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Abstract: This study is to introduced a novel design and implementation of a neuro-swarming 22 

computational numerical procedure for numerical treatment of the fractional Bagley–Torvik 23 

mathematical model (FBTMM). The optimization procedures based on the global search with 24 

particle swarm optimization (PSO) and local search via active-set approach (ASA), while Mayer 25 

wavelet kernel based activation function used in neural network (MWNNs) modeling, i.e., MWNN- 26 

PSOASA, to solve the FBTMM. The efficiency of the proposed stochastic solver MWNN-GAASA is 27 

utilized to solve three different variants based on the fractional order of the FBTMM. For the 28 

meticulousness of the stochastic solver MWNN-PSOASA, the obtained and exact solutions are 29 

compared for each variant of the FBTMM with reasonable accuracy. For the reliability of the 30 

stochastic solver MWNN-PSOASA, the statistical investigations are provided based on the stability, 31 

robustness, accuracy and convergence metrics. 32 

Keywords: Fractional Bagley–Torvik mathematical model; Mayer wavelet neural network; Particle 33 

swarm optimization; Statistical analysis; Active-set algorithm 34 

 35 

1. Introduction 36 

The fractional Bagley–Torvik mathematical model (FBTMM) has achieved the huge 37 

attention of the research community from recent few years. The fractional kinds of 38 

derivatives represent the physical network dynamics, a rigid plate based on the 39 

Newtonian fluid and the frequency- dependent systems of the damping properties [1-4]. 40 

The numerical, approximate and analytical form of the FBTMM has been performed by 41 

many scientists and reported in [6-10]. While few other utmost deterministic and 42 

stochastic numerical schemes [11-19] are listed in Table 1 in terms of novel methodology 43 

exploited for the solutions, publication year and necessary remarks to highlight their 44 

significance in the reported literature for FBTMM.  45 

The present study is to solve the FBTMM by using a competent soft computing 46 

approach based on a Mayer wavelet neural network (MWNN) using the optimization 47 
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procedures of particle swarm optimization (PSO) along with active-set algorithm (ASA), 48 

i.e., MWNN-PSOASA. The general form of the FBTMM is provided as [20-23]: 49 
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where a  indicates the initial conditions,   represents the derivative based on the 50 

fractional order with 1.25, 1.5 and 1.75, ( )v   is the solution of above Eq (1), while 1a , 51 

2a  and 3a  are the constant values The FBTMM represented in Eq. (1) was the pioneering 52 

work of Bagley and Torvik introducing on the motion of an absorbed plate using the 53 

Newtonian fluid [3]. 54 

 55 

Table 1: A brief literature review of numerical solver for FBTMM 56 

Index Method Remarks 

[11] in 1998 Podlubny’s consecutive approximation Novel numerical solution 

[12] in 2002 Deterministic numerical scheme Convergence established 

[13] in 2007 Differential transform method Novel numerical solver 

[14] in 2008 Adomian decomposition method Novel analytical solution 

[15] in 2008 He’s variational iteration method Viable analytic method 

[16] in 2009 Matrix approach of discretization Novel discretization 

[17] in 2010 Shooting collocation approach Efficient scheme 

[18] in 2010 Taylor collocation method Power series approach 

[19] in 2011 Genetic algorithms and neural networks Novel stochastic solver 

[20] in 2011 Neural networks and Swarm intelligence Viable stochastic solver 

[20]in 2012 Haar wavelets operational matrix  Novel wavelets approach 

[22] in 2017 Sequential quadratic programing Fractional neural network 

[23] in 2020 Interior-point method Fluid dynamics problem 

[24] in 2020 Galerkin approximations Numerical scheme 

[25] in 2020 Exponential spline approximation Novel spline method 

[26] in 2020 Jacobi collocation methods Power series approach 

[27] in 2021 Generalized Bessel polynomial Power series method 

[28] in 2021 Quadratic finite element mentod Numerical computing 

[29] in 2021 Lie symmetry analysis method Numerical analysis 

1.1. Problem Statement  57 

The stochastic computing solvers have been generally applied to the singular, 58 

nonlinear and dynamical systems based on the platform of neural network together with 59 

the swarming/ evolutionary optimization schemes [30-32]. The stochastic solvers have 60 

been applied in diverse applications, few of them are coronavirus SITR model [33-34], 61 

singular doubly differential systems [35], fluid dynamics problems [36], HIV infections 62 

modeling systems [37-38] and electric circuits model [39-40]. The authors are motivated 63 

by keeping these stochastic based applications to design a computing solver for the 64 

FBTMM. Therefore, the objective of study is to introduce a novel design and 65 

implementation of a neuro-swarming computational numerical procedure MWNN- 66 

PSOASA for numerical treatment of the fractional Bagley–Torvik mathematical model 67 

(FBTMM) by exploiting global search optimization procedures via particle swarm 68 

optimization (PSO) and local search via active-set approach (ASA), while Mayer wavelet 69 

kernel based activation function used in neural network (MWNNs) modelling. 70 
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1.2. Novelty and Inspiration 71 

The novelty and significance of the research investigations is briefly described in this 72 

section. The literature review presented for FBTMM, one can decipher evidently that a 73 

large variant of deterministic solvers have been introduced by research community for 74 

solving the FBTMM while few studies of stochastic solvers are available for finding the 75 

approximate solutions for FBTMM, Therefore a novel fractional neural networks is 76 

presented for the solution of FBTMM by exploiting the strength of fractional Mayer 77 

wavelet neural networks (MWNN) based modeling of the fractional derivative terms in 78 

ODE (1) and training of these networks are performed by hybrid heuristics having global 79 

search with PSO and ASA based local refinements, i.e., MWNN-PSOASA. The designed 80 

solver MWNN-PSOASA is used efficiently and effectively to solve the FBTMM 81 

numerically. The achieved form of the numerical results is compared with the accessible 82 

true/exact solutions, which shows the precision, reliability, constancy and convergence of 83 

the designed solver MWNN-PSOASA. The reliability of the results based on the designed 84 

solver MWNN-PSOASA is further presented using the statistical procedures of Mean, 85 

semi interquartile range (S.I.R), Minimum (Min), standard deviation (STD), Theil's 86 

inequality coefficient (TIC), mean square error (MSE) and Maximum (Max). Besides, the 87 

accurate and reasonably stable outcomes of the FBTMM through the designed solver 88 

MWNN-PSOASA, robustness, smooth processes and exhaustive pertinence are other 89 

significant perks of the scheme. 90 

1.3. Organization 91 

The organization of this study is considered as: The methodology of MWNN- 92 

PSOASA is accessible in Section 2. The performance operators are shown in Section 3. The 93 

comprehensive results detail is given in Section 4. Final remarks and upcoming research 94 

directions are given in the last Section. 95 

2. Methodology: 96 

This section represents the methodology of the designed solver by using the Mayer 97 

wavelet neural network along with the optimization of PSOASA to solve the FBTMM. The 98 

genetic flow diagram of proposed MWNN-PSOASA for solving FBTMM is provided in 99 

Figure 1, in which the process blocks in four steps are presented. The construction of the 100 

FBTMM, merit function based on the mean square error and the PSOASA optimization is 101 

also presented in this section. 102 

2.1. Objective Function: MWNN 103 

In this section, the FBTMM solutions are signified by ˆ( )v  , whereas, 
(n) ˆ( )D v   and 104 

ˆ( )D v   provides the integer derivatives of order n and fractional form of the derivative. 105 

The mathematical formulations of these systems by mean of continuous mapping in 106 

neural networks models are given as: 107 

1
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where, neurons are represented by m, while l, m and n indicate the weights of the 108 

weight vector (W) represented as: 109 

[ , , ]=W l m n
, for 1 2 1 2 1 2[ , ,..., ], [ , ,..., ] and [ , ,..., ]m m ml l l m m m n n n= = =l m n

. 110 

An objective function-based Mayer wavelet is written as: 111 
4 5 6 7( ) 35 84 70 20G     = − + − . (3) 

The updated Eq. (2) using the above values is become as: 112 
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The combination of the MWNN with the optimization of PSOASA is used to solve 113 

the FBTMM based on the availability of appropriate W values. For the ANN weights, an 114 

objective function Fe  is given as: 115 

1 2F F Fe e e− −= +
. (5) 

Here 1Fe −  and 2Fe −   are the objective functions based on the FBTMM and the ICs 116 

of Eq. (1), respectively written as: 117 
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for ( ) ( )ˆ ˆ1, , ,i i i i iNh v v h h ih  = = = = . 118 
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 121 

Figure 1: Workflow diagram of MWNN-PSOASA for solving fractional Bagley-Torvik equation 122 

 123 
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2.2. Networks Optimization: PSOASA 124 

The parameter optimization, i.e., weights, for the MWNN models are obtained using 125 

the hybridization of computing procedures of particle swarm intelligence PSO as an 126 

efficacious global search aided with active set algorithms (ASAs) for efficient local 127 

refinement mechanism to solve the variants of FBTMM in equation (1). 128 

 129 

Particle swarm optimization is a computational swarm intelligence approach, which 130 

is used to optimize a model through the process of iteration to improve the applicant 131 

outcomes, i.e., candidate solutions of a specific optimization tasks, with respect to assume 132 

quality measures and constraints. The PSO normally solves a model by using the 133 

population of applicant outcomes called swarm and each candidate solution is 134 

represented by the particles. The PSO algorithms operate with the adjustment of these 135 

particles during each flights in search-space based on the mathematical representations of 136 

the particles velocity and position in terms of previous velocity, inertia weight of velocity, 137 

cognitive learning block via local best particle and social learning mechanism via global 138 

search particle. The movement of the particles is affected by its local prominent based 139 

positions; however, it is also directed to the best recognized positions, which are efficient 140 

as improved positions of other particles. This is projected to transfer the swarm to the best 141 

results. Additional necessary elaborative details, underlying theory, mathematical 142 

representation, scope and applications in diversified fields can be seen in [41-43] and 143 

references mentioned in them. In recent decades, PSO is implemented to plant diseases 144 

diagnosis and prediction [44], nonlinear Bratu systems governing the fuel ignition model 145 

[45], identification of control autoregressive moving average systems [46], reactive power 146 

planning [47] and thermal cloaking and shielding devices [48].  147 

In order to control and speedup the convergence performance of the global search 148 

PSO, the optimization through the hybridization with local search method is implemented 149 

for speedy adjustment of the parameters. The active-set algorithm is one of the quick, 150 

rapid and efficient local search schemes, which is famous to find the optimal performances 151 

in different fields. ASA is an effectual convex optimization tool that is implemented for 152 

unconstrained and constrained systems. Few prominent applications of utmost 153 

performance of the ASA include embedded system of predictive control [49], pressure- 154 

dependent network of water supply systems [50], local decay of residuals in dual gradient 155 

method [51], nonlinear singular heat conduction model [52] and warehouse location 156 

problem [53]. Therefore, in the presented study, a memetic computing paradigm PSOASA 157 

based on global search efficacy of PSO aided with speedy tuning of parameter with ASA 158 

are exploited for finding the known adjustable of MWNN models for solving the FBTMM 159 

in equation (1).  160 

3. Results and Discussions 161 

In this section, the solutions of three different variants based on the FBTMM is 162 

provided by using the integrated design heuristics of MWNN-PSOASA. The precision 163 

and convergence on the basis of sixty number of autonomous trails MWNN-PSOASA are 164 

presented using sufficient large number of graphical and numerical illustrations with 165 

elaborative details for solving the variants of the FBTMM. While the 166 

information/outcomes of different performance indices for the analysis of proposed 167 

MWNN-PSOASA are given in this section. 168 

The mathematical form of the performance gages of TIC and MSE are presented to 169 

solve the FBTMM as follows: 170 

 171 
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where n is total number of grid points, i.e., τm, m = 1, 2, …, n, while mv  is the reference 172 

solution for mth grid point while ˆmv  is proposed approximate solution for the mth grid 173 

point. 174 

Example 1: Consider a FBTMM given in Eq. (1) using the values of 175 
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An error function is derived as: 177 
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Example 2: Consider a FBTMM given in Eq. (1) using the values of 178 
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An error function is derived as: 180 
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Example 3: Consider a FBTMM given in Eq. (1) using the values of 181 

2 0.25(3)
ˆ( ) ( ) 2
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h v  


= + +


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The exact solutions of the FBTMM is 
2( )v  =  184 

The numerical performances of each example based on the FBTMM are observed 185 

using the hybridization of local and global search capabilities of PSOASA. The 186 

optimization procedures are applied for sixty independent runs of MWNN-PSOASA to 187 

form a larger dataset for better analysis of solution dynamics of FBTMM. The 188 

accomplished/adjusted weights of MWNNs are used to obtained numerical solutions of 189 

the FBTMM and necessary comparison with reference/available exact solution is 190 

conducted to assess the proposed solutions. The obtained mathematical results through 191 

the MWNN-PSOASA for each example of the FBTMM are expressed in mathematical 192 

form as follows: 193 
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1.8006 35( 0.3968 0.1376) 84( 0.396 0.1376) 70( 0.396 0.1376) 20( 0.39 0.1376)

0.0330 35( 0.4350 1.13

Ev    

   



− = − + − − + + − + − − +

− − − − − − + − − − − −

+ − +( )

( )

4 5 6 7

4 5 6 7

4 5

37) 84( 0.435 1.1337) 70( 0.435 1.1337) 20( 0.435 1.1337)

1.0266 35(0.7659 0.2077) 84(0.7659 0.207) 70(0.7659 0.2077) 20(0.7659 0.2077)

0.0092 35( 0.826 1.4202) 84( 0.826 1.4202) 70(

  

   

 

− − + + − + − − +

+ − − − + − − −

− − + − − + + −( )

( )

6 7

4 5 6 7

4 5 6

0.826 1.4202) 20( 0.826 1.4202)

0.2724 35(0.5454 1.2393) 84(0.5454 1.2393) 70(0.5454 1.2393) 20(0.5454 1.2393)

0.1652 35( 0.526 1.2138) 84( 0.526 1.2138) 70( 0.526 1.2138) 20( 0.526 1

 

   

   

+ − − +

− + − + + + − +

+ − + − − + + − + − − +( )

( )

( )

7

4 5 6 7

4 5 6 7

.2138)

0.3594 35( 0.013 0.2252) 84( 0.013 0.2252) 70( 0.013 0.2252) 20( 0.013 0.2252)

1.0433 35(0.6590 0.2011) 84(0.6590 0.2011) 70(0.6590 0.2011) 20(0.6590 0.2011)

... 0.2031 35(1.2456

   

   



− − − − − − + − − − − −

− − − − + − − −

+ + ( )4 5 6 70.0762) 84(1.2456 0.0762) 70(1.2456 0.0762) 20(1.2456 0.0762) ,  − − − + − − −
 

(17) 

( )

( )

4 5 6 7

3

4 5 6 7

ˆ 12.8773 35(0.0783 0.0847) 84(0.0783 0.0847) 70(0.0783 0.0847) 20(0.078 0.0847)

1.0608 35( 0.2304 0.4748) 84( 0.230 0.4748) 70( 0.230 0.4748) 20( 0.230 0.4748)

0.4913 35(0.1076 0.4

Ev    

   



− = − − − − + − − −

+ − + − − + + − + − − +

− −( )

( )

4 5 6 7

4 5 6 7

4 5

530) 84(0.1076 0.4530) 70(0.1076 0.4530) 20(0.1076 0.4530)

0.9486 35( 0.0310 0.0305) 84( 0.031 0.0305) 70( 0.031 0.0305) 20( 0.031 0.0305)

0.0171 35( 0.3685 1.7255) 84( 0.368 1.7255)

  

   

 

− − + − − −

+ − + − − + + − + − − +

− − + − − + +( )

( )

6 7

4 5 6 7

4 5 6

70( 0.368 1.7255) 20( 0.368 1.7255)

1.1819 35(0.0629 0.1260) 84(0.0629 0.1260) 70(0.0629 0.1260) 20(0.0629 0.126)

1.5776 35(0.4436 +0.1399) 84(0.4436 +0.1399) 70(0.4436 +0.1399) 20(0.4436

 

   

  

− + − − +

− − − − + − − −

+ − + −( )

( )

( )

7

4 5 6 7

4 5 6 7

1 +0.1399)

0.6170 35( 0.979 1.0302) 84( 0.979 1.0302) 70( 0.979 1.0302) 20( 0.979 1.0302)

0.1524 35( 0.898 0.7207) 84( 0.898 0.7207) 70( 0.898 0.7207) 20( 0.898 0.7207)

... 0.3625 35(1.0



   

   

+ − + − − + + − + − − +

+ − + − − + + − + − − +

+ + ( )4 5 6 7742 0.0409) 84(1.0742 0.0409) 70(1.0742 0.0409) 20(1.0742 0.0409) ,   − − − + − − −
 

(18) 

The graphs represented in Fig. 2, i.e., subfigures (a), (b) and (c), show the numerical 194 

values of the weights of MWNNs obtained from proposed integrated swarm intelligence 195 

method MWNN-PSOASA for FBTMM based examples 1 2 and 3, respectively. The Fig. 1, 196 

subfigures (d), (e) and (f) represents the overlapping of the results based on the best, worst 197 

and mean solutions for each example of the FBTMM. This perfectly matching of the 198 

outcomes indicate the precision and exactness of the MWNN-PSOASA for solving 199 

FBTMM. The plots of the absolute error (AE) are drawn in Fig 1(g) for each example of 200 

the FBTMM. It is noticed for example 1 that 70% AE values lie around 10-06 to 10-07 and 201 

30% AE values are calculated around 10-07 to 10-08. In 2nd example, 90% AE values lie 202 

around 10-05 to 10-06 and 10% AE values lie around 10-06 to 10-07. While for 3rd example the 203 

AE values are calculated around 10-04 to 10-05. On the behalf of these best ranges of the AE 204 

values, one can conclude that the designed scheme MWNN-PSOASA is an accurate and 205 

precise. The performances detail based on the Fitness (FIT), TIC and MSE for each example 206 

of the FBTMM is drawn in Figs 1(h). The FIT standards lie around 10-12 to 10-13, 10-13 to 10- 207 
14 and 10-12 to 10-13 for examples 1, 2 and 3, respectively. The TIC standards are calculated 208 

around 10-10 to 10-11 to solve each example of the FBTMM. While the MSE standards are 209 

calculated around 10-13 to 10-14 to solve each example of the FBTMM. 210 

The statistical performance for the FIT, TIC and MSE is conducted via the boxplots 211 

(BPs) and histograms (Hist) studies and outcomes are portrayed in Figs. 3, 4 and 5 for all 212 

three examples in case of FIT, TIC and MSE, respectively. Fig. 3 illustrates the FIT values 213 

for each example of the FBTMM. It is illustrated in these figures that the FIT, TIC and MSE 214 

measures are found around 10-04 to 10-12, 10-06 to 10-10 and 10-04 to 10-10 for each example of 215 
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the FBTMM, respectively. One can conclude from these outcomes that around 75% 216 

independent trials of MWNN-PSOASA achieved precise level of the accuracy. 217 

In order to authenticate the accuracy, precision, convergence and efficiency analysis, 218 

the statistical results in terms of Min, median (Med), Mean, STD, Max and S.I.R operators 219 

are tabulated in Table 2 which are calculated for sixty independent runs using the 220 

FMWNN-PSOASA to solve the FBTMM. The Min and Max values indicate the best and 221 

worst runs, respectively, while S.I.R performances are the 0.5 times difference of 3rd and 222 

1st quartiles. The effective and small magnitudes of Min, S.I.R, Med, STD and Max indicate 223 

the constancy and precision of the proposed integrated heuristics of MWNN-PSOASA to 224 

solve the variants of the FBTMM in examples 1, 2 and 3. For the convergence analysis 225 

using the statistical operators based on the FIT, TIC and MSE with different set of 226 

magnitude are calculated for multiple execution of MWNN-PSOASA and results are 227 

tabulated in Table 3 for all three examples of FBTMM. The sufficient large number of 228 

independent execution of MWNN-PSOASA achieved the FIT, TIC and MSE less than 10- 229 
04, that prove the worth of design scheme for solving FBTMM. 230 

 231 

   

(a): Example 1: Best weights  (b): Example 2: Best weights (c): Example 3: Best weights 

   

(d) Solution of FBTMM for Example -1 (e) Solution of FBTMM for Example -2 (f) Solution of FBTMM for Example -3 

 

(g) AE for Examples 1, 2 and 3. 
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(h) Performance measures for Examples 1, 2 and 3. 

Figure 2. Results, (a)-(c) Best weights, (d)-(f) AE, (g) and performance operators (h)for solving the FBTMM. 232 

 

Convergence of FIT values for each example of the FBTMM 

   

(a): Hist for Example-1 (b): Hist for Example-2 (c): Hist for Example-3 



 12 of 19 
 

 

  

 

(d): BPs for Example-1 (e): BPs for Example-2 (f): BPs for Example -3 

Figure 3. Convergence of FIT values for each example of the FBTMM with Hist and BPs using 10 neurons. 233 

 234 

 

Convergence of TIC values for each example of the FBTMM 

   

(a): Hist for Example-1 (b): Hist for Example-2 (c): Hist for Example-3 
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(d): BPs for Example-1 (e): BPs for Example-2 (f): BPs for Example -3 

Figure 4: Convergence of TIC values for each example of the FBTMM with Hist and BPs using 10 neurons 235 

 

Convergence of MSE values for each example of the FBTMM 

   

(a): Hist for Example-1 (b): Hist for Example-2 (c): Hist for Example-3 
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(d): BPs for Example-1 (e): BPs for Example-2 (f): BPs for Example -3 

Figure 5: Convergence of MSE values for each example of the FBTMM with Hist and BPs using 10 neurons 236 

 237 

Comparison of the outcomes of fractional MWNNs optimized with PSOASA for solving 238 

FBTMM has been made with reported results of state of the art deterministic and 239 

stochastic solver in order to access the performance rigorously. The absolute error of the 240 

reported numerical solver based on matric approach introduced by Podlubny [11], 241 
sigmoidal fractional neural networks optimized with IPA (FNN-IPA) [54-55], sigmoidal neural 242 
networks optimized with GAs aided with pattern search (PS), i.e., GA-PS [56] and sigmoidal neural 243 
networks trained with particle swarm optimization (PSO) supported with PS, i.e., (PSO-PS) [57] are 244 
presented in Table 4 along with the proposed results of FMWNN-PSOASA. One can easily decipher 245 
from results presented in the Table 4, the values of the AE for FMWNN-PSOASA are comparable to 246 
state of the art deterministic and stochastic numerical procedures for solving FBTMM. 247 
 248 

Table 2. Statistics operators via FMWNN-PSOASA to solve each example of the FBTMM. 249 

  
 E

xa
m

pl
e-

1.
 

Mode 
Solutions of FBTMM using different statistical measures  

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Min 1×10-07 3×10-07 2×10-07 5×10-08 6×10-08 2×10-07 2×10-07 2×10-07 2×10-07 1×10-07 

Mean 3×10-02 2×10-02 1×10-02 6×10-03 1×10-02 2×10-02 3×10-02 3×10-02 4×10-02 4×10-02 

Max 2×10-01 1×10-01 6×10-01 2×10-01 3×10-01 8×10-01 1×10-01 1×10-01 2×10-01 2×10-01 

Med 1×10-04 3×10-04 4×10-04 4×10-04 4×10-04 5×10-04 6×10-04 8×10-04 8×10-04 8×10-04 

SIR 3×10-04 6×10-04 8×10-04 9×10-04 1×10-03 1×10-03 1×10-03 1×10-03 1×10-03 1×10-03 

STD 2×10-01 1×10-01 8×10-02 3×10-02 5×10-02 1×10-01 1×10-01 2×10-01 2×10-01 2×10-01 

E
xa

m
pl

e-
-2

 

Min 2×10-08 3×10-08 9×10-08 6×10-08 7×10-08 7×10-09 4×10-08 7×10-08 8×10-09 6×10-08 

Mean 4×10-03 4×10-03 4×10-03 4×10-03 4×10-03 4×10-03 4×10-03 5×10-03 5×10-03 5×10-03 

Max 2×10-01 2×10-01 2×10-01 2×10-01 2×10-01 2×10-01 2×10-01 2×10-01 2×10-01 2×10-01 

Med 4×10-05 7×10-05 1×10-04 1×10-04 1×10-04 2×10-04 2×10-04 2×10-04 2×10-04 2×10-04 

SIR 9×10-05 2×10-04 2×10-04 2×10-04 3×10-04 3×10-04 4×10-04 4×10-04 4×10-04 5×10-04 

STD 2×10-02 2×10-02 2×10-02 2×10-02 2×10-02 2×10-02 2×10-02 2×10-02 2×10-02 2×10-02 

E
xa

m
pl

e-
3 

Min 4×10-08 3×10-08 1×10-07 1×10-07 1×10-07 1×10-07 1×10-07 1×10-07 1×10-07 1×10-07 

Mean 1×10-02 1×10-02 1×10-02 1×10-02 1×10-02 1×10-02 1×10-02 1×10-02 1×10-02 1×10-02 

Max 6×10-01 6×10-01 6×10-01 7×10-01 7×10-01 7×10-01 7×10-01 7×10-01 7×10-01 7×10-01 

Med 5×10-05 1×10-04 1×10-04 1×10-04 1×10-04 1×10-04 2×10-04 2×10-04 2×10-04 2×10-04 

SIR 2×10-04 4×10-04 5×10-04 4×10-04 5×10-04 6×10-04 7×10-04 7×10-04 8×10-04 8×10-04 

STD 8×10-02 8×10-02 8×10-02 8×10-02 9×10-02 9×10-02 9×10-02 9×10-02 9×10-02 8×10-02 

Table 3. Convergence of the FMWNN-PSOSQP to solve the FBTMM. 250 
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Examples 
FIT≤ MSE≤ TIC≤ 

10-02 10-03 10-04 10-02 10-03 10-04 10-02 10-03 10-04 

1 58 56 51 58 54 30 69 65 61 

2 59 57 52 59 55 43 68 61 58 

3 59 58 50 59 53 41 69 62 60 

 251 

Table 4. Comparison of outcomes of FMWNN-PSOSQP with reported solution for the 252 

FBTMM in case of α = 1.5 253 

t 
AE of reference reported results AE of Presented 

Numerical GA-PS PSO-PS VIM FNN-IPA FMWNN-PSOASA 

0.1 5.76×10--5 3.43×10--2 2.2×10--3 5.48×10--5 8.73×10--6 2.14×10-08 

0.2 8.29×10--5 3.33×10--2 2.63×10--3 6.31×10--4 1.12×10--5 3.23×10-08 

0.3 9.12×10--5 3.04×10--2 2.98×10--3 2.66×10--3 1.08×10--5 9.38×10-08 

0.4 8.74×10--5 2.57×10--2 2.97×10--3 7.48×10--3 8.19×10--6 6.82×10-08 

0.5 7.42×10--5 1.96×10--2 2.46×10--3 1.67×10--2 7.06×10--6 7.19×10-08 

0.6 5.36×10--5 1.26×10--2 1.49×10--3 3.22×10--2 1.01×10--5 7.03×10-09 

0.7 2.68×10--5 5.49×10--3 2.67×10--4 5.8×10--2 1.60×10--5 4.60×10-08 

0.8 5.07×10--5 8.80×10--4 8.34×10--4 9.58×10--2 2.03×10--5 7.34×10-08 

0.9 4.12×10--5 5.42×10--3 1.27×10--3 1.5×10--1 1.86×10--5 8.92×10-09 

1 8.08×10--5 6.91×10--3 3.05×10--4 2.25×10--1 1.24×10--5 6.18×10-08 

5. Concluding Remarks 254 

The current work investigations are to design a neuro-swarming computational 255 

numerical procedure for the fractional Bagley–Torvik mathematical model. The 256 

optimization procedures based on the global search particle swarm optimization and local 257 

search active-set approach using the activation function Mayer wavelet neural network 258 

have been applied to solve the fractional model. The proposed stochastic solver MWNN- 259 

GAASA efficiency is performed to solve three different variants based on the fractional 260 

order of the FBTMM. For the exactness of the stochastic solver MWNN-PSOASA, the 261 

comparison of the attained and exact solutions will be provided for each variant of the 262 

FFBTMMM. The AE values have been obtained in good measures that is calculated 263 

around 10-06 to 10-07 for each example of the FBTMM. For the reliability of the proposed 264 

stochastic solver MWNN-PSOASA, the statistical soundings are provided based on the 265 

stability, robustness, accuracy and convergence. One can conclude from these outcomes 266 

that around 75% independent trials achieved precise level of the accuracy. Beside the 267 

advantage of accurate and reliable outcomes of designed MWNN-PSOASA, the limitation 268 

of slowness of operation of global search with PSO and then local search with ASA.  269 

Further research openings: The FMWNN-PSOASA can be implemented to solve the 270 

fluid nonlinear models, fraction order systems and fluid models [58-66]. Moreover, the 271 

used of heuristic methodologies having inherent strength of global as well as local search 272 

like differential evolution, backtracking search optimization algorithm, weights 273 

differential evolution and their recently introduced variants are good alternative of 274 

integrated PSOASA.  275 

Data availability statement 276 

There is no any data associated with this manuscript. 277 

 278 

Funding 279 

This paper has been partially supported by Fundación Séneca de la Región de Murcia 280 

grant numbers 20783/PI/18, and Ministerio de Ciencia, Innovación y Universidades grant 281 

number PGC2018-0971-B-100. 282 



 16 of 19 
 

 

 283 

Author Declarations 284 

 285 

Conflicts of Interest 286 

All the authors of the manuscript declared that “the authors have no conflicts to 287 

disclose” 288 

 289 

References 290 

[1] Bagley, R.L. et al., 1983. Fractional calculus-a different approach to the analysis of viscoelastically damped structures. AIAA 291 

journal, 21(5), pp.741-748. 292 

[2] Bagley, R.L. et al., 1985. Fractional calculus in the transient analysis of viscoelastically damped structures. AIAA journal, 23(6), 293 

pp.918-925. 294 

[3] Torvik, P.J. et al., 1984. On the appearance of the fractional derivative in the behavior of real materials. 295 

[4] Bagley, R.L. et al., 1986. On the fractional calculus model of viscoelastic behavior. Journal of Rheology, 30(1), pp.133-155. 296 

[5] Wang, Z.H. and Wang, X., 2010. General solution of the Bagley–Torvik equation with fractional-order 297 

derivative. Communications in Nonlinear Science and Numerical Simulation, 15(5), pp.1279-1285. 298 

[6] Atanackovic, T.M. and Zorica, D., 2013. On the Bagley–Torvik Equation. Journal of Applied Mechanics, 80(4), p.041013. 299 

[7] Youssri, Y.H., 2017. A new operational matrix of Caputo fractional derivatives of Fermat polynomials: an application for 300 

solving the Bagley-Torvik equation. Advances in Difference Equations, 2017(1), pp.1-17. 301 

[8] Fazli, H. and Nieto, J.J., 2019. An investigation of fractional Bagley-Torvik equation. Open Mathematics, 17(1), pp.499-512. 302 

[9] Mahmudov, N.I., Huseynov, I.T., Aliev, N.A. and Aliev, F.A., 2020. Analytical approach to a class of Bagley-Torvik 303 

equations. TWMS Journal of Pure and Applied Mathematics, 11(2). 304 

[10] Pinar, Z., 2019. On the explicit solutions of fractional Bagley-Torvik equation arises in engineering. An International Journal of 305 

Optimization and Control: Theories & Applications (IJOCTA), 9(3), pp.52-58. 306 

[11] Podlubny, I., 1998. Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, 307 

to methods of their solution and some of their applications. Elsevier. 308 

[12] Diethelm, K. et al., 2002. Numerical solution of the Bagley-Torvik equation. BIT Numerical Mathematics, 42(3), pp.490-507. 309 

[13] Arikoglu, A. et al., 2007. Solution of fractional differential equations by using differential transform method. Chaos, Solitons 310 

& Fractals, 34(5), pp.1473-1481. 311 

[14] Hu, Y., et al., 2008. Analytical solution of the linear fractional differential equation by Adomian decomposition method. Journal 312 

of Computational and Applied Mathematics, 215(1), pp.220-229. 313 

[15] Ghorbani, A. et al., 2008. Application of He's Variational Iteration Method to Solve Semidifferential Equations of ð ‘› th Order. 314 

Mathematical Problems in Engineering, 2008, pp.1-9.  315 

[16] Podlubny, I. et al., 2009, September. Matrix approach to discretization of fractional derivatives and to solution of fractional 316 

differential equations and their systems. In 2009 IEEE Conference on Emerging Technologies & Factory Automation (pp. 1-6). IEEE. 317 

[17] Al-Mdallal, et al., 2010. A collocation-shooting method for solving fractional boundary value problems. Communications in 318 

Nonlinear Science and Numerical Simulation, 15(12), pp.3814-3822.  319 

[18] Çenesiz, Y., et al., 2010. The solution of the Bagley–Torvik equation with the generalized Taylor collocation method. Journal 320 

of the Franklin institute, 347(2), pp.452-466. 321 

[19] Sabir, Z., Raja, M.A.Z. and Guerrero Sánchez, Y., 2022. Solving an Infectious Disease Model considering Its Anatomical 322 

Variables with Stochastic Numerical Procedures. Journal of Healthcare Engineering, 2022. 323 

[20] Raja, M.A.Z., Khan, J.A. and Qureshi, I.M., 2011. Swarm intelligence optimized neural networks in solving fractional system 324 

of Bagley-Torvik equation. Engineering Intelligent Systems, 19(1), pp.41-51. 325 



 17 of 19 
 

 

[21] Ray, S.S., 2012. On Haar wavelet operational matrix of general order and its application for the numerical solution of fractional 326 

Bagley Torvik equation. Applied Mathematics and Computation, 218(9), pp.5239-5248. 327 

[22] Raja, M.A.Z., Samar, R., Manzar, M.A. and Shah, S.M., 2017. Design of unsupervised fractional neural network model 328 

optimized with interior point algorithm for solving Bagley–Torvik equation. Mathematics and Computers in Simulation, 132, pp.139- 329 

158. 330 

[23] Raja, M.A.Z., Manzar, M.A., Shah, S.M. and Chen, Y., 2020. Integrated intelligence of fractional neural networks and sequential 331 

quadratic programming for Bagley–Torvik systems arising in fluid mechanics. Journal of Computational and Nonlinear Dynamics, 15(5), 332 

p.051003. 333 

[24] Izadi, M. and Negar, M.R., 2020. Local discontinuous Galerkin approximations to fractional Bagley‐Torvik 334 

equation. Mathematical Methods in the Applied Sciences, 43(7), pp.4798-4813. 335 

[25] Emadifar, H. and Jalilian, R., 2020. An exponential spline approximation for fractional Bagley–Torvik equation. Boundary Value 336 

Problems, 2020(1), pp.1-20. 337 

[26] Hou, J., Yang, C. and Lv, X., 2020. Jacobi collocation methods for solving the fractional Bagley–Torvik equation. Int. J. Appl. 338 

Math., 50(1), pp.114-120. 339 

[27] Izadi, M., Yüzbaşı, Ş. and Cattani, C., 2021. Approximating solutions to fractional-order Bagley-Torvik equation via 340 

generalized Bessel polynomial on large domains. Ricerche di Matematica, pp.1-27. 341 

[28] Ali, H., Kamrujjaman, M. and Shirin, A., 2021. Numerical solution of a fractional-order Bagley–Torvik equation by quadratic 342 

finite element method. Journal of Applied Mathematics and Computing, 66(1), pp.351-367. 343 

[29] Sethukumarasamy, K., Vijayaraju, P. and Prakash, P., 2021. On Lie symmetry analysis of certain coupled fractional ordinary 344 

differential equations. Journal of Nonlinear Mathematical Physics, 28(2), pp.219-241. 345 

[30] Zulqurnain Sabir et al., Applications of Gudermannian neural network for solving the SITR fractal system, Fractals, doi: 346 

10.1142/S0218348X21502509 347 

[31] Mehmood, A., et al., 2019. Integrated intelligent computing paradigm for the dynamics of micropolar fluid flow with heat 348 

transfer in a permeable walled channel. Applied Soft Computing, 79, pp.139-162. 349 

[32] Sabir, Z., Raja, M.A.Z., Mahmoud, S.R., Balubaid, M., Algarni, A., Alghtani, A.H., Aly, A.A. and Le, D.N., 2022. A Novel Design 350 

of Morlet Wavelet to Solve the Dynamics of Nervous Stomach Nonlinear Model. International Journal of Computational Intelligence 351 

Systems, 15(1), pp.1-15. 352 

[33] Umar, M., et al., 2020. A stochastic intelligent computing with neuro-evolution heuristics for nonlinear SITR system of novel 353 

COVID-19 dynamics. Symmetry, 12(10), p.1628. 354 

[34] Umar, M., Sabir, Z., Raja, M.A.Z., Amin, F., Saeed, T. and Guerrero-Sanchez, Y., 2021. Integrated neuro-swarm heuristic with 355 

interior-point for nonlinear SITR model for dynamics of novel COVID-19. Alexandria Engineering Journal, 60(3), pp.2811-2824. 356 

[35] Raja, M.A.Z., et al., 2019. Numerical solution of doubly singular nonlinear systems using neural networks-based integrated 357 

intelligent computing. Neural Computing and Applications, 31(3), pp.793-812. 358 

[36] Uddin, I., et al., 2021. The intelligent networks for double-diffusion and MHD analysis of thin film flow over a 359 

stretched surface. Scientific Reports, 11(1), pp.1-20. 360 

[37] Umar, M., et al., 2021. A novel study of Morlet neural networks to solve the nonlinear HIV infection system of latently infected 361 

cells. Results in Physics, 25, p.104235. 362 

[38] Guerrero–Sánchez, Y., et al., 2021. Solving a class of biological HIV infection model of latently infected cells using heuristic 363 

approach. Discrete & Continuous Dynamical Systems-S, 14(10), p.3611. 364 

[39] Mehmood, A., et al., 2020. Integrated computational intelligent paradigm for nonlinear electric circuit models using neural 365 

networks, genetic algorithms and sequential quadratic programming. Neural Computing and Applications, 32(14), pp.10337-10357. 366 



 18 of 19 
 

 

[40] Mehmood, A., et al., 2020. Design of nature-inspired heuristic paradigm for systems in nonlinear electrical circuits. Neural 367 

Computing and Applications, 32(11), pp.7121-7137. 368 

[41] Badar, A.Q., 2021. Different Applications of PSO. In Applying Particle Swarm Optimization (pp. 191-208). Springer, Cham. 369 

[42] Akbar, S., et al., 2019. Novel application of FO-DPSO for 2-D parameter estimation of electromagnetic plane waves. Neural 370 

Computing and Applications, 31(8), pp.3681-3690. 371 

[43] Sibalija, T.V., 2019. Particle swarm optimisation in designing parameters of manufacturing processes: A review (2008– 372 

2018). Applied Soft Computing, 84, p.105743. 373 

[44] Darwish, A., et al., 2020. An optimized model based on convolutional neural networks and orthogonal learning particle swarm 374 

optimization algorithm for plant diseases diagnosis. Swarm and Evolutionary Computation, 52, p.100616. 375 

[45] Raja, M.A.Z., 2014. Solution of the one-dimensional Bratu equation arising in the fuel ignition model using ANN optimised 376 

with PSO and SQP. Connection Science, 26(3), pp.195-214.  377 

[46] Mehmood, A., et al., 2019. Nature-inspired heuristic paradigms for parameter estimation of control autoregressive moving 378 

average systems. Neural Computing and Applications, 31(10), pp.5819-5842. 379 

[47] Khan, M.W., et al., 2020. A new fractional particle swarm optimization with entropy diversity based velocity for reactive power 380 

planning. Entropy, 22(10), p.1112. 381 

[48] Alekseev, G.V. et al., 2019. Particle swarm optimization-based algorithms for solving inverse problems of designing thermal 382 

cloaking and shielding devices. International Journal of Heat and Mass Transfer, 135, pp.1269-1277. 383 

[49] Klaučo, M., et al., 2019. Machine learning-based warm starting of active set methods in embedded model predictive control. 384 

Engineering Applications of Artificial Intelligence, 77, pp.1-8. 385 

[50] Deuerlein, J.W.,et al., 2019. Content-based active-set method for the pressure-dependent model of water distribution systems. 386 

Journal of Water Resources Planning and Management, 145(1), p.04018082. 387 

[51] Perne, M., et al., 2017. Local Decay of Residuals in Dual Gradient Method Applied to MPC Studied using Active Set Approach. 388 

In ICINCO (1) (pp. 54-63). 389 

[52] Raja, M.A.Z., Umar, M., Sabir, Z., Khan, J.A. and Baleanu, D., 2018. A new stochastic computing paradigm for the dynamics 390 

of nonlinear singular heat conduction model of the human head. The European Physical Journal Plus, 133(9), pp.1-21. 391 

[53] Abo-Elnaga, et al., 2017. An active-set trust-region algorithm for solving warehouse location problem. Journal of Taibah 392 

University for Science, 11(2), pp.353-358. 393 

[54] Raja, M.A.Z., Manzar, M.A., Shah, S.M. and Chen, Y., 2020. Integrated intelligence of fractional neural networks and sequential 394 

quadratic programming for Bagley–Torvik systems arising in fluid mechanics. Journal of Computational and Nonlinear Dynamics, 15(5), 395 

p.051003. 396 

[55] Raja, M.A.Z., Samar, R., Manzar, M.A. and Shah, S.M., 2017. Design of unsupervised fractional neural network model 397 

optimized with interior point algorithm for solving Bagley–Torvik equation. Mathematics and Computers in Simulation, 132, pp.139- 398 

158. 399 

[56] Raja, M.A.Z., Khan, J.A. and Qureshi, I.M., 2011. Solution of fractional order system of Bagley-Torvik equation using 400 

evolutionary computational intelligence. Mathematical Problems in Engineering, 2011. 401 

[57] Raja, M.A.Z., Khan, J.A. and Qureshi, I.M., 2011. Swarm intelligence optimized neural networks in solving fractional system 402 

of Bagley-Torvik equation. Engineering Intelligent Systems, 19(1), pp.41-51. 403 

[58] Ilhan, E. et al., 2020. A generalization of truncated M-fractional derivative and applications to fractional differential equations. 404 

Applied Mathematics and Nonlinear Sciences, 5(1), pp.171-188. 405 

[59] Kabra, S., et al., 2020. The Marichev-Saigo-Maeda fractional calculus operators pertaining to the generalized k-Struve function. 406 

Applied Mathematics and Nonlinear Sciences, 5(2), pp.593-602. 407 



 19 of 19 
 

 

[60] Günerhan, H. et al. 2020. Analytical and approximate solutions of fractional partial differential-algebraic equations. Applied 408 

Mathematics and Nonlinear Sciences, 5(1), pp.109-120. 409 

[61] Modanli, M. et al., 2020. On Solutions of Fractional order Telegraph Partial Differential Equation by CrankNicholson Finite 410 

Difference Method. Applied Mathematics and Nonlinear Sciences, 5(1), pp.163-170. 411 

[62] Sahin, R. et al., 2020. Fractional calculus of the extended hypergeometric function. Applied Mathematics and Nonlinear 412 

Sciences, 5(1), pp.369-384 413 

[63] Touchent, K.A., et al., 2020. A modified invariant subspace method for solving partial differential equations with non-singular 414 

kernel fractional derivatives. Applied Mathematics and Nonlinear Sciences, 5(2), pp.35-48. 415 

[64] Durur, H., et al., 2020. New analytical solutions of conformable time fractional bad and good modified Boussinesq equations. 416 

Applied Mathematics and Nonlinear Sciences, 5(1), pp.447-454. 417 

[65] Evirgen, F., et al., 2020. System Analysis of HIV Infection Model with 4 under Non-Singular Kernel Derivative. Applied 418 

Mathematics and Nonlinear Sciences, 5(1), pp.139-146. 419 

[66] Eskitaşçıoğlu, E.İ., Aktaş, M.B. and Baskonus, H.M., 2019. New complex and hyperbolic forms for Ablowitz–Kaup–Newell– 420 

Segur wave equation with fourth order. Applied Mathematics and Nonlinear Sciences, 4(1), pp.93-100. 421 


	1. Introduction
	1.1. Problem Statement
	1.2. Novelty and Inspiration
	1.3. Organization

	2. Methodology:
	2.1. Objective Function: MWNN
	2.2. Networks Optimization: PSOASA

	3. Results and Discussions
	Table 4. Comparison of outcomes of FMWNN-PSOSQP with reported solution for the FBTMM in case of α = 1.5
	5. Concluding Remarks

