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    Abstract: It is well-known fact that fuzzy number theory is based on the characteristic function but in the fuzzy region, the 

characteristic function is a membership function that depends upon the interval [0,1]. It means that real numbers and intervals are 

exceptional cases of fuzzy numbers. By using this approach, another type of Riemann Liouville fractional integral operator has 

been introduced over a fuzzy domain which is known as Riemann Liouville fractional-like integral operator. These integrals look 

like Riemann Liouville fractional integral operators but classical integrals are special cases of newly defined integral operators.  

Some novel versions of these integrals are also obtained and explained by taking the domain’s triangular and trapezoidal fuzzy 

numbers. We also consider the problem of computing scalar-valued. To discuss the application of new integrals, a new class of 

convex real-valued functions has been introduced, known as convex-like real-valued mappings. With the help of these new 

concepts, some applications are taken into account. By using convex-like real-valued mappings and newly proposed fractional-

like integral operators, the well-known Hermite-Hadamard (ℋ.ℋ) type and related inequalities are taken into account in this 

work. Then by defining new differentiable real-valued functions over fuzzy regions, an identity has been obtained and with the 

support of this identity, certain inequalities are also acquired. Also, we clearly show the important connections of the derived 

outcomes with those classical integrals. Finally, some nontrivial numerical examples are also provided to verify the correctness 

of the presented inequalities that occur with the variation of the parameters 𝔳 and 𝛽. 

 

Keywords: Riemann Liouville fractional-like integral operators over the fuzzy domain, convex-like real-valued mappings, 

derivative over the fuzzy domain. 

I. INTRODUCTION 

A class of objects whose members are not clearly defined is referred to as a fuzzy set [1]. In comparison to the 

traditional mathematical binary representation, fuzzy sets offer a more accurate depiction of reality. The progressive 

nature of membership in fuzzy sets makes the theory essential for illustrating the finite degree of accuracy in mental 

representations [2]. 

      Lotfi Asker Zadeh, the theory's originator, released the first study on the fuzzy set theory in 1965. Between 1965 

and 1975, Zadeh strengthened the foundation of fuzzy set theory by creating fuzzy similarity links, linguistic hedges, 

and fuzzy decision-making. In the 1970s, some Japanese research teams began researching fuzzy set theory. In 1970, 

Mamdani invented the first fuzzy logic controller. Fuzzy logic saw its first commercial use in Europe and Japan in 

1977. Fuzzy logic experienced a resurgence in the US at the end of the 1980s as a result of the success it had in Japan 

at the start of the decade. Numerous criticisms of the theory have surfaced concurrently with the development of the 

fuzzy set theory [3]. Those esteemed scientists rejected Zadeh's approach to dealing with ambiguity. They 

complained about it so harshly that the theory's logic was characterized as "Fuzzy logic is the cocaine of science." 

However, the use of fuzzy logic in actual technological applications demonstrated its effectiveness. 

       The Sendai Subway system, which opened in 1988 in Sendai, Japan, is one of the best-known uses of fuzzy 

logic. The train was operated continuously throughout the day using a fuzzy controller for line control. The line now 

has one of the smoothest operating subway systems in the entire world thanks to the fuzzy controller. Fuzzy logic 

thermostats are used in commercial HVAC (heating, ventilation, and air conditioning) systems to regulate the heating 

and cooling, which saves energy by improving system performance and maintaining a more constant temperature 

than a conventional thermostat. On the basis of the detected barrier, fuzzy logic control systems have also been 
employed to regulate the speed of autos. A sensor in the front panel of the device detects the presence of 

impediments. Programmable logic controllers (PLCs) based on fuzzy logic have been developed by businesses like 
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Moeller, one of the oldest and most reputable brands in the electrical industry. Due of its significant use during the 

production of The Lord of the Rings, fuzzy logic has also been used in 3D animation systems for creating crowds, 

see [4]-[9] and the references therein. 

      On the other hand, every area of scientific research has made significant progress with fuzzy sets. It has a wide 

range of applications in both theoretical and practical research, from engineering to the arts and humanities, computer 

science to health sciences, and life sciences to physical sciences. The classification issue in social sciences or 

geographic information systems is frequently reliant on imprecise language ideas. A better understanding of 

geographic objects with ill-defined bounds that correspond to various graded categories is facilitated by the depiction 

of fuzzy boundaries [10]-[12]. 

      The reference [13] is an example of how fuzzy set theory is used in forest planning models and [14] offers a 

method for calculating forest area using uncertainty levels. See also [15], which presents a method for applying a 

fuzzy representation of a geographic border to a soil loss model. Reference [16], on the other hand, deals with 

creating fuzzy category maps from remotely sensed images. 

       Regarding these applications, it's intriguing to consider how the mathematical principles of integration on fuzzy 

domains cope with the traits of ambiguous regions. The theory of fuzzy measures and fuzzy integrals was first 

presented by Sugeno in [17]. References [18]-[24] show that various integral inequalities also hold for the fuzzy 

context, and some of its features were explored in [25, 26]. The idea of an unknown integral [27] and some of its 

features are discussed in [28] to provide a further generalization. In contrast, the idea of Gould integrability for 

interval-valued multifunction with respect to interval-valued set multifunction is offered in [29]. In [30], the Sugeno 

fuzzy integral for concave functions and non-linear integrals based on decomposition integrals are discussed. 

Reference [30] discusses the Sugeno fuzzy integral for concave functions, and [31] provides non-linear integrals 

based on decomposition integrals that take greediness into account. By reducing the issue to specific calculations in 

the Euclidean space, our method enables the evaluation of the integral over a fuzzy set for the case of real-valued as 

well as fuzzy-valued functions. 

      Hermite-Hadamard inequalities in [32] and [33], which is widely employed in many other areas of practical 

mathematics, particularly optimization and probability, is one of the most important mathematical inequalities 

pertinent to convex maps. Let's elicit it as shown below: 

The ℋ.ℋ-inequality for convex mapping 𝛶:𝐾 → ℝ on an interval 𝐾 = [𝜏, 𝜍] is 
  

  𝛶 (
𝜏+𝜍

2
) ≤

1

𝜍−𝜏
 ∫ 𝛶(𝜘)𝑑𝜘
𝜍

𝜏
≤

𝛶(𝜏) + 𝛶(𝜍)

2
,              (1) 

 
for all  𝜏, 𝜍 ∈ 𝐾. 
 

Only affine mappings are guaranteed to be equal on both sides. This Hermite and Hadamard finding is really 

straightforward but extremely potent. It's interesting to note that convex mappings fall on both sides of the 

aforementioned integral inequality. We recommend readers to read [34]-[36] for a few fascinating facts and uses of 

the ℋ.ℋ-disparity. 

It has been shown that fractional calculus [37], as a rather resilient technique, is an essential basic ingredient not 

only in the mathematical sciences but also in the applied sciences. Many researchers have become interested in the 

area to answer the important topic. As a consequence, many authors have obtained some significant integral 

inequalities through the efficient interaction of various methods of fractional integrals, including Ahmad et al. [38] in 

the study of four types of inequalities for convex mappings concerning fractional integrals with exponential kernels, 

Set et al. [39] in the ℋ.ℋ-Fejer-type inequality for Atangana-Baleanu fractional integral operators, Khan et al. [40] 

and Meftah et al. [41] in the ℋ.ℋ-type inequalities for conformable fractional integral operators, and Dragomir [42] 

in the ℋ.ℋ-type inequalities for generalized Riemann Liouville fractional integrals. For more information, see [43]-

[45] and the references therein.  

Many studies have been conducted in recent years to investigate the relationship between integral inequalities 

and interval-valued mappings, giving various noteworthy discoveries. The Minkowski-type inequalities and the 

Beckenbach-type inequalities were established by Roman-Flores [46], the Ostrowski-type inequalities were 

examined by Chalco-Cano [47] using the extended Hukuhara derivative, and the Opial-type inequalities were first 

introduced by Costa [48]. Zhao et al. [49] recently built on this idea by introducing interval-valued coordinated 

convex mappings and related ℋ.ℋ-type inequalities. Additionally, it served as support for the n-polynomial convex 

interval-valued mapping's ℋ.ℋ- and ℋ.ℋ-Fejér-type inequalities [50]. 
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Recently, Khan and his coworkers recently expanded the idea of convex interval-valued mappings (convex 

I.V.Ms) and fuzzy-interval-valued mappings (convex F.I.V.Ms) by using fuzzy-order relations. As a result, convex 

F.I.V.Ms, an apparently new concept, now include (h1, h2)-convex F.I.V.Ms [51] and harmonic convex F-I-Vs, see 

[52]. We advise interested readers to study certain fundamental ideas connected to fuzzy calculus, see [53]-[70] and 

the references therein, in order to learn about various recent breakthroughs related to the idea of fuzzy interval-valued 

analysis of several well-known integral inequalities. For other related concepts, see [71-81] and the references 

therein. 

Inspiring and motivated by the ongoing research work, after some preliminary notions in section 2, we have 

presented, in section 3, the notion of Riemann-Liouville fractional-like integrals and we have defined the 

Riemann-Liouville fractional-like integral of a scalar-valued function on a fuzzy domain, showing some examples 

of integration over triangular fuzzy intervals and trapezoidal fuzzy intervals. Then, in section 4, we present the new 

class of convex real-valued mapping which is known as convex-like real-valued mapping of the integral of a fuzzy-

valued function on a fuzzy domain; and illustrated its calculation with an example. Finally, in section 5, we have 

presented some applications for the integration over fuzzy domains with higher dimensions. In particular, we have 

discussed the validation of the main results with the help of nontrivial examples. 

 

II. PRELIMINARIES 

First, we provide the concepts and notions required for the sequel. We give our research of the paper to ensure its 

completion in Section 3. We start with the definition of a fuzzy set such that: 

Definition 1: [57, 58] A fuzzy subset 𝑇 of ℝ is distinguished by a mapping Ϣ̃: ℝ → [0,1] called the membership 

mapping of 𝑇. That is, a fuzzy subset 𝑇 of ℝ is a mapping Ϣ̃: ℝ → [0,1]. So, for further study, we have chosen this 

notation. We appoint 𝔼 to denote the set of all fuzzy subsets of ℝ. 

In [70], Goetschel and Voxman initiated to introduce the concept of fuzzy numbers as follows: 

Let Ϣ̃ ∈ 𝔼. Then, Ϣ̃ is known as a fuzzy number or fuzzy interval if the following properties are satisfied by Ϣ̃: 

(1) Ϣ̃ should be normal if there exists 𝜘 ∈ ℝ and Ϣ̃(𝜘) = 1; 
(2) Ϣ̃ should be upper semi-continuous on ℝ if for given 𝜘 ∈ ℝ, there exist 휀 > 0 there exist 𝛿 > 0 such that 

Ϣ̃(𝜘) − Ϣ̃(𝘺) < 휀 for all 𝘺 ∈ ℝ with |𝜘 − 𝘺| < 𝛿; 

(3)Ϣ̃ should be fuzzy convex that is Ϣ̃((1 − 𝜑)𝜘 + 𝜑𝘺) ≥ 𝑚𝑖𝑛 (Ϣ̃(𝜘), Ϣ̃(𝘺)), for all 𝜘, 𝘺 ∈ ℝ, and 𝜑 ∈ [0, 1] 

(4) Ϣ̃ should be compactly supported that is 𝑐𝑙{𝜘 ∈ ℝ| Ϣ̃(𝜘) > 0} is compact.  

We appoint 𝔼𝐶  to denote the set of all fuzzy numbers of ℝ.  

Definition 2: [57, 58] Given Ϣ̃ ∈ 𝔼𝐶, the level sets or cut sets are given by [Ϣ̃]
𝔳
= {𝜘 ∈ ℝ| Ϣ̃(𝜘) > 𝔳} for all 𝔳 ∈

[0, 1] and by [Ϣ̃]
0
= {𝜘 ∈ ℝ| Ϣ̃(𝜘) > 0}. These sets are known as 𝔳-level sets or 𝔳-cut sets of Ϣ̃. 

From these definitions, we have  

      [Ϣ̃]
𝔳
= [𝑙(𝔳), ɤ(𝔳)],         (2) 

where 

𝑙(𝔳) = 𝑖𝑛𝑓{𝔵 ∈ ℝ| Ϣ(𝔵) ≥ 𝔳},  
ɤ(𝔳) = 𝑠𝑢𝑝{𝔵 ∈ ℝ| Ϣ(𝔵) ≥ 𝔳}.  

Remark 1: [66, 67] For each interval [𝜏, 𝜍] ∈ 𝒳𝐶 , there characteristic function [𝜏, 𝜍]̃: ℝ → [0,1] defined by 

      [𝜏, 𝜍]̃(𝜘) = {
1        𝜘 ∈ [𝜏, 𝜍]

0     otherwise,
       (3) 

So, in some sense, we can think that fuzzy numbers generalize the set of closed intervals of real numbers, i.e. that 

𝒳𝐶 ⊆ 𝔼𝐶  and therefore ℝ ⊆ 𝔼𝐶  too, once degenerated intervals can be seen as real numbers and instead of writing 

[𝜍, 𝜍]̃, we just use �̃�. A fuzzy number �̃� is called crisp number or fuzzy singleton, see [67]. 

Proposition 1: [62] Let Ϣ̃, Л̃ ∈ 𝔼𝐶 . Then relation " ≤𝔽 " given on 𝔼𝐶  by 

        Ϣ̃ ≤𝔽 Л̃ when and only when, [Ϣ̃]
𝔳
≤𝐼 [Л̃]

𝔳
,    (4) 

for every 𝔳 ∈ [0, 1], it is a partial-order relation.  

Proposition 2: [54] Let Ϣ̃, Л̃ ∈ 𝔼𝐶 . Then relation " ⊇𝔽 " given on 𝔼𝐶  by 

        Ϣ̃ ⊇𝔽 Л̃ when and only when, [Ϣ̃]
𝔳
⊇𝐼 [Л̃]

𝔳
,    (5) 

for every 𝔳 ∈ [0, 1], it is up and down-order relation on 𝔼𝐶 . 
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Recalling the approaching notions, which are offered in the literature. If Ϣ̃, Л̃ ∈ 𝔼𝐶  and 𝔳 ∈ ℝ, then, for every 𝔳 ∈
[0, 1], the arithmetic operations are defined by 

[Ϣ̃⊕ Л̃]
𝔳
 = [Ϣ̃]

𝔳
+ [Л̃]

𝔳
,        (6) 

[Ϣ̃⊗ Л̃]
𝔳
= [Ϣ̃]

𝔳
× [ Л̃]

𝔳
,               (7) 

          [𝜑 ⊙ Ϣ̃]
𝔳
= 𝜑. [Ϣ̃]

𝔳
.      (8) 

Theorem 1: [57] The space 𝔼𝐶  dealing with a supremum metric, i.e., for Ϣ̃, Л̃ ∈ 𝔼𝐶  

     𝑑∞(Ϣ̃, Л̃) = sup
0≤𝔳≤1

𝑑𝐻([Ϣ̃]
𝔳
, [Л̃]

𝔳
),     (9) 

is a complete metric space, where 𝐻 denotes the well-known Hausdorff metric on space of intervals. 

The following is the definition of classical of Riemann-Liouville fractional integral operators over [𝜏, 𝜍], where 

integrable functions are real-valued functions, see [37]. 

Definition 3: Let 𝛽 > 0 and 𝐿([𝜏, 𝜍]) be the collection of all Lebesgue measurable real-valued mapping on[𝜏, 𝜍]. 
Then the left and right Riemann-Liouville fractional integral of 𝛶 ∈ 𝐿([𝜏, 𝜍]) with order 𝛽 > 0 are defined by  

 

ℐ
𝜏+
𝛽
 𝛶(𝜘) =

1

𝛤(𝛽)
∫ (𝜘 − 𝜑)𝛽−1𝛶(𝜑)
𝜘

𝜏
𝑑𝜑,    (𝜘 > 𝜏),    (10) 

and   

ℐ𝜍−
𝛽
 𝛶(𝜘) =

1

𝛤(𝛽)
∫ (𝜑 − 𝜘)𝛽−1𝛶(𝜑)
𝜍

𝜘
𝑑𝜑,    (𝜘 < 𝜍),    (11) 

respectively, where 𝛤(𝜘) = ∫ 𝜑𝜘−1𝑒−𝜑
∞

0
𝑑𝜑 is the Euler gamma mapping. 

Recently Khastan and Rodríguez-López [66] have introduced the real-valued functions over the fuzzy domain and 

also discussed some of the properties of real-valued functions over fuzzy using the Lebesgue measures. Moreover, 

they have presented the following definition of integral: 

Definition 4: If Ϣ̃ ∈ 𝔼𝐶, and 𝛶: [𝜏, 𝜍] ⊆ ℝ → ℝ is measurable on  [Ϣ̃]
0
⊆ [𝜏, 𝜍] ( and hence for each [Ϣ̃]

𝔳
, for all 𝔳 ∈

[0,1]), then we define 

 

(∫ 𝛶
 

Ϣ̃
) (𝔳) = ∫ 𝛶(𝜑)

 

[Ϣ̃]
𝔳 𝑑𝜑,      (12) 

where the integral on the right-hand side is calculated in the sense of Lebesgue. We say the  𝛶 is integrable over the 

fuzzy domain; if the integral ∫ 𝛶(𝜑)
 

[Ϣ̃]
0 𝑑𝜑 is finite. In that case, mapping is defined as 

  

     ∫ 𝛶
 

Ϣ̃
: [0, 1]  →  ℝ 

     𝔳 →  (∫ 𝛶
 

Ϣ̃
) (𝔳) = ∫ 𝛶(𝜑)

 

[Ϣ̃]
𝔳 𝑑𝜑.  

All the above preliminary notions are very useful to discuss the upcoming main results because the problem of 

interest is to calculate the Riemann-Liouville fractional-like integral of 𝛶 over the fuzzy region Ϣ̃ ∈ 𝔼𝐶. 

 

 

III. RIEMANN-LIOUVILLE FRACTIONAL-LIKE INTEGRALS OVER THE FUZZY DOMAIN 

In this section, we have proposed the new concept of Riemann-Liouville fractional integrals operators 

which is known as Riemann-Liouville fractional-like integral operators. 

Definition 5: Let 𝛽 > 0 and 𝐿(Ϣ̃) be the collection of all Lebesgue measurable real-valued mapping over fuzzy 

domain Ϣ̃, where Ϣ̃ has the following parametric representation [Ϣ̃]
𝔳
= [𝑙(𝔳), ɤ(𝔳)], for all 𝔳 ∈ [0,1]. Must add 

about [Ϣ̃]
0
. Then the left and right Riemann-Liouville fractional-like integral of  𝛶 ∈ 𝐿(Ϣ̃) with order 𝛽 > 0 are 

defined by  

ℐ
𝑙(𝔳)+
𝛽

𝛶(𝜘) =
1

𝛤(𝛽)
∫ (𝜘 − 𝜑)𝛽−1𝛶(𝜑)
𝜘

𝑙(𝔳)
𝑑𝜑,    (𝜘 > 𝑙(𝔳)),    (13) 

and   

ℐɤ(𝔳)−
𝛽

𝛶(𝜘) =
1

𝛤(𝛽)
∫ (𝜑 − 𝜘)𝛽−1𝛶(𝜑)
ɤ(𝔳)

𝜘
𝑑𝜑,    (𝜘 < ɤ(𝔳)),    (14) 

respectively, where 𝛤(𝜘) = ∫ 𝜑𝜘−1𝑒−𝜑
∞

0
𝑑𝜑 is the Euler gamma mapping. 
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Particular Cases 

Consider the triangular fuzzy numbers Ϣ̃ = (𝑟;  𝜆, 𝛾), with 𝑟 ∈ ℝ, and 𝜆, 𝛾 ∈ ℝ, that is 

    Ϣ̃(𝜘) =

{
 

 
ϣ−𝑟+𝜆

𝜆
,    ϣ ∈ [𝑟 − 𝜆, 𝑟]

 𝑟+𝛾−ϣ

𝛾
,     ϣ ∈ (𝑟, 𝑟 + 𝛾]

0,       otherwise,

             (15) 

whose parametrized form is [Ϣ̃]
𝔳
= [𝑟 − 𝜆(1 − 𝔳), 𝑟 + 𝛾(1 − 𝔳)], for all 𝔳 ∈ [0,1].   

   
Fig. 1. Triangular fuzzy number 

 

To integrate a real-valued mapping 𝛶: [𝜏, 𝜍] → ℝ, with [Ϣ̃]
0
= [𝑟 − 𝜆, 𝑟 + 𝛾] ⊆ [𝜏, 𝜍], over the fuzzy set  Ϣ̃, we have 

to calculate,  

 

       (ℐ
(Ϣ̃)

+
𝛽

𝛶) (𝔳) = ℐ
([Ϣ̃]

𝔳
)
+

𝛽
𝛶(𝑟 + 𝛾(1 − 𝔳)) 

     = ℐ
(𝑟−𝜆(1−𝔳))

+
𝛽

𝛶(𝑟 + 𝛾(1 − 𝔳)) 

=
1

𝛤(𝛽)
∫ (𝑟 + 𝛾(1 − 𝔳) − 𝜑)𝛽−1𝛶(𝜑)
𝑟+𝛾(1−𝔳)

𝑟−𝜆(1−𝔳)
𝑑𝜑,       (16) 

given that (𝑟 + 𝛾(1 − 𝔳) > 𝑟 − 𝜆(1 − 𝔳)), 
and   

       (ℐ
(Ϣ̃)

−
𝛽

𝛶) (𝔳) = ℐ
([Ϣ̃]

𝔳
)
−

𝛽
𝛶(𝑟 − 𝜆(1 − 𝔳)) 

     = ℐ
(𝑟+𝛾(1−𝔳))

+
𝛽

𝛶(𝑟 − 𝜆(1 − 𝔳)) 

        =
1

𝛤(𝛽)
∫ (𝜑 − (𝑟 − 𝛾(1 − 𝔳)))

𝛽−1
𝛶(𝜑)

𝑟+𝛾(1−𝔳)

𝑟−𝜆(1−𝔳)
𝑑𝜑,    (17) 

given (𝑟 − 𝜆(1 − 𝔳) < 𝑟 + 𝛾(1 − 𝔳)). 
Not that, if 𝛶 is a real constant function, (equal to 𝑘), then from (16), we have  

    (ℐ
(Ϣ̃)

+
𝛽

𝛶) (𝔳) =
𝑘(−𝔳𝜆+𝜆+𝛾(1−𝔳))

𝛽

𝛽𝛤(𝛽)
 for 𝛽 > 0,            (18) 

(ℐ
(Ϣ̃)

−
𝛽

𝛶) (𝔳) =
𝑘(𝜆(1−𝔳)+𝛾(1−𝔳))

𝛽

𝛽𝛤(𝛽)
 for 𝛽 > 0,     (19) 

and the function is linear on 𝔳, attaining the value 0 at 𝔳 = 1 and 
𝑘(𝜆+𝛾)𝛽

𝛽𝛤(𝛽)
 at 𝔳 = 0. 

When 𝛽 =
3

2
, 1,

1

2
, then left and right Riemann-Liouville fractional-like integrals of the constant function 𝛶(𝜘) = 3 

on the triangular fuzzy number Ϣ̃ = (1;
1

2
, 2) have the following geometrical representation such that 
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Fig. 2. Riemann-Liouville fractional-type integral of  

constant function over triangular fuzzy number Ϣ̃ = (1;
1

2
, 2). 

 

From Figure 2, it can be easily seen that for 𝛽 = 1, we obtain the Riemann-like integral of constant function over 

fuzzy domain. 

It is well-known fact that triangular fuzzy number is said to be symmetric, when 𝜆 = 𝛾. Here, we are taking 𝛶 as a 

contact function equal to 𝑘, then from (18) and (19), we have 

(ℐ
(Ϣ̃)

+
𝛽

𝛶) (𝔳) =
𝑘(2𝜆(1−𝔳))

𝛽

𝛽𝛤(𝛽)
 for 𝛽 > 0,      (20) 

(ℐ
(Ϣ̃)

−
𝛽

𝛶) (𝔳) =
𝑘(2𝜆(1−𝔳))

𝛽

𝛽𝛤(𝛽)
 for 𝛽 > 0,      (21) 

From above both expression we have noted that both left and right Riemann-Liouville fractional-like integrals of a 

constant function attaining the same value. It means that at 𝔳 = 0, the error is multiple of 𝑘 for both (ℐ
(Ϣ̃)

+
𝛽

𝛶) (𝔳) =

𝑘(2𝜆)𝛽

𝛽𝛤(𝛽)
= (ℐ

(Ϣ̃)
−

𝛽
𝛶) (𝔳), when the triangular number is symmetric. 

On the other hand, taking the trapezoidal fuzzy numbers Ϣ̃ = (𝑟, 𝑠;  𝜆, 𝛾), with 𝑟, 𝑠 ∈ ℝ, and 𝜆, 𝛾 ∈ ℝ, that is 

 

    Ϣ̃(𝜘) =

{
 
 

 
 

1,           ϣ ∈ [𝑟, 𝑠]
ϣ−𝑟+𝜆

𝜆
,      ϣ ∈ [𝑟 − 𝜆, 𝑟]

 𝑠+𝛾−ϣ

𝛾
,     ϣ ∈ [𝑠, 𝑠 + 𝛾]

0,          otherwise,

          (22) 

 

whose parametrized form is [Ϣ̃]
𝔳
= [𝑟 − 𝜆(1 − 𝔳), 𝑠 + 𝛾(1 − 𝔳)], for all 𝔳 ∈ [0,1].  

 

            
Fig. 3. Trapezoidal fuzzy number 
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The left and right Riemann-Liouville fractional-like integrals over the  fuzzy number Ϣ̃, we have to calculate: 

     (ℐ
(Ϣ̃)

+
𝛽

𝛶) (𝔳) = ℐ
([Ϣ̃]

𝔳
)
+

𝛽
𝛶(𝑠 + 𝛾(1 − 𝔳)) 

       = ℐ
(𝑟−𝜆(1−𝔳))

+
𝛽

𝛶(𝑠 + 𝛾(1 − 𝔳)) 

                     =
1

𝛤(𝛽)
∫ (𝑠 + 𝛾(1 − 𝔳) − 𝜑)𝛽−1𝛶(𝜑)
𝑠+𝛾(1−𝔳)

𝑟−𝜆(1−𝔳)
𝑑𝜑,   (23) 

 where  (𝑠 + 𝛾(1 − 𝔳) > 𝑟 − 𝜆(1 − 𝔳)). 
and   

       (ℐ
(Ϣ̃)

−
𝛽

𝛶) (𝔳) = ℐ
([Ϣ̃]

𝔳
)
−

𝛽
𝛶(𝑟 − 𝜆(1 − 𝔳)) 

      = ℐ
(𝑠+𝛾(1−𝔳))

+
𝛽

𝛶(𝑟 − 𝜆(1 − 𝔳)) 

      =
1

𝛤(𝛽)
∫ (𝜑 − (𝑟 − 𝜆(1 − 𝔳)))

𝛽−1
𝛶(𝜑)

𝑠+𝛾(1−𝔳)

𝑟−𝜆(1−𝔳)
𝑑𝜑,  (24) 

where, (𝑟 − 𝜆(1 − 𝔳) < 𝑠 + 𝛾(1 − 𝔳)). 

Not that, if 𝛶 is real constant function, (equal to 𝑘), then from (23) and (24), we have  

(ℐ
(Ϣ̃)

+
𝛽

𝛶) (𝔳) =
𝑘(𝑠−𝑟−𝔳𝜆+𝜆+𝛾(1−𝔳))

𝛽

𝛽𝛤(𝛽)
 for 𝛽 > 0,          (25) 

(ℐ
(Ϣ̃)

−
𝛽

𝛶) (𝔳) =
𝑘(𝑠−𝑟+𝜆(1−𝔳)+𝛾(1−𝔳))

𝛽

𝛽𝛤(𝛽)
 for 𝛽 > 0,   (26) 

and the function is linear on 𝔳, attaining the value 𝑘(𝑠 − 𝑟) at 𝔳 = 1 and 
𝑘(𝑠−𝑟+𝜆+𝛾)𝛽

𝛽𝛤(𝛽)
 at 𝔳 = 0. 

 
Fig. 4. Riemann-Liouville fractional-type integral of constant  

function over trapezoidal fuzzy number Ϣ̃ = (1,2;
1

2
, 2). 

 

If 𝛽 =
3

2
, 1,

1

2
, then left and right Riemann-Liouville fractional-like integrals of the constant function 𝛶(𝜘) = 3 on 

the trapezoidal fuzzy number Ϣ̃ = (1,2;
1

2
, 2) have the following geometrical representation such that          

When 𝜆 = 𝛾, then trapezoidal fuzzy number is reduces to be symmetric trapezoidal fuzzy number,  Here, we are 

taking 𝛶 as a constant function equal to 𝑘, then from (25) and (26), we have 

(ℐ
(Ϣ̃)

+
𝛽

𝛶) (𝔳) =
𝑘(𝑠−𝑟+2𝜆(1−𝔳))

𝛽

𝛽𝛤(𝛽)
 for 𝛽 > 0,    (27) 

                 (ℐ
(Ϣ̃)

−
𝛽

𝛶) (𝔳) =
𝑘(𝑠−𝑟+2𝜆(1−𝔳))

𝛽

𝛽𝛤(𝛽)
 for 𝛽 > 0,    (28) 

It is familiar fact that trapezoidal fuzzy number becomes triangular number when 𝑠 = 𝑟. It means that this discussion 

coincides with the above discussion related to the fuzzy numbers.  
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If Ϣ̃ = [𝜏, 𝜍]̃, then from Remark 1 and Figure 4, this new Riemann-Liouville fractional-like integrals over fuzzy 

number reduces to classical Riemann-Liouville fractional integrals [𝜏, 𝜍]̃. 

If Ϣ̃ = [𝜏, 𝜍]̃ and 𝛽 = 1, then By Remark 1, we achieve classical definition of  Riemann integrals over real-valued 

interval.  

From Figure 2 and Figure 4, it can be easily seen that for 𝛽 = 1, we obtain the Riemann-like integrals as a special 

case of Riemann-Liouville fractional-like integrals over fuzzy domain. 

Note that, further exceptional cases can also be discussed by taking different types of fuzzy numbers by using 

same approaches. 

IV. APPLICATIONS OF RIEMANN-LIOUVILLE FRACTIONAL-LIKE INTEGRAL OPERATORS 

In this section, firstly with the help of real-valued mapping over the fuzzy domain, we propose a new class of convex 

mapping which is known as convex-like real-valued mapping. Then, some applications of convex-like real-valued 

mapping and Riemann-Liouville fractional-like integrals over the fuzzy domain will be discussed by 

introducing new versions of ℋ.ℋ-type inequalities. Before finding the application of Riemann-Liouville 

fractional-like integrals over the fuzzy domain, firstly we present the class of classical convex real-valued 

mapping and then we will define the novel class convex-like real-valued mapping. 

Definition 6: The real-valued mapping 𝛶: [𝜏, 𝜍] → ℝ is called convex real-valued mapping on [𝜏, 𝜍] if  
 

𝛶(𝜑𝜘 + (1 − 𝜑)𝘴 ) ≤ 𝜑𝛶(𝜘) + (1 − 𝜑)𝛶(𝘴),    (29) 

for all 𝜘, 𝘴 ∈ [𝜏, 𝜍], 𝜑 ∈ [0, 1]. If (29) is reversed then, 𝛶 is called concave real-valued mapping on [𝜏, 𝜍]. 𝛶 is affine if 

and only if it is both convex and concave real-valued mapping.  

Definition 7: The real-valued mapping 𝛶: Ϣ̃ → ℝ is called convex-like real-valued mapping on Ϣ̃ if  

 

𝛶(𝜑𝜘 + (1 − 𝜑)𝘴 ) ≤ 𝜑𝛶(𝜘) + (1 − 𝜑)𝛶(𝘴),    (30) 

 

for all 𝜘, 𝘴 ∈ Ϣ̃, 𝜑 ∈ [0, 1]. If (30) is reversed then, 𝛶 is called type-2 concave real-valued mapping on Ϣ̃. 𝛶 is type 2 

affine if and only if it is both type 2 convex and type-2 concave real-valued mapping.  

Remark 2: By Remark 1, if Ϣ̃ = [𝜏, 𝜍]̃, then from Definition 7, we acquire the Definition 6. 

 

Riemann-Liouville fractional-like integral Inequalities 

 

Here is our first main application of Riemann-Liouville fractional-like integral in relation to the ℋ.ℋ-type 

inequalities, which is based on convex-like real-valued mapping on Ϣ̃. 

Theorem 2: Let  𝛶: Ϣ̃ → ℝ be a convex-like real-valued mapping on Ϣ̃, whose parametrized form is [Ϣ̃]
𝔳
=

[𝑙(𝔳), ɤ(𝔳)], for all 𝔳 ∈ [0, 1]. If 𝛶 ∈ 𝐿(Ϣ̃), then 

  

 𝛶 (
𝑙(𝔳)+ɤ(𝔳)

2
) ≤

𝛤(𝛽+1)

2(ɤ(𝔳)−𝑙(𝔳))
𝛽 [ℐ𝑙(𝔳)+

𝛽
𝛶(ɤ(𝔳)) + ℐɤ(𝔳)−

𝛽
𝛶(𝑙(𝔳))] ≤

𝛶(𝑙(𝔳))+𝛶(ɤ(𝔳))

2
.    (31) 

If 𝛶(𝜘) is type-2 concave real-valued mapping, then 

  𝛶 (
𝑙(𝔳)+ɤ(𝔳)

2
) ≥

𝛤(𝛽+1)

2(ɤ(𝔳)−𝑙(𝔳))
𝛽 [ℐ𝑙(𝔳)+

𝛽
𝛶(ɤ(𝔳)) + ℐɤ(𝔳)−

𝛽
𝛶(𝑙(𝔳))] ≥

𝛶(𝑙(𝔳))+𝛶(ɤ(𝔳))

2
 .   (32) 

Proof: Let 𝛶: Ϣ̃ → ℝ be a convex-like real-valued mapping, . Then, by hypothesis, we have 

 

   2𝛶 (
𝑙(𝔳)+ɤ(𝔳)

2
) ≤ 𝛶(𝜑𝑙(𝔳) + (1 − 𝜑)ɤ(𝔳)) + 𝛶((1 − 𝜑)𝑙(𝔳) + 𝜑ɤ(𝔳)).  

Therefore, for every 𝔳 ∈ [0, 1], we have  

 

   2𝛶 (
𝑙(𝔳)+ɤ(𝔳)

2
) ≤ 𝛶(𝜑𝑙(𝔳) + (1 − 𝜑)ɤ(𝔳)) + 𝛶((1 − 𝜑)𝑙(𝔳) + 𝜑ɤ(𝔳)), 

Multiplying both sides by 𝜑𝛽−1 and integrating the obtained result with respect to 𝜑 over (0,1), we have 
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2 ∫ 𝜑𝛽−1𝛶 (
𝑙(𝔳)+ɤ(𝔳)

2
) 𝑑𝜑

1

0
                                                                  

  ≤ ∫ 𝜑𝛽−1𝛶(𝜑𝑙(𝔳) + (1 − 𝜑)ɤ(𝔳))𝑑𝜑
1

0

  +∫ 𝜑𝛽−1𝛶((1 − 𝜑)𝑙(𝔳) + 𝜑ɤ(𝔳))𝑑𝜑
1

0
.  

  

Let 𝜘 = 𝜑𝑙(𝔳) + (1 − 𝜑)ɤ(𝔳) and 𝘴 = (1 − 𝜑)𝑙(𝔳) + 𝜑ɤ(𝔳). Then we have 
2

𝛽
𝛶 (

𝑙(𝔳)+ɤ(𝔳)

2
)  ≤

1

(ɤ(𝔳)−𝑙(𝔳))
𝛽  ∫ (ɤ(𝔳) − 𝘴)𝛽−1𝛶(𝘴)

ɤ(𝔳)

𝑙(𝔳)
𝑑𝘴

                           +
1

(ɤ(𝔳)−𝑙(𝔳))
𝛽 ∫ (𝜘 − 𝑙(𝔳))

𝛽−1
𝛶(𝜘)

ɤ(𝔳)

𝑙(𝔳)
𝑑𝜘

     

     =
𝛤(𝛽)

(ɤ(𝔳)−𝑙(𝔳))
𝛽 [ℐ𝑙(𝔳)+

𝛽
𝛶(ɤ(𝔳)) + ℐɤ(𝔳)−

𝛽
𝛶(𝑙(𝔳))] .    (33) 

For the right part of double inequality (31), considering convex-like real-valued mapping on Ϣ̃, then for 𝔳, 𝜑 ∈ [0, 1], 
we have  

𝛶(𝜑𝑙(𝔳) + (1 − 𝜑)ɤ(𝔳)) ≤ 𝜑𝛶(𝑙(𝔳)) + (1 − 𝜑)𝛶(ɤ(𝔳)),   (34)  

and  

𝛶((1 − 𝜑)𝑙(𝔳) + 𝜑ɤ(𝔳)) ≤ (1 − 𝜑)𝛶(𝑙(𝔳)) + 𝜑𝛶(ɤ(𝔳)).   (35) 

By adding (34) and (35), we obtain the following resultant 

   𝛶(𝜑𝑙(𝔳) + (1 − 𝜑)ɤ(𝔳)) + 𝛶((1 − 𝜑)𝑙(𝔳) + 𝜑ɤ(𝔳)) 

 ≤ 𝛶(𝑙(𝔳)) + 𝛶(ɤ(𝔳)).      (36) 

Taking multiplication of (36) inequality with 𝜑𝛽−1, then integrating the resultant over [0, 1], we have 

  ∫ 𝜑𝛽−1𝛶(𝜑𝑙(𝔳) + (1 − 𝜑)ɤ(𝔳))
1

0
+ ∫ 𝜑𝛽−1𝛶((1 − 𝜑)𝑙(𝔳) + 𝜑ɤ(𝔳))

1

0
      

         ≤ ∫ 𝜑𝛽−1𝛶(𝑙(𝔳))
1

0
+ ∫ 𝜑𝛽−1𝛶(ɤ(𝔳))

1

0
. 

Again taking substitution, 𝜘 = 𝜑𝑙(𝔳) + (1 − 𝜑)ɤ(𝔳) and 𝘴 = (1 − 𝜑)𝑙(𝔳) + 𝜑ɤ(𝔳), then by simple calculation we 

obtain 
𝛤(𝛽)

(ɤ(𝔳)−𝑙(𝔳))
𝛽 [ℐ𝑙(𝔳)+

𝛽
𝛶(ɤ(𝔳)) + ℐɤ(𝔳)−

𝛽
𝛶(𝑙(𝔳))] ≤

𝛶(𝑙(𝔳))+𝛶(ɤ(𝔳))

𝛽
.    (37) 

Combining (33) and (37), we have 

 

 𝛶 (
𝑙(𝔳)+ɤ(𝔳)

2
) ≤

𝛤(𝛽+1)

2(ɤ(𝔳)−𝑙(𝔳))
𝛽 [ℐ𝑙(𝔳)+

𝛽
𝛶(ɤ(𝔳)) + ℐɤ(𝔳)−

𝛽
𝛶(𝑙(𝔳))] 

      ≤
𝛶(𝑙(𝔳))+𝛶(ɤ(𝔳))

2
.   

Hence, the required result. 

Particular Cases 

Here some of the exceptional cases have been discussed which depend upon the triangular fuzzy number and 

trapezoidal fuzzy number. 

Firstly, taking triangular fuzzy number such that 

 

[Ϣ̃]
𝔳
= [𝑟 − 𝜆(1 − 𝔳), 𝑟 + 𝛾(1 − 𝔳)],     (38) 

then inequality (31) reduces to the Riemann-Liouville fractional-like integral ℋ.ℋ-type inequalities over 

triangular fuzzy number Ϣ̃ such that 

 𝛶 (
2𝑟+(𝛾−𝜆)(1−𝔳)

2
) ≤

𝛤(𝛽+1)

2((𝛾+𝜆)(1−𝔳))
𝛽 [ℐ

(𝑟−𝜆(1−𝔳))
+

𝛽
𝛶( 𝑟 + 𝛾(1 − 𝔳)) + ℐ

( 𝑟+𝛾(1−𝔳))
−

𝛽
𝛶(𝑟 − 𝜆(1 − 𝔳))] 

      ≤
𝛶(𝑟−𝜆(1−𝔳))+𝛶( 𝑟+𝛾(1−𝔳))

2
.      (39) 

Secondly, taking trapezoidal fuzzy number such that 

 

[Ϣ̃]
𝔳
= [𝑟 − 𝜆(1 − 𝔳), 𝑠 + 𝛾(1 − 𝔳)],     (40) 

then inequality (31) reduces to the Riemann-Liouville fractional-like integral ℋ.ℋ-type inequalities over 

trapezoidal fuzzy number Ϣ̃ such that 
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 𝛶 (
𝑟+𝑠+(𝛾−𝜆)(1−𝔳)

2
) 

≤
𝛤(𝛽+1)

2(𝑠−𝑟+(𝛾+𝜆)(1−𝔳))
𝛽 [ℐ

(𝑟−𝜆(1−𝔳))
+

𝛽
𝛶( 𝑠 + 𝛾(1 − 𝔳)) + ℐ

( 𝑠+𝛾(1−𝔳))
−

𝛽
𝛶(𝑟 − 𝜆(1 − 𝔳))]   

      ≤
𝛶(𝑟−𝜆(1−𝔳))+𝛶( 𝑠+𝛾(1−𝔳))

2
.      (41) 

Note that, if 𝑠 = 𝑟, then both double inequalities (39) and (41) coincides.  

Remark 3: From Theorem 2. we clearly see that 

Let 𝛽 = 1. Then, inequality (31) reduces to the following inequality which is also new one: 

𝛶 (
𝑙(𝔳)+ɤ(𝔳)

2
) ≤

1

ɤ(𝔳)−𝑙(𝔳)
∫ 𝛶(𝜘)𝑑𝜘
ɤ(𝔳)

𝑙(𝔳)
≤

𝛶(𝑙(𝔳))⊕𝛶(ɤ(𝔳))

2
.   (42)  

If Ϣ̃ = [𝜏, 𝜍]̃, then from (31), we get following classical fractional ℋ.ℋ-inequality. 

Let Ϣ̃ = [𝝉, 𝝇]̃. Then inequality (31) reduces to the classical fractional 𝓗.𝓗-inequality, see [43]. 

Let 𝜷 = 𝟏  and Ϣ̃ = [𝝉, 𝝇]̃. Then from Theorem 2, we achieve the classical 𝓗.𝓗-inequality (1). 

Derivative of real valued function over fuzzy domain 

Here we have proposed the notion of derivative of real valued function over fuzzy domain, and discussed its 
application in next Theorem 2 and Example 1.  

Definition 8: Let Ϣ̃ ∈ 𝔼𝐶 , and  𝛶: [𝜏, 𝜍] ⊆ ℝ → ℝ is said to be on  [Ϣ̃]
0
⊆ [𝜏, 𝜍] ( and hence for each [Ϣ̃]

𝔳
, for all 

𝔳 ∈ [0,1]), and 𝑡0 ∈ [Ϣ̃]
𝔳
. We define derivative of 𝛶,  𝛶′(𝑡0) ∈ ℝ (provided it exists) as 

(𝛶′𝑡0∈Ϣ̃)(𝔳) = lim
ℎ→0−

𝛶(𝑡0+ℎ)−𝛶(𝑡0)

ℎ
= 𝛶′

𝑡0∈[Ϣ̃]
𝔳(𝑡0),    (43) 

We call 𝛶′
𝑡0∈[Ϣ̃]

𝔳(𝑡0) the derivative of 𝛶 at 𝑡0 ∈ [Ϣ̃]
𝔳
. Also, we define the left derivative 𝛶′ 

− (𝑡0) ∈ ℝ (provided it 

exists) as 

 (𝛶′𝑡0∈Ϣ̃)(𝔳) = lim
ℎ→0−

𝛶(𝑡0+ℎ)−𝛶(𝑡0)

ℎ
= 𝛶′ 

−
𝑡0∈[Ϣ̃]

𝔳(𝑡0)
 

−
.    (44) 

and the right derivative 𝛶′ 
+ (𝑡0) ∈ ℝ (provided it exists) as 

 (𝛶′𝑡0∈Ϣ̃)(𝔳) = lim
ℎ→0+

𝛶(𝑡0+ℎ)−𝛶(𝑡0)

ℎ
= 𝛶′ 

+
𝑡0∈[Ϣ̃]

𝔳(𝑡0)
 

+
.    (45) 

We say that 𝛶 is differentiable on  [Ϣ̃] if it is differentiable at each fuzzy point on  [Ϣ̃]. At the end points of [Ϣ̃], we 

only consider the one sided derivative.  

where the integral on the right-hand side is calculated in the sense of Lebesgue. We say the  𝛶 is integrable over 

fuzzy domain , if the derivative 𝛶′
𝑡0∈[Ϣ̃]

0(𝑡0) is finite. In that case, mapping is defined as 

  

 𝛶′(Ϣ̃): [0, 1]  →  ℝ 

     𝖛 →  (𝜰′(Ϣ̃)) (𝖛) = 𝜰
′
[Ϣ̃]

𝖛(𝜰(𝝋)).    

Now we need a following Lemma which will be helpful to prove the upcoming result. 

Lemma 1: Let  𝛶: Ϣ̃ → ℝ be a real-valued mapping on Ϣ̃, whose parametrized form is [Ϣ̃]
𝔳
= [𝑙(𝔳), ɤ(𝔳)], for all 

𝔳 ∈ [0, 1]. If 𝛶 is differentiable on (𝑙(𝔳), ɤ(𝔳)) and  𝛶 ∈ 𝐿(Ϣ̃), then the following inequality hold for Riemann-

Liouville fractional-like integrals:  

 
𝜰(𝒍(𝖛))+𝜰(ɤ(𝖛))

𝟐
−

𝜞(𝜷+𝟏)

𝟐(ɤ(𝖛)−𝒍(𝖛))
𝜷 [𝓘𝒍(𝖛)+

𝜷
𝜰(ɤ(𝖛)) + 𝓘ɤ(𝖛)−

𝜷
𝜰(𝒍(𝖛))]  

=
ɤ(𝖛)−𝒍(𝖛)

𝟐
∫ [(𝟏 −𝝋)𝜷 − 𝝋𝜷]𝜰′(𝝋𝒍(𝖛) + (𝟏 −𝝋)ɤ(𝖛))𝒅𝝋
𝟏

𝟎
.  (46) 

Proof: From the right part of (43), just we have taken, 
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 𝐿 = ∫ [(1 − 𝜑)𝛽 − 𝜑𝛽]𝛶′(𝜑𝑙(𝔳) + (1 − 𝜑)ɤ(𝔳))
1

0
 

   =
ɤ(𝔳)−𝑙(𝔳)

2
∫ (1 − 𝜑)𝛽𝛶′(𝜑𝑙(𝔳) + (1 − 𝜑)ɤ(𝔳))𝑑𝜑
1

0
−
ɤ(𝔳)−𝑙(𝔳)

2
∫ 𝜑𝛽𝛶′(𝜑𝑙(𝔳) + (1 − 𝜑)ɤ(𝔳))𝑑𝜑
1

0
  

   = 𝐿1 + 𝐿2.          (47) 

Using the rule integration by parts, we have 

  𝐿1 =
ɤ(𝔳)−𝑙(𝔳)

2
∫ (1 − 𝜑)𝛽𝛶′(𝜑𝑙(𝔳) + (1 − 𝜑)ɤ(𝔳))𝑑𝜑
1

0
 

      =
ɤ(𝔳)−𝑙(𝔳)

2
[(1 − 𝜑)𝛽

𝛶(𝜑𝑙(𝔳)+(1−𝜑)ɤ(𝔳))

𝑙(𝔳)−ɤ(𝔳)
⃒0
1 +

𝛽

𝑙(𝔳)−ɤ(𝔳)
∫ (1 − 𝜑)𝛽−1𝛶(𝜑𝑙(𝔳) + (1 − 𝜑)ɤ(𝔳))𝑑𝜑
1

0
] 

       =
ɤ(𝔳)−𝑙(𝔳)

2
[
𝛶(ɤ(𝔳))

𝑙(𝔳)−ɤ(𝔳)
+

𝛽

𝑙(𝔳)−ɤ(𝔳)
∫ (1 − 𝜑)𝛽−1𝛶(𝜑𝑙(𝔳) + (1 − 𝜑)ɤ(𝔳))𝑑𝜑
1

0
] 

taking 𝜘 = 𝜑𝑙(𝔳) + (1 − 𝜑)ɤ(𝔳), we have 

  𝐿1 =
ɤ(𝔳)−𝑙(𝔳)

2
[
𝛶(ɤ(𝔳))

𝑙(𝔳)−ɤ(𝔳)
−

𝛤(𝛽+1)

(ɤ(𝔳)−𝑙(𝔳))
2

1

𝛤(𝛽)
∫ (

𝑙(𝔳)−𝜘

𝑙(𝔳)−ɤ(𝔳)
)
𝛽−1

𝛶(𝜘)𝑑𝜘
𝑙(𝔳)

ɤ(𝔳)
] 

     =
ɤ(𝔳)−𝑙(𝔳)

2
[
𝛶(ɤ(𝔳))

𝑙(𝔳)−ɤ(𝔳)
−

𝛤(𝛽+1)

(ɤ(𝔳)−𝑙(𝔳))
𝛽+1 ℐɤ(𝔳)−

𝛽
𝛶(𝑙(𝔳))].      (48) 

Now calculating 𝐿2, we have 

 𝐿2 = −
ɤ(𝔳)−𝑙(𝔳)

2
∫ 𝜑𝛽𝛶′(𝜑𝑙(𝔳) + (1 − 𝜑)ɤ(𝔳))𝑑𝜑
1

0
 

   = −
ɤ(𝔳)−𝑙(𝔳)

2
[𝜑𝛽

𝛶(𝜑𝑙(𝔳)+(1−𝜑)ɤ(𝔳))

𝑙(𝔳)−ɤ(𝔳)
⃒0
1 −

𝛽

𝑙(𝔳)−ɤ(𝔳)
∫ 𝜑𝛽−1𝛶(𝜑𝑙(𝔳) + (1 − 𝜑)ɤ(𝔳))𝑑𝜑
1

0
] 

 =
ɤ(𝔳)−𝑙(𝔳)

2
[
𝛶(𝑙(𝔳))

𝑙(𝔳)−ɤ(𝔳)
+

𝛽

𝑙(𝔳)−ɤ(𝔳)
∫ 𝜑𝛽−1𝛶(𝜑𝑙(𝔳) + (1 − 𝜑)ɤ(𝔳))𝑑𝜑
1

0
] 

again taking 𝜘 = 𝜑𝑙(𝔳) + (1 − 𝜑)ɤ(𝔳), we have 

 𝐿2 =
ɤ(𝔳)−𝑙(𝔳)

2
[
𝛶(𝑙(𝔳))

𝑙(𝔳)−ɤ(𝔳)
−

𝛤(𝛽+1)

(ɤ(𝔳)−𝑙(𝔳))
2

1

𝛤(𝛽)
∫ (

ɤ(𝔳)−𝜘

ɤ(𝔳)−𝑙(𝔳)
)
𝛽−1

𝛶(𝜘)𝑑𝜘
𝑙(𝔳)

ɤ(𝔳)
] 

     =
ɤ(𝔳)−𝑙(𝔳)

2
[
𝛶(𝑙(𝔳))

𝑙(𝔳)−ɤ(𝔳)
−

𝛤(𝛽+1)

(ɤ(𝔳)−𝑙(𝔳))
𝛽+1 ℐɤ(𝔳)−

𝛽
𝛶(𝑙(𝔳))],     (49) 

From (48) and (49), (47) we have 

 
𝜰(𝒍(𝖛))+𝜰(ɤ(𝖛))

𝟐
−

𝜞(𝜷+𝟏)

𝟐(ɤ(𝖛)−𝒍(𝖛))
𝜷 [𝓘𝒍(𝖛)+

𝜷
𝜰(ɤ(𝖛)) + 𝓘ɤ(𝖛)−

𝜷
𝜰(𝒍(𝖛))] 

=
ɤ(𝖛)−𝒍(𝖛)

𝟐
∫ [(𝟏 −𝝋)𝜷 − 𝝋𝜷]𝜰′(𝝋𝒍(𝖛) + (𝟏 −𝝋)ɤ(𝖛))𝒅𝝋
𝟏

𝟎
.   

Hence the required result.  

Here is new exceptional case of Lemma 3.1, which is also new one. 

Remark 4: If in Lemma 1, one takes 𝛽 = 1, then on can obtain following inequality: 

 
𝜰(𝒍(𝖛))+𝜰(ɤ(𝖛))

𝟐
−

𝟏

ɤ(𝖛)−𝒍(𝖛)
∫ 𝜰(𝝒)𝒅𝝒
ɤ(𝖛)

𝒍(𝖛)
 

 =
ɤ(𝖛)−𝒍(𝖛)

𝟐
∫ (𝟏 − 𝟐𝝋)𝜰′(𝝋𝒍(𝖛) + (𝟏 − 𝝋)ɤ(𝖛))𝒅𝝋
𝟏

𝟎
.          (50) 

Theorem 3: Let  𝛶: Ϣ̃ → ℝ be a real-valued mapping on Ϣ̃, whose parametrized form is [Ϣ̃]
𝔳
= [𝑙(𝔳), ɤ(𝔳)], for all 

𝔳 ∈ [0, 1]. Let 𝛶 is differentiable on (𝑙(𝔳), ɤ(𝔳)) with ɤ(𝔳) > 𝑙(𝔳). If |𝛶′| is typ-2 convex mapping on Ϣ̃, then the 

following inequality hold for Riemann-Liouville fractional-like integrals: 

   |
𝜰(𝒍(𝖛))+𝜰(ɤ(𝖛))

𝟐
−

𝜞(𝜷+𝟏)

𝟐(ɤ(𝖛)−𝒍(𝖛))
𝜷 [𝓘𝒍(𝖛)+

𝜷
𝜰(ɤ(𝖛)) + 𝓘ɤ(𝖛)−

𝜷
𝜰(𝒍(𝖛))]| 

      ≤
ɤ(𝔳)−𝑙(𝔳)

2(𝛽+1)
(1 −

1

2𝛽
) [𝛶′(𝑙(𝔳)) + 𝛶′(ɤ(𝔳))].   (51) 

Proof: By using Lemma 1, we have  
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   |
𝜰(𝒍(𝖛))+𝜰(ɤ(𝖛))

𝟐
−

𝜞(𝜷+𝟏)

𝟐(ɤ(𝖛)−𝒍(𝖛))
𝜷 [𝓘𝒍(𝖛)+

𝜷
𝜰(ɤ(𝖛)) + 𝓘ɤ(𝖛)−

𝜷
𝜰(𝒍(𝖛))]| 

= |
ɤ(𝔳)−𝑙(𝔳)

2
∫ [(1 − 𝜑)𝛽 −𝜑𝛽]𝛶′(𝜑𝑙(𝔳) + (1 − 𝜑)ɤ(𝔳))𝑑𝜑
1

0
|  

      ≤
ɤ(𝔳)−𝑙(𝔳)

2
∫ |(1 − 𝜑)𝛽 −𝜑𝛽||𝛶′(𝜑𝑙(𝔳) + (1 − 𝜑)ɤ(𝔳))|𝑑𝜑
1

0
. 

Since |𝛶′| is typ-2 convex mapping on Ϣ̃, then we find 

|
𝛶(𝑙(𝔳))+𝛶(ɤ(𝔳))

2
−

𝛤(𝛽+1)

2(ɤ(𝔳)−𝑙(𝔳))
𝛽 [ℐ𝑙(𝔳)+

𝛽
𝛶(ɤ(𝔳)) + ℐɤ(𝔳)−

𝛽
𝛶(𝑙(𝔳))]|  

 ≤
ɤ(𝔳)−𝑙(𝔳)

2
∫ |(1 − 𝜑)𝛽 −𝜑𝛽|[𝜑|𝛶′(𝑙(𝔳))| + (1 − 𝜑)|𝛶′(ɤ(𝔳))|]𝑑𝜑
1

0
 

 =
ɤ(𝔳)−𝑙(𝔳)

2
∫ [(1 − 𝜑)𝛽 − 𝜑𝛽][𝜑|𝛶′(𝑙(𝔳))| + (1 − 𝜑)|𝛶′(ɤ(𝔳))|]𝑑𝜑
1

2
0

 

 +
ɤ(𝔳)−𝑙(𝔳)

2
∫ [𝜑𝛽 − (1 − 𝜑)𝛽][𝜑|𝛶′(𝑙(𝔳))| + (1 − 𝜑)|𝛶′(ɤ(𝔳))|]𝑑𝜑
1
1

2

 

   =
ɤ(𝔳)−𝑙(𝔳)

2
[|𝛶′(𝑙(𝔳))| ∫ [𝜑(1 − 𝜑)𝛽 − 𝜑𝛽+1]𝑑𝜑

1

2
0

+ |𝛶′(ɤ(𝔳))| ∫ [(1 − 𝜑)𝛽+1 − 𝜑𝛽(1 − 𝜑)]𝑑𝜑
1

2
0

] 

   +
ɤ(𝔳)−𝑙(𝔳)

2
[|𝛶′(𝑙(𝔳))| ∫ [𝜑𝛽+1 − 𝜑(1 − 𝜑)𝛽]𝑑𝜑

1
1

2

+ |𝛶′(ɤ(𝔳))| ∫ [𝜑𝛽(1 − 𝜑) − (1 − 𝜑)𝛽+1]𝑑𝜑
1
1

2

] 

 =
ɤ(𝔳)−𝑙(𝔳)

2
[|𝛶′(𝑙(𝔳))| [

1

(𝛽+1)(𝛽+2)
−
(
1

2
)
𝛽+1

𝛽+1
] + |𝛶′(ɤ(𝔳))| [

1

𝛽+2
−
(
1

2
)
𝛽+1

𝛽+1
]] 

+
ɤ(𝔳)−𝑙(𝔳)

2
[|𝛶′(𝑙(𝔳))| [

1

𝛽+2
−
(
1

2
)
𝛽+1

𝛽+1
] + |𝛶′(ɤ(𝔳))| [

1

(𝛽+1)(𝛽+2)
−
(
1

2
)
𝛽+1

𝛽+1
]].  

by simple simplification, above inequality reduces to the inequality (44). Hence, the result has been proven. 

 

Particular Cases 
Here some of the exceptional cases have been discussed which depend upon the triangular fuzzy number and 

trapezoidal fuzzy number. 

Firstly, taking triangular fuzzy number such that 

 [Ϣ̃]
𝔳
= [𝑟 − 𝜆(1 − 𝔳), 𝑟 + 𝛾(1 − 𝔳)],  

then inequality (50) reduces to the Riemann-Liouville fractional-like integral ℋ.ℋ-type inequalities over 

triangular fuzzy number Ϣ̃ such that 

  |
𝜰(𝒓−𝝀(𝟏−𝖛))+𝜰(𝒓+𝜸(𝟏−𝖛))

𝟐
−

𝜞(𝜷+𝟏)

𝟐(((𝜸+𝝀)(𝟏−𝖛)))
𝜷 [𝓘

(𝒓−𝝀(𝟏−𝖛))
+

𝜷
𝜰(𝒓 + 𝜸(𝟏 − 𝖛)) + 𝓘

(𝒓+𝜸(𝟏−𝖛))
−

𝜷
𝜰(𝒓 − 𝝀(𝟏 − 𝖛))]| 

 ≤
((𝜸+𝝀)(𝟏−𝖛))

𝟐(𝜷+𝟏)
(𝟏 −

𝟏

𝟐𝜷
) [𝜰′(𝒓 − 𝝀(𝟏 − 𝖛)) + 𝜰′(𝒓 + 𝜸(𝟏 − 𝖛))]. (52) 

Secondly, taking trapezoidal fuzzy number such that 

 

[Ϣ̃]
𝔳
= [𝑟 − 𝜆(1 − 𝔳), 𝑠 + 𝛾(1 − 𝔳)], 

 

then inequality (50) reduces to the Riemann-Liouville fractional-like integral ℋ.ℋ-type inequalities over 

trapezoidal fuzzy number Ϣ̃ such that 

 |
𝜰(𝒓−𝝀(𝟏−𝖛))+𝜰(𝒔+𝜸(𝟏−𝖛))

𝟐
−

𝜞(𝜷+𝟏)

𝟐(𝒔−𝒓+(𝜸+𝝀)(𝟏−𝖛))
𝜷 [𝓘

(𝒓−𝝀(𝟏−𝖛))
+

𝜷
𝜰(𝒔 + 𝜸(𝟏 − 𝖛)) + 𝓘

(𝒔+𝜸(𝟏−𝖛))
−

𝜷
𝜰(𝒓 − 𝝀(𝟏 − 𝖛))]| 

     ≤
𝒔−𝒓+(𝜸+𝝀)(𝟏−𝖛)

𝟐(𝜷+𝟏)
(𝟏 −

𝟏

𝟐𝜷
) [𝜰′(𝒓 − 𝝀(𝟏 − 𝖛)) + 𝜰′(𝒔 + 𝜸(𝟏 − 𝖛))].  (53) 

Note that, If 𝑠 = 𝑟, then both double inequalities (52) and (53) coincides.    
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Remark 5: If 𝛽 = 1, then from Theorem 3, we obtain the following outcome which is also new one: 

    |
𝜰(𝒍(𝖛))+𝜰(ɤ(𝖛))

𝟐
−

𝟏

ɤ(𝖛)−𝒍(𝖛)
∫ 𝜰(𝝒)𝒅𝝒
ɤ(𝖛)

𝒍(𝖛)
| 

≤
ɤ(𝖛)−𝒍(𝖛)

𝟖
[𝜰′(𝒍(𝖛)) + 𝜰′(ɤ(𝖛))].   (54) 

Let one takes 𝜷 = 𝟏 and Ϣ̃ = [𝝉, 𝝇]̃. Then from Remark 1 and Theorem 3, we obtain the classical inequality, see 
[65]: 

 |
𝛶(𝜏)+𝛶(𝜍)

2
−

1

𝜍−𝜏
∫ 𝛶(𝜘)𝑑𝜘
𝜍

𝜏
| ≤

𝜍−𝜏

8
[𝛶′(𝜏) + 𝛶′(𝜍)].           (55) 

Example 1: Consider the trapezoidal fuzzy numbers Ϣ̃ = (1,2;
1

2
, 2), that is 

     Ϣ̃(𝜘) =

{
 
 

 
 

1,            ϣ ∈ [1, 2]

ϣ−
1

2

𝜆
,      ϣ ∈ [1 −

1

2
, 1]

 4−ϣ

2
,     ϣ ∈ [2, 2 + 2]

0,          otherwise,

            (56) 

whose parametrized form is [Ϣ̃]
𝔳
= [1 −

1

2
(1 − 𝔳), 2 + 2(1 − 𝔳)], for all 𝔳 ∈ [0,1]. Let 𝛽 =

1

2
, and   𝛶(𝜘) = 𝜘2 be a 

real-valued mapping on fuzzy domain [Ϣ̃]
𝔳
= [1 −

1

2
(1 − 𝔳), 2 + 2(1 − 𝔳)]. Then, it can be easily seen that 𝛶(𝜘) =

𝜘2 is a convex-like real-valued mapping, for all 𝔳 ∈ [0,1]. Now we compute the following 

   𝛶 (
𝑙(𝔳)+ɤ(𝔳)

2
) = 𝛶 (

6+3(1−𝔳)

4
) =

1

16
(6 + 3(1 − 𝔳))

2
.   

 
𝛤(𝛽+1)

2(ɤ(𝔳)−𝑙(𝔳))
𝛽 [ℐ𝑙(𝔳)+

𝛽
𝛶(ɤ(𝔳)) + ℐɤ(𝔳)−

𝛽
𝛶(𝑙(𝔳))] 

            =
√𝜋

4(3+
5

2
(1−𝔳))

1
2

1

√𝜋
∫ ( 2 + 2(1 − 𝔳) − 𝜘)

−1

2  . 𝜘2𝑑𝜘
 2+2(1−𝔳)

1−
1

2
(1−𝔳)

  

             +
√𝜋

4(3+
5

2
(1−𝔳))

1
2

1

√𝜋
∫ (𝜘 − 1 +

1

2
(1 − 𝔳))

−1

2
. 𝜘2𝑑𝜘

2+2(1−𝔳)

1−
1

2
(1−𝔳)

  

          =
(√7−5𝔳)(155𝔳2−650𝔳+779)

120√2(1+
5

2
(1−𝔳))

1
2

  

    
𝛶(𝑙(𝔳))+𝛶(ɤ(𝔳))

2
=

(
2−(1−𝔳)

2
)
2
+( 2+2(1−𝔳))

2

2
 

            =
1

8
[4(2(1 − 𝔳) + 2)2 + (1 + 𝔳)2], 

that is 

 
1

16
(6 + 3(1 − 𝔳))

2
≤

(√7−5𝔳)(155𝔳2−650𝔳+779)

120√2(1+
5

2
(1−𝔳))

1
2

≤
1

8
[8(2(1 − 𝔳) + 2)2 + (1 + 𝔳)2],  

for all 𝔳 ∈ [0, 1]. 
Hence Theorem 2 has been verified. 

For Theorem 3, we have 

 |
𝜰(𝒍(𝖛))+𝜰(ɤ(𝖛))

𝟐
−

𝜞(𝜷+𝟏)

𝟐(ɤ(𝖛)−𝒍(𝖛))
𝜷 [𝓘𝒍(𝖛)+

𝜷
𝜰(ɤ(𝖛)) + 𝓘ɤ(𝖛)−

𝜷
𝜰(𝒍(𝖛))]| 

 = |
𝟏

𝟖
[𝟒(𝟐(𝟏 − 𝖛) + 𝟐)𝟐 + (𝟏 + 𝖛)𝟐] −

(√𝟕−𝟓𝖛)(𝟏𝟓𝟓𝖛𝟐−𝟔𝟓𝟎𝖛+𝟕𝟕𝟗)

𝟏𝟐𝟎√𝟐(𝟏+
𝟓

𝟐
(𝟏−𝖛))

𝟏
𝟐

|, 
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ɤ(𝔳)−𝑙(𝔳)

2(𝛽+1)
(1 −

1

2𝛽
) [𝛶′(𝑙(𝔳)) + 𝛶′(ɤ(𝔳))] 

       =
1

12
(
√2−1

√2
) [4(2(1 − 𝔳) + 2)2 + (1 + 𝔳)2][6 − 3(1 − 𝔳)],  

  |
1

8
[4(2(1 − 𝔳) + 2)2 + (1 + 𝔳)2] −

(√7−5𝔳)(155𝔳2−650𝔳+779)

120√2(1+
5

2
(1−𝔳))

1
2

|           

         ≤
1

12
(
√2−1

√2
) [4(2(1 − 𝔳) + 2)2 + (1 + 𝔳)2][6 − 3(1 − 𝔳)], 

for all 𝔳 ∈ [0, 1]. 
Hence, Theorem 3 has been verified. 

V. CONCLUSION 

     In order to calculate the newly defined Riemann-Liouville fractional-like integrals for scalar-valued functions 

over a fuzzy spatial domain, we have discussed some concepts and examples. These concepts can be used to estimate 

the size of a region satisfying a particular property, and we have verified that a comparable idea can be defined for a 

variety of fuzzy numbers. This fact has implications for estimating magnitudes for fuzzily known field functions. 

Moreover, some applications of Riemann-Liouville fractional-like integral operators are also discussed in the field of 

inequalities and validate it with nontrivial examples. In future, we will try to explore these concepts for interval-

valued and fuzzy-number-valued mappings. Moreover, we will discuss some different types of fractional integral 

over fuzzy region. Contrarily, the idea of a convex body's width-integral enables a significant application of 

Beckenbach's inequality to convex geometry on ℝ𝑛 (see [81]). We would like to apply these concepts in this context 

to the investigation of a few issues pertaining to convex geometry in the space 𝔼𝐶 , a subject that will be the focus of 

future research. 
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