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Abstract: In this work, the differences and similarities among some perturbation approaches1

such as classical perturbation theory, Lindstedt–Poincaré technique, multiple scales method, KB2

averaging method and, averaging theory are investigated. The necessary conditions to construct3

the periodic solutions of the spatial quantized Hill’s problem are found. In this context, the peri-4

odic solutions emerging from the equilibrium points of the spatial Hill’s problem are evaluated5

by using the averaging theory, under the perturbation effect of quantum corrections. This model6

can be used to develop a Lunar theory and the families of periodic orbits in the frame work of7

the spatial quantized Hill’s problem. Thereby, these applications serve to reinforce the obtained8

results on these periodic solutions and gain its own significance.9

Keywords: Quantized Hill problem; Averaging theory; Periodic solution10

1. Introduction11

Three–body problem plays an vital role in space science, in particular the related12

field of solar system motion, stars, planets and their moons. The model of this problem13

can be used to characterize the dynamical behavior of the most stellar and planetary14

systems and to give also accurate pictures on their motion. The three–body problem15

acquisition is important due to its wildly applications not only in space science but also16

in many fields such as applied mathematics and mathematical physics. In addition, it17

is considered the simplest non–integrable dynamical system in space dynamics, and it18

can be approximated to more simple systems such as, the perturbed two–body problem19

[1], Robe’s restricted problem [2,3] and Hill problem [4,5].20

Periodic solutions of a dynamical system are solutions that characterize some re-21

peated phenomena identically at regular intervals. These solutions play a vital role in22

many branches of science such as Physics and Engineering, but have a special appear-23

ance in Celestial Mechanics, to study the dynamical structures of two–body problem24

[6,7]; analysis the infinitesimal body motion within frame of three–body problem [8–25

11] or N−body problem [12–14].26

The periodic solutions of either unperturbed Kepler problem or the perturbed one27

have been received considerable contributions. For example, in [6], the authors have28

explored the existence of two periodic orbits at every energy level, in the frame work of29
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the anisotropic Kepler system, which emerges from elliptic orbits of the Kepler motion30

with high eccentricity, when the parameter of the anisotropy is small. Some interesting31

works have been constructed to analyze the periodic solutions [15–17].32

The periodic solutions have particular significant in three–body problem, that is33

regard to its extended applications in both Space Dynamics and Celestial Mechanics.34

Thereby, there are many and various dynamical system that can be studied by consider-35

ing the problem of the restricted three–body. Some of these systems have applications36

in space mission for spacecrafts in the Planet–Moons systems (such like: Earth–Moon37

system). Further, this problem has applications in stellar systems to study the behavior38

of exoplanets in the proximity of one or both objects of a binary star system [18–20].39

In fact, the periodic solutions have a considerable significant, because the most of40

natural phenomena in physical and engineering sciences as well as celestial mechanics41

can be characterized by periodic solutions of dynamical system, which is characterized42

by ordinary or partial differential equations system. These systems have wide variety43

of applications not only physical, mathematical and engineering sciences but also these44

systems have greet importance in the fields of biology, chemistry, neural networks [21–45

24].46

There are many methods are developed to analyze periodic solutions, such as aver-47

aging method, Lindstedt–Poincaré technique, Krylov–Bogoliubov–Mitropolsky (KBM)48

and multiple scales methods, [25–28]. Periodic solutions are everywhere in the analysis49

of dynamical systems. Every field of science in particularly celestial mechanics has its50

own oscillatory phenomena, which can be described by periodic solution.51

In this work, we aim to find the periodic solutions of the dynamical system of spa-52

tial quantized Hill problem. So, we will evaluate the equilibria points of linear system,53

and the necessary conditions will be used to calculate the periodic solutions arising54

from the equilibria points of the spatial quantized Hill problem by using the averaging55

theory. This system is constructed in the first time by Abouelmagd et al (2020) [5], this is56

motivated us to study the dynamical structures of this system through finding its own57

periodic solutions.58

2. Perturbation techniques59

The perturbation techniques play substantial role to analyze non–linear dynamics.60

Which became the driving forces, and pushed the mathematician researchers to extreme61

efforts, in order to explore and characterize the features of dynamical systems. These62

methods are considered the excellent tools, which are designed for the objectives have63

wonderful applicable in many fields.64

In this chapter, we will shed light on some techniques, which may be used to con-65

struct an appropriate analytical periodic solutions of a perturbed dynamical systems.66

On the other hand, these techniques could be applied to some problems, where their67

closed form solutions are not exist or where the exact solutions are either impossible or68

unrealistic of their physical meaning. In general these systems are often neither linear69

nor autonomous in nature.70

Now we assume that H is an n−dimensional Hamiltonian system defined in terms
of conjugate variables (X, Y), where X ∈ Γ, Γ is an open set of Rn and Y ∈ Tn, here T
denotes the standard one–dimensional torus. Then a nearly integrable Hamiltonian
systems H can be read as

H(X, Y) = h(X, Y) + ε f (X, Y) (1)

where h and f are analytical functions called an integrable (or unperturbed) Hamil-71

tonian and the perturbing function, respectively. But ε is a small parameter, which72

measure the size of perturbation force.73
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In the case of ε = 0 the Hamiltonian function is given by

H(X, Y) = h(X, Y), (2)

using Hamiltonian relation (2), the associated equations of motion are given as

Ẋ = 0

Ẏ = w(X),
(3)

where denoted with a dot is used for the derivatives with respect to time, w is the74

frequency vector is defined as w = ∂h(X)/∂X.75

The integration of System (3) is

X(t) = X0

Y = w0t + X0,
(4)

where X0 = X(0) and w0 = w(X(0)), Solution (4) shows that the variable X is constant,76

while its conjugate vary linearly with time.77

In the case of the perturbing force has its own effect (ε ̸= 0), the Hamiltonian
function is given as in Relation (1) and the associated equations of motion are

Ẋ = −ε
∂ f
∂Y

Ẏ = w(X) + ε
∂ f
∂X

.
(5)

System (5) may not be integrable and chaotic motion could appear.78

2.1. On perturbation techniques79

2.1.1. Importance of perturbation techniques80

In fact, the most of physical phenomena in nature are nonlinear and non–autonomous81

in their structures. The description of these phenomena within linear sense is not real-82

istic and present inaccurate information about their behaviour. So it is necessary to83

preform the nonlinear dynamical systems, which describe these phenomena, but there84

are extra–difficulty to treat these systems by direct methods, and the perturbation tech-85

niques are considered the best choice in most cases. The perturbation techniques are86

employed for the dynamical system which is consists of ordinary or partial differential87

equations.88

We would like to refer that there are numerous and considerable methods, that89

can be used to get periodic solutions. For example the averaging method, see for de-90

tails [29–33]. The Liouville–Green method, which is known as LG or WKB method,91

Lyapunov’s theorem, Lindstedt–Poincaré technique and KBM method [34,35]. There92

are extra methods such that the straightforward expansion technique (Classical pertur-93

bation theory), but this methods may fall in removing secular terms. Also the multiple94

scales method, which is considered one of the most strong techniques of obtaining the95

periodic solutions [36].96

2.1.2. Advantages and disadvantages of perturbation techniques97

Exact solutions of the dynamical systems are rare not only in celestial mechanics98

but also in many branches of applied mathematics: quantum mechanics, fluid mechan-99

ics, solid mechanics, and theoretical physics. This concern to nonlinearities behavior of100

physical phenomenon. Thereby the engineers, the physicists, and the mathematicians101

are forced to find approximate solutions for the mathematical models, which they are102
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facing. These solutions may be, purely analytical, purely numerical or a combination of103

analytical and numerical techniques.104

Perturbation techniques provide the most multilateral tools obtainable in non–105

linear a set of differential equations. That can be applied and employed to even more106

complex models. But perturbation techniques have their own limitations. Which are107

mainly depend on the presumption, that a very small parameter must appear in the108

prevailing equations.109

2.2. Validity of perturbation techniques110

Many applications of perturbation methods are not available without the existence111

of this small parameter. Actually an overwhelming preponderance of non–linear dy-112

namical systems, in particulary they have “strong non–linearity”, have no small param-113

eter. In some cases of estimating this parameter is more the resulting of an technical114

procedure than scientific methodology. The convenient selection of a small parameter115

could lead to intelligible results. On the contrary, an incorrect choice for this param-116

eter creates inaccurate or even unrealistic solutions. Even if there exists appropriate117

small parameter, the perturbation methods provide us by analytical solutions, they are118

adequate in cases of bounded this parameter.119

The structures and analysis of perturbation approaches, such as classical perturba-120

tion theory, Lindstedt–poincaré technique, multiple scales method, Krylov–Bogoliubov (KB)121

averaging method and averaging theory are familiar in the literatures as we have men-122

tioned in the previous subsections. But we will show the differences and similarities123

among these methods and rationale the choosing of averaging theory to find the peri-124

odic solution of the spatial quantized Hill’s problem.125

The aforementioned techniques demand that the dynamical system be weakly126

non–linear or weakly non–autonomous, meaning that those terms in the equation in-127

cluding the non–linearity or non–autonomy are small. Alternatively systems of this128

structure can be thought of as almost linear, or quasi–linear. A consequence of almost129

linear systems is that the differential equations will have linear terms and small non–130

linear or non–autonomous terms separated from each other. These techniques can be131

applied to nearly integrable Hamiltonian systems as in System (5).132

The classical perturbation theory, which is called the straightforward expansion
technique. It is used to find analytically solution in the power series of the following
form

X(t, ε) =
∞

∑
k=0

εkXk(t) (6)

In general, this methods comes out with secular terms that will provide unbounded133

solution in the case of long interval. Straightforward application of the classical per-134

turbation theory to periodic nonlinear motion gives a result with secular terms, which135

proportional with time. In spite of the fact that the behavior of motion is known to136

be bounded. One of the commonly approaches used to remove those unwanted sec-137

ular terms is the Lindstedt–Poincaré technique (also called continuation method). For138

applying this method on the astronomical dynamical systems and illustrating the out-139

come of secular terms, with the alternative techniques to remove these term by either140

Lindstedt–Poincaré or KBM method [26].141

Multiple scales technique is a generalized formula for the Lindstedt–Poincaré method.142

The latter method is depending on the angular velocity of the non–linear oscillation may143

depends upon its amplitude. The angular velocity is expanded in an asymptotic series,144

and the coefficients of each term in the series are evaluated in such a way the solution145

has no secular terms, see its application on real system [27]146
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In a similar manner, multiple scales technique admit the solution vary on fast and147

slow time separation scales. The first variable “fast time scale” with respect to the148

first linear order in Lindstedt–Poincaré expansion, and every slow scale matches with149

the second and higher terms in this expansion. The major difference is that multiple150

scales supposes that the coefficients of each scale are fixed, equal one, and employee151

a variation–of–parameters approach, as well as it considers the integration constants152

which appear in the linear solution be functions in the slow time scales variables. This153

process results in the dynamical system of partial differential equations at each order of154

that has to be solved to obtain a uniform solution of the dynamical system. The multi-155

ple scales technique is a much more powerful tool than the Lindstedt–Poincaré method,156

because the former admit for the constants versus with the slow time scales variables,157

while the latter only introduces one free variable at each order in the perturbed pa-158

rameter. But this method may result a system, where its solution for the obtaining of159

periodicity conditions is more difficult than the main system160

The Krylov–Bogolyubov averaging method is a technique to find the periodic so-161

lution of non–linear system, based on the averaging principle, where the exact system162

is replaced by an averaged one. In order to obtain the solution of the perturbed system163

or non–linear motion, using this method we have to admit that the constants of lin-164

ear motion vary slowly with time t and the perturbation parameter ε. The significance165

of this method is that a general averaging approach is developed and proved that the166

solutions of the averaged systems give precise approximation to the original system [7]167

Averaging is a mathematical method to replace a given field by its own average168

over a specified variable such as time or an angular variable to get asymptotic approx-169

imation to the original system with aiming of obtaining periodic solution. In dynami-170

cal systems, the averaging method or the averaging theory utilizes systems including171

time–scale separation: fast oscillation versus a slow drift. We propose averaging over172

a certain interval of time to iron out the fast oscillation and monitor the qualitative be-173

haviour from the resulting dynamics. It turns out to be a familiar problem where there174

exists the trade off between how perfect is the approximate solution balanced by how175

much time it holds to be similar to the original solution [31]176

In this work, we have used the averaging theory of dynamical systems, because it177

is special worthy in the case of systems that can have isolated periodic orbits like it is178

the case. In the next section, we will apply this method to Hill’s version of quantized179

three–body problem to find periodic solutions.180

3. Mathematical Model181

Hill version of quantized three–body problem is derived and analyzed for first
time in [5], and the equations of motion are given by

ξ̈ − 2η̇ = 3ξ + 2(α1 − α11)−
1
r3

[
1 +

2α21

r
+

3α22

r2

]
ξ,

η̈ + 2ξ̇ =− 1
r3

[
1 +

2α21

r
+

3α22

r2

]
η,

ζ̈ =− ζ − 1
r3

[
1 +

2α21

r
+

3α22

r2

]
ζ.

(7)

System (7) characterize the perturbed spatial Hill problem, the system is perturbed
by quantum corrections, hence this system is called the spatial quantized Hill problem
(SQHP). Furthermore, this system is considered a limiting case from the spatial quan-
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tized restricted three bodies problem, it was developed in [37]. In addition, this system
can be described by the style of writing the restricted three–body problem

ξ̈ − 2η̇ =Ψξ(ξ, η, ζ),

η̈ + 2ξ̇ =Ψη(ξ, η, ζ),

ζ̈ =Ψζ(ξ, η, ζ),

(8)

where182

Ψ(ξ, η, ζ) =
1
2

[
3 ξ2 + 4(α1 − α11)ξ − ζ2

]
+

1
r

[
1 +

α21

r
+

α22

r2

]
, (9)

and Ψξ , Ψβ, Ψζ refer to the partial derivatives of the potential function with respect to183

the variables ξ, β and ξ, while the separation distance r is given by r =
√

ξ2 + β2 + ζ2.184

Here α1, α11 and α21 are very small quantities with order O(1/c2), while α22 is
more smaller with order O(1/c3), where c is the speed of light, for a comprehensive
details [5,37]. Since α1, α11 and α21 have the same order, then α1 − α11

∼= 0, and System (
8) and the potential function can be simplified and rewritten

ξ̈ − 2η̇ = Ψ̄ξ(ξ, η, ζ),

η̈ + 2ξ̇ = Ψ̄η(ξ, η, ζ),

ζ̈ = Ψ̄ζ(ξ, η, ζ),

(10)

where

Ψ(ξ, η, ζ) =
1
2

[
3 ξ2 − ζ2

]
+

1
r

[
1 +

α21

r
+

α22

r2

]
. (11)

Although many different analysis in celestial mechanics have been accomplished185

in the frame work of the three–body problem, but there are also many dynamical con-186

cepts can be carried out within frame of Hill problem [38] without loosing the required187

accuracy underlying of using simple model. Furthermore, the perturbed model of this188

problem can be used to study the effect of some perturbed forces on the dynamical189

properties, such as the emerging periodic solutions from the equilibria points, which190

will be analyzed in the next sections.191

4. Periodic solutions192

Periodic solution or periodic orbits are considered one the major reasons of sta-193

bility and continuous of our life, for example the periodicity motion of sun an moon.194

When the Hill model has been constructed, the researchers devoted their work to calcu-195

late the families of periodic orbits. More work has been developed to analyze the lunar196

theory depend on Hill’s problem. For the importance of Hill’s problem, we intend to ex-197

plore the presence of periodic solutions emerged from equilibria points by underlying198

SQHP.199

By taking α1 = α11 = α21 = 1.5 × 10−3, α22 = 1.5 × 10−5 of the differential Sys-200

tem (7), we get the following equilibrium points E1 = (δ, 0, 0) and E2 = (−δ, 0, 0) where201

δ ≈ 0.694035.202

Thus, we study the presence of periodic solutions, which emerge from equilibria
points E1 and the same ones are valid for E2. In order to study the motion around or
in the proximity of the equilibria points E1 and E2, We first have to linearize System (8).
Thus, we impose that ξ = x1 − δ, η = y1, ζ = z1, where x1, y1 z1 are very small
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displacement from the equilibria points, thereby the associated linear system to non–
linear System (8) are given by

d2x1

dt2 − 2
dy1

dt
− αx1 = 0,

d2y1

dt2 + 2
dx1

dt
+ βy1 = 0,

d2z1

dt2 + γz1 = 0,

(12)

with α ≈ 9.03, β ≈ 3 and γ ≈ 3.203

Since the means of the averaging theory is a one of the powerful tools for finding
the periodic solutions, then we will apply this method to study the existence of periodic
solution of the following system

d2x1

dt2 − 2
dy1

dt
− αx1 = εF1

(
t, x1,

dx1

dt
, y1,

dy1

dt
, , z1,

dz1

dt

)
,

d2y1

dt2 + 2
dx1

dt
+ βy1 = εF2

(
t, x1,

dx1

dt
, y1,

dy1

dt
, z1,

dz1

dt

)
,

d2z1

dt2 + γz1 = εF3

(
t, x1,

dx1

dt
, y1,

dy1

dt
, z1,

dz1

dt

)
,

(13)

where ε is the perturbation parameter, it is very small quantity and the functions F1,F2,204

F3 represent the non–linear terms which will be ignored when ε = 0, but this functions205

satisfies the following properties:206

• F1,F2, F3 are smooth functions,207

• F1,F2, F3 are periodic functions in variable t ,208

• F1,F2, F3 are resonance in ι1 : ι2 with periodic solutions for System (12),209

where ι1 and ι2 are primes numbers.210

There is a unique singular point for the unperturbed System (12) at the origin with
eigenvalues ±Ω, ±ω1i, ±ω2i, where Ω ≈ 2.51, ω1 ≈ 2.07 and ω2 ≈ 1.73. In the phase
space (

x1,
dx1

dt
, y1,

dy1

dt
, z1,

dz1

dt

)
the aforementioned system (the unperturbed system) has two planes filed of periodic
solutions with the exception of the origin, where the periods of solutions are

T1 = 2π/ω1 or 2π/ω2,

here the periods T1 and T2 are related to the eigenvalues ±ω1i or ±ω2i, respectively.211

We will explore which of the periodic solutions continue for the perturbed System (13)212

where the parameter of perturbation ε is enough small and there are two periods either213

ι1T1/ι2 or ι1T2/ι2, for the perturbed function Fi for i ∈ {1, 2, 3}.214
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Consider Z0 = (Z0
1 , Z0

2), and H = (H1,H2) for the System (13), with215

H1

(
Z0

)
=

1
ι1T2

∫ ι1T2

0
⟨(cos(ω2t),− sin(ω2t)), (F ∗

5 (t),F ∗
6 (t))⟩dt

=
1

ι1T2

∫ ι1T2

0
− sin(ω2t)F ∗

6 (t)dt, (14)

H2

(
Z0

)
=

1
pT2

∫ pT2

0
⟨(sin(ω2t), cos(ω2t)), (F ∗

5 (t),F ∗
6 (t))⟩dt

=
1

pT2

∫ pT2

0
cos(ω2t)F ∗

6 (t)dt,

where ⟨, ⟩ is the scalar product and F ∗
5 (t) = 0, F ∗

6 = 1.12F3, F3 = F3
(
η2

1(t), . . . , η2
6(t)

)
216

and η2
j (t) = 0, j = 1, . . . , 4, while217

η2
5(t) = 0.50

(
Z0

1 cos(ω2t) + Z0
2 sin(ω2t)

)
,

η2
6(t) = 0.86

(
Z0

2 cos(ω2t)− Z0
1 sin(ω2t)

)
.

Now, we impose that Z0∗ = (Z0∗
1 , Z0∗

2 ) is the zero of non–linear system H
(
Z0) = 0218

where219 ∣∣∣∣ ∂H
∂Z0

∣∣∣∣ ̸= 0 when Z0 = Z0∗,

Then we can state that the system has a simple zero [39]. We would to remark that the220

expression of simple zero or pole is used to describe the zero or pole of order one, and221

sometimes the term of "degree" is used instead of "order". The property of this zero or222

pole leads to this zero can be isolated and its neighbourhood has no other zero.223

We emphasize that if the Malkin bifurcation function H has a simple zero Z0∗ and224

the solution of the unperturbed system has a period T2 by using initial value Z0∗, then225

the perturbed system will has also T2−periodic solution.226

The periodic solution of the dynamical System (13) is considered the main first227

result in this work, where this solution will bifurcate from the T2−periodic solution of228

the unperturbed system, hence we will present the following theorem:229

Theorem 1. We impose that ι1 and ι2 primes numbers and230

• F1,F2 and F3 are smooth functions of System (13)231

• F1,F2 and F3 are periodic with period ι1T2/ι2 in variable t232

For each simple zero Z0∗ ̸= 0 of the non–linear system H
(
Z0) = 0 when ε ̸= 0 and enough233

small, we can find a periodic solution for the perturbed System (13) takes the form (x1(t, ε),234

y1(t, ε), z1(t, ε)) and tend to the periodic solution235

(x1(t), y1(t), z1(t)) = (η2
1(t), η2

3(t), η2
5(t))|Z0Z0∗ of the unperturbed System (12) traveled ι1236

times.237

We will presented the proof of Theorem 1 in Sec. 5. Further, the following corollary238

is considered the application of this theorem and its proof will be presented in Sec. 6.239

Corollary 1. Considering that F1(t, x1, ẋ1, y1, ẏ1, z1, ż1) = 0, F2(t, x1, ẋ1, y1, ẏ1, z1, ż1) = 0,240

F3(t, x1, ẋ1, y1, ẏ1, z1, ż1) = z5 + sin(ω2t)ż2. Thus, the System (13) with ε ̸= 0 and it is241

enough small, has one periodic solution (x1(t, ε), y1(t, ε), z1(t, ε)) approximating to the periodic242

solutions (x1(t), y1(t), z1(t)) =
(
η2

1(t), η2
3(t), η2

5(t)
)∣∣

Z0=Z0∗ of (2) when ε → 0, given by243

Z0∗ = (0,−2.11).244
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Now we impose that Y0 = (Y0
1 , Y0

2 ), and considering the Malkin bifurcation func-
tion H̄ = (H3,H4) for the System (13) controlled by

H3

(
Y0

)
=

1
pT1

∫ pT1

0
⟨(cos(ω1t),− sin(ω1t)), (F ∗

3 (t),F ∗
4 (t))⟩dt

=
1

pT1

∫ pT1

0
(cos(ω1t)F ∗

3 (t)− sin(ω1t)F ∗
4 (t))dt,

H4

(
Y0

)
=

1
pT1

∫ pT1

0
⟨(sin(ω1t), cos(ω1t)), (F ∗

3 (t),F ∗
4 (t))⟩dt

=
1

pT1

∫ pT1

0
(cos(ω1t)F ∗

4 (t) + sin(ω1t)F ∗
3 (t))dt,

where
F ∗

3 = −0.45F1, F ∗
4 = −1.46F2,

with Fi = Fi
(
η1

1(t), . . . , η1
6(t)

)
, i ∈ {1, 2} and η2

j (t) = 0, j = 5, 6,

η1
1(t) = 0.12

(
Y0

2 cos(ω1t)− Y0
1 sin(ω1t)

)
,

η1
2(t) = −0.26

(
Y0

1 cos(ω1t) + Y0
2 sin(ω1t)

)
,

η1
3(t) = −0.41

(
Y0

1 cos(ω1t) + Y0
2 sin(ω1t)

)
,

η1
4(t) = −0.85

(
Y0

2 cos(ω1t)− Y0
1 sin(ω1t)

)
,

As we aforementioned with the existing of a simple zero Y0∗ of the Malkin bifurca-245

tion function H̄, one will obtain form T1−periodic solution of the unperturbed system246

with initial value Y0∗ emerges the solution of perturbed system with T1−periodic solu-247

tion, because he simple zero zero can be isolated and its neighbourhood has no other248

zero.249

The main second result related to the periodic solutions, and which is associated250

to unperturbed System (13) will be stated in the following theorem:251

Theorem 2. We impose that ι1 and ι2 are primes numbers and252

• F1,F2 and F3 are smooth functions of System (13)253

• F1,F2 and F3 are periodic with period ι1T1/ι2 in variable t254

For each simple zero Y0∗ ̸= 0 of the non–linear system H̄
(
Y0) = 0, when ε ̸= 0 is enough255

small, then the perturbed System (13) has a periodic solution (x1(t, ε), y1(t, ε), z1(t, ε)) going256

to the periodic solution (x1(t), y1(t), z1(t)) = (η1
1(t), η1

3(t), η1
5(t))|Y0=Y0∗ of the unperturbed257

System (12) traveled ι1 times.258

We also remark that the application of Theorem 2 can be stated in the following259

corollary:260

Corollary 2. Considering that F1(t, x1, ẋ1, y1, ẏ1, z1, ż1) = sin(ω1t) + x1 + 3x2
1y1 + y1,261

F2(t, x1, ẋ1, y1, ẏ1, z1, ż1) = cos(ω1t)− (ẏ1)ˆ2 + x1, F3(t, x1, ẋ1, y1, ẏ1, z1, ż1) = 0. Then262

the System (13) for ε ̸= 0 sufficiently small has one periodic solution (x1(t, ε), y1(t, ε), z1(t, ε))263

tending to the periodic solutions (x1(t), y1(t), z1(t)) =
(
η1

1(t), η1
3(t), η1

5(t)
)∣∣

Y0=Y0∗ of Sys-264

tem (12) when ε → 0, given by Y0∗ = (2.59 , 9.21).265

The prof of Corollary 2 will be given in Sec. 6.266
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5. Proof of the theorems 1 and 2267

To accomplish the proof of Theorems (1, 2), we will use the following variables:

(x1, x2, y1, y2, z1, z2) =

(
x1,

dx1

dt
, y1,

dy1

dt
, z1,

dz1

dt

)
Thus, the dynamical System (13) can be rewritten in the form of a first order in R6

dx1

dt
= x2 ,

dx2

dt
= αx1 + 2y2 + εF1(x1, x2, y1, y2, z1, z2),

dy1

dt
= y2 ,

dy2

dt
= −2x2 − βy1 + εF2(x1, x2, y1, y2, z1, z2),

dz1

dt
= z2 ,

dz2

dt
= −γz1 + εF3(x1, x2, y1, y2, z1, z2).

(15)

It is clear that the perturbed System (15) (ε ̸= 0) can be reduced to the unperturbed
System (12) when ε = 0. Now we write the perturbed System (15) with the style that
the linear part at the origin point will take the real Jordan expression, after that we can
change the variables to the following form:

(x1, x2, y1, y2, z1, z2) → (X1, X2, Y1, Y2, Z1, Z2)

given by 

x1

x2

y1

y2

z1

z2


=



−0.32 0.32 0.0 0.12 0.0 0.0

−0.81 −0.81 −0.26 0 0.0 0.0

0.17 0.17 −0.41 0 0.0 0.0

0.44 −0.44 0.0 −0.85 0.0 0.0

0.0 0.0 0.0 0.0 0.5 0.0

0.0 0.0 0.0 0.0 0.0 0.86





X1

X2

Y1

Y2

Z1

Z2


, (16)

and 

X1

X2

Y1

Y2

Z1

Z2


=



−1.92 −0.53 0.34 −0.28 0.0 0.0

1.92 −0.53 0.34 0.28 0.0 0.0

0.0 −0.45 −2.11 0.0 0.0 0.0

−1.98 0.0 0.0 −1.46 0.0 0.0

0.0 0.0 0.0 0.0 2.0 0.0

0.0 0.0 0.0 0.0 0.0 1.15





x1

x2

y1

y2

z1

z2


,

the differential System (15) becomes

Ẋ1 =ΩX1 + εF ∗
1 ,

Ẋ2 = − ΩX2 + εF ∗
2 ,

Ẏ1 =ω1Y2 + εF ∗
3 ,

Ẏ2 = − ω1Y1 + εF ∗
4 ,

Ż1 =ω2Z2 + εF ∗
5 ,

Ż2 = − ω2Z1 + εF ∗
6 ,

(17)
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where

F ∗
1 = −0.53F1 − 0.28F2,

F ∗
2 = −0.53F1 + 0.28F2,

F ∗
3 = −0.45F1,

F ∗
4 = −1.46F2,

F ∗
5 = 0,

F ∗
6 = 1.15F3,

with Fi = Fi(η1, . . . , η6), i ∈ {1, 2, 3} and268

η1 = −0.32X1 + 0.32X2 + 0.12Y2,

η2 = −0.81X1 − 0.81X2 − 0.26Y1,

η3 = 0.17X1 + 0.17X2 − 0.41Y1,

η4 = 0.44X1 − 0.44X2 − 0.85Y2,

η5 = 0.5Z1,

η6 = 0.86Z2,

To prove Theorems 1 and 2, we first depict the periodic solution of the unperturbed269

system in through the following Lemma270

Lemma 1. The periodic solutions (X1(t), X2(t), Y1(t), Y2(t), Z1(t), Z2(t)) of System (17) when
ε = 0 are (

0, 0, Y0
1 cos(ω1t) + Y0

2 sin(ω1t), Y0
2 cos(ω1t)− Y0

1 sin(ω1t), 0, 0
)

, (18)

where T1 is the period of motion, and(
0, 0, 0, 0, Z0

1 cos(ω2t) + Z0
2 sin(ω2t), Z0

2 cos(ω2t)− Z0
1 sin(ω2t)

)
, (19)

here T2 is the period of motion.271

Proof of Lemma 1272

273

Since System (17) is linear when ε = 0 thereby, the proof can be easily established.274

275

Proof of Theorem 1276

277

We impose that F1,F2 and F3 of (13) are periodic functions in t with period ι1T1/ι2
where ι1 and ι2 are primes numbers. Hence, the same periodicity features are same for
the System (17) and the periodic Solutions (19) with period ι1T2. By applying Theorem
A1 in [39] and using the same notation and terminology to the System (17), then we can
write the System (17) in the following form

Ẋ(t) = H0(t, X) + ε H1(t, X) + ε2 H2(t, X, ε)

Then, we can consider278
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X =



X1

X2

Y1

Y2

Z1

Z2


, H0(t, X) =



ΩX1

−ΩX2

ω1Y2

−ω1Y1

ω2Z2

−ω2Z1


, H1(t, X) =



F ∗
1

F ∗
2

F ∗
3

F ∗
4

F ∗
5

F ∗
6


, H2(t, X,ε) =



0

0

0

0

0

0


.

In this context, the periodic solution of the unperturbed System (17) (ε = 0) will be
studied within the Type (19) to continue as a periodic solution for the perturbed system
(when ε ̸= 0 is enough small). First, we characterize the different parameters, which
are stated in Theorem A1 (see the Appendix in [39] for details) due to the certain case of
the System (17). Now we assume that ρ1 > 0 and ρ2 > 0, where ρ1 > 0 is chosen to be
small, while ρ2 > 0 is chosen to be large. We also assume that V is bounded and open
subset of the plane X1 = X2 = Y1 = Y2 = 0 of the form

V =

{(
0, 0, 0, 0, Z0

1 , Z0
2

)
∈ R6 : ρ1 <

√(
Z0

1
)2

+
(
Z0

2
)2

< ρ2

}
.

Since V is bounded and open subset of R2, we can choose two numbers ρ1 > 0, ρ2 > 0
such that

V =

{
(β(α), α) ∈ R2 : ρ1 <

√(
Z0

1
)2

+
(
Z0

2
)2

< ρ2

}
.

where α ∈ R2 and β(α) ∈ R4.279

Now we assume that α = Z0 = (Z0
1 , Z0

2), then we characterize V with the set
{α ∈ R2 : ρ1 < ||α|| < ρ2}, being || · || the Euclidean norm in R2, while the function
β(α) is defined as β : C1(V) → R4 such that β(α) = (0, 0, 0, 0), here C1(V) refers to the
closure of V. Hence, for the proposed system one obtains

Z = {zα = (β(α), α), α ∈ C1(V)}

=

{(
0, 0, 0, 0, Z0

1 , Z0
2

)
∈ R6 : ρ1 ≤

√(
Z0

1

)2
+

(
Z0

2
)2 ≤ ρ2

}
.

We take for each zα ∈ Z the periodic solution

x(t, zα) = (0, 0, 0, 0, Z1(t), Z2(t)),

controlled by System (19) of period ι1T2. Calculating the matrix Mzα(t) of the linear
System (17), which is called the fundamental matrix where ε = 0 related to the ι1T2
periodic solution zα = (0, 0, 0, 0, Z0

1 , Z0
2) and also Mzα(0) is the identity element in space

R6, thus one obtains

Mzα(t) = M(t) =



eΩt 0 0 0 0 0

0 −e−Ωt 0 0 0 0

0 0 cos(ω1t) sin(ω1t) 0 0

0 0 − sin(ω1t) cos(ω1t) 0 0

0 0 0 0 cos(ω2t) sin(ω2t)

0 0 0 0 − sin(ω2t) cos(ω2t)


.
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We remark that there is no correlation between the matrix Mzα(t) and particular peri-280

odic solution x(t, zα, 0).281

Now, we impose that the matrix h̄ is defined by

h̄ = M−1(0)− M−1(ι1 T2)

then the matrix h̄ is satisfied the stated assumptions (ii) in Theorem A1 (see the Ap-282

pendix in [39] for details), where the matrix h̄ and its determinant are given by283

h̄ =



1 − e−2π Ω ι1 /ω2 0 0 0 0 0

0 1 − e2π Ω ι1 /ω2 0 0 0 0

0 0 2 sin2(π ι1 ω1/ω2) sin(2π ι1 ω1/ω2) 0 0

0 0 − sin(2π ι1 ω1/ω2) 2 sin2(π ι1 ω1/ω2) 0 0

0 0 0 0 2 sin2(π ι1) sin(2π ι1)

0 0 0 0 − sin(2π ι1) 2 sin2(π ι1)


,

|h̄| =

∣∣∣∣∣∣∣∣∣∣∣

1 − e−2π Ω ι1/ω2 0 0 0

0 1 − e2π Ωι1/ω2 0 0

0 0 2 sin2(π ι1 ω1/ω2) sin(2π ι1 ω1/ω2)

0 0 − sin(2π ι1 ω1/ω2) 2 sin2(π ι1 ω1/ω2)

∣∣∣∣∣∣∣∣∣∣∣
hence284

|h̄| = −16 sinh2(π Ω ι1/ω2) sin2(π ι1ω1/ω2) ̸= 0,

because the ratio of the frequencies is non–resonant with π. In small word, all the stated285

assumptions in Theorem A1 are satisfied by the System (17).286

In the proposed system, the map ξ : R6 −→ R2 can be written as

ξ(X1, X2, Y1, Y2, Z1, Z2) = (Z1, Z2),

by evaluating the function287

H
(
Z0

1 ,Z0
2

)
= H(α) = ξ

(
1

pT2

∫ pT2

0
M−1

zα
(t)H1(t, x(t, zα, 0))dt

)
,

we get H
(
Z0) =

(
H1

(
Z0),H2

(
Z0)), where the functions Hk for k = 1, 2 are the

ones given in (14). Then, by Theorem A1 we have that for every simple zero Z0∗ ∈ V
of the system of non–linear functions H

(
Z0) = 0, we have a periodic solution

(X1, X2, Y1, Y2, Z1, Z2)(t, ε)

of System (17) such that

(X1, X2, Y1, Y2, Z1, Z2)(0, ε) −→
(

0, 0, 0, 0, Z0∗
1 , Z0∗

2

)
when ε −→ 0

Let us changes the variables in System (16), then, one obtains a periodic solution

(x1, x2, y1, y2, z1, z2)(t, ε)
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of System (17) where

x1(t, ε)

x2(t, ε)

y1(t, ε)

y2(t, ε)

z1(t, ε)

z2(t, ε)


→



0

0

0

0

0.5
(
Z0∗

1 cos(ω2t) + Z0∗
2 sin(ω2t)

)
0.86

(
Z0

2 cos(ω2t)− Z0
1 sin(ω2t)

)


when ε −→ 0

Thus, periodic solution of System (17) (x1(t, ε), y1(t, ε), and z1(t, ε) can be written as288

(x1, y1, z1)(t, ε) →


0

0

0.5
(
Z0∗

1 cos(ω2t) + Z0∗
2 sin(ω2t)

)
 when ε −→ 0

The pervious steps gives the complete proof of Theorem 1289

290

Proof of Theorem 2291

292

To prove this theorem we will follow the same steps of proving Theorem 1. Thus,293

the periodic solution can be written in the following form294 

0.12
(

Y0
2 cos(ω1t)− Y0

1 sin(ω1t)
)

−0.26
(

Y0
1 cos(ω1t) + Y0

2 sin(ω1t)
)

−0.41
(

Y0
1 cos(ω1t) + Y0

2 sin(ω1t)
)

−0.85
(

Y0
2 cos(ω1t)− Y0

1 sin(ω1t)
)

0

0


when ε −→ 0.

Hence, we get a periodic solution (x1, y1, z1)(t, ε) of System (13) such that

(x1, y1, z1)(t, ε) →


0.12

(
Y0

2 cos(ω1t)− Y0
1 sin(ω1t)

)
−0.41

(
Y0

1 cos(ω1t) + Y0
2 sin(ω1t)

)
0

 when ε −→ 0.

6. Proof of the corollaries 1 and 2295

Proof of corollary 1296

297

Under the aforementioned assumptions in Corollary 1, the non–linear System (14)298

can be written as299

H1

(
Z0

1 , Z0
2

)
= − 0.005468749997

(
Z0

1

)4
Z0

2 − 0.05177199997
(

Z0
2

)2
− 0.01093750000

(
Z0

1

)2(
Z0

2

)3

− 0.1553160000
(

Z0
1

)2
− 0.005468749997

(
Z0

2

)5
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H2

(
Z0

1 , Z0
2

)
= 3.183098861 × 10−12 Z0

1(6872233931.0
(

Z0
1

)2(
Z0

2

)2
+ 3436116965.0

(
Z0

1

)4

+ 3436116965.0
(

Z0
2

)4
− 65058613960.0 Z0

2

Then the solution of the above system is

Z0∗ = (0,−2.11).

Since ∣∣∣∣ ∂H
∂Z0

∣∣∣∣ = 0.21 ̸= 0, when Z0∗ = (0 , −2.11)

this solution is simple. Finally, by Theorem 1., we only have one periodic solution for300

this system and the proof is over.301

302

Proof of corollary 2303

304

Again under the aforementioned assumptions in Corollary 2, the non–linear sys-305

tem H̄
(
Y0) = 0 can be written as306

H3

(
Y0

1 , Y0
2

)
= − 0.02699999999 Y0

2 + 0.004649999999 Y0
1

+ 0.0009962999998
(

Y0
1

)3
+ 0.0009962999998

(
Y0

2

)2
Y0

1 ,

H4

(
Y0

1 , Y0
2

)
= − 0.9549999997 + 0.004649999999 Y0

2 + 0.0009962999998
(

Y0
1

)2
Y0

2

+ 0.0009962999998
(

Y0
2

)3
+ 0.02699999999 Y0

1 ,

The above system satisfy the following solution

Y0∗ = (2.590 , 9.210),

Moreover, since ∣∣∣∣ ∂H̄
∂Y0

∣∣∣∣ = 0.020 ̸= 0, when Y0∗ = (2.590 , 9.210)

the obtained solution is simple, using Theorem 2, one can obtain only one periodic so-307

lution for this system, which gives a complete proof.308

7. Conclusion309

The averaging theory is one of the most important perturbation methods, which310

can be used to study the existence and stability of periodic solutions for the ordinary311

differential equations systems. It is a powerful tool as it has been proven its effective-312

ness many times in the literature by examining the existence and stability of periodicity313

of dynamical systems in both Physical and Engineering Sciences.314

In this work, the dynamical system of the perturbed spatial Hill’s problem by quan-315

tum corrections, which is called the spatial quantized Hill’s problem is analyzed to find316

the possible periodic solutions. First, the importance of this problem is stated in the317

introduction section. While the differences and similarities among some perturbation318

approaches such as classical perturbation theory, Lindstedt—poincaré technique, mul-319

tiple scales method, KB averaging method and, averaging theory are investigated in320
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the second section. Then the equilibrium points of linear system are evaluated. The321

necessary conditions are analyzed to calculate the periodic solutions emerging from322

the equilibrium points of the SQHP by using the averaging theory. The application of323

this theory on the quantized Hill’s problem has given interesting and important results324

about the periodic solution through the proof of Theorems ( 1, 2) and their associated325

corollaries.326

We applied a known theory on a new model to state new results on such model.327

The difficulty of our proofs is to show that all hypotheses of the averaging theory of328

dynamical systems hold for the perturbed spatial quantized Hill’s problem, in order to329

be able to apply the theorems of this theory. Changes of variables, obtaining the normal330

form of this theory, and many technical tricks are needed in this aim, which allows us to331

state dynamical information on the perturbed spatial quantized Hill’s model. Further-332

more, this model can be used to develop a Lunar theory and the families of periodic333

orbits in the frame work of the spatial quantized Hill’s problem. Thereby, these applica-334

tions serve to reinforce the obtained results about these periodic solutions and gain its335

own significance.336
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