Thus \(Z(S_1) \simeq Z(S_2) \) and hence one may assume that \(i = p \). Then \(p \) is odd and \(S_1 \simeq S_2 \) by Corollary 1.6.

In case 1(c) the centres of \(S_1 \) and \(S_2 \) are isomorphic to \(Q_d \).

2. In this case \(Z(S_1) = Q_{v_1} \) and \(Q_{v_1} \subseteq Z(S_2) \subseteq Q_v \) by Lemma 3.8 and the hypothesis \(v_1 \mid (r - 1)yg \). Moreover the hypothesis (a)-(d) imply that \([Q_v : Q_{v_1}] = 2 = p = [Q_v : Z(S_2)] \) and hence \(Z(S_2) = Q_{v_1} \).

3. Let \(s_1 = s/q^q-s \). By Lemma 3.8, \(S_1 \simeq U(v_1, r, s_1) \) and \(S_2 \simeq U(qv_1, 1 + (r - 1)yg, 1 + (s_1 - 1)yg) \), where the last isomorphism is a consequence of \(v \mid m' \mid qy - 1 \) and the hypothesis \(q \mid r - 1 \). In case (b), \(Z(S_1) \simeq Q_d \simeq Z(S_2) \). To prove that \(S_1 \simeq S_2 \) in case (a) notice that \(1 + (s_1 - 1)yg = 1 + 2(s_1 - 1)y \equiv s_1 \mod 2v_1 \) because \(v_1 \mid m' \mid qy - 1 \) and \(s_1 \) is odd.

4. By Lemma 3.8 in this case \(S_1 \simeq U(4d, r, s) \), \(S_2 \simeq U(3d, r, s) \) if \(X_2 = A_p^{[1]} \) and \(S_2 \simeq U(6d, 1 + (2 - 1)yg, 1 + (2(s - 1)y) \) if \(X_2 = A_p^p \). Since \(2v_1 \mid m \) then \(r \) is odd and hence \(1 + (r - 1)yg \equiv r \mod 6d \). Thus \(S_1 \) and \(S_2 \) have the same centre (namely \(Q_d \)) and so they are isomorphic.

5(a). In this case \(v_2 \) is odd, \(S_1 \simeq U(v_1, r, s/q^q-s) \) and \(S_2 \simeq U(2v_2 = v_1, r, s/2) \) by Lemma 3.8. Thus \(Z(S_1) \simeq Z(S_2) \) and so one may assume that \(i = p \). This implies that \(p \) is odd, by Corollary 1.6, and applying Lemma 1.1(1) with \(k = 2 \) one obtains \(S_1 \simeq U(v_1, r^2, s) \simeq S_2 \).

5(b). In this case it is easy to prove that \(Z(S_1) \simeq Q_d \simeq Z(S_2) \).

6. In this case \(S_1 \simeq U(v_1, r, s/q^q-s) \). Since \(q \mid s, r - 1 \) then \(S_2 \simeq U(qv_2, 1 + (r - 1)yg, 1 + (s - 1)yg) \) implies that \(Z(S_1) \simeq Z(S_2) \). Thus one may assume that \(i = p \) and so either \(v_1 = qv_2 \) or \(p, q \neq 2 \) and \(\{v_1, qv_2\} = \{d, 2d\} \) for some integer \(d \). We claim that if \(v \mid m \) with \(v_q(v) = 1 \) and \(\text{ind}(T_1) = \text{ind}(T_2) = p \) for \(T_1 = U(v, r, s/q^q-s) \) and \(T_2 = U(v, r, 1 + (s - 1)yg) \) then \(T_1 \simeq T_2 \). To prove the claim first notice that \(\frac{v}{q} \mid m' | qy - 1 \) and hence \(q(1 - (\frac{s}{q} - 1)yg) \equiv s \mod v \). If \(p \neq q \) then applying Lemma 1.1(1) for \(k = q \) one obtains \(T_1 \simeq U(v, r^q, s) \simeq T_2 \). Otherwise \(\xi_v^{q(1-(\frac{s}{q}-1)yg)} = \xi_v^{q(1-(\frac{s}{q})-1)yg} \) and \(T_1 \simeq T_2 \) by Lemma 3.9. The claim implies that \(S_1 \simeq S_2 \) if \(v_1 = qv_2 \).

In the second case \(S_1 \simeq S_2 \) follows by applying the claim for \(v = d \) combined with the isomorphism \(U(d, r, s) \simeq U(2d, r, s) \) (Corollary 1.6).

Conversely assume that \(S_1 \simeq S_2 \). We have to prove that one of the conditions 1-6 holds.

If \(X_1 = X_2 = A_p^p \) then \(S_1 \simeq M_2(Q_{v_1}) \) and \(S_1 \simeq M_2(Q_{v_1}) \) (Lemma 3.8) and hence either condition 1(a) or 1(b) holds. If \(X_1 = X_2 \neq A_p^p \) then using Lemmas 3.8 and 3.9 one deduces that one of the conditions 1 holds.

In the remainder of the proof we assume that \(X_1 \neq X_2 \) and so \(X_2 \neq A_p^p \). We write \(S_2 \simeq U(n_2, r_2, s_2) \) with \(n_2, r_2 \) and \(s_2 \) taken as in the isomorphisms in Lemma 3.8.

Assume that \(X_1 = A_p^p \) and in particular \(q \mid s \) and \(q \mid v_1 \). Then the centre of \(S_2 \) is isomorphic to \(Q_{v_1} \) and therefore \(Q_{v_1} \) is a subfield of index \(p \) of \(Q_{v_2} \) and \(r_2 \equiv 1 \mod v_1 \). Since \(v_2 = r_1 \neq 1 \mod v_1 \) and therefore \(X_2 = A_p^p \) which implies that \(r_2 = 1 + (r - 1)yg \) and \(n_2 = qv_2 \). Thus \(v_1 \mid (r - 1)yg \). Furthermore, \(\phi(n_2) = \phi(qv_1) \), \(v_1 \mid 2n_2 \) and if \(n_2 \) is even then \(v_1 \mid | \). By Lemma 3.4, \(p = 2 \). If \(n_2 \) is even then \(\frac{v_1}{v_2} \) is either 3, 4 or 6 and \(\text{gcd}(v_1, n_2) = 1 \) and if \(n_2 \) is odd then \(\frac{v_1}{v_2} \) is either 3, 4 or 6 and \(\text{gcd}(v_1, 2n_2) = 1 \). This implies that one of the conditions 2(a)-2(d) holds.

In the remainder of the proof we assume that \(X_1 \neq A_p^p \) and write \(S_1 \simeq U(n_1, r_1, s_1) \) with \(n_1, r_1 \) and \(s_1 \) taken as in the isomorphisms in Lemma 3.8. Since \(X_1 < X_2 \leq A_p^p \) one can take \(r_1 = r \).

By Lemma 3.9, one of the following conditions holds:

(A) \(n_1 = n_2 \).
(B) \(\{n_1, n_2\} = \{d, 2d\} \) with \(d \) odd.

(C) \(i = 1, p = 2 \) and there exists an integer \(d \) such that \(\gcd(6, d) = 1 \), \(r_i \equiv 1 \mod d \) and either \(\{n_1, n_2\} = \{3d, 4d\} \) or \(\{n_1, n_2\} = \{4d, 6d\} \).

We claim that if \(X_2 = \mathcal{A}_p^b \) then \(q|r - 1 \). Indeed, if \(f : S_1 \to S_2 \) is an isomorphism then \(a = f^{-1}(\xi^{(s-1)yq}) \) is a central root of unity of \(S_1 \) and therefore \(a^s = a \). Applying \(f \) to this equality one deduces that \(qv_2 = n_2(r - 1)(1 + s - 1)yq \) and hence \(q|r - 1 \).

Assume that \(X_1 = \mathcal{A}_p^l \) and hence \(X_2 = \mathcal{A}_p^b \). Then \(v_q(n_2) = 1 \) and \(q \nmid n_1 \) and in particular \(n_1 \neq n_2 \). If condition (B) holds then \(q = 2, n_1 = v_1 = v_2 = d \) and \(n_2 = 2d \). If condition (C) holds then \(q = 3, v_1 = n_1 = 4d \) and \(n_2 \) is either \(3d \) or \(6d \). Thus one of the conditions of 3 holds.

In the remainder of the proof we assume that \(X_1 = \mathcal{A}_p^l \) and hence \(X_2 \) is either \(\mathcal{A}_p^l \) or \(\mathcal{A}_p^b \). Thus \(q|v_1 \) and \(q \nmid v_2 \).

Assume first that \(q \nmid s \). Then \(q^2|n_1 = qv_1 \) and \(q^2 \nmid n_2 \). This is not compatible with either (A) or (B) and hence \(i = 1, p = q = 2 \) and there is an integer \(d \) satisfying the conditions of (C) such that \(n_1 = 2v_1 = 4d \) and \(n_2 = v_2 = 3d \) if \(X_2 = \mathcal{A}_p^l \) and \(n_2 = 2v_2 = 6d \) if \(X_2 = \mathcal{A}_p^b \). Thus \(v_1 = 2d \) and \(v_2 = 3d \) and so condition 4 holds.

It remains to consider the case \(q|s \). Then \(n_1 = v_1 \) and \(s_1 = \frac{s-v_2}{q} \). Suppose that \(X_2 = \mathcal{A}_p^l \), so that \(n_2 = v_2 \) and \(s_2 = s_q y \). Then \(q \nmid n_2 \) and hence \(n_1 \neq n_2 \). If \(S_1 \simeq S_2 \) and (B) holds then \(q = 2 \) and \(v_1 = 2v_2 \). If (C) holds then \(p = 2 \) and either \(q = 2 \), \(v_1 = 4d \) and \(v_2 = 3d \) or \(q = 3 \), \(v_1 = 3d \) and \(v_2 = 4d \). Thus one of the conditions of 5 holds.

Finally assume that \(X_2 = \mathcal{A}_p^b \), so that \(n_2 = q v_2, r_2 = 1 + (r - 1)yq \) and \(s_2 = 1 + (s - 1)yq \). We have seen above that \(q|r - 1 \) and hence one may assume that \(r_2 = r \). If (A) holds then \(v_1 = q v_2 \). If (B) holds then \(\{v_1, q v_2\} = \{d, 2d\} \) with \(d \) odd. This implies that \(q \neq 2 \) and if \(i \neq 1 \) then \(p \neq 2 \), by Corollary 1.6. If (C) holds then either \(\{v_1, q v_2\} = \{4d, 3d\} \) or \(\{v_1, q v_2\} = \{4d, 6d\} \). So one of the conditions of 6 holds.

We finish with one example that shows how one can obtain finite metacyclic groups with different isomorphic components with prescribed properties.

Example 3.11 If \(r = 6, p = 5, d = 5 \cdot 311 = \frac{r^p - 1}{p} \) and \(s = -311 = -\frac{d}{\gcd(r, 12)} \) then \(D = \mathcal{U}(d, r, s) \) is a division algebra of degree \(p \) by Theorem 1.5 and \(\mathcal{Q}G_{2d, r, p, s} \) has two different simple components that are isomorphic to \(D \) (Theorem 3.6).

Let now \(D = \mathcal{U}(d, r, s) \) be an arbitrary cyclic division algebra of prime degree \(p \) and assume that \(\gcd(6, d) = 1 \) (for example take \(d, r, p \) and \(s \) as in the previous paragraph). Since \(\gcd(6, d) = 1 \) one has \(\mathcal{U}(d, r, s) \simeq \mathcal{U}(d, r, 12, 12) \) and therefore one may assume that \(12|s \). By the Chinese Remainder Theorem there is an integer \(r_1 \) such that \(r_1 \equiv r \mod d, r_1 \equiv -1 \mod 12 \). By changing \(r \) by \(r_1 \) one may assume that \(r \equiv -1 \mod 12 \).

Let \(G = G_{12d, r, 2p, s} \) and \(\mathcal{A} = \mathcal{A}_{12d, r, 2p, s} \). By the conditions above \(12|r^2 - 1 \) and \(d|r^p - 1 \), while \(3 \nmid r - 1, 4 \nmid r - 1 \) and \(d \nmid r - 1 \). Then \(a_1 = (3d, 0, 1), a_2 = (4d, 0, 1) \in \mathcal{A}_{2p} \) and \(a_1 \neq a_2 \) by Theorem 2.1. Moreover \(A_1 = S_{a_1} \simeq \mathcal{U}(3d, r, s) \) and \(A_2 = S_{a_2} \simeq \mathcal{U}(4d, r, s) \). We claim that \(M_2(D) \simeq S_{a_1} \simeq S_{a_2} \), that is \(a_1 \neq a_2, a_1 \sim a_2 \) and \(S_{a_1} \) is neither a split algebra nor a division ring.

First notice that the degrees of the three algebras coincide. Indeed, the degree of \(M_2(D) \) is \(2p \) and the degrees of \(A_1 \) and \(A_2 \) are \(\mathcal{O}_{2d}(r) \) and \(\mathcal{O}_{4d}(r) \) respectively. Since \(\gcd(6, d) = 1 \), \(\mathcal{O}_{2d}(r) = \text{lcm}(o_3(r), o_{4d}(r)) = 2p \), because \(r \equiv -1 \mod 3 \) and the degree of \(D \) is \(p \). Similarly \(o_{4d}(r) = 2p \). Let \(u \) be a unit of \(D \) such that \(D = \mathcal{Q}_d[u \xi d u = u \xi d, u^p = \xi_d^s] \) and set

\[
x = \xi_d^2 \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix}, \quad y = \xi_d^2 \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad \text{and} \quad u_1 = u \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.
\]
Notice that x is a $3d$-th root of unity and y is a $4d$-th root of unity. Thus \mathbb{Q}_{3d} and \mathbb{Q}_{4d} are strictly maximal subfields of $M_2(D)$. Then $M_2(D) = \mathbb{Q}(x)[u_1] = \mathbb{Q}(y)[u_1]$ and it is easy to see that $xu_1 = u_1x^r$, $yu_1 = u_1y^r$ and $u_1^{2d} = \xi_d^2 = x^s = y^s$, because s is multiple of 12. This proves the claim.

References

