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Abstract: The primary goal of this research is to generalize the definition of Caputo fractional deriva-
tives (in short, CFDs) (of order 0 < α < r) by employing all conceivable configurations of objects
with t1 equal to 1 and t2 (the others) equal to 2 via fuzzifications. Under gH-differentiability, we also
construct fuzzy Elzaki transforms for CFDs for the generic fractional order α ∈ (r− 1, r). Further-
more, a novel decomposition method for obtaining the solutions to nonlinear fuzzy fractional partial
differential equations (PDEs) via the fuzzy Elzaki transform is constructed. The aforesaid scheme is a
novel correlation of the fuzzy Elzaki transform and the Adomian decomposition method. In terms of
CFD, several new results for the general fractional order are obtained via gH-differentiability. By
considering the triangular fuzzy numbers of a nonlinear fuzzy fractional PDE, the correctness and
capabilities of the proposed algorithm are demonstrated. In the domain of the fractional sense, the
schematic representation and tabulated results outcomes indicate that the algorithm technique is
precise and straightforward. Subsequently, future directions and concluding remarks are acted upon
with the most focused use of references.

Keywords: fuzzy set theory; Elzaki transform; Adomian decomposition method; nonlinear partial
differential equation; Caputo fractional derivative

1. Introduction

The idea of differential and integral calculus is essential for stronger and more com-
prehensive descriptions of natural reality. It aids in the modeling of early evolution and
forecasting the future of respective manifestations. Furthermore, thanks to its capability
to express more fascinating ramifications of computer simulations, numerous researchers
have subsequently been drawn to the investigation of fractional calculus [1–7].

Fractional calculus is particularly effective at modeling processes or systems relying
on hereditary patterns and legacy conceptions, and traditional calculus is a restricted
component of fractional calculus. This approach seems to be as ancient as a classical notion,
but it has just subsequently been applied to the detection of convoluted frameworks by
numerous investigators, and it has been demonstrated by various researchers. Fractional
calculus has been advocated by a number of innovators, [8–14]. Many scholars analyze
simulations depicting viruses, bifurcation, chaos, control theory, image processing, quan-
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tum fluid flow, and several other related disciplines using the underlying concepts and
properties of operators shown within the framework of fractional calculus [15–28].

Fuzzy set theory is a valuable tool for modeling unpredictable phenomena. As a
result, fuzzy conceptions are often leveraged to describe a variety of natural phenomena.
Fuzzy PDEs are an excellent means of modeling vagueness and misinterpretation in
certain quantities for specified real-life scenarios, see [29–33]. In recent years, FPDEs have
been exploited in a variety of disciplines, notably in control systems, knowledge-based
systems, image processing, power engineering, industrial automation, robotics, consumer
electronics, artificial intelligence/expert systems, management, and operations research.

Due to its significance in a multitude of scientific domains, fuzzy set theory has a
profound correlation with fractional calculus [34]. Kandel and Byatt [35] proposed fuzzy
DEs in 1978, while Agarwal et al. [36] were the first to investigate fuzziness and the
Riemann–Liouville differentiability concept under the Hukuhara-differentiability concept.
Fuzzy set theory and FC both incorporate a number of computational methodologies
that allow for a deeper understanding of dynamic structures while also minimizing the
computation complexity of solving them. Determining precise analytical solutions in the
case of FPDEs is a challenging task.

Owing to the model’s intricacy, determining an analytical solution to PDEs is gener-
ally problematic. As a result, there is a developing trend in implementing mathematical
approaches to obtain an exact solution. The Adomian decomposition method (ADM) is a
prominent numerical approach that is widely used. Several researchers have employed
different terminologies to address FPDEs. For resolving complex fuzzy PDEs, Nemati and
Matinfar [37] constructed an implicit finite difference approach. Moreover, to demonstrate
the competence and acceptability of the suggested methodology, experimental investi-
gations incorporating parabolic PDEs were provided. According to Allahviranloo and
Kermani [38], an explicit numerical solution to the fuzzy hyperbolic and parabolic equa-
tions is provided. The validity and resilience of the proposed system were investigated
in order to demonstrate that it is inherently robust. Arqub et al. [39] employed the repro-
ducing kernel algorithm for the solution of two-point fuzzy boundary value problems.
The fuzzy Fredholm–Volterra integrodifferential equations were solved by the adaptation
of the reproducing kernel algorithm by [40].

When it comes to discovering solutions to significant challenges, researchers prefer
integral transformations. The Elzaki transformation [41], proposed by T. Elzaki in 2011,
was used on a biological population model, the Fornberg–Whitham Model, and Fisher’s
models in [42–44].

The focus of this research is to suggest a sophisticated Adomian decomposition
method [45] that can handle nonlinear partial fuzzy differential equations employing the
fuzzy Elzaki transformation. A novel algorithmic approach is defined to construct the
solution of nonlinear fuzzy fractional PDE. The nonlinear components of the problem
are then handled using the Adomian polynomial [46] approach to achieve the solution.
The fuzzy Elzaki method is the name given to the novel decomposition method.

In this research, CFDs of order α ∈ (0, r) for a fuzzy-valued mapping by employing
all conceivable configurations of objects with t1 equal to 1 and t2 (the others) equal to 2
are presented. Moreover, a new result in connection of the Caputo fractional derivative
and Elzaki transform via fuzzification is also presented. Taking into consideration gH-
differentiabilty for a new algorithm, the fuzzy Elzaki decomposition approach is used
to construct the parametric form of the fuzzy mappings, which are considered to be a
valuable tool for solving the fuzzy fractional nonlinear PDE under fuzzy initial conditions.
The Elzaki transform applied here, in general, is a refinement of the Laplace and Sumudu
transforms. A test problem for the proposed algorithm is presented via the different
fractional order and uncertainty parameter, ℘ ∈ [0, 1]. Furthermore, their 2D and 3D
simulations show the applicability of the method over the other methods. As a consequence,
each finding generates a pair of solutions that are closely in agreement with the existing
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one. However, we have the choice of how to attain the appropriate one. Finally, as a part of
our concluding remarks, we discussed the accumulated facts of our findings.

The following is a synopsis of the persisting sections with regard to introduction
and implementation: Section 2 represents the fundamentals and essential details of frac-
tional calculus and fuzzy set theory. Section 3 concerns problem preparation, initialization,
and processing. Section 4 concerns the Caputo fractional derivative formulation via fuzzifi-
cation in generic order and some further results. Section 5 concerns numerical algorithms
and mathematical debates with some tabulation and graphical results. Ultimately, Section
6 concerns conclusions and future highlights.

2. Preliminaries

This section consists of some significant concepts and results from fractional calculus
and fuzzy set theory. For more details, see [4,5,13,47].

Here, CF[â, b̂] represents the space of all continuous fuzzy-valued mappings on [â, b̂].
Moreover, the space of all Lebesgue integrable fuzzy-valued mappings on the bounded
interval [â, b̂] ⊂ R is represented by LF[â, b̂].

Definition 1 ([48]). A fuzzy number is a mapping f : R 7→ [0, 1], that fulfills the subsequent
assumptions:

(i) f is upper semi-continuous on R;
(ii) f(x) = 0 for some interval [ĉ, d̂];
(iii) For â, b̂ ∈ R having ĉ ≤ â ≤ b̂ ≤ d̂ such that f is increasing on [ĉ, â] and decreasing on [b̂, d̂]

and f(x) = 1 for every x ∈ [â, b̂];
(iv) f(℘x + (1− ℘)y) ≥ min{f(x), f(y)} for every x, y ∈ R, ℘ ∈ [0, 1].

The set of all fuzzy numbers is denoted by the letter E1. If â ∈ R, it can be regarded as
a fuzzy number; ˜̂a = χ{â} is the characteristic function, and therefore R ⊂ E1.

Definition 2 ([49]). The ℘-level set of f is the crisp set [f]℘, if ℘ ∈ [0, 1] and f ∈ E1, then

[f]℘ =
{

x ∈ R : f(x) ≥ ℘
}

. (1)

In addition, any ℘-level set is closed and bounded, signified by [f(℘), f̄(℘)], ∀℘ ∈ [0, 1],
where f, f̄ : [0, 1] 7→ R are the lower and upper bounds of [f]℘, respectively.

Definition 3 ([49]). For each ℘ ∈ [0, 1], a parameterize formulation of fuzzy number f is an
ordered pair f = [f(℘), f̄(℘)] of mappings f(℘) and f̄(℘) that addresses the basic conditions:

(i) The mapping f(℘) is a bounded left continuous monotonic increasing in [0, 1];
(ii) The mapping f̄(℘) is a bounded left continuous monotonic decreasing in [0, 1];
(iii) f(℘) ≤ f̄(℘).

Furthermore, the addition and scalar multiplication of fuzzy numbers f1 = [f1(℘), f̄1(℘)]
and f2 = [f2(℘), f̄2(℘)] are presented as follows:

[f1 ⊕ f2]
℘ = [f1]

℘ + [f2]
℘ = [f1(℘) + f2(℘), f̄1(℘) + f̄2(℘)] and [k� f]℘ =

{
[kf(℘), kf̄(℘)], k > 0,
[kf̄(℘), kf(℘)], k < 0.

(2)

As a distance between fuzzy numbers, we employ the Hausdorff metric.

Definition 4 ([48]). Consider the two fuzzy numbers f1 = [f1(℘), f̄1(℘)] and f2 = [f2(℘), f̄2(℘)]
defined on E1. Then the distance between two fuzzy numbers is presented as follows:

d(f1, f2) = sup
℘∈[0,1]

max
{
|f1(℘)− f2(℘)|, |f̄1(℘)− f̄2(℘)|

}
. (3)
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Definition 5 ([50]). A fuzzy number f has the following forms:

(i) If f(1) ≥ 0, then f is positive;
(ii) If f(1) > 0, then f is strictly positive;
(iii) If f̄(1) ≤ 0, then f is negative;
(iv) If f(1) < 0, then f is strictly negative.

The sets of positive and negative fuzzy numbers are denoted by E+ and E−, respectively.

Consider D as the set representing the domain of fuzzy-valued mappings f. Define
the mappings f(., .;℘), f̄(., .;℘) : D 7→ R, ∀℘ ∈ [0, 1]. These mappings are known to be the
left and right ℘-level mappings of the map f.

Definition 6 ([51]). A fuzzy valued mapping f : D 7→ E1 is known to be continuous at (s0, ξ0) ∈
D if for every ε > 0 exists δ > 0 such that d(f(s, ξ), f(s0, ξ0)) < ε whenever |s− s0|+ |ξ− ξ0| <
δ. If f is continuous for each (s1, ξ1) ∈ D, then f is said to be continuous on D.

Definition 7 ([52]). Suppose x1, x2 ∈ E1 and y ∈ E1 such that the following holds:

(i) x1 = x2 ⊕ y; or
(ii) y = x1 ⊕ (−1)� x2.

Then, y is known to be the generalized Hukuhara difference (gH-difference) of fuzzy numbers
x1 and x2 and is denoted by x1 	 gHx2.

Again, suppose x1, x2 ∈ E1, then x1 	 gHx2 = y⇔
(i) y = (x1(℘)− x2(℘), x̄1(℘)− x̄2(℘)); or
(ii) y = (x̄1(℘)− x̄2(℘), x1(℘)− x2(℘)).

The connection between the gH-difference and the Housdroff distance is demonstrated
by the following Lemma.

Lemma 1 ([52]). For all f1, f2 ∈ E1, then

d(f1, f2) = sup
℘∈[0,1]

‖[f1]
℘ 	 gH[f2]

℘‖, (4)

where, for an interval [â, b̂], the norm is ‖[â, b̂]‖ = max
{
|â|, |b̂|

}
.

Definition 8 ([53]). Let f : D 7→ E1 and (x0, ξ) ∈ D. A mapping f is known as the strongly
strongly generalized Hukuhara differentiable on (x0, ξ) (gH-differentiable for short) if there exists

an element ∂ f2(x0,ξ)
∂x ∈ E1, then the subsequent holds:

(i) The following gH-differences exist, if ∀ ε > 0 sufficiently small, then

f(x0 + ε, ξ)	 gHf(x0, ξ), f(x0, ξ)	 gHf(x0 + ε, ξ),

the following limits hold as:

lim
ε 7→0

f(x0 + ε, ξ)	 gHf(x0, ξ)

ε
= lim

ε 7→0

f(x0, ξ)	 gHf(x0 + ε, ξ)

ε
=

∂f(x0, ξ)

∂x
. (5)

(ii) The following gH-differences exist, if ∀ ε > 0 sufficiently small, then

f(x0, ξ)	 gHf(x0 + ε, ξ), f(x0 − ε, ξ)	 gHf(x0, ξ),

the following limits hold as:

lim
ε 7→0

f(x0, ξ)	 gHf(x0 + ε, ξ)

−ε
= lim

ε 7→0

f(x0 − ε, ξ)	 gHf(x0, ξ)

−ε
=

∂f(x0, ξ)

∂x
. (6)
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Lemma 2 ([54]). Suppose a continuous fuzzy-valued mapping f : D 7→ E1 and f(x, ξ) =[
f(x, ξ;℘), f̄(x, ξ;℘)

]
, ∀℘ ∈ [0, 1]. Then

(i) If f(x, ξ) is (i)-differentiable for x under Definition 8(i), then we have the following:

∂f(x0, ξ)

∂x
=

(
∂f(x0, ξ)

∂x
,

∂f̄(x0, ξ)

∂x

)
; (7)

(ii) If f(x, ξ) is (ii)-differentiable for x under Definition 8(ii), then we have the following:

∂f(x0, ξ)

∂x
=

(
∂f̄(x0, ξ)

∂x
,

∂f(x0, ξ)

∂x

)
. (8)

Theorem 1 ([55]). Suppose f : R+ 7→ E1 and ∀ ℘ ∈ [0, 1].

(i) The mappings f(x; ξ;℘) and f̄(x; ξ;℘) are Riemann-integrable on [0, b̂] for every b̂ ≥ 0.
(ii) M(℘) > 0 and M̄(℘) > 0 are the constants, then

b̂∫
0

|f(x; ξ;℘)|dx ≤M(℘),
b̂∫

0

|f̄(x; ξ;℘)|dx ≤ M̄(℘), ∀ b̂ ≥ 0.

Then, the mapping f is improper fuzzy Riemann-integrable on [0, ∞) and the following holds:

FR
∞∫

0

f(x)dx =

( ∞∫
0

f(x;℘)dx,
∞∫

0

f̄(x;℘)dx
)

. (9)

Theorem 2 ([1]). Suppose there is a positive integer r and a continuous mapping Dr−1f defined
on J = [0, ∞) and a collection of piece wise continuous mappings C defined on J ′ = (0, ∞) is
integrable on finite sub-interval of J = [0, ∞) and assume that ν > 0. Then

(i) If Drf is in C, then

D−νf(x) = D−ν−r[Drf(x)
]
+ Xr(x, ν)

and
(ii) If there is a continuous mapping Drf on J , then for x > 0

Dr[D−νf(x)
]
= D−ν

[
Drf(x)

]
+ Xr(x, ν− r),

where

Xr(x, ν) =
r−1

∑
κ=0

xν+κ

Γ(ν + κ + 1)
Dκf(0).

3. Fuzzy Elzaki Transform

Definition 9 ([41]). Suppose a continuous fuzzy-valued mapping f : R+ 7→ E1 and for ω > 0,
there is an improper fuzzy Riemann-integrable mapping f(ξ)� exp(−ξ/ω) defined on [0, ∞).
Then we have

FR
∞∫

0

ωf(ξ) exp(−ξ/ω)dξ, ω ∈ (p1, p2),

which is known as the Fuzzy Elzaki transform and represented as

W(ω) = E[f(ξ)] = FR
∞∫

0

ωf(ξ) exp(−ξ/ω)dξ.
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The parameterized version of fuzzy Elzaki transform:

E
[
f(ξ)

]
=
[
E
[
f(ξ;℘)

]
, E
[
f̄(ξ;℘)

]]
,

where

E
[
f(ξ;℘)

]
=

∞∫
0

ωf(ξ;℘) exp(−ξ/ω)dξ,

E
[
f̄(ξ;℘)

]
=

∞∫
0

ωf̄(ξ;℘) exp(−ξ/ω)dξ.

4. Fuzzy Elzaki Transform of the Fuzzy CFDs of Orders r − 1 < α < r

This section consists of CFDs of the general fractional order 0 < α < r. Moreover, we
obtain the fuzzy Elzaki transform for CFD of the generic order r − 1 < α < r for fuzzy
valued mapping f under gH-differentiability.

For the sake of simplicity, for 0 < α < r and f(x) ∈ CF[0, b̂]
⋂
LF[0, b̂], denoting

G(x) = 1
Γ(dαe − α)

x∫
0

f(ξ)dξ

(x− ξ)1−dαe+α
	
dαe−α

∑
κ=0

Dκf(0)xdαe−α+κ

Γ(1 + dαe − α + κ)
. (10)

Definition 10. Suppose f(x) ∈ CF[0, b̂]
⋂
LF[0, b̂] and dαe and bαc indicates α values that have

been rounded forward and descend to the closest integer value, respectively. It is clear that G(x)
and the mappings G1,2,...,ι ,1 and G1,2,...,ι ,2 are stated as

G1,2,...,ι ,1(x0) = lim
ε 7→0+

G1,2,...,ι(x0 + ε)	 G1,2,...,ι(x0)

ε
= lim

ε 7→0+

G1,2,...,ι(x0)	 G1,2,...,ι(x0 − ε)

ε
, (11)

G1,2,...,ι ,2(x0) = lim
ε 7→0+

G1,2,...,ι(x0)	 G1,2,...,ι(x0 + ε)

−ε
= lim

ε 7→0+

G1,2,...,ι(x0 − ε)	 G1,2,...,ι(x0)

−ε
, (12)

for ι = 0, 1, 2, . . . , r − 2 such that 1, 2, . . . , ι are all possible arrangements of ι objects that
represents the numbers in the following principal:

ιPt1t2 =
ι!

t1!t2!
, t1 + t2 = ι,

where t1 of them equal 1 (means CD in the first version) and t2 of them equal 2 (means CD in the
second version). Furthermore, 1, 2, . . . , 0.

Now, f(x) is the Caputo fractional type fuzzy differentiable mapping of order 0 < α < r, α 6=
1, 2, . . . r− 1 at x0 ∈ (0, b̂) if ∃ an element

( cDαf
)
(x0) ∈ CF such that ∀℘ ∈ [0, 1] and for ε > 0

close to zero. Then

(i) If dαe = 1, then

( cDαf
)
(x0) = lim

ε 7→0+

G1,2,...,dαe(x0 + ε)	 G1,2,...,ι(x0)

ε
= lim

ε 7→0+

G1,2,...,dαe(x0)	 G1,2,...,dαe(x0 − ε)

ε
; (13)

(ii) If dαe = 2, then

( cDαf
)
(x0) = lim

ε 7→0+

G1,2,...,dαe(x0)	 G1,2,...,ι(x0 + ε)

−ε
= lim

ε 7→0+

G1,2,...,dαe(x0 − ε)	 G1,2,...,dαe(x0)

−ε
, (14)
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for α ∈ (κ− 1, κ), κ = 1, 2, . . . , r such that 1, 2, . . . , dαe are all the suitable arrangements
of dαe objects that have the following representation:

dαePt1t2 =
dαe!
t1!t2!

, t1 + t2 = dαe.

Theorem 3. Suppose f(x) ∈ CF[0, b̂]
⋂
LF[0, b̂] be a fuzzy-valued mapping such that f(x) =[

f(x;℘), f̄(x;℘)
]

for ℘ ∈ [0, 1], x0 ∈ (0, b̂) and G(x) is stated in (10).
Assume that 0 < α < r and ` is the number of repetitions of 2 among 1, 2, . . . , dαe for

α ∈ (κ − 1, κ), κ = 1, 2, . . . , r, say, κ1 , κ2 , . . . , κ` such that κ1 < κ2 < . . . < κ`, i.e., κ1 =
κ2 = . . . = κ` = 2 and 0 ≤ ` ≤ dαe. Then we have the following

If ` is even number, then(
cDβ

1,2,...dαe f
)
(x0) =

[( cDαf
)
(x0;℘),

( cDα f̄
)
(x0;℘)

]
. (15)

If ` is odd number, then(
cDβ

1,2,...dαe f
)
(x0) =

[( cDα f̄
)
(x0;℘),

( cDαf
)
(x0;℘)

]
, (16)

where

( cDαf
)
(x0;℘) =

[
1

Γ(dαe − α)

x∫
0

Ddαef(ξ;℘)dξ

(x− ξ)1−dαe+α

]
x=x0

,

( cDα f̄
)
(x0;℘) =

[
1

Γ(dαe − α)

x∫
0

Ddαe f̄(ξ;℘)dξ

(x− ξ)1−dαe+α

]
x=x0

, Dκf(ξ) =
dκf(ξ)

dξκ
. (17)

Proof. Let ` be an even number and then ` = 2s1, s1 ∈ N. Here, we have two assumptions
as follows:

The first assumption is
(

cDβ
1,...,κ1 ,...,κ2,...,dαe

f
)
(x0) is the Caputo type fuzzy fractional

differentiable mapping in the first form (dαe = 1) and in view of (13) from Definition 10,
we have

G1,...,dαe(x0 + ε)	 G1,...,dαe(x0)

=
[
G 1,...,dαe

(x0 + ε;℘)− G 1,...,dαe
(x0;℘), Ḡ1,...,dαe(x0 + ε;℘)− Ḡ1,...,dαe(x0;℘)

]
,

G1,...,dαe(x0)	 G1,...,dαe(x0 − ε)

=
[
G 1,...,dαe

(x0;℘)− G 1,...,dαe
(x0 − ε;℘), Ḡ1,...,dαe(x0;℘)− Ḡ1,...,dαe(x0 − ε;℘)

]
. (18)

Conducting product on both sides by 1/ε, ε > 0, and then applying ε 7→+, yields(
RLDαf

)
(x0) =

[ d
dx
G 1,...,dαe

(x0;℘),
d

dx
Ḡ1,...,dαe(x0;℘)

]
. (19)

Thus, G1,...,κ1−1 is identical to the specified restrictions mentioned in (11) of Definition 10,
then by employing (11) for (κ1 − 1) times, we have that

G1,...,κ1−1(x0) =
[
G(κ1−1)(x0;℘), Ḡ(κ1−1)(x0;℘)

]
. (20)

Since G1 , .., κ1(x0) is identical to the specified restrictions stated in (12) of Definition 10,
then by employing (12), we have

G1,...,κ1−1(x0) =
[
Ḡ(κ1)(x0;℘),G(κ1)(x0;℘)

]
. (21)
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Since G1 , . . . , κ2−1(x0) is identical to the specified restrictions stated in (11) of Defini-
tion 10 then by employing (11), we have

G1,...,κ2−1(x0) =
[
Ḡ(κ2−1)(x0;℘),G(κ2−1)(x0;℘)

]
. (22)

Since G1 , . . . , κ2(x0) is identical to the specified restrictions stated in (12) of Definition 10
then by employing (12), we have

G1,...,κ2
(x0) =

[
G(κ2−1)(x0;℘), Ḡ(κ2−1)(x0;℘)

]
. (23)

On the other hand, from (23) we notice that we will have a similar equation, follow-
ing the application of (11) and (12) for any even number of κ1 , κ2 , . . . , κm of (23). Thus,
for G1,...,2s1

(x0), we have

G1,...,κ2s1
(x0) =

[
G(κ2s1 )(x0;℘), Ḡ(κ2s1 )(x0;℘)

]
, (24)

where 2s1 is an even number.
Consequently, since G1 , . . . , dαe(x0) is identical to the specified restrictions stated

in (11) of Definition 10 then by employing (11) for (dαe − κ2s1), we have

G1,...,dαe(x0) =
[
G(dαe)(x0;℘), Ḡ(dαe)(x0;℘)

]
, (25)

then, we have

G 1,...,dαe
(x0;℘) = G(dαe)(x0;℘),

Ḡ1,...,dαe(x0;℘) = Ḡ(dαe)(x0;℘). (26)

Plugging (26) and (19) gives the subsequent( cDαf
)
(x0) =

[
DdβeG(x0;℘), DdβeḠ(x0;℘)

]
, D = d/dx. (27)

Thus,

( cDαf
)
(x0) =

[
Ddβe

(
1

Γ(dαe − α)

x∫
0

f(ξ;℘)dξ

(x− ξ)1−dαe+α
−
dαe−α

∑
κ=0

Dκf(0)xdαe−α+κ

Γ(1 + dαe − α + κ)

)∣∣∣∣∣
x=x0

,

Ddβe
(

1
Γ(dαe − α)

x∫
0

f̄(ξ;℘)dξ

(x− ξ)1−dαe+α
−
dαe−α

∑
κ=0

Dκ f̄(0)xdαe−α+κ

Γ(1 + dαe − α + κ)

)∣∣∣∣∣
x=x0

]
. (28)

Utilizing the fact of (10) we have

( cDαf
)
(x0) =

[
Ddαe

(
D−(dαe−α)f

)
(x0;℘)−

( dαe
∑
κ=0

Dκf(0;℘)Ddαexdαe−α+κ

Γ(1 + dαe − α + κ)

)∣∣∣∣
x=x0

,

Ddαe
(
D−(dαe−α) f̄

)
(x0;℘)−

( dαe
∑
κ=0

Dκ f̄(0;℘)Ddαexdαe−α+κ

Γ(1 + dαe − α + κ)

)∣∣∣∣
x=x0

]
, (29)

where (D−(dαe−α)f)(x0;℘) and (D−(dαe−α) f̄)(x0;℘) are the RL fractional integrals of the
mappings f(x0;℘) and f̄(x0;℘) at x = x0, respectively. By the use of continuity of Drf
having r = dαe, ν = dαe− α and by the virtue of Theorem 2, Drx` = Γ(`+1)

Γ(`+1−r)x`−r, we have
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( cDαf
)
(x0) =

[
D−(dαe−α)

(
Ddαef(x0;℘)

)
+Q(x0,−α)−

dαe

∑
κ=0

Dκf(0;℘)xκ−α

Γ(1− α + κ)

∣∣∣∣
x=x0

,

D−(dαe−α)
(
Ddαe f̄(x0;℘)

)
+ Q̄(x0,−α)−

dαe

∑
κ=0

Dκ f̄(0;℘)xκ−α

Γ(1− α + κ)

∣∣∣∣
x=x0

]
. (30)

Thus ( cDαf
)
(x0) =

[
D−(dαe−α)

(
Ddαef(x0;℘)

)
, D−(dαe−α)

(
Ddαe f̄

)
(x0;℘)

]
=
[( cDαf

)
(x0;℘),

( cDα f̄
)
(x0;℘)

]
. (31)

If ` is odd, the solution is similar as the one found before.

Theorem 4. Assume that there is a fuzzy-valued mapping f(x) ∈ CF[0, ∞)
⋂
LF[0, ∞) such that

f(x) =
[
f(x;℘), f̄(x,℘)

]
for ℘ ∈ [0, 1]. In addition, let r − 1 < α < r and ` be the quantity

replicated of two amongst 1, 2, 3, . . . , r say κ1 , κ2 , κ3 , . . . , κ` such that κ1 < κ2 < . . . <
κm; i.e., κ1 , κ2 , κ3 , . . . , κ` = 2 and 0 ≤ ` ≤ r.

If ` is an even number, then

E
[(

cDα
1,2,...,r f

)
(x)
]
= ω−αE

[
f(x)

]
	ω2−αf(0)⊗

r−1

∑
κ=1

ω2−α+κf(κ)(0), (32)

then

⊗ =

{
	, i f such quantity is replication o f two amongest 1, 2, . . . r−(κ+1) is an even number,
−, i f such quantity is replication o f two amongest1, 2, . . . r−(κ+1) is an odd number.

(33)

If ` is an odd number, we have

E
[(

cDα
1,2,...,r f

)
(x)
]
= −ω2−αf(0)	 (−ω−α)E

[
f(x)

]
⊗

r−1

∑
κ=0

ω2−α+κf(0), (34)

⊗ =

{
	, i f such quantity is replication o f two amongest 1, 2, . . . r−(κ+1) is an odd number,
−, i f such quantity is replication o f two amongest 1, 2, . . . r−(κ+1) is an even number.

(35)

Proof. Considering
( cDα

1,2,...,r f
)
(x), that can be expressed as

( cDα
1,...,κ1 ,...,κ2 ,...,κ` ,...,r f

)
(x).

Moreover, assume that ` is an odd number, then by means of Theorem 3 and r− 1 < α < r,
we have ( cDα

1,2,...,r f
)
(x) =

[( cDα f̄
)
(x;℘),

( cDαf
)
(x;℘)

]
. (36)

Thus, we have ( cDαf
)
(x;℘) =

( cDα f̄
)
(x;℘),(

cDαf
)
(x;℘) =

( cDαf
)
(x;℘). (37)

Using the fact of (37), we have

E
[( cDα

1,2,...,r f
)
(x)
]

= E
[( cDαf

)
(x;℘),

(
cDαf

)
(x;℘)

]
=
[
E
[( cDα f̄

)
(x;℘)

]
, E
[( cDαf

)
(x;℘)

]]
. (38)
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In view of the Elzaki transform of the Caputo fractional derivative of order α ([56]),
we have

E
[( cDαf

)
(x;℘)

]
= ω−αE

[
f(x;℘)

]
−

r−1

∑
κ=0

ω2−α+κf(κ)(0;℘)

= ω−αE
[
f(x;℘)

]
−ω2−αf(0;℘)−

r−1

∑
κ=1

ω2−α+κf(κ)(0;℘). (39)

The aforementioned expression can be represented as

E
[( cDαf

)
(x;℘)

]
= ω−αE

[
f(x;℘)

]
−ω2−αf(0;℘)

−
κ1−1

∑
κ=1

ω2−α+κf(κ)(0;℘)−
κ2−1

∑
κ=κ1

ω2−α+κf(κ)(0;℘)− . . .

−
κ`−1

∑
κ=κ`−1

ω2−α+κf(κ)(0;℘)−
r−1

∑
κ=κ`

ω2−α+κf(0;℘). (40)

Repeating the same process, we can write

E
[( cDα f̄

)
(x;℘)

]
= ω−αE

[
f̄(x;℘)

]
−ω2−α f̄(0;℘)

−
κ1−1

∑
κ=1

ω2−α+κ f̄(0;℘)−
κ2−1

∑
κ=κ1

ω2−α+κ f̄(0;℘)− . . .

−
κ`−1

∑
κ=κ`−1

ω2−α+κf(κ)(0;℘)−
r−1

∑
κ=κ`

ω2−α+κf(κ)
)
(0;℘). (41)

Even though κ1 = κ2 = . . . = κ` = 2 and ` is an odd number, we then have the
subsequent forms

f(κ)(0;℘) = f(κ)(0;℘),

f̄(κ)(0;℘) = f(κ)(0;℘), ∀ κ ∈ [1, κ1 − 1],

f(κ)(0;℘) = f(κ)(0;℘)

f̄(κ)(0;℘) = f(κ)(0;℘), ∀ κ ∈ [κ1, κ2 − 1],
...

f(κ)(0;℘) = f(κ)(0;℘),
¯f(κ)(0;℘) = f(κ)(0;℘), ∀ κ ∈ [κ`−1, κ` − 1],

f(κ)(0;℘) = f(κ)(0;℘),

f̄(κ)(0;℘) = f(κ)(0;℘), ∀ κ ∈ [κ`, r− 1]. (42)

When ` is an odd number and utilizing Theorem 3, we obtain the aforementioned equa-
tions.

In view of (41), (38) and (40) reduces to

E
[(

cDα
1,2,...,r f

)
(x)
]
= −ω2−αf(0)	 (−ω−α)E

[
f(x)

]
⊗

r−1

∑
κ=1

ω2−α+κ f (κ)(0;℘). (43)

where ⊗ defined in (35).
Adopting the same method, we can prove ` to be an even number on parallel lines.

Corollary 1. Assume that f(x) ∈ CF[0, ∞)
⋂
L∞[0, ∞). Moreover, let α ∈ (2, 3). Then we obtain

the following
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If
( cDα

1,1f
)
(x) is c[(i)− α]-differentiable fuzzy-valued mapping, then

E
[(

cDα
1,1,1f

)
(x)
]
= ω−αE

[
f(x)

]
	ω−α+2f(0)	ω−α+3f′(0)	ω−α+4f′′(0).

If
( cDα

1,1f
)
(x) is c[(ii)− α]-differentiable fuzzy-valued mapping, then

E
[(

cDα
1,1,1f

)
(x)
]
= −ω−α+2f(0)	 (−ω−α)E

[
f(x)

]
−ω−α+3f′(0)−ω−α+4f′′(0).

If
( cDα

1,2f
)
(x) is c[(i)− α]-differentiable fuzzy-valued mapping, then

E
[(

cDα
1,2,1f

)
(x)
]
= −ω−α+2f(0)	 (−ω−α)E

[
f(x)

]
−ω−α+3f′(0)	ω−α+4f′′(0).

If
( cDα

1,2f
)
(x) is c[(ii)− α]-differentiable fuzzy-valued mapping, then

E
[(

cDα
1,2,2f

)
(x)
]
= ω−αE

[
f(x)

]
	ω−α+2f(0)	ω−α+3f′(0)−ω−α+4f′′(0).

If
( cDα

2,1f
)
(x) is c[(i)− α]-differentiable fuzzy-valued mapping, then

E
[(

cDα
2,1,1f

)
(x)
]
= −ω−α+2f(0)	 (−ω)−αE

[
f(x)

]
	ω−α+3f′(0)	ω−α+4f′′(0).

If
( cDα

2,1f
)
(x) is c[(ii)− α]-differentiable fuzzy-valued mapping, then

E
[(

cDα
2,1,2f

)
(x)
]
= ω−αE

[
f(x)

]
	ω−α+2f(0)−ω−α+3f′(0)−ω−α+4f′′(0).

If
( cDα

2,2f
)
(x) is c[(i)− α]-differentiable fuzzy-valued mapping, then

E
[(

cDα
2,2,1f

)
(x)
]
= ω−αE

[
f(x)

]
	ω−α+2f(0)−ω−α+3f′(0)	ω−α+4f′′(0).

If
( cDα

2,2f
)
(x) is c[(ii)− α]-differentiable fuzzy-valued mapping, then

E
[(

cDα
2,2,2f

)
(x)
]
= −ω−α+2f(0)	 (−ω)−αE

[
f(x)

]
	ω−α+3f′(0)−ω−α+4f′′(0).

5. The Fuzzy Elzaki Decomposition Method for Finding the Solution of the Nonlinear
Fuzzy Partial Differential Equation

In this note, we coupled the fuzzy Elzaki transform and the ADM to obtain the solution
of the NFPDE. The generic form of the NFPDE is presented as follows:

p

∑
ι=0

cι �Dα
ξ f(x, ξ)⊕

q

∑
j=1

cj �
∂jf(x, ξ)

∂xj ⊕
2

∑
η=0

2

∑
σ=η

cησ �
∂ηf(x, ξ)

∂xη � ∂σf(x, ξ)

∂xσ
= g(x, ξ), (44)

subject to initial conditions

∂ιf(x, 0)
∂ξ ι

= ψι(x), ι = 0, 1, . . . , p− 1, (45)

where f, g : [0, b̂] × [0, d̂] 7→ E1, ψι : [0, b̂] 7→ E1 are continuous fuzzy mappings and
cι, ι = 1, 2, . . . , p, cj, j = 1, 2, . . . , q, cησ, η = 0, 1, 2, σ = 0, 1, 2, are positive constants.

Implementing the fuzzy Elzaki transform on both sides of (44), yields

p

∑
ι=0

cι �E
[
Dα

ξ f(x, ξ)
]
⊕

q

∑
j=1

cj �E
[

∂jf(x, ξ)

∂xj

]
⊕

2

∑
η=0

2

∑
σ=η

cησ �E
[

∂ηf(x, ξ)

∂xη

]
�E

[
∂σf(x, ξ)

∂xσ

]
= E

[
g(x, ξ)

]
. (46)
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Consider ∂ηf(x,ξ)
∂ξη , η = 0, 1, 2 as positive fuzzy-valued mappings.

Then, the parametric version of (46) is as follows:

p

∑
ι=0

cιE
[
Dα

ξ f(x, ξ;℘)
]
+

q

∑
j=1

cjE
[

∂jf(x, ξ;℘)
∂xj

]
+

2

∑
η=0

2

∑
σ=η

cησE
[

∂ηf(x, ξ;℘)
∂xη

∂σf(x, ξ;℘)
∂xσ

]
= E

[
g(x, ξ;℘)

]
, (47)

and

p

∑
ι=0

cιE
[
Dα

ξ f̄(x, ξ;℘)
]
+

q

∑
j=1

cjE
[

∂j f̄(x, ξ;℘)
∂xj

]
+

2

∑
η=0

2

∑
σ=η

cησE
[

∂η f̄(x, ξ;℘)
∂xη

∂σ f̄(x, ξ;℘)
∂xσ

]
= E

[
ḡ(x, ξ;℘)

]
. (48)

Case I. Consider the mapping f(x, ξ;℘) as [(i)− α]-differentiable of the qth-order with
respect to x.

In view of (47), then from (40) and (41) and IC, we have

1
ωα

p
∑

ι=0
cιE
[
f(x, ξ;℘)

]
= E

[
g(x, ξ;℘)

]
+

p

∑
ι=1

ω2ψ
0
(x;℘)−

q

∑
j=1

cjE
[

∂jf(x, ξ;℘)
∂xj

]

−
2

∑
η=0

2

∑
σ=η

cησE
[

∂ηf(x, ξ;℘)
∂xη

∂σf(x, ξ;℘)
∂xσ

]
.

It follows that

E
[
f(x, ξ;℘)

]
=

( p

∑
ι=0

cι

ωα

)−1
[
E
[
g(x, ξ;℘)

]
+

p

∑
ι=1

ω2ψ
0
(x;℘)−

q

∑
j=1

cjE
[

∂jf(x, ξ;℘)
∂xj

]

−
2

∑
η=0

2

∑
σ=η

cησE
[

∂ηf(x, ξ;℘)
∂xη

∂σf(x, ξ;℘)
∂xσ

]]
.

Now, employing the inverse fuzzy Elzaki transform to both sides of the above equation,
we obtain

f(x, ξ;℘) = E−1

[( p

∑
ι=0

cι

ωα

)−1(
E
[
g(x, ξ;℘)

]
+

p

∑
ι=1

ω2ψ
0
(x;℘)

)]
− E−1

[( p

∑
ι=0

cι

ωα

)−1( q

∑
j=1

cjE
[

∂jf(x, ξ;℘)
∂xj

]

+
2

∑
η=0

2

∑
σ=η

cησE
[

∂ηf(x, ξ;℘)
∂xη

∂σf(x, ξ;℘)
∂xσ

)]]
. (49)

In view of the Adomian decomposition method, this method has infinite series solu-
tions for the subsequent unknown mappings:

f(x, ξ;℘) =
∞

∑
r=0

fr(x, ξ;℘). (50)

The non-linearity is addressed by an infinite series of the Adomian polynomials
Aησ

r , η = 0, 1, 2, σ = 0, 1, 2 and has the subsequent representation:

∂ηf(x, ξ;℘)
∂xη

∂σf(x, ξ;℘)
∂xσ

=
∞

∑
r=0
Aησ

r , (51)
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where

Aησ
r =



∂ηf0
∂xη

∂σf0
∂xσ , r = 0,

∂ηf0
∂xη

∂σf1
∂xσ + ∂ηf1

∂xη
∂σf0
∂xσ , r = 1,

∂ηf0
∂xη

∂σf2
∂xσ + ∂ηf1

∂xη
∂σf1
∂xσ + ∂ηf2

∂xη
∂σf0
∂xσ , r = 2,

....

(52)

Inserting (51), (52) in (50) refers to the following equation:

∞
∑

r=0
fr(x, ξ;℘) = E−1

[( p

∑
ι=0

cι

ωα

)−1(
E
[
g(x, ξ;℘)

]
+

p

∑
ι=1

ω2ψ
0
(x;℘)

)]

−E−1

[( p

∑
ι=0

cι

ωα

)−1( q

∑
j=1

cjE
[ ∞

∑
r=0

∂jfr(x;℘)
∂xj

]
+

2

∑
η=0

2

∑
σ=η

cησE
[ ∞

∑
r=0
Aησ

r

])]
. (53)

The recursive terms of the Elzaki decomposition method can be computed for r ≥ 0
as follows:

f0(x, ξ;℘) = E−1

[( p

∑
ι=0

cι

ωα

)−1(
E
[
g(x, ξ;℘)

]
+

p

∑
ι=1

ω2ψ
0
(x, ξ;℘)

)]
,

fr+1(x, ξ;℘) = −E−1

[( p

∑
ι=0

cι

ωα

)−1( q

∑
j=1

cjE
[ ∞

∑
r=0

∂jfr(x, ξ;℘)
∂xj

]
+

2

∑
η=0

2

∑
σ=η

cησE
[ ∞

∑
r=0
Aησ

r

])]
. (54)

Case II. Suppose the mapping f(x, ξ;℘) is [(i) − α]-differentiable of the qth order
with respect to x and [(ii) − α]-differentiable of the 2pth order with respect to ξ. Then,
the parametric version of (46) has the following representation:

p

∑
ι=0

c2ιE
[
D2α

ξ f(x, ξ;℘)
]
+

p

∑
ι=1

c2ι−1E
[
Dα

ξ f(x, ξ;℘)
]

+
q

∑
j=1

cjE
[

∂jf(x, ξ;℘)
∂xj

]
+

2

∑
η=0

2

∑
σ=η

cησE
[

∂ηf(x, ξ;℘)
∂xη

∂σf(x, ξ;℘)
∂xσ

]
= E

[
g(x, ξ;℘)

]
,

and

p

∑
ι=0

c2ιE
[
D2α

ξ f̄(x, ξ;℘)
]
+

p

∑
ι=1

c2ι−1E
[
Dα

ξ f̄(x, ξ;℘)
]

+
q

∑
j=1

cjE
[

∂j f̄(x, ξ;℘)
∂xj

]
+

2

∑
η=0

2

∑
σ=η

cησE
[

∂η f̄(x, ξ;℘)
∂xη

∂σ f̄(x, ξ;℘)
∂xσ

]
= E

[
ḡ(x, ξ;℘)

]
.

Utilizing the fact of Theorem 4 and ICs, we have

BE
[
f(x, ξ;℘)

]
+ CE

[
Dα

ξ f(x, ξ;℘)
]

= E
[
ḡ(x, ξ;℘) +F1(x;℘)

]
−

q

∑
j=1

cjE
[

∂jf(x, ξ;℘)
∂xj

]
−

2

∑
η=0

2

∑
σ=η

cησE
[

∂ηf(x, ξ;℘)
∂xη

∂σf(x, ξ;℘)
∂xσ

]
, (55)

and

BE
[
f̄(x, ξ;℘)

]
+ CE

[
f̄(x, ξ;℘)

]
= E

[
ḡ(x, ξ;℘) +F2(x;℘)

]
−

q

∑
j=1

cjE
[

∂j f̄(x, ξ;℘)
∂xj

]
−

2

∑
η=0

2

∑
σ=η

cησE
[

∂η f̄(x, ξ;℘)
∂xη

∂σ f̄(x, ξ;℘)
∂xσ

]
. (56)
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where B =
p
∑

ι=0
c2ιω

α, C =
p
∑

ι=1
c2ι−1ω2−α,

F1(x;℘) =
p

∑
ι=0

c2ι

(
ω2−2αψ

0
(x;℘) + ω3−2αψ̄1(x;℘)

)
+

p

∑
ι=0

c2ι−1

(
ω3−2αψ̄0(x;℘) + ω2−2αψ

0
(x;℘)

)
,

and

F2(x;℘) =
p

∑
ι=0

c2ι

(
ω2−2αψ̄0(x;℘) + ω3−2αψ

1
(x;℘)

)
+

p

∑
ι=0

c2ι−1

(
ω3−2αψ

0
(x;℘) + ω2−2αψ̄0(x;℘)

)
.

For the aforementioned Equations (55) and (56), we obtain E
[
f(x, ξ;℘)

]
and E

[
f̄(x, ξ;℘)

]
similar to Case I, and we find the the general solution f(x;℘) =

[
f(x, ξ;℘), f̄(x, ξ;℘)

]
.

Example 1. Consider the fuzzy fractional partial differential equation as follows:

D2α
ξ f(x, ξ)⊕ ∂f(x, ξ)

∂x
� ∂f2(x, ξ)

∂x2 = g3(x, ξ), x ≥ 0, ξ > 0, (57)

subject to ICs

f(x, 0) =
(x2

2
℘,

x2

2
(2− ℘)

)
, f′ξ(x, 0) = (0, 0), x > 0, (58)

and g3(x, ξ) =
(
℘+ x℘2, 2− ℘+ x(2− ℘)2

)
.

In order to find solution of (57), we have the following three cases.
Case I. If f(x, ξ) is [(i)− α]-differentiable.
Employing the Elzaki transform on (57), then we have

1
ω2α
E
[
f(x, ξ;℘)

]
−ω2−2αf(x, 0;℘) = E

[
g3(x, ξ)− ∂f(x, ξ)

∂x
∂f2(x, ξ)

∂x2

]
.

or equivalently, we have

E
[
f(x, ξ;℘)

]
−ω2f(x, 0;℘) = ω2αE

[
g3(x, ξ)− ∂f(x, ξ)

∂x
∂f2(x, ξ)

∂x2

]
.

Further, implementing the inverse fuzzy Elzaki transform, we have

f(x, ξ;℘) = E−1

[
ω2f(x, 0;℘) + ω2αE

[
g3(x, ξ)− ∂f(x, ξ)

∂x
∂f2(x, ξ)

∂x2

]]
.

Furthermore, applying the scheme described in Section 4, we have

∞

∑
r=0

fr(x, ξ;℘) = E−1
[
ω2f(x, 0;℘) + ω2αE

[
g3(x, ξ)

]
−ω2αE

[ ∞

∑
r=0
Ar
]]

. (59)

Utilizing the iterative procedure defined in (54), we have

f0(x, ξ;℘) = E−1
[
ω2f(x, 0;℘) + ω2αE

[
g3(x, ξ)

]]
= ℘

x2

2
+ (℘+ x℘2)

ξ2α

Γ(2α + 1)
, (60)
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In addition,

fr+1(x, ξ;℘) = E−1
[
ω2αE

[ ∞

∑
r=0
Ar
]]

. (61)

Utilizing the first few Adomian polynomials mentioned in (52), we have

f(x, ξ;℘) = E−1
[
ω2α

[
A0
]]

= −℘2x
ξ2α

Γ(2α + 1)
− ℘3 ξ4α

Γ(4α + 1)
,

f2(x, ξ;℘) = E−1
[
ω2α

[
A1
]]

= −℘3 ξ4α

Γ(4α + 1)
,

f3(x, ξ;℘) = 0,
.... (62)

In a similar way we obtained the upper solutions as follows:

f̄0(x, ξ;℘) =
x2

2
(2− ℘) +

(
2− ℘+ x(2− ℘)2) ξ2α

Γ(2α + 1)
,

f̄(x, ξ;℘) = −x(2− ℘)2 ξ2α

Γ(2α + 1)
− (2− ℘)3 ξ4α

Γ(4α + 1)
,

f̄2(x, ξ;℘) = −(2− ℘)3 ξ4α

Γ(4α + 1)
,

f̄3(x, ξ;℘) = 0,
.... (63)

The series form solution of Example 1 is presented as follows:

f(x, ξ) =

((
x2

2
+

ξ2α

Γ(2α + 1)

)
℘,
(

x2

2
+

ξ2α

Γ(2α + 1)

)
(2− ℘)

)
. (64)

The numerical solution to the fuzzy fractional nonlinear PDE is presented in this
section. Incorporating all of the data with respect to the numerous parameters involved in
the related equation is a monumental task. Uncertain responses subject to Caputo fractional
order derivatives have been considered, as previously stated.

• Table 1 represents the obtained findings with x = 0.4 and ξ = 0.7. Table 1 also
comprises the outcomes of Georgieva and Pavlova [57]. As a consequence, the findings
acquired by fuzzy Elzaki decomposition method are the same if α = 1, as those
reported by Georgieva and Pavlova [57].

• Figure 1a,b demonstrates the three-dimensional illustration of the lower and upper
estimates for different uncertainties ℘ ∈ [0, 1].

• Figure 2a,b shows the fuzzy responses for different fractional orders.
• Figure 3a,b illustrates the fuzzy responses for different uncertainty parameters.
• The aforementioned representations illustrate that all graphs are substantially identical

in their perspectives and have good agreement with one another, especially when
integer-order derivatives are taken into account.

Finally, this generic approach for dealing with nonlinear PDEs is more accurate and
powerful than the method applied by [57]. Our findings for the fuzzy Elzaki decomposition
method, helpful for fuzzy initial value problems, demonstrate the consistency and strength
of the offered solutions.
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Table 1. Lower and upper solutions of Case I of Example 1 for various fractional orders in comparison with the solution
derived by [57].

℘ f(α = 0.7) f̄(α = 0.7) f(α = 1) f̄(α = 1) f [57] f̄ [57]

0.1 1.9420× 10−2 3.6899× 10−1 9.0000× 10−3 1.7100× 10−1 9.0000× 10−3 1.7100× 10−1

0.2 3.8841× 10−2 3.4957× 10−1 1.8000× 10−2 1.6200× 10−1 1.8000× 10−2 1.6200× 10−1

0.3 5.8262× 10−2 3.30152× 10−1 2.7000× 10−2 1.5300× 10−1 2.7000× 10−2 1.5300× 10−1

0.4 7.7682× 10−2 3.1073× 10−1 3.6000× 10−2 1.4400× 10−1 3.6000× 10−2 1.4400× 10−1

0.5 9.7103× 10−2 2.9131× 10−1 4.5000× 10−2 1.3500× 10−1 4.5000× 10−2 1.3500× 10−1

0.6 1.1652× 10−2 2.71890× 10−1 5.4000× 10−2 1.2600× 10−1 5.4000× 10−2 1.2600× 10−1

0.7 1.3594× 10−2 2.5246× 10−1 6.3000× 10−2 1.1700× 10−1 6.3000× 10−2 1.1700× 10−1

0.8 1.5536× 10−2 2.3304× 10−1 7.2000× 10−2 1.0800× 10−1 7.2000× 10−2 1.0800× 10−1

0.9 1.7478× 10−2 2.1362× 10−1 8.1000× 10−2 9.9000× 10−2 8.1000× 10−2 9.9000× 10−2

1.0 1.9420× 10−1 1.9420× 10−1 9.0000× 10−2 9.0000× 10−2 9.0000× 10−2 9.0000× 10−2

(a) (b)

Figure 1. Three-dimensional fuzzy responses of Example 1 for Case I at (a) ℘ = 0.7, (b) ℘ = 0.9 with
fractional order α = 1.
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Figure 2. Two-dimensional fuzzy responses of Example 1 for Case I at (a) ℘ = 0.7 and ξ = 0.7,
(b) ℘ = 0.4 and ξ = 0.1 with varying fractional orders.
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Figure 3. Two-dimensional fuzzy responses of Example 1 for Case I at (a) α = 0.7 and ξ = 0.7,
(b) α = 0.4 and ξ = 0.1 with varying uncertainty parameters ℘ ∈ [0, 1].

Case II. If f(x, ξ) is [(ii)− α]-differentiable, taking into account (55) and (56), we find

1
ω2α
E
[
f(x, ξ;℘)

]
= ω2−2αf(x, 0;℘) + E

[
g3(x, ξ)

]
− E

[
∂f(x, ξ)

∂x
∂f2(x, ξ)

∂x2

]
,

1
ω2α
E
[
f̄(x, ξ;℘)

]
= ω2−2α f̄(x, 0;℘) + E

[
ḡ3(x, ξ)

]
− E

[
∂f̄(x, ξ)

∂x
∂f̄2(x, ξ)

∂x2

]
. (65)

Employing the inverse fuzzy Elzaki transform to both sides of the aforementioned
equations and incorporation of the Elzaki decomposition method, we find the solution on
same lines as we did in Case I.

Case III. If f(x, ξ) is [(i)− α]-differentiable and f′(x, ξ) is [(ii)− α]-differentiable, then

E(f′(x, ξ)) =
[
E
(
f′(x, ξ;℘)

)
, E
(
f̄′(x, ξ;℘)

)]
(66)

and

E(f′′(x, ξ)) =
[
E
(
f̄′′(x, ξ;℘)

)
, E
(
f′′(x, ξ;℘)

)]
. (67)

In view of (54) and Theorem 4 with IC, we follow the iterative process:
Employing the Elzaki transform on (57), then we have

1
ω2α
E
[
f(x, ξ;℘)

]
−ω2−2αf(x, 0;℘) = E

[
ḡ3(x, ξ)− ∂f̄(x, ξ)

∂x
∂f̄2(x, ξ)

∂x2

]
.

or equivalently, we have

E
[
f(x, ξ;℘)

]
−ω2f(x, 0;℘) = ω2αE

[
ḡ3(x, ξ)− ∂f̄(x, ξ)

∂x
∂f̄2(x, ξ)

∂x2

]
.

Furthermore, implementing the inverse fuzzy Elzaki transform, we have

f(x, ξ;℘) = E−1

[
ω2f(x, 0;℘) + ω2αE

[
ḡ3(x, ξ)− ∂f̄(x, ξ)

∂x
∂f̄2(x, ξ)

∂x2

]]
.

In addition, applying the scheme described in Section 4, we have

∞

∑
r=0

fr(x, ξ;℘) = E−1
[
ω2f(x, 0;℘) + ω2αE

[
ḡ3(x, ξ)

]
−ω2αE

[ ∞

∑
r=0
Ār
]]

.
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Utilizing the iterative procedure defined in (54), we have

f0(x, ξ;℘) = E−1
[
ω2f(x, 0;℘) + ω2αE

[
ḡ3(x, ξ)

]]
= ℘

x2

2
+
[
(2− ℘) + x(2− ℘)2] ξ2α

Γ(2α + 1)
,

Moreover,

fr+1(x, ξ;℘) = E−1
[
ω2αE

[ ∞

∑
r=0
Ār
]]

.

Utilizing the first few Adomian polynomials as follows

Ar =



∂ηf0
∂xη

∂σf0
∂xσ , r = 0,

∂ηf0
∂xη

∂σf1
∂xσ + ∂ηf1

∂xη
∂σf0
∂xσ , r = 1,

∂ηf0
∂xη

∂σf2
∂xσ + ∂ηf1

∂xη
∂σf1
∂xσ + ∂ηf2

∂xη
∂σf0
∂xσ , r = 2,

....

Ār =



∂η f̄0
∂xη

∂σ f̄0
∂xσ , r = 0,

∂η f̄0
∂xη

∂σ f̄1
∂xσ + ∂η f̄1

∂xη
∂σ f̄0
∂xσ , r = 1,

∂η f̄0
∂xη

∂σ f̄2
∂xσ + ∂η f̄1

∂xη
∂σ f̄1
∂xσ + ∂η f̄2

∂xη
∂σ f̄0
∂xσ , r = 2,

....

f(x, ξ;℘) = E−1
[
ω2α

[
Ā0
]]

= −℘2(2− ℘)
ξ4α

Γ(4α + 1)
− x(2− ℘)2 ξ2α

Γ(2α + 1)
,

f2(x, ξ;℘) = E−1
[
ω2α

[
Ā1
]]

= ℘2(2− ℘)
ξ4α

Γ(4α + 1)
,

f3(x, ξ;℘) = 0,
....

In a similar way we obtained the upper solutions as follows:

f̄0(x, ξ;℘) =
x2

2
(2− ℘) +

(
2− ℘+ x(2− ℘)2) ξ2α

Γ(2α + 1)
,

f̄(x, ξ;℘) = −x(2− ℘)2 ξ2α

Γ(2α + 1)
− (2− ℘)3 ξ4α

Γ(4α + 1)
,

f̄2(x, ξ;℘) = −(2− ℘)3 ξ4α

Γ(4α + 1)
,

f̄3(x, ξ;℘) = 0,
....

The series form solution of Example 1 is presented as follows:

f(x, ξ) =

((
x2

2
℘+ (2− ℘)

ξ2α

Γ(2α + 1)

)
,
(

x2

2
(2− ℘) + ℘

ξ2α

Γ(2α + 1)

))
.

The results show that perfect fractional order precision and uncertainty for fuzzy
numerical solutions of the function f(x, ξ) are highly correlated to stuffing time and the
fractional order used, whereas additional precision solutions can be obtained by using
more redundancy and iterative development.

• Table 2 represents the obtained findings with x = 0.4 and ξ = 0.7. Table 2 also
comprises the outcomes of Georgieva and Pavlova [57]. As a consequence, the findings
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acquired by the fuzzy Elzaki decomposition method are the same if α = 1, as those
reported by Georgieva and Pavlova [57].

• Figure 4a,b demonstrates the three-dimensional illustration of the lower and upper
estimates for different uncertainties ℘ ∈ [0, 1].

• Figure 5a,b shows the fuzzy responses for different fractional orders. Figure 6a,b
illustrates the fuzzy responses for different uncertainty parameters.

• The aforementioned representations illustrate that all graphs are substantially identical
in their perspectives and have good agreement with one another, especially when
integer-order derivatives are taken into account.

Finally, this generic approach for dealing with nonlinear PDEs is more accurate and
powerful than the method applied by [57]. Our findings for the fuzzy Elzaki decomposition
method, helpful for fuzzy initial value problems, demonstrate the consistency and strength
of the offered solutions.

Table 2. Lower and upper solutions of Case II of Example 1 for various fractional orders in comparison with the solution
derived by [57].

℘ f(α = 0.7) f̄(α = 0.7) f(α = 1) f̄(α = 1) f [57] f̄ [57]

0.1 2.8799× 10−1 1.0042× 10−1 9.0000× 10−2 9.0000× 10−2 9.0000× 10−2 9.0000× 10−2

0.2 2.7757× 10−1 1.1084× 10−1 9.0000× 10−2 9.0000× 10−2 9.0000× 10−2 9.0000× 10−2

0.3 2.6715× 10−1 1.2126× 10−1 9.0000× 10−2 9.0000× 10−2 9.0000× 10−2 9.0000× 10−2

0.4 2.5673× 10−1 1.3168× 10−1 9.0000× 10−2 9.0000× 10−2 9.0000× 10−2 9.0000× 10−2

0.5 2.4631× 10−1 1.4210× 10−1 9.0000× 10−2 9.0000× 10−2 9.0000× 10−2 9.0000× 10−2

0.6 2.3589× 10−1 1.5252× 10−1 9.0000× 10−2 9.0000× 10−2 9.0000× 10−2 9.0000× 10−2

0.7 2.2546× 10−1 1.6294× 10−1 9.0000× 10−2 9.0000× 10−2 9.0000× 10−2 9.0000× 10−1

0.8 2.1504× 10−1 1.7336× 10−1 9.0000× 10−2 9.0000× 10−2 9.0000× 10−2 9.0000× 10−1

0.9 2.0462× 10−1 1.8378× 10−1 9.0000× 10−2 9.0000× 10−2 9.0000× 10−2 9.0000× 10−2

1.0 1.9420× 10−1 1.9420× 10−1 9.0000× 10−2 9.0000× 10−2 9.0000× 10−2 9.0000× 10−2

(a) (b)

Figure 4. Three-dimensional fuzzy responses of Example 1 for Case II at (a) ℘ = 0.7, (b) ℘ = 0.9
with fractional order α = 1.
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Figure 5. Two-dimensional fuzzy responses of Example 1 for Case II at (a) ℘ = 0.7 and ξ = 0.7,
(b) ℘ = 0.4 and ξ = 0.1 with varying fractional orders.
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Figure 6. Two-dimensional fuzzy responses of Example 1 for Case II at (a) α = 0.7 and ξ = 0.7,
(b) α = 0.4 and ξ = 0.1 with varying uncertainty parameters ℘ ∈ [0, 1].

6. Conclusions

In this investigation, the fuzzy Caputo fractional problem formalism, homogenized
fuzzy initial condition, partial differential equation, exemplification of fuzzy Caputo frac-
tional derivative and numerical solutions under gH are the main significations of the
following subordinate part.

• The generic formulation of fuzzy CFDs pertaining to the generic order of 0 < α < r is
derived by combining all conceivable groupings of items such that t1 equals one and
t2 (the others) equals two and is utilized for the first time.

• The generic formulas for CFDs regarding the order α ∈ (r− 1, r) are generated under
the gH-difference.

• UnderH-differentiability, a semi-analytical approach for finding the solution of non-
linear fuzzy fractional PDE was applied. Furthermore, this methodology offers a
series of solutions as an analytical expression is its significant aspect.

• A test problem is solved to demonstrate the proposed approach. The simulation
results can solve nonlinear partial fuzzy differential equations in a flexible and efficient
manner, whilst the frame of numerical programming is natural and the computations
are very swift in terms of fractional orders and uncertainty parameters ℘ ∈ [0, 1].

• The results of the projected methodology are more general and fractional in nature
than the results provided by [57].
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• For futuristic research, a similar method can be applied to Fitzhugh–Nagumo–Huxley
by formulating the Henstock integrals (fuzzy integrals in the Lebesgue notion) at
infinite intervals [58,59]. Furthermore, one can explore the implementation of this strat-
egy for relatively intricate challenges, such as the eigenproblem [60] and maximum
likelihood estimation [61].
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