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Abstract

In this paper, we used the homotopy perturbation transform method (HPTM) to offer an efficient
semi-analytical technique for solving fractional Emden-Fowler equations. A mixture of Laplace
transform, Caputo-Fabrizio derivative, and homotopy perturbation transformation process has
the projected technique. To assess the efficacy of the suggested technique, test examples have
been provided. The series have been used to represent semi-analytical solutions. Also, covered
have the convergence position, estimation, and semi-analytical simulation results. The HPTM
efficiently managed and controlled a series solution that quickly converges to a precise result
in a narrow admissible region. The new findings essentially improve and simplify some of the
previously published findings (see ref [46]). By assigning appropriate values to free parameters,
dynamical wave structures of some semi-analytical solutions are graphically demonstrated using
2-dimensional and 3-dimensional figure. Furthermore,various simulations are used to demonstrate
the physical behaviors of the acquired solution with respect to fractional integer order.

Keywords: Time-fractional Emden-Fowler equations (EFEs); Homotopy Perturbation
Transform Method; CF-derivative; Laplace Transform;

1. Introduction

The fractional calculus (FC), is the generic generalization of integer-order calculus to licen-
tious order integration and differentiation with non integer order. Fractional calculus (FC)
dates back to 1695, when l’Hopital addressed Leibnitz a letter regarding the probable mean-

ing of d1/2x(t)

dt1/2
, which represents the semi derivative of x(t) with respect to t. Due to its ad-

vantageous qualities such as analyticity,linearity, and non locality, fractional calculus has re-
cently become a powerful tool. Furthermore, there are numerous pioneering references acces-
sible for various definitions of FC,which lay the foundation for FC [1-4], With the rapid ad-
vancement of digital computer technology, many researchers are turning their attention to the
theory and applications of fractional calculus. The Jacob Robert Emden (1862-1940), a swiss
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astrophysicist, and Sir Ralph Howard Fowler (1889-1944), an English astronomer, are the name-
sakes of the famous Emden-Fowler equation [5,6], The generalized derivative operator [7]. The
HAM [8,9]. The caputo-fabrizio fractional derivative [10]. asymptotic behavior [11]. The adomian
decomposition method [12]. The conformable derivative [13]. The q-homotopy analysis trans-
form method [14]. The homotopy perturbation transform method [15]. The modified (G′/G)-
expansion method [16,17]. The modified invariant subspace method [18]. The finite difference
method [19]. The multi variable aleph -function [20]. The aboodh adomian decomposition method,
a powerful research tool, is successfully used to extract the solution of ZKEs [21,22]. Bernoulli sub
scheme is also used to observe Josephson effect [23]. The nonlinear complex Kundu–Eckhaus and
Zakharov–Kuznetsov–Benjamin–Bona–Mahony equations have been investigated in conformable
[24]. The banach’s fixed point speculation is investigated for the controlling fractional-order model
in order to determine the existence and uniqueness of the achieved solution [25], Some new voltage
behavior such as dark-bright soliton solution, trigonometric, and complex function solutions [26-
30]. Magnetohydrodynamic [31]. The uniform haar wavelet resolution technique [32]. The sin-
gular boundary value problems [33]. The analytical solutions [34]. exp(−k(p))-expansion tech-
nique [35]. The caputo fractional derivatives [36]. The generalized adams-bash forth-moulton
method [37, 38]. Some standard fixed point theorems and fractional calculus theories [39]. The
pseudo-spectral collocation method [40]. The mittag-leffler rule with fractal derivative general-
ized [42]. and so on.
To investigate these equations, mathematicians developed some of the most extensively used statis-
tics. Emden-differential Fowler’s equation is one of these equations. It has numerous applications
in a variety of scientific fields. This equation is expressed in its general form as:

x−κ dm

dxm
(xκ dn

dxn
)y + h(x)j(x) = 0, κ > 0. (1)

The Wazwaz [12] this equation was proposed, and it explains a lot of remarkable facts. The
Emden-Fowler (EF) Equations were first proposed by Fowler as a solution to an astronomical
problem [5]. Berkovich [6], followed up with a consideration of its particular situations and change
into simpler forms. Other properties of the above equation, such as fastness, asymptotic evolution,
continuity, boundary value problem, oscillations, and boundedness, were discussed by Wong [5] in
1975.
The homotopy perturbation transform method (HPTM) is described, in which continuous map-
ping is produced from the initial obligation to the exact solutions. The subsidiary parameter
confirms solutions convergence. HPTM is recognized even if a given non-linear problem doesn’t
restrain any small/large parameters. The convergence zone and rate of approximation category
can be adjusted and controlled. It can also be used to approximate a nonlinear issue by varying
the base functions. The connection of semi-analytical approaches with the Laplace transform is
well-known for avoiding time-consuming repercussions and requiring less CPU time to examine
numerical solutions to nonlinear problems describe real-life applications. By selecting a suitable
value for the auxiliary parameter alpha, we may easily alter and regulate the convergence zone of
solution series in a vast allowed realm. Also, with the same grade point and order of solution range,
it can yield many more acceptable solutions than all other analytical techniques. The development
in HPTM is the creation of a novel correction function using homotopy polynomials. Five test
issues confirm the accuracy of this strategy. This method can be used to solve multi-dimensional
fractional physical problems with ease. The motion of a drop with memory in time is described by
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time-fractional differential equations. When variations are heavy-tailed, space fractional derivatives
emerge to depict drop motion that accounts for a transform in the flow field over the exhaustive
system. In addition, the fractional derivatives shows that the system memory is modulated or
weighted. Electrical signal publicity in a transmission line, wave propagation, signal dissection,
and other applications use the Emden-Fowler equation. Because of this, fractional modelling is
appropriate for such systems. As a result, understanding the multi-dimensional fractional order
Emden-Fowler equation is crucial. It appears to be intriguing to discover a numerical solutions
of the fractional order Emden-Fowler equation using HPTM because of its ability to provide a
parameter that allows us to regulate and change the series solution’s convergence zone. HPTM
also eliminates the need for linearisation, discretised, small dislocation, or any restricted assump-
tions, significantly reduces mathematical computational, provides nonlocal effect, promises a big
convergence zone, and eliminates the need to calculate complicated polynomials, integrations,
or small/large physical parameters. Conformable derivatives yield Caputo type fractional op-
erators [43,44]. The mittag-leffler power law [45]. The application of the improved q-HAM and
the optimal perturbation iteration process yield semi-analytical solutions to the Emden-Fowler
problem [46], modified iterative method [47], cylindrical coordinate system [48], For temporal
and spatial discretization, a modified Leap-Frog finite difference scheme with stabilised term and
a central finite difference scheme are used [49], On the basis of strength and stiffness theory
and calculation, applied materials were determined, and applied physics calculations were carried
out [50], criteria for oscillation in second-order Emden-Fowler delay differential equations with a
sub-linear neutral term [51], the extended sinh-Gordon equation expansion method [52], the In-
complete Global GMERR algorithm and the Global GMERR algorithm [53], various simulations
are used to demonstrate the physical behaviors of the acquired solution with respect to fractional
integer order. [54-62]. Laplace transform [63,64]. second-order Emden-Fowler neutral delay DEs as
an application of oscillation criteria [65,66]. The EFEs under the dirichlet boundary value problem
are the application of the variational method [67], q-homotopy analysis transform method [68], sta-
tistical analysis [69] The development, analysis,and application of a free coefficient algorithm can
also reveal a desirable or undesirable property/behavior [70-72], to the best of our knowledge, this
is the first time the caputo-fabrizio derivative has been applied to a singular differential equation
problem. The present article (i) the brief introduction and some basic definition of fractional
calculus is presented in section 2, (ii) the (HPTM) is discussed in section 3, (iii) The solution
of Emden-Fowler equation using the Caputo Fabrizio type fractional operator by HPTM is given
in section 4, (iv) The results and discussion in section 5. Finally, we have presented the detailed
conclusion in section 6.

2. Preliminaries

Some fundamental definitions of the Riemann-Liouville (R-L) fractional differentiation, Laplace
transform (LT) and FCD are presented [15, 35].
Definition 2.1 The Caputo derivative is define for α ≥ 0 & n ∈ N ∪ 0 is defined as below [15]

CF
0 Dα

t u(t) =
1

Γ(n− α)

∫ t

0

(t− ξ)
dn

dtn
u(ξ)dξ, (2)

where CF
0 Dα

t is a Caputo Fabrizio derivative.
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Definition 2.2 Assume u be a function u ∈ H1(a1, b1), b1 > 0, 0 < α < 1. Then,the fractional
caputo-fabrizio factional operator is define as [15]:

CF
0 Dα

t u(t) =
M(α)

1− α)

∫ t

0

exp[−α(1− ξ)

1− α
]u′(ξ)dξ, t ≥ 0, 0 < α < 1, (3)

with a normalize functions M(α) which is depend on α ∈ M(0) = M(1) = 1.
Definition 2.3 The CFD of order 0 < α < 1. is given by [15]

CF
0 Dα

t u(t) =
2(1− α)

M(α)(2− α)
u(t) +

2α

M(α)(2− α)

∫ t

0

u(ξ)dξ, t ≥ 0, (4)

where CF
0 Dα

t u(t) = 0, if u is a constant function.
Definition 2.4 The Laplace transform (LT) for the (CFD) of order 0 < α < 1. and m ∈ N is
gives by [15]

L
[
CF
0 D

(m+α)
t u(t)

]
(s) =

1

1− α
L [um+1(t)]L

[
exp

(
−α

(1− α)
t

)]
=
sm+1L [u(t)]− smu(0)− sm−1u′(0) . . .− um(0)

s+ α(1− s)

(5)

In particular, we have

L
[
CF
0 D

(m+α)
t u(t)

]
(s) =

sL (u(t))

s+ α(1− s)
, m = 0,

L
[
CF
0 D

(m+α)
t u(t)

]
(s) =

s2L (u(t))− su(o)− u′(0)

s+ α(1− s)
, m = 1.

3. General description of homotopy perturbation transform method via Caputo-
Fabrizio type operator:

In this section presents a powerful scheme called the homotopy perturbation transform method. It
is as follows [15]. We look at the following equation of Nonlinear partial differential equation along
with caputo-Fabrizio derivative:

CF
0 Dm+α

t u(x, t) + βu(x, t) + φu(x, t) = k(x, t), n− 1 < α+m ≤ n, (6)

such that
∂lu(x, 0)

∂tl
= fl(x), l = 0, 1, 2, . . . n− 1. (7)

Now, be applying the (LT) on both Eq.(6) and Eq.(7), we receive:

L [u(x, t)] = Θ(x, s)−
(
s+ α(1− s)

sn+1

)
L [βu(x, t) + φu(x, t)]. (8)

where

Θ(x, s) =
1

sm+1
[smf0(x) + sm−1f1(x) + . . .+ fm(x)] +

s+ α(1− s)

sn+1
k̃(x, s). (9)
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Taking the inverse Laplace transformation the Eq.(8) we have

u(x, t) = Θ(x, s)− L −1

[(
s+ α(1− s)

sn+1

)
L [βu(x, t) + φu(x, t)]

]
, (10)

where Θ(x, s) is the term that arises from the source term, and it specifies the initial condi-
tions. The solution u(x, t) can be extended into an infinite sequence using the regular homotopy
perturbation method as follows:

u(x, t) =
∞∑
n=0

pnun(x, t). (11)

where um(x, t) are known functions is given by

φu(x, t) =
∞∑
n=0

pnHn(x, t). (12)

The poly. Hn(x, t) are define as [8-9]

Hm(u0, u1, u2, . . . un) =
1

n!

∂m

∂pm

[(
∞∑

m=0

piui

)]
p=0

, m = 0, 1, 2, . . . ; (13)

substitute Eq.(11) and Eq.(12) into Eq.(10) we are getting

∞∑
m=0

um(x, t) = Θ(x, s)− pL −1

[(
s+ α(1− s)

sm+1

)
L

[
β

∞∑
m=0

pmum(x, t) +
∞∑
n=0

pmHm

]]
. (14)

Comparing the coefficients of p0, p1, p2, p3 and p4 we get

p0 : u0(x, t) = Θ(x, s),

p1 : u1(x, t) = −L −1

[(
s+ α(1− s)

sm+1

)
L [βu0(x, t) +H0(u)]

]
p2 : u2(x, t) = −L −1

[(
s+ α(1− s)

sm+1

)
L [βu1(x, t) +H1(u)]

]
p3 : u3(x, t) = −L −1

[(
s+ α(1− s)

sm+1

)
L [βu2(x, t) +H2(u)]

]
...

pm+1 : um+1(x, t) = −L −1

[(
s+ α(1− s)

sm+1

)
L [βum+1(x, t) +Hm+1(u)]

]
.

By the help of HPTM, the series solutions is

u(x, t) =
∞∑

m=0

um(x, t) (15)

This approach avoids linearization and weak nonlinearity assumptions, and the solution is created
in the form of a general solution, making it more practical than the method of simplifying physical
problems.
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4. Semi-analytical experiments

In this section, we will solve various types of Emden-Fowler equations using the homotopy
perturbation transform method [46].

Example 4.1. Contemplate the Emden-Fowler equation

CF
0 Dα

t u(x, t) =
∂2u

∂x2
+

5

x

∂u

∂x
− (12t2 − 2tx2 + 4t4x2)u(x, t), (16)

with the IC
u(x, 0) = 1. (17)

The Laplace transformation on both sides Eq.(16), we get

L[u(x, t)] =
1

s
+

(
s+ α(1− s)

s

)
L

[
∂2u

∂x2
+

5

x

∂u

∂x
− (12t2 − 2tx2 + 4t4x2)u(x, t)

]
. (18)

Applying the inverse of the (LT) to Eq.(18)

u(x, t) = 1 + L −1

[(
s+ α(1− s)

s

)
L

[
∂2u

∂x2
+

5

x

∂u

∂x
− (12t2 − 2tx2 + 4t4x2)u(x, t)

]]
. (19)

Now, we apply the HPTM

∞∑
m=0

um =

+ pL −1

[(
s+ α(1− s)

s

)
L

[
∞∑

m=0

pmum +
5

x

∞∑
m=0

pmum − (12t2 − 2tx2 + 4t4x2)
∞∑

m=0

pmum

]]
,

(20)
Firmly facing the above conditions, we get

p0 : u0(x, t) =1

p1 : u1(x, t) =− 4

3
t3
(
3α + x2α

)
− 2t

(
−x4 + x4α

)
+ t2

(
−12− 4x2 + 12α + 4x2α + x4α

)
,

p2 : u2(x, t) =
8

9
t6
(
9α2 + 6x2α2 + x4α2

)
+ 2t

(
32x2 + x4 − 64x2α− 2x4α + 32x2α2 + x4α2

)
− 2t2

(
30 + 2x2 − 60α− 36x2α− x4α + 30α2 + 34x2α2 + x4α2

)
+

1

3
t3
(
−108α− 4x2α + 108α2 + 36x2α2 + x4α2

)
− 8

15
t5
(
−90α− 60x2α− 10x4α + 90α2 + 60x2α2 + 13x4α2 + x6α2

)
+

4

3
t4
(
−6x4α− 2x6α− 3α2 + 6x4α2 + 2x6α2

)
,
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p3 : u3(x, t) =− 2t
(
−384− 64x2 − x4 + 1152α + 192x2α + 3x4α− 1152α2 − 192x2α2 − 3x4α2 + 384α3 + . . .

)
+ t2

(
−108− 4x2 + 1476α + 204x2α + 3x4α− 2628α2 − 396x2α2 − 6x4α2 + 1260α3 + 196x2α3 + . . .

)
− 1

3
t3
(
264α + 8x2α− 1680α2 − 208x2α2 − 3x4α2 + 1416α3 + 200x2α3 + 3x4α3

)
+

32

81
t9
(
27α3 + 27x2α3 + 9x4α3 + x6α3

)
− 4

45
t6
(
−1530α2 − 700x2α2 − 10x4α2 + 1530α3 + 796x2α3 + 73x4α3 + x6α3

)
+

4

15
t5
(
1620α + 760x2α + 20x4α− 3240α2 − 1904x2α2 − 292x4α2 − 4x6α2 + 1617α3 + . . .

)
− 1

12
t4
(
3072x2α + 2016x4α + 32x6α + 204α2 − 6140x2α2 − 4032x4α2 − 64x6α2 − . . .

)
− 2

9
t8
(
−432α2 − 432x2α2 − 144x4α2 − 16x6α2 + 432α3 + 432x2α3 + 153x4α3 + . . .

)
+

16

63
t7
(
−63x4α2 − 42x6α2 − 7x8α2 + 36α3 + 16x2α3 + 63x4α3 + 42x6α3 + 7x8α3

)
.

...

Hence series solution is given by

u(x, t) =
∞∑

m=0

um(x, t) = u0 + u1 + u2 + u3 + . . . . (21)

Therefore, converges to exact solution u(x, t) = ex
2t2 of the integer-order EFEs as

Example 4.2. Contemplate the Emden-Fowler equation

CF
0 Dα

t u(x, t) =
∂2u

∂x2
+

2

x

∂u

∂x
− (5 + 4x2)u(x, t)− (6− 5x2 − 4x4), (22)

with the IC
u(x, 0) = x2 + ex

2

. (23)

The Laplace transformation on both sides Eqs.(22-23) , we get

L [u(x, t)] =
1

s
(x2+ex

2

)−
(
s+ α(1− s)

s

)
L (6+5x2−4x2)+

(
s+ α(1− s)

s

)
L

[
∂2u

∂x2
+

2

x

∂u

∂x
− (5 + 4x2)u

]
.

(24)
Applying the inverse of the (LT) to Eq.(24)

u = x2+ex
2

+(−6+5x2−4x2)(1−α+αt)+L −1

[(
s+ α(1− s)

s

)
L

[
∂2u

∂x2
+

2

x

∂u

∂x
− (5 + 4x2)

]]
.

(25)
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Now, we apply the HPTM

∞∑
m=0

um =x2 + ex
2 − (6 + 5x2 − 4x2)(1− α + αt)

+ pL −1

[(
s+ α(1− s)

s

)
L

[
∞∑

m=0

pmum +
2

x

∞∑
m=0

pmum − (5 + 4x2)
∞∑

m=0

pmum

]]
,

(26)

Firmly facing the above conditions, we get

p0 : u0(x, t) = x2 + ex
2

+
(
−6 + 5x2 − 4x4

)
(1− α + tα),

p1 : u1(x, t) = 30 + 7ex
2 − 80x2 + 4ex

2

x2 − 8x4 − 54α− 7ex
2

α + 54tα + 7ex
2

tα + 155x2α− 4ex
2

x2α

− 155tx2α + 4ex
2

tx2α + 12x4α− 12tx4α + 24α2 − 48tα2 + 12t2α2

− 75x2α2 + 150tx2α2 − 75

2
t2x2α2 − 4x4α2 + 8tx4α2 − 2t2x4α2

p2 : u2(x, t) =
1

2
t2α2

(
−1302 + 73ex

2 − 550x2 + 88ex
2

x2 − 16x4 + 16ex
2

x4 + 1278α + 465x2α + 12x4α
)

+ (−1 + α)
(
630− 73ex

2

+ 360x2 − 88ex
2

x2 + 8x4 − 16ex
2

x4 − 876α + 73ex
2

α− 395x2α . . .
)
,

− tα
(
1506− 146ex

2

+ 755x2 − 176ex
2

x2 + 20x4 − 32ex
2

x4 − 2604α + 146ex
2

α− 1100x2α . . .
)

+
1

6
t3
(
−426α3 − 155x2α3 − 4x4α3

)
,

p3 : u3(x, t) =− 2790 + 1039ex
2 − 520x2 + 1932ex

2

x2 − 8x4 + 720ex
2

x4 + 64ex
2

x6 + 8826α− 3117ex
2

α + . . .

− 1

6
t3α3

(
−1854− 601ex

2 − 7403x2 − 1112ex
2

x2 − 2276x4 − 272ex
2

x4 − 64x6 + 2244α + . . .
)

+ t(−1 + α)α
(
8826− 3117ex

2

+ 1675x2 − 5796ex
2

x2 + 28x4 − 2160ex
2

x4 − 192ex
2

x6 − . . .
)

+
1

2
t2α2

(
−2826 + 2679ex

2

+ 6483x2 + 4976ex
2

x2 + 2260x4 + 1712ex
2

x4 + 64x6 + 128ex
2

x6 + . . .
)

+
1

24
t4
(
−1356α4 − 235x2α4 − 4x4α4

)
.

...

Hence series solution is given by

u(x, t) =
∞∑

m=0

um(x, t) = u0 + u1 + u2 + u3 + · · · , (27)

therefore, converges to exact solution u(x, t) = et+x2
+ x2 of the integer-order EFEs as

Example 4.3. Contemplate the Emden-Fowler equation

CF
0 Dα

t u(x, t) =
∂2u

∂x2
+

4

x

∂u

∂x
− (18x+ 9x4)u(x, t) + 2 + (18x+ 9x4)t2, (28)
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with the IC
u(x, 0) = ex

3

. (29)

The Laplace transformation on both sides Eqs. (28-29) , we get

L [u(x, t)] =
1

s
ex

3

+

(
s+ α(1− s)

s

)
L (18x+9x4)t2+

(
s+ α(1− s)

s

)
L

[
∂2u

∂x2
+

4

x

∂u

∂x
− (18x+ 9x4)u

]
.

(30)
Applying the inverse of the (LT) to Eq.(30)

u(x, t) =ex
3

+ 2 + 18t2x+ 9t2x4 − 2α + 2tα− 18t2xα + 6t3xα− 9t2x4α + 3t3x4

+ L −1

[(
s+ α(1− s)

s

)
L

[
∂2u

∂x2
+

4

x

∂u

∂x
− (18x+ 9x4)

]]
.

(31)

Now, we apply the HPTM

∞∑
m=0

um =ex
3

+ 2 + 18t2x+ 9t2x4 − 2α + 2tα− 18t2xα + 6t3xα− 9t2x4α + 3t3x4

+ pL −1

[(
s+ α(1− s)

s

)
L

[
∞∑

m=0

pmum +
4

x

∞∑
m=0

pmum − (18x+ 9x4)
∞∑

m=0

pmum

]]
.

(32)
Firmly facing the above conditions, we get

p0 : u0(x, t) = ex
3

+ 2 + 18t2x+ 9t2x4 − 2α + 2tα− 18t2xα + 6t3xα− 9t2x4α + 3t3x4

p1 : u1(x, t) = 2 +
72t2

x
+ 18t2x+ 252t2x2 + 9t2x4 − 4α + 4tα− 144t2α

x
+

48t3α

x
− 36t2xα + 12t3xα

− 504t2x2α + 168t3x2α− 18t2x4α + 6t3x4α + 2α2 − 4tα2 + t2α2 +
72t2α2

x
− 48t3α2

x

+
6t4α2

x
+ 18t2xα2 − 12t3xα2 +

3

2
t4xα2 + 252t2x2α2 − 168t3x2α2

+ 21t4x2α2 + 9t2x4α2 − 6t3x4α2 + α2

. . . p2 : u2(x, t) = − 2t
(
−2α + 18xα + 9x4α + 6α2 − 3α3

)
+ 2

(
−18x− 9x4 − 2α + 18xα + 9x4α + 3α2 − . . .

)
+

3t5 (−16α3 + 16x2α3 + 280x3α3 + 2x4α3 + 56x5α3 + x7α3)

20x3

− 9t4 (16α2 − 16x2α2 − 280x3α2 − 2x4α2 − 56x5α2 − x7α2 − 16α3 + 16x2α3 . . .)

4x3

− 1

x3
3t2
(
48− 48x2 − 840x3 − 6x4 − 168x5 − 3x7 − 144α + 144x2α + 2520x3α + 18x4α + . . .

)
1

3x3
t3
(
−432α + 432x2α + 7560x3α + 54x4α + 1512x5α + 27x7α + 864α2 − 864x2α2 − . . .

)
.

...
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Hence series solution is given by

u(x, t) =
∞∑

m=0

um(x, t) = u0 + u1 + u2 + u3 + ... (33)

therefore, converges to exact solution u(x, t) = ex
3
+ t2 of the integer-order EFEs as

Figure 1: Comparison of our approximate solution u(x, t) for different values of α = 1.25, α = 1.50, α = 1.75 and
α = 2 for Ex.4.1.
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Figure 2: Surface show the 3D wave function u(x, t) at (a) α = 1.25, (b) α = 1.50, (c) α = 1.75 and (d) α = 2.

5. Results and discussion

In this section, we show the 2-dimensional and 3-dimensional graphs for some of the reported
solutions with a suitable parameter choice. Fig.1 shows the comparison of approximate solution for
Eq.(16) attained by HPTM versus t for different values of α. Fig.2 (a)-(d) shows the profile of the
third order approximation solution for 3D wave function for second order fractional nonlinear EFEs
for −1 ≤ x ≤ 1 and 0 ≤ t ≤ 1 atα = 1.25, 1.50, 1.75 and α = 2,for Eq.(16) by the application of
initial condition represented by the Eq.(17) of u(x, t). Fig.2 depicts the solitary wave nature of the
approximate solution produced by HPTM for the second order fractional nonlinear EFEs. Fig.3

11



Figure 3: Comparison of approximate solution u(x, t) for different values of α = 1.25, α = 1.50, α = 1.75 and
α = 2 for Ex.4.2.

shows the comparison of approximate solution for Eq. (22) attained by HPTM versus t for different
values of α, fig.3 (a)-(d) shows the profile of the third order approximation solution for 3D wave
function for second order fractional nonlinear EFEs for −1 ≤ x ≤ 1 and 0 ≤ t ≤ 1 at α =
1.25, 1.50, 1.75 and α = 2. for Eq.(22) by the application of initial condition represented by the
Eq.(23) of u(x, t), fig.3 depicts the solitary wave nature of the approximate solution produced by
HPTM for the second order fractional nonlinear EFEs. Fig.4 shows the comparison of approximate
solution for Eq.(28) attained by HPTM versus t for different values of α, fig.4 (a)-(d) shows the
profile of the third order approximation solution for 3D wave function for second order fractional
nonlinear EFEs for −1 ≤ x ≤ 1 and 0 ≤ t ≤ 1 at α = 1.25, 1.50, 1.75 and α = 2, for Eq.(28) by
the application of initial condition represented by the Eq.(29) of u(x, t), fig.4 depicts the solitary
wave nature of the approximate solutions produced by HPTM for the second order fractional
nonlinear EFEs.
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Figure 4: Surface show the 3D wave function u(x, t) at (a) α = 1.25, (b) α = 1.50, (c) α = 1.75 and (d) α = 2.
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Figure 5: Comparison of approximate solution u(x, t) for different values of α = 1.25, α = 1.50, α = 1.75 and
α = 2 for Ex.4.3.
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Figure 6: Surface show the 3D wave function u(x, t) at (a) α = 1.25, (b) α = 1.50, (c) α = 1.75 and (d) α = 2.
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6. Conclusion

In this present work, the homotopy perturbation transform method has been used to obtain
semi-analytical solutions to the nonlinear time fractional nonlinear EFEs with great precision and
accuracy. The collected findings reveal that up to third order approximation. The accuracy is very
high. By setting 1 < α ≤ 2, we can discover the classical solution to these model. The results show
that the HPTM is a very effective and powerful approach for studying various quantum nonlinear
model. This approach can also be used to investigate more complex phenomena in science and
engineering. This technique is also ideal for studying higher order nonlinear model, which can
be found in a wide range of physical sciences fields. To demonstrate the relevance and efficacy
of the considered strategy, we looked at three different examples of the projected model. The
secure outputs show that a basic HPTM algorithm was used to generate a standardized semi-
analytical solutions. The suggested approach is unique in that it provides a simple solution, a
critical convergence zone, and a non-local influence. Finally, the proposed scheme can be used to
examine the behavior of nonlinear systems that exist in quantum mechanics as a novel tool over
previous available analytical techniques.
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