

1 Article

Fuzzy Mixed Variational-Like and Integral Inequalities for Strongly Preinvex Fuzzy Mappings

Muhammad Bilal Khan ¹, Hari Mohan Srivastava ^{2,3,4,5}, Pshtiwan Othman Mohammed ^{6,*} and Juan L. G.
 Guirao ^{7,8,*}

6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
21		
22		
23		
24		

4	4
2	5
	-

Citation: Khan, M. B.; Srivastava,				
H. M.; Moha	mmed, I	P. O. & O	Guirao, J.	
L. Fuzzy Mi	xed Vari	iational-	Like ቭ d	
Integral Ine	equalities	s for	Stron299y	
Preinvex Fuz	zzy Map	pings. 4	Appl. 30	
2021,	11	,	X.	
https://doi.or	g/10.339	J/xxxxx	31	
			32	
Academic Ed	itor: Firs	tname	33	
Lastname			34	
			35	
Received: dat	e		36	
Accepted: dat	te		37	
Published: da	ite		0,	
			38	
			39	
Publisher's	Note:	MDPI	stays	

26

42

neutral with regard to jurisdictional claims in published maps and institutional affiliations.

43 Copyright: © 2021 by the authors. Submitted for possible open access publication under the terms ar45 conditions of the Creative Commong Attribution (CC BY) license (http://creativecommons.org/licenses /by/4.0/).

1	Department of Mathematics,	COMSATS Universit	y Islamabad; bilal42742@gmail.com
---	----------------------------	-------------------	-----------------------------------

- ² Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, Canada; harimsri@math.uvic.ca
- ³ Department Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- ⁴ Department of Mathematics and Informatics, Azerbaijan University, 71 Jeyhun Hajibeyli Street, AZ1007 Baku, Azerbaijan
- ⁵ Section of Mathematics, International Telematic University Uninettuno, I-00186 Rome, Italy
- ⁶ Department of Mathematics, College of Education, University of Sulaimani, Sulaimani 46001, Kurdistan Region, Iraq
- ⁷ Department of Applied Mathematics and Statistics, Technical University of Cartagena, Hospital de Marina, 30203 Cartagena, Spain
- ³ Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- * Correspondence: pshtiwansangawi@gmail.com (P.O.M.); Juan.Garcia@upct.es (J.L.G.G.)

Abstract: It is a familiar fact that convex and non-convex fuzzy mappings play a critical role in the study of fuzzy optimization. Due to the behavior of its definition, the idea of convexity plays a significant role in the subject of inequalities. The concepts of convexity and symmetry have a tight connection. We may use whatever we learn from one to the other, thanks to the significant correlation that has developed between both in recent years. Our aim is to consider a new class of fuzzy mappings (FMs) is known as strongly preinvex fuzzy mappings (strongly preinvex-FMs) on the invex set. These FMs are more general than convex fuzzy mappings (convex-FMs) and preinvex fuzzy mappings (preinvex-FMs), and when generalized differentiable (briefly, Gdifferentiable) strongly preinvex-FMs are strongly invex fuzzy mappings (strongly invex-FMs). Some new relationships among various concepts of strongly preinvex-FMs are established and verify with the support of some useful examples. We have also shown that optimality conditions of G-differentiable strongly preinvex-FMs, and fuzzy functional, where fuzzy functional is sum of G-differentiable preinvex-FMs and non G-differentiable strongly preinvex-FMs, can be distinguished by strongly fuzzy variational-like inequalities and strongly fuzzy mixed variationallike inequalities, respectively. In the end, we have established and verified a strong relationship between Hermite-Hadamard inequality and strongly preinvex-FM. Several exceptional cases are also discussed. These inequalities are very interesting outcome of our main results and appear to be new ones. The results in this research can be seen as refinements and improvements to previously published findings.

Keywords: Preinvex fuzzy mappings; strongly preinvex fuzzy mappings; strongly invex fuzzy mappings; fuzzy strongly monotonicity; strongly fuzzy mixed variational like-inequalities

1. Introduction

Recently, many generalizations and extensions have been studied for classical convexity. Polyak [1], introduced and studied the idea of strongly convex functions on the convex set, which have a significant impact on optimization theory and related fields. Karmardian [2] discussed how strongly convex functions can be used to solve

nonlinear complementarity problems for the first time. Qu and Li [3] and Nikodem and Pales [4] developed the convergence analysis for addressing equilibrium issues and variational inequalities using strongly convex functions. For further study, we refer to reader about applications and properties of the strongly convex functions, see [5-10], and the references therein. For differentiable functions, invex functions were introduced by Hanson [11], which played significant role in mathematical programing. The concept of invex sets and preinvex functions were introduced and studied by Israel and Mond [12]. It is well known that differential preinvex function are invex functions. The converse also holds under Condition C, [13]. Furthermore, Noor [14], studied the optimality conditions of differentiable preinex functions and proved that minimum can be characterized by variational-like inequalities. Noor et al. [15, 16] studied the properties of strongly preinvex function and investigated its applications. For more applications and properties of strongly preinvex functions, see [17-19], and the references therein.

In [20], a large amount of research work on fuzzy sets and systems has been devoted to the advancement of various fields, and it plays an important role in the analysis of broad class problems emerging in pure and applied sciences, such as operation research, computer science, decision sciences, control engineering, artificial intelligence, and management sciences,. Convex analysis has made significant contributions to the improvement of several practical and pure science domains. In the same way, fuzzy convex analysis fundamental principle in fuzzy optimization and it is worthwhile to explore some basic principles of convex sets in fuzzy set theory. Many scholars have addressed fuzzy convex sets. Liu [21] investigated some properties of convex fuzzy sets and updated the definition of shadow of fuzzy sets with the support of useful examples. Lowen [22], gathered some well-known convex sets results and proved separation theorem for convex fuzzy sets. Ammar and Metz [23, 24] investigated forms of convexity and established generalized convexity of fuzzy sets. Furthermore, they used the principle of convexity to formulate a general fuzzy nonlinear programming problem.

A fuzzy number is a generalized version of an interval that can be discussed (in crisp set theory). Zadeh [20] defined fuzzy numbers, while Dubois and Prade [25] built on Zadeh's work by adding new fuzzy number conditions. Furthermore, Goetschel and Voxman [26] adjusted many conditions on fuzzy numbers to make them easier to handle. For example, in [25], one of the conditions for a fuzzy number is that it is a continuous function, whereas in [26], the fuzzy number is upper semi continuous. The purpose is to establish a metric for a collection of fuzzy numbers using the relaxation of requirements on fuzzy numbers, and then use this metric to examine some basic features of topological space. Nanda, and Kar [27], Syau [28] and Furukawa [29], introduced the concept of convex-FMs from \mathbb{R}^n to the set of fuzzy numbers. Furthermore, they also defined different type of convex-FMs like logarithmic convex-FMs and quasi-convex-FMs, as well as they studied Lipschitz continuity of fuzzy valued mappings. Yan and Xu [31] provided the notions of epigraphs and convexity of FMs, as well as the characteristics of convex-FMs and quasi-convex-FMs, based on Goetschel and Voxman's

concept of ordering [30]. The concept of fuzzy preinvex mapping on the invex set was introduced and studied by Noor [32]. He also demonstrated that variational inequalities may be used to specify the fuzzy optimality conditions of differentiable fuzzy preinex mappings. Syau [33], introduced notions of (ϕ_1, ϕ_2) –convexity, ϕ_1 -B-vexity and ϕ_1 -convexity-FMs through the so called fuzzy max" order among the fuzzy numbers, and proved that ϕ_1 -B-vexity and ϕ_1 -convexity, B-vexity, convexity and preinvexity of FMs are the subclasses. Syau and Lee [34] examined various aspects of fuzzy optimization and discussed continuity and convexity through linear ordering and metric defined on fuzzy integers. They also extended the Weirstrass theorem from real-valued functions to FMs. For recent applications, see [35-39], and the references therein.

On the other hand, integral inequalities have various applications in linear programing, combinatory, orthogonal polynomials, quantum theory, number theory, optimization theory, dynamics, and in the theory of relativity, see [40, 41] and the references therein. The *HH*-inequality is a familiar, supreme and broadly useful inequality. This inequality has fundamental significance [42, 43] due to other classical inequalities such as the Oslen and Gagliardo-Nirenberg, Hardy, Oslen, Opial, Young, Linger, Arithmetic's-Geometric, Ostrowski, levison, Minkowski, Beckenbach-Dresher, Ky-fan and Holer inequality [44-49], which are closely linked to the classical *HH*-inequality. It can be stated as follows:

Let $\mathcal{H}: K \to \mathbb{R}$ be a convex function on a convex set *K* and $v \in K$ with $u \leq v$. Then,

$$\mathcal{H}\left(\frac{u+\nu}{2}\right) \le \frac{1}{\nu-u} \int_{u}^{\nu} \mathcal{H}(z) dz \le \frac{\mathcal{H}(u) + \mathcal{H}(\nu)}{2}.$$
 (1)

If \mathcal{H} is a concave function, then ineuality (1) is reversed.

There are several integrals that deal with FMs and have FMs as integrands. For FMs, Oseuna-Gomez et al. [50] and Costa et al. [51] constructed Jensen's integral inequality. Costa and Floures [52] used the same method to present Minkowski and Beckenbach's inequalities, where the integrands are fuzzy- mappings. Costa et al established a relationship between elements of fuzzy-interval space and interval space, and introduced level-wise fuzzy order relation on fuzzy-interval space through Kulisch-Miranker order relation defined on interval space. This was motivated by [48-53] and particularly [54], because Costa et al established a relationship between elements of fuzzy-interval space and interval space, and introduced level-wise fuzzy order relation on fuzzy-interval space through Kulisch-Miranker order relation defined on interval space. By using this relation on fuzzy-interval space, we generalize integral inequality (1) by constructing fuzzy integral inequalities for strongly preinvex-FMs, where the integrands are strongly preinvex-FMs. Recently, Khan et al. [55] introduced the new class of convex-FMs which is known as (h_1, h_2) -convex-FMs by means fuzzy order relation and presented the following new version of HH-type inequality for (h_1, h_2) convex-FM involving fuzzy-interval Riemann integrals:

Theorem 1.1. Let $\mathcal{H}: [u, v] \to \mathbb{F}_0$ be a (h_1, h_2) -convex-FM with $h_1, h_2: [0, 1] \to \mathbb{R}^+$ and

 $h_1\left(\frac{1}{2}\right)h_2\left(\frac{1}{2}\right) \neq 0$. If \mathcal{H} is fuzzy Riemann integrable (in sort, FR-integrable), then

$$\frac{1}{2h_1\left(\frac{1}{2}\right)h_2\left(\frac{1}{2}\right)} \mathcal{H}\left(\frac{u+\nu}{2}\right) \leq \frac{1}{\nu-u} \int_u^{\nu} \mathcal{H}(z) dz \leq \left[\mathcal{H}(u) + \mathcal{H}(\nu)\right] \int_0^1 h_1(\tau) h_2(1-\tau) d\tau.$$
(2)

If
$$h_1(\tau) = \tau$$
 and $h_2(\tau) \equiv 1$, then Theorem 1.1 reduces to the result for convex fuzzy-IVF:

$$\mathcal{H}\left(\frac{u+\nu}{2}\right) \leq \frac{1}{\nu-u} \int_{u}^{\nu} \mathcal{H}(z) dz \leq \frac{\mathcal{H}(u) + \mathcal{H}(\nu)}{2}.$$
 (3)

For further informations related to fuzzy integral inequalities, see [56-63].

Motivated by ongoing studies as well as the relevance of the concepts invexity and preinvexity of FMs. In section 2, we go through some fundamental concepts, preliminary notations, and findings that will be useful in further research. In the parts that follow, the key results are considered and discussed. Section 3 introduces the concepts of strongly preinvex FMs and discusses some of their properties. Moreover, new relationships among various concepts of strongly preinvex-FMs are also investigated in Section 3. In Section 4, we introduce fuzzy variational-like and Hermite-Hadamrd inequalities for strongly preinvex-FMs.

2. Preliminaries

In this section, we first give some definitions, preliminary notations and results which will be helpful for further study.

A fuzzy set of \mathbb{R} is a mapping $\psi: \mathbb{R} \to [0,1]$, for each fuzzy set and $\gamma \in (0,1]$, then γ -level sets of ψ is denoted and defined as follows $\psi_{\gamma} = \{u \in \mathbb{R} | \psi(u) \ge \gamma\}$. The support of ψ is denoted by supp(ψ) and is defined as supp(ψ) = $\{u \in \mathbb{R} | \psi(u) \ge \gamma\}$. A fuzzy set is normal if there exist $u \in \mathbb{R}$ such that $\psi(u) = 1$. A fuzzy set is convex and concave if $\psi((1 - \tau)u + \tau v) \ge \min(\psi(u), \psi(v))$ and $\psi((1 - \tau)u + \tau v) \le \max(\psi(u), \psi(v))$ for $u, v \in \mathbb{R}$, $\tau \in [0, 1]$, respectively. A fuzzy convex set is a generalization of classical convex set.

A fuzzy set is said to be fuzzy number with the following properties

(a) ψ is normal. (b) ψ is convex fuzzy set. (c) ψ is upper semicontinious. (d) ψ_0 is compact.

 \mathbb{F}_0 denotes the set of all fuzzy numbers. For fuzzy number, it is convenient to distinguish followings γ -levels,

$$\psi_{\gamma} = \{ u \in \mathbb{R} | \psi(u) \ge \gamma \},\$$

from these definitions, we have

$$\psi_{\gamma} = [\psi_*(\gamma), \psi^*(\gamma)]$$

where

$$\psi_*(\gamma) = \inf\{u \in \mathbb{R} | \psi(u) \ge \gamma\}, \psi^*(\gamma) = \sup\{u \in \mathbb{R} | \psi(u) \ge \gamma\}.$$

Since each $r \in \mathbb{R}$ is also a fuzzy number, defined as

$$\tilde{r}(u) = \begin{cases} 1 & \text{if } u = r \\ 0 & \text{if } u \neq r \end{cases}$$

It is also well known that for any $\psi, \phi \in \mathbb{F}_0$ and $r \in \mathbb{R}$

$$\psi \widetilde{+} \phi = \{(\psi_*(\gamma) + \phi_*(\gamma), \psi^*(\gamma) + \phi^*(\gamma), \gamma) : \gamma \in [0, 1]\},\tag{4}$$

$$r\psi = \{ (r\psi_*(\gamma), r\psi^*(\gamma), \gamma) : \gamma \in [0, 1] \}.$$
(5)

Obviously, \mathbb{F}_0 is closed under addition and nonnegative scaler multiplication. Furthermore, for each scaler number $r \in \mathbb{R}$,

$$\psi \widetilde{+} r = \{(\psi_*(\gamma) + r, \psi^*(\gamma) + r, \gamma) : \gamma \in [0, 1]\}.$$
(6)

For any $\psi, \phi \in \mathbb{F}_0$, we say that $\psi \leq \phi$ (" \leq " relation between fuzzy numbers ψ and ϕ) if for all $\gamma \in (0, 1]$, $\psi^*(\gamma) \leq \phi^*(\gamma)$ (" \leq " relation $\psi^*(\gamma)$ and $\phi^*(\gamma)$) and $\psi_*(\gamma) \leq \phi_*(\gamma)$. We say comparable if for any $\psi, \phi \in \mathbb{F}_0$, we have $\psi \leq \phi$ or $\psi \geq \phi$ otherwise they are noncomparable.

We can state that \mathbb{F}_0 is a partial ordered set under the relation \leq if we write $\psi \leq \phi$ instead of $\phi \geq \psi$. If $\psi, \phi \in \mathbb{F}_0$, there exist $\omega \in \mathbb{F}_0$ such that $\psi = \phi + \omega$, then we have the existence of the Hukuhara difference (in short, H-difference) of ψ and ϕ , and we say that ω is the H-difference of ψ and ϕ , and denoted by $\psi - \phi$, see [37]. If this fuzzy operation exist, then

 $(\omega)^*(\gamma) = (\psi \widetilde{-} \phi)^*(\gamma) = \psi^*(\gamma) - \phi^*(\gamma), \ (\omega)_*(\gamma) = (\psi \widetilde{-} \phi)_*(\gamma) = \psi_*(\gamma) - \phi_*(\gamma).$

A mapping $\mathcal{H}: K \to \mathbb{F}_0$ is called fuzzy mapping (FM). For each $\gamma \in [0, 1]$, denote $[\mathcal{H}(u)]^{\gamma} = [\mathcal{H}_*(u, \gamma), \mathcal{H}^*(u, \gamma)]$ and in parameterized form, denote $\mathcal{H}(u) = \{(\mathcal{H}_*(u, \gamma), \mathcal{H}^*(u, \gamma), \gamma): \gamma \in [0, 1]\}.$

Definition 2.1. [35] Let's say I = (m, n) and $u \in (m, n)$. Then FM $\mathcal{H}: (m, n) \to \mathbb{F}_0$ is said to be a generalized differentiable (briefly, G-differentiable) at u if there exists an element $\mathcal{H}'(u) \in \mathbb{F}_0$ such that

for any $0 < \tau$, sufficiently small, there exist $\mathcal{H}(u + \tau) \cong \mathcal{H}(u)$, $\mathcal{H}(u) \cong \mathcal{H}(u - \tau)$ and the limits are (in the metric *D*)

$$\lim_{\tau \to 0^+} \frac{\mathcal{H}(u+\tau)^{\simeq} \mathcal{H}(u)}{\tau} = \lim_{\tau \to 0^+} \frac{\mathcal{H}(u)^{\simeq} \mathcal{H}(u-\tau)}{\tau} = \mathcal{H}'(u)$$

or
$$\lim_{\tau \to 0^+} \frac{\mathcal{H}(u)^{\simeq} \mathcal{H}(u+\tau)}{-\tau} = \lim_{\tau \to 0^+} \frac{\mathcal{H}(u-\tau)^{\simeq} \mathcal{H}(u)}{-\tau} = \mathcal{H}'(u)$$

or
$$\lim_{\tau \to 0^+} \frac{\mathcal{H}(u+\tau)^{\simeq} \mathcal{H}(u)}{\tau} = \lim_{\tau \to 0^+} \frac{\mathcal{H}(u-\tau)^{\simeq} \mathcal{H}(u)}{-\tau} = \mathcal{H}'(u)$$

or
$$\lim_{\tau \to 0^+} \frac{\mathcal{H}(u)^{\simeq} \mathcal{H}(u+\tau)}{-\tau} = \lim_{\tau \to 0^+} \frac{\mathcal{H}(u)^{\simeq} \mathcal{H}(u-\tau)}{\tau} = \mathcal{H}'(u),$$

where the limits are taken in the metric space (*E*, *D*), for $\psi, \phi \in \mathbb{F}_0$

$$D(\psi,\phi) = \sup_{0 \le \gamma \le 1} H(\psi_{\gamma},\phi_{\gamma}),$$

192and H denote the well-known Hausdorff metric on space of intervals.193Definition 2.2. [27] A FM $\mathcal{H}: K \to \mathbb{F}_0$ is said to be convex on the convex set K if194 $\mathcal{H}((1-\tau)u + \tau v) \leq (1-\tau)\mathcal{H}(u) + \tau \mathcal{H}(v), \forall u, v \in K, \tau \in [0, 1].$ (7)195Similarly, \mathcal{H} is said to be concave-FM on K if inequality (7) is reversed.

Definition 2.3. [12] The set K_{ξ} in \mathbb{R} is said to be invex set with respect to (w.r.t.) arbitrary bifunction $\xi(.,.)$, if

$$u + \tau \xi(\nu, u) \in K_{\xi}, \forall u, \nu \in K_{\xi}, \tau \in [0, 1].$$

The invex set K_{ξ} is also known as ξ -connected set. Note that, each convex set with $v - u = \xi(v, u)$ is an invex set in classical sense, but the reverse is not true. For instance, the following set $K_{\xi} = [-7, -2] \cup [2, 10]$ is an invex set w.r.t. non-trivial bi-function $\xi : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ given as

$$\xi(\nu, u) = \nu - u, \nu \ge 0, u \ge 0,$$

$\xi(\nu,u)=\nu-u, 0\geq\nu, 0\geq u,$	
$\xi(\nu, u) = -7 - u, \nu \ge 0 \ge u,$	
$\xi(\nu, u) = 2 - u, u \ge 0 \ge \nu.$	

Definition 2.4. [32] A FM $\mathcal{H}: K_{\xi} \to \mathbb{F}_0$ is said to be preinvex on the invex set K_{ξ} w.r.t. bifunction ξ if

$$\mathcal{H}(u + \tau\xi(\nu, u)) \leq (1 - \tau)\mathcal{H}(u)\tilde{+}\tau\mathcal{H}(\nu), \tag{8}$$

for all $u, v \in K_{\xi}$, $\tau \in [0, 1]$, where $\xi: K_{\xi} \times K_{\xi} \to \mathbb{R}$. \mathcal{H} is said to be preconcave-FM on K_{ξ} if inequality (8) is reversed.

Lemma 2.5. [21] Let K_{ξ} be an invex set w.r.t. ξ and let $\mathcal{H}: K_{\xi} \to \mathbb{F}_0$ be a FM, parameterized by

$$f(u) = \{(\mathcal{H}_*(u,\gamma), \mathcal{H}^*(u,\gamma),\gamma): \gamma \in [0,1]\}, \forall u \in K_{\xi}.$$

Then \mathcal{H} is preinvex on K_{ξ} if and only if, for all $\gamma \in [0, 1]$,

 $\mathcal{H}_*(u, \gamma)$ and $\mathcal{H}^*(u, \gamma)$ are preinvex w.r.t. ξ on K_{ξ} .

If $\xi(v, u) = v - u$, then Lemma 2.5, reduce to following result:

"Let K_{ξ} be a convex set and let $\mathcal{H}: K_{\xi} \to \mathbb{F}_0$ be a FM parameterized by

$$\mathcal{H}(u) = \{(\mathcal{H}_*(u,\gamma),\mathcal{H}^*(u,\gamma),\gamma): \gamma \in [0,1]\}, \forall u \in K_{\xi}\}$$

Then \mathcal{H} is convex on K_{ξ} if and only if, for all $\gamma \in [0, 1]$, $\mathcal{H}_*(u, \gamma)$ and $\mathcal{H}^*(u, \gamma)$ are convex w.r.t. ξ on K_{ξ} .

Theorem 2.6. [54] If $\mathcal{H}: [c, d] \subset \mathbb{R} \to \mathcal{K}_c$ is an interval valued function on : [c, d] such that $[\mathcal{H}_*, \mathcal{H}^*]$. Then \mathcal{H} is Riemann integrable over : [c, d] if and only if, \mathcal{H}_* and \mathcal{H}^* both are Riemann integrable over : [c, d] such that

$$(IR)\int_{c}^{d}\mathcal{H}(z)dz = \left[(R)\int_{c}^{d}\mathcal{H}_{*}(u)dz, (R)\int_{c}^{d}\mathcal{H}^{*}(u)dz \right].$$
(9)

From above literature review, following results can be concluded, see [31, 32, 53, 54]: **Definition 2.7.** [47] Let $\mathcal{H}: [c, d] \subset \mathbb{R} \to \mathbb{F}_0$ be a FM. The fuzzy Riemann integral of \mathcal{H} over [c, d], denoted by $(FR) \int_c^d \mathcal{H}(z) dz$, it is defined by

$$\left[(FR) \int_{c}^{d} \mathcal{H}(z) dz \right]^{\gamma} = (IR) \int_{c}^{d} \mathcal{H}_{\gamma}(z) dz = \left\{ \int_{c}^{d} \mathcal{H}(z,\gamma) dz : \mathcal{H}(z,\gamma) \in \mathcal{R}_{[c,d]} \right\},$$
(10)

for all $\gamma \in [0, 1]$, where $\mathcal{R}_{[c,d]}$ is the collection of end point functions of IVFs. \mathcal{H} is (FR)integrable over [c, d] if $(FR) \int_{c}^{d} \mathcal{H}(z) dz \in \mathbb{F}_{0}$. Note that, if both end point functions are

Lebesgue-integrable, then \mathcal{H} is fuzzy Aumann-integrable.

Let K_{ξ} be a nonempty invex set in \mathbb{R} for future investigation. Let $\xi: K_{\xi} \times K_{\xi} \to \mathbb{R}$ be an arbitrary bifunction and $\mathcal{H}: K_{\xi} \to \mathbb{F}_0$ be an FM. We denote $\|.\|$ and $\langle .,. \rangle$ be the norm and inner product, respectively. Furthermore, throughout in this article FMs are discussed through the so-called "fuzzy-max" order among fuzzy numbers. As it is well-known, the fuzzy-max order is a partial order relation " \leq " on the set of fuzzy numbers.

3. Strongly preinvex fuzzy mappings

In this section, we propose and study the class of strongly preinvex-FMs. WE also establish the relationship between strongly preinvex-FMs, strongly monotone operators and strongly invex-FMs. Firstly, we will define the following notion of strongly preinvex-FM.

243	Definition 3.1. Let K_{ξ} be an invex set and ω be a positive number. Then FM $\mathcal{H}: K_{\xi} \to \mathbb{F}_0$
244	is said to be strongly preinvex-FM on K_{ξ} w.r.t. bi-function $\xi(.,.)$ if
245	$\mathcal{H}(u + \tau\xi(\nu, u)) \leq (1 - \tau)\mathcal{H}(u) + \tau\mathcal{H}(\nu) - \omega\tau(1 - \tau) \ \xi(\nu, u)\ ^2, $ (11)
246	for all $u, v \in K_{\xi}, \tau \in [0, 1]$. \mathcal{H} is said to be strongly preconcave-FM on K_{ξ} if inequality (11)
247	is reversed. $\mathcal H$ is said to be strongly affine preinvex-FM on K_{ξ} if
248	$\mathcal{H}(u+\tau\xi(\nu,u)) = (1-\tau)\mathcal{H}(u)\widetilde{+}\tau\mathcal{H}(\nu)\widetilde{-}\omega\tau(1-\tau)\ \xi(\nu,u)\ ^2,$ (12)
249	for all $u, v \in K_{\xi}, \tau \in [0, 1]$.
250	Remark 3.2. Strongly preinvex-FMs, like preinvex-FMs, have some really desirable
251	features.
252	1) $\Upsilon \mathcal{H}$ is also strongly preinvex for $\Upsilon \ge 0$, if \mathcal{H} is strongly preinvex-FM.
253	2) max($\mathcal{H}(u), \varpi(u)$) is also strongly preinvex-FM if \mathcal{H} and ϖ both are strongly preinvex-
254	FMs.
255	Now we discuss some special cases of strongly preinvex-FMs:
256	If $\xi(v, u) = v - u$, then strongly preinvex-FM becomes strongly convex-FM, that is
257	$\mathcal{H}\big((1-\tau)u+\tau v\big) \leq (1-\tau)\mathcal{H}(u)\widetilde{+}\tau\mathcal{H}(v)\widetilde{-}\omega\tau(1-\tau)\ v-u\ ^2, \forall u, v \in K_{\xi}, \tau \in [0,1], \forall u, v \in$
258	If $\omega = 0$ then, inequality (11) reduces to the inequality (8).
259	If $\omega = 0$ and $\xi(v, u) = v - u$, then inequality (11) reduces to the inequality (7).
260	Following result characterizes the definition of strongly preinvex-FMs and establishes
261	the relationship between strongly preinvex-FMs and endpoint functions. With the help
262	of this theorem, we can easily handle upcoming results.
263	Theorem 3.3. Let $\mathcal{H}: K_{\xi} \to \mathbb{F}_0$ be a FM parametrized by
264	$\mathcal{H}(u) = \{ (\mathcal{H}_*(u,\gamma), \mathcal{H}^*(u,\gamma), \gamma) : \gamma \in [0,1] \}, \forall u \in K_{\xi}. $ (13)
265	Then \mathcal{H} is strongly preinvex on <i>K</i> w.r.t. ξ , with modulus ω if and only if, for all $\gamma \in [0, 1]$,
266	$\mathcal{H}_*(u, \gamma)$ and $\mathcal{H}^*(u, \gamma)$ are strongly preinvex w.r.t. ξ and modulus ω . (14)
267	Proof. Assume that for each $\gamma \in [0, 1]$, $\mathcal{H}_*(u, \gamma)$ and $\mathcal{H}^*(u, \gamma)$ are strongly preinvex w.r.t.
268	ξ and modulus ω on K_{ξ} . Then from (11), for all $u, v \in K_{\xi}, \tau \in [0, 1]$, we have
269	$\mathcal{H}_*(u+\tau\xi(\nu,u),\gamma) \leq (1-\tau)\mathcal{H}_*(u,\gamma)+\tau\mathcal{H}_*(\nu,\gamma)-\omega\tau(1-\tau)\ \xi(\nu,u)\ ^2,$
270	and
271	$\mathcal{H}^*(u+\tau\xi(\nu,u),\gamma) \le (1-\tau)\mathcal{H}^*(u,\gamma)+\tau\mathcal{H}^*(\nu,\gamma)-\omega\tau(1-\tau)\ \xi(\nu,u)\ ^2.$
272	Then by (13), (4), (5) and (6), we obtain
273	$\mathcal{H}(u + \tau\xi(\nu, u)) = \{(\mathcal{H}_*(u + \tau\xi(\nu, u), \gamma), \mathcal{H}^*(u + \tau\xi(\nu, u), \gamma), \gamma): \gamma \in [0, 1]\},\$
274	$\leq \left\{ \left((1-\tau)\mathcal{H}_*(u,\gamma), (1-\tau)\mathcal{H}^*(u,\gamma), \gamma \right) : \gamma \in [0,1] \right\} \widetilde{+} \left\{ (\tau \mathcal{H}_*(v,\gamma), \tau \mathcal{H}^*(v,\gamma), \gamma) : \gamma \in [0,1] \right\}$
275	$\simeq \omega \tau (1-\tau) \ \xi(\nu, u)\ ^2$
276	$= (1-\tau)\mathcal{H}(u)\tilde{+}\mathcal{H}(v)\tilde{-}\omega\tau(1-\tau)\ \xi(v,u)\ ^2.$
277	Hence, \mathcal{H} is strongly preinvex-FM on K_{ξ} with modulus ω .
278	Conversely, let \mathcal{H} is strongly preinvex-FM on $K_{\mathcal{E}}$ with modulus ω . Then for all $u, v \in K_{\mathcal{E}}$
279	and $\tau \in [0,1]$, we have $\mathcal{H}(u + \tau\xi(v,u)) \leq (1-\tau)\mathcal{H}(u) + \tau\mathcal{H}(v) - \omega\tau(1-\tau) \ \xi(v,u)\ ^2$
280	From (13), we have
	$\mathcal{H}(u + \tau\xi(\nu, u)) = \{(\mathcal{H}_*(u + \tau\xi(\nu, u), \gamma), \mathcal{H}^*(u + \tau\xi(\nu, u), \gamma), \gamma): \gamma \in [0, 1]\}.$
281	Again, from (13), (4), (5) and (6), we obtain

Again, from (13), (4), (5) and (6), we obtain

282	$(1-\tau)\mathcal{H}(u)\widetilde{+}\tau\mathcal{H}(u)\widetilde{-}\omega\tau(1-\tau)\ \xi(\nu,u)\ ^2$		
283	$=\left\{\left((1-\tau)\mathcal{H}_*(u,\gamma),(1-\tau)\mathcal{H}^*(u,\gamma),\gamma\right):\gamma\in[0,1]\right\}$		
284	$\widetilde{+}\{(\tau\mathcal{H}_*(\nu,\gamma),\ \tau\mathcal{H}^*(\nu,\gamma),\gamma):\gamma\in[0,1]\}^{\sim}\omega\tau(1-\tau)\ \xi(\nu,u)\ ^2,$		
285	for all $u, v \in K_{\xi}$ and $\tau \in [0, 1]$. Then by strongly preinvexity of \mathcal{H} , we have for all $u, v \in K_{\xi}$		
286	and $\tau \in [0, 1]$ such that		
	$\mathcal{H}_*(u+\tau\xi(\nu,u),\gamma) \leq (1-\tau)\mathcal{H}_*(u,\gamma)+\tau\mathcal{H}_*(\nu,\gamma)-\omega\tau(1-\tau)\ \xi(\nu,u)\ ^2,$		
287	and		
288	$\mathcal{H}^*(u+\tau\xi(\nu,u),\gamma) \le (1-\tau)\mathcal{H}^*(u,\gamma)+\tau\mathcal{H}^*(\nu,\gamma)-\omega\tau(1-\tau)\ \xi(\nu,u)\ ^2,$		
289	for each $\gamma \in [0, 1]$. Hence, the result follows.		
290	Example 3.4. We consider the FM \mathcal{H} : $[0, 1] \to \mathbb{F}_0$ defined by,		
	$\left(\frac{\sigma}{2u^2} \sigma \in [0, 2u^2]\right)$		
291	$\mathcal{H}(u)(\sigma) = \begin{cases} \frac{2u}{4u^2 - \sigma} & \sigma \in (2u^2, 4u^2) \end{cases}$		
	$\begin{pmatrix} 2u^2 & 0 & 0 & 0 \\ 0 & otherwise. \end{pmatrix}$		
292	Then, for each $\gamma \in [0, 1]$, we have $\mathcal{H}_{\gamma}(u) = [2\gamma u^2, (4 - 2\gamma)u^2]$. Since $\mathcal{H}_*(u, \gamma), \mathcal{H}^*(u, \gamma)$ are		
293	strongly preinvex functions for each $\gamma \in [0, 1]$. Hence $\mathcal{H}(u)$ is strongly preinvex-FM		
294	w.r.t.		
	$\xi(\nu,u)=\nu-u,$		
295	with $0 < \omega = \gamma \le 1$. It can be easily seen that for each $\omega \in (0, 1]$, there exist a strongly		
296	preinvex-FM and $\mathcal{H}(u)$ is neither convex FM and nor preinvex-FM w.r.t. bifunction		
297	$\xi(\nu, u) = \nu - u$ with $0 < \omega \le 1$.		
298	Now we show that the difference between strongly preinvex-FM and strongly affine		
299	preinvex-FM is again a preinvex-FM for strongly preinvex-FM.		
300	Theorem 3.5. Let FM $f: K_{\xi} \to \mathbb{F}_0$ be a strongly affine preinvex w.r.t. ξ and $0 \leq \omega$. Then \mathcal{H}		
301	is strongly preinvex-FM w.r.t. same bi-function ξ if an only if, $\varpi = \mathcal{H} - f$ is preinvex-		
302	FM.		
303	Proof. The "If" part is obvious. To prove the "only if" assume that, $f: K_{\xi} \to \mathbb{F}_0$ be a		
304	strongly fuzzy affine preinvex w.r.t. non-negative bi-function ξ and $0 \leq \omega$. Then		
305	$f(u + \tau\xi(v, u)) = (1 - \tau)f(u)\tilde{+}\tau f(v)\tilde{-}\omega\tau(1 - \tau)\ \xi(v, u)\ ^2,$ (15)		
306	Therefore, for each $\gamma \in [0, 1]$, we have		
	$f_*(u + \tau\xi(v, u), \gamma) = (1 - \tau)f_*(u, \gamma) + \tau f_*(v, \gamma) - \omega\tau(1 - \tau) \ \xi(v, u)\ ^2,$		
	$f^*(u+\tau\xi(v,u),\gamma)=(1-\tau)f^*(u,\gamma)+\tau f^*(v,\gamma)-\omega\tau(1-\tau)\ \xi(v,u)\ ^2.$		
307	Since \mathcal{H} is strongly preinvex-FM w.r.t. same bi-function ξ , then, for each $\gamma \in [0, 1]$, we		
308	have		
309	$ \mathcal{H}_*(u + \tau\xi(\nu, u), \gamma) \le (1 - \tau)\mathcal{H}_*(u, \gamma) + \tau\mathcal{H}_*(\nu, \gamma) - \omega\tau(1 - \tau) \ \xi(\nu, u)\ ^2, $ $ \mathcal{H}^*(u + \tau\xi(\nu, u), \gamma) \le (1 - \tau)\mathcal{H}^*(u, \gamma) + \tau\mathcal{H}^*(\nu, \gamma) - \omega\tau(1 - \tau) \ \xi(\nu, u)\ ^2, $ (16)		
310	from (15) and (16), we have		
	$\begin{aligned} \mathcal{H}_*(u+\tau\xi(\nu,u),\gamma) - f_*(u+\tau\xi(\nu,u),\gamma) &\leq (1-\tau)\mathcal{H}_*(u,\gamma) + \tau\mathcal{H}_*(\nu,\gamma) \\ &-(1-\tau)f_*(u,\gamma) - \tau f_*(\nu,\gamma), \\ \mathcal{H}^*(u+\tau\xi(\nu,u),\gamma) - f^*(u+\tau\xi(\nu,u),\gamma) &\leq (1-\tau)\mathcal{H}^*(u,\gamma) + \tau\mathcal{H}^*(\nu,\gamma) \\ &-(1-\tau)f^*(u,\gamma) - \tau f^*(\nu,\gamma), \end{aligned}$		

	$\mathcal{H}_*(u+\tau\xi(\nu,u),\gamma) - f_*(u+\tau\xi(\nu,u),\gamma) \le (1-\tau)\big(\mathcal{H}_*(u,\gamma) - f_*(u,\gamma)\big) \\ +\tau\big(\mathcal{H}_*(\nu,\gamma) - f_*(\nu,\gamma)\big).$
	$\mathcal{H}^{*}(\mu + \tau \xi(\nu, \mu), \nu) - f^{*}(\mu + \tau \xi(\nu, \mu), \nu) < (1 - \tau)(\mathcal{H}^{*}(\mu, \nu) - f^{*}(\mu, \nu))$
	$+\tau \big(\mathcal{H}^*(\nu,\gamma) - f^*(\nu,\gamma)\big),$
311	from which it follows that
	$ \varpi_*(u + \tau\xi(v, u), \gamma) = \mathcal{H}_*(u + \tau\xi(v, u), \gamma) - f_*(u + \tau\xi(v, u), \gamma), \varpi^*(u + \tau\xi(v, u), \gamma) = \mathcal{H}^*(u + \tau\xi(v, u), \gamma) - f^*(u + \tau\xi(v, u), \gamma), $
	$ \overline{\omega}_*(u + \tau\xi(\nu, u), \gamma) \leq (1 - \tau)\overline{\omega}_*(u, \gamma) + \tau\overline{\omega}_*(\nu, \gamma), \overline{\omega}_*(u + \tau\xi(\nu, u), \gamma) \leq (1 - \tau)\overline{\omega}^*(u, \gamma) + \tau\overline{\omega}^*(\nu, \gamma), $
312	that is
	$\varpi(u + \tau\xi(v, u)) \leq (1 - \tau)\varpi(u) + \tau\varpi(u).$
313	Showing that $\varpi = \mathcal{H} - f$ is preinvex-FM.
314	We know that under certain condition invex-FMs, we get a solution of fuzzy
315	optimization problem because with the help of these FM, we obtain relationship
316	between the fuzzy variational inequalities and optimization problems.
318	Definition 3.6. The G-differentiable FM $\mathcal{H}: K_{\xi} \to \mathbb{F}_0$ on K_{ξ} is said to be strongly invex-
319	FM w.r.t. bi-function ξ if there exist a constant $0 \leq \omega$ such that
320	$\mathcal{H}(\nu) \cong \mathcal{H}(u) \ge \langle F'(u), \xi(\nu, u) \rangle \cong \omega \ \xi(\nu, u) \ ^2, \text{ for all } u, \nu \in K_{\xi}. $ (17)
321	Example 3.7. We consider the FMs $\mathcal{H}: (0, 1) \to \mathbb{F}_0$ defined by, $\mathcal{H}_{\gamma}(u) = [2\gamma u^2, (4 - 2\gamma)u^2]$,
322	as in Example 3.4, then $\mathcal{H}(u)$ is strongly invex-FM w.r.t. bifunction $\xi(v, u) = v - u$, with
323	$0 < \omega = \gamma \le 1$, where $u \le v$. We have $\mathcal{H}_*(u, \gamma) = \gamma u^2$ and $\mathcal{H}^*(u, \gamma) = (2 - \gamma)u^2$. Now we
324	computing the following
	$\mathcal{H}_*(\nu,\gamma) - \mathcal{H}_*(u,\gamma) = \gamma \nu^2 - \gamma u^2,$
325	while
	$\langle \mathcal{H}_*'(u,\gamma),\xi(v,u)\rangle + \omega \ \xi(v,u)\ ^2 = 2\gamma(v-u) + \omega \ v-u\ ^2.$
326	And $\gamma v^2 - \gamma u^2 \ge 2\gamma(v - u) + \omega v - u ^2$, with $0 < \omega \le 1$, where $u \le v$.
327	Similarly, it can be easily show that
	$\mathcal{H}^{*}(\nu,\gamma) - \mathcal{H}^{*}(u,\gamma) \geq \langle \mathcal{H}^{*'}(u,\gamma), \xi(\nu,u) \rangle + \omega \ \xi(\nu,u)\ ^{2}$
328	Hence, $\mathcal{H}(u)$ is strongly invex-FM w.r.t. bifunction $\xi(v, u) = v - u$, with $0 < \omega \le 1$. It can
329	be easily seen that $\mathcal{H}(u)$ is not invex-FM w.r.t. bifunction $\xi(v, u) = v - u$.
330	Definition 3.8. The G-differentiable FM $\mathcal{H}: K_{\xi} \to \mathbb{F}_0$ on K_{ξ} is said to be strongly pseudo
331	invex-FM w.r.t. bi-function ξ if there exist a constant $0 \leq \omega$ such that
332	$\langle \mathcal{H}'(u), \xi(v, u) \rangle \widetilde{+} \omega \ \xi(v, u) \ ^2 \ge \widetilde{0} \Longrightarrow \mathcal{H}(v) \widetilde{-} \mathcal{H}(u) \ge \widetilde{0}, \text{ for all } u, v \in K_{\xi}. $ (18)
333	If $\omega = 0$, then from Definition 3.6 and Definition 3.8, we obtain the classical definitions
334	of invex-FM and pseudo invex-FM, respectively. If $\xi(v, u) = v - u$, then Definitions
335	11and Definition 3.8 reduce to known ones.
336	Example 3.9. We consider the FMs $\mathcal{H}: (0, \infty) \to \mathbb{F}_0$ defined by, $\mathcal{H}_{\gamma}(u) = [\gamma u, (3 - 2\gamma)u]$,
337	then $\mathcal{H}(u)$ is strongly pseudo invex-FM w.r.t. bifunction $\xi(v, u) = v - u$, with $0 \le \omega = \gamma$,
338	where $u \leq v$. We have $\mathcal{H}_*(u, \gamma) = \gamma u$ and $\mathcal{H}^*(u, \gamma) = (3 - 2\gamma)u$. Now we computing the
339	following
	$\langle \mathcal{H}_*'(u,\gamma),\xi(v,u)\rangle + \omega \ \xi(v,u)\ ^2 = \gamma(v-u) + \omega \ v-u\ ^2 \ge 0,$
340	for all $u, v \in K_{\xi}$ and $\gamma \in [0, 1]$ with $u \leq v, 0 \leq \omega$; which implies that

	$\mathcal{H}_*(\nu,\gamma) = \gamma \nu \geq \gamma u = \mathcal{H}_*(u,\gamma),$
	$\mathcal{H}_*(\nu,\gamma) \geq \mathcal{H}_*(u,\gamma),$
341	Similarly, it can be easily show that
	$\langle \mathcal{H}_{*}'(u,\gamma),\xi(v,u)\rangle + \omega \ \xi(v,u)\ ^{2} = (3-2\gamma)(v-u) + \omega \ v-u\ ^{2} \ge 0,$
342	for all $u, v \in K_{\xi}$ and $\gamma \in [0, 1]$ with $u \leq v, 0 \leq \omega$; that means
	$\mathcal{H}^*(\nu,\gamma) = (3-2\gamma)\nu \ge \gamma u = \mathcal{H}^*(u,\gamma),$
343	From which, It follows that
	$\mathcal{H}^*(\nu,\gamma) \geq \mathcal{H}^*(u,\gamma)$
344	Hence, the FM $\mathcal{H}_{\gamma}(u) = [\gamma u, (3 - 2\gamma)u]$ is strongly pseudo invex-FM w.r.t. $\xi(v, u) = v - 1$
345	<i>u</i> , with $0 \le \omega$, where $u \le v$. It can be easily seen that $\mathcal{H}(u)$ is not a pseudo invex-FM
346	w.r.t. ξ.
347	Theorem 3.10. Let $\mathcal{H}: K_{\xi} \to \mathbb{F}_0$ be a G-differentiable and strongly preinvex-FM then \mathcal{H} is
348	a strongly invex-FM.
349	Proof. Let $\mathcal{H}: K_{\xi} \to \mathbb{F}_0$ be G-differentiable strongly preinvex-FM. Since \mathcal{H} is strongly
350	preinvex then, for each $u, v \in K_{\xi}$ and $\tau \in [0, 1]$, we have
351	$\mathcal{H}(u+\tau\xi(\nu,u)) \leq (1-\tau)\mathcal{H}(u)\widetilde{+}\tau\mathcal{H}(\nu)\widetilde{-}\omega\tau(1-\tau)\ \xi(\nu,u)\ ^2,$
352	$\leq \mathcal{H}(u)\widetilde{+}\tau\big(\mathcal{H}(v)\widetilde{-}\mathcal{H}(u)\big)\widetilde{-}\omega\tau(1-\tau)\ \xi(v,u)\ ^{2},$
353	Therefore, for every $\gamma \in [0, 1]$, we have
054	$\mathcal{H}_*(u + \tau\xi(v, u), \gamma) \leq \mathcal{H}_*(u, \gamma) + \tau \big(\mathcal{H}_*(v, \gamma) - \mathcal{H}_*(u, \gamma)\big) - \omega\tau(1 - \tau) \ \xi(v, u)\ ^2,$
354	$\mathcal{H}^*(u+\tau\xi(v,u),\gamma) \leq \mathcal{H}_*(u,\gamma) + \tau\big(\mathcal{H}^*(v,\gamma) - \mathcal{H}^*(u,\gamma)\big) - \omega\tau(1-\tau) \ \xi(v,u)\ ^2,$
355	which implies that
356	$\tau \big(\mathcal{H}_*(\nu,\gamma) - \mathcal{H}_*(u,\gamma) \big) \geq \mathcal{H}_*(u + \tau \xi(\nu,u),\gamma) - \mathcal{H}_*(u,\gamma) + \omega \tau (1-\tau) \ \xi(\nu,u) \ ^2,$
357	$\tau \big(\mathcal{H}^*(\nu,\gamma) - \mathcal{H}^*(u,\gamma) \big) \geq \mathcal{H}^*(u + \tau \xi(\nu,u),\gamma) - \mathcal{H}^*(u,\gamma) + \omega \tau (1-\tau) \ \xi(\nu,u)\ ^2,$
	$\mathcal{H}_*(\nu,\nu) - \mathcal{H}_*(u,\nu) \geq \frac{\mathcal{H}_*(u+\tau\xi(\nu,u),\nu) - \mathcal{H}_*(u,\nu)}{ \psi(u,\nu) ^2} + \omega(1-\tau) \xi(\nu,u) ^2.$
	τ
	$\mathcal{H}^*(\nu,\gamma) - \mathcal{H}^*(u,\gamma) \geq \frac{\mathcal{H}^*(u+\tau\xi(\nu,u),\gamma) - \mathcal{H}^*(u,\gamma)}{\tau} + \omega(1-\tau) \ \xi(\nu,u)\ ^2.$
358	Taking limit in the above inequality as $\tau \to 0$, we have
	$\mathcal{H}_*(\nu,\gamma) - \mathcal{H}_*(u,\gamma) \geq \langle \mathcal{H}_*'(u,\gamma),\xi(\nu,u)\rangle + \omega \ \xi(\nu,u)\ ^2,$
	$\mathcal{H}^{*}(\nu,\gamma) - \mathcal{H}^{*}(u,\gamma) \geq \langle \mathcal{H}^{*'}(u,\gamma), \xi(\nu,u) \rangle + \omega \ \xi(\nu,u)\ ^{2},$
359	that is
360	$\mathcal{H}(\nu) \widetilde{-} \mathcal{H}(u) \geq \langle \mathcal{H}'(u), \xi(\nu, u) \rangle \widetilde{+} \omega \ \xi(\nu, u) \ ^2.$
361	As special case of Theorem 3.16, when $\omega = 0$, we have the following:
362	Corollary 3.11. [32] Let $\mathcal{H}: K_{\xi} \to \mathbb{F}_0$ be a G-differentiable preinvex-FM on K_{ξ} . Then \mathcal{H} is
363	an invex-FM,
364	It is well known that the differentiable preinvex functions are invex functions, but the
365	converse is not true. However, Mohan and Neogy [13], have shown that the preinvex
366	functions and invex functions are equivalent under certain Condition C. Similarly, the
367	converse of Theorem 3.16, is not valid; the natural question how to get a strongly
368	preinvex-FM from strongly invex-FM. To prove converse, we need the following
369	assumption regarding the bi-function ξ , which plays an important role in G-
370	differentiation of the main results.

371	Condition C.	
	$\xi(\nu, u + \tau\xi(\nu, u)) = (1 - \tau)\xi(\nu, u),$	
	$\xi(u, u + \tau\xi(v, u)) = -\tau\xi(v, u).$	
372	Clearly for $\tau = 0$, we have $\xi(v, u) = 0$ if and only if, $v = u$ for all $u, v \in K_{\xi}$. Add	itionally,
373	note that from Condition C, we have	
	$\xi (u + \tau_2 \xi(v, u), u + \tau_1 \xi(v, u)) = (\tau_2 - \tau_1) \xi(v, u)$	
374	For the application of Condition C, see [13, 14-17].	
375	The following Theorem 3.12 gives the result of the converse of Theorem 3.10.	
376	Theorem 3.12. Let $\mathcal{H}: K_{\xi} \to \mathbb{F}_0$ be a G-differentiable FM on K_{ξ} . Let Condition C h	olds and
377	$\mathcal{H}(u)$ satisfies the following condition	
378	$\mathcal{H}(u + \tau\xi(v, u)) \leq \mathcal{H}(v),$	(19)
379	then the followings are equivalent:	
380	(a) \mathcal{H} is strongly preinvex-FM.	
381	(b) $\mathcal{H}(v) \cong \mathcal{H}(u) \ge \langle \mathcal{H}'(u), \xi(v, u) \rangle \cong \omega \ \xi(v, u)\ ^2$, for all $u, v \in K_{\xi}$,	(20)
382	(c) $\langle \mathcal{H}'(u), \xi(v, u) \rangle \widetilde{+} \langle \mathcal{H}'(v), \xi(u, v) \rangle \leq \simeq \omega \{ \ \xi(v, u)\ ^2 + \ \xi(u, v)\ ^2 \},$	(21)
383	for all $u, v \in K_{\xi}$.	
384	Proof (a) implies (b)	
385	The demonstration is analogous to the demonstration of Theorem 3.10.	
386	(b) implies (c). Let (b) holds. Then, for every $\gamma \in [0, 1]$, we have	
387	$ \begin{aligned} \mathcal{H}_{*}(\nu,\gamma) - \mathcal{H}_{*}(u,\gamma) &\geq \langle \mathcal{H}_{*}^{\prime}(u,\gamma), \xi(\nu,u) \rangle + \omega \ \xi(\nu,u)\ ^{2}, \\ \mathcal{H}^{*}(\nu,\gamma) - \mathcal{H}^{*}(u,\gamma) &\geq \langle \mathcal{H}^{*\prime}(u,\gamma), \xi(\nu,u) \rangle + \omega \ \xi(\nu,u)\ ^{2}, \end{aligned} $	(22)
388	Then, by replacing v by u and u by v in (22), we get	
389	$\mathcal{H}_{*}(u,\gamma) - \mathcal{H}_{*}(v,\gamma) \geq \langle \mathcal{H}_{*}'(v,\gamma), \xi(u,v) \rangle + \omega \ \xi(u,v)\ ^{2},$ $\mathcal{H}^{*}(u,\gamma) - \mathcal{H}^{*}(v,\gamma) \geq \langle \mathcal{H}^{*'}(v,\gamma), \xi(u,v) \rangle + \omega \ \xi(u,v)\ ^{2}.$	(23)
390	Adding (22) and (23), we have	
	$ \langle \mathcal{H}_{*}'(u,\gamma),\xi(v,u)\rangle + \langle \mathcal{H}_{*}'(v,\gamma),\xi(u,v)\rangle \leq -\omega(\ \xi(v,u)\ ^{2} + \ \xi(u,v)\ ^{2}), \\ \langle \mathcal{H}^{*'}(u,\gamma),\xi(v,u)\rangle + \langle \mathcal{H}^{*'}(v,\gamma),\xi(u,v)\rangle \leq -\omega(\ \xi(v,u)\ ^{2} + \ \xi(u,v)\ ^{2}), $	
391	That is	
392	$\langle \mathcal{H}'(u),\xi(v,u)\rangle \widetilde{+} \langle \mathcal{H}'(v),\xi(u,v)\rangle \leqslant \simeq \omega \{\ \xi(v,u)\ ^2 + \ \xi(u,v)\ ^2\}.$	
393	(c) implies (b). Assume that (21) holds. Then, for every $\gamma \in [0, 1]$, we have	
394	$ \langle \mathcal{H}_{*}'(v,\gamma),\xi(u,v)\rangle \leq -\langle \mathcal{H}_{*}'(u,\gamma),\xi(v,u)\rangle - \omega(\ \xi(v,u)\ ^{2} + \ \xi(u,v)\ ^{2}), \\ \langle \mathcal{H}^{*'}(v,\gamma),\xi(u,v)\rangle \leq -\langle \mathcal{H}^{*'}(u,\gamma),\xi(v,u)\rangle - \omega(\ \xi(v,u)\ ^{2} + \ \xi(u,v)\ ^{2}). $	(24)
395	Since, $v_{\tau} = u + \tau \xi(v, u) \in K_{\xi}$ for all $u, v \in K_{\xi}$ and $\tau \in [0, 1]$. Taking $v = v_{\tau}$ in (24), we	e get
	$ \langle \mathcal{H}_{*}'(u+\tau\xi(v,u),\gamma),\xi(u,u+\tau\xi(v,u))\rangle \leq -\langle \mathcal{H}_{*}'(u,\gamma),\xi(u+\tau\xi(v,u),u)\rangle -\omega(\ \xi(u+\tau\xi(v,u),u)\ ^{2} + \ \xi(u,u+\tau\xi(v,u),u)\ ^{2} + \ \xi(u,u+\tau\xi(v,u$	ı))∥²),
	$ \langle \mathcal{H}^{*'}(u + \tau\xi(v, u), \gamma), \xi(u, u + \tau\xi(v, u)) \rangle \leq -\langle \mathcal{H}^{*'}(u, \gamma), \xi(u + \tau\xi(v, u), u) \rangle - \omega(\ \xi(u + \tau\xi(v, u), u)\ ^2 + \ \xi(u, u)\ ^2 + \ \xi(u, u)\ ^2 + \ \xi(u, u)\ ^2 + $	u))∥²),
396	by using Condition C, we have	
	$ \langle \mathcal{H}_{*}^{\prime}(u+\tau\xi(\nu,u),\gamma),\tau\xi(\nu,u)\rangle \geq \langle \mathcal{H}_{*}^{\prime}(u,\gamma),\tau\xi(\nu,u)\rangle + 2\omega\tau^{2}\ \xi(\nu,u)\ ^{2}, \\ \langle \mathcal{H}^{*\prime}(u+\tau\xi(\nu,u),\gamma),\tau\xi(\nu,u)\rangle \geq \langle \mathcal{H}^{*\prime}(u,\gamma),\tau\xi(\nu,u)\rangle + 2\omega\tau^{2}\ \xi(\nu,u)\ ^{2}, $	
397	$ \langle \mathcal{H}_{*}'(u + \tau\xi(v, u), \gamma), \xi(v, u) \rangle \geq \langle \mathcal{H}_{*}'(u, \gamma), \xi(v, u) \rangle + 2\omega\tau \ \xi(v, u)\ ^{2}, \\ \langle \mathcal{H}^{*'}(u + \tau\xi(v, u), \gamma), \xi(v, u) \rangle \geq \langle \mathcal{H}^{*'}(u, \gamma), \xi(v, u) \rangle + 2\omega\tau \ \xi(v, u)\ ^{2}, $	(25)

398	Let	
	$egin{aligned} H_*(au) &= \mathcal{H}_*(u+ au\xi(u,u),\gamma), \ H^*(au) &= \mathcal{H}^*(u+ au\xi(u,u),\gamma). \end{aligned}$	
399	Taking derivative w.r.t. τ , we get	
400	$H_*'(\tau) = \mathcal{H}_*'(u + \tau\xi(v, u), \gamma) \cdot \xi(v, u) = \langle \mathcal{H}_*'(u + \tau\xi(v, u), \gamma), \xi(v, u) \rangle,$ $H^{*'}(\tau) = \mathcal{H}^{*'}(u + \tau\xi(v, u), \gamma) \cdot \xi(v, u) = \langle \mathcal{H}^{*'}(u + \tau\xi(v, u), \gamma), \xi(v, u) \rangle,$	
401	from which, using (25), we have	
402	$H_{*}'(\tau) \geq \langle \mathcal{H}_{*}'(u,\gamma), \xi(v,u) \rangle + 2\omega\tau \ \xi(v,u)\ ^{2},$ $H^{*'}(\tau) \geq \langle \mathcal{H}^{*'}(u,\gamma), \xi(v,u) \rangle + 2\omega\tau \ \xi(v,u)\ ^{2}.$	(26)
403	By integrating (26) between 0 to 1, w.r.t. τ , we get	
404	$H_{*}(1) - H_{*}(0) \geq \langle \mathcal{H}_{*}'(u,\gamma), \xi(v,u) \rangle + \omega \ \xi(v,u) \ ^{2}, \\ H^{*}(1) - H^{*}(0) \geq \langle \mathcal{H}^{*'}(u,\gamma), \xi(v,u) \rangle + \omega \ \xi(v,u) \ ^{2}.$	
405	$\mathcal{H}_*(u + \xi(v, u), \gamma) - \mathcal{H}_*(u, \gamma) \ge \langle \mathcal{H}_*'(u, \gamma), \xi(v, u) \rangle + \omega \ \xi(v, u)\ ^2,$ $\mathcal{H}^*(u + \xi(v, u), \gamma) - \mathcal{H}^*(u, \gamma) \ge \langle \mathcal{H}^{*'}(u, \gamma), \xi(v, u) \rangle + \omega \ \xi(v, u)\ ^2.$	
406	Using (19), we have	
	$ \begin{aligned} \mathcal{H}_*(\nu,\gamma) - \mathcal{H}_*(u,\gamma) &\geq \langle \mathcal{H}_*'(u,\gamma), \xi(\nu,u) \rangle + \omega \ \xi(\nu,u)\ ^2, \\ \mathcal{H}^*(\nu,\gamma) - \mathcal{H}^*(u,\gamma) &\geq \langle \mathcal{H}^{*'}(u,\gamma), \xi(\nu,u) \rangle + \omega \ \xi(\nu,u)\ ^2, \end{aligned} $	
407	that is	
408	$\mathcal{H}(\nu) \widetilde{-} \mathcal{H}(u) \geq \langle \mathcal{H}'(u), \tau \xi(\nu, u) \rangle \widetilde{+} \omega \ \xi(\nu, u) \ ^2, \text{ for all } u, \nu \in K_{\xi}.$	
409	(b) implies (a). Assume that (20) holds. Since K_{ξ} , $v_{\tau} = u + \tau \xi(v, u) \in K_{\xi}$ for all $u, v \in K_{\xi}$	Ξ <i>Κ</i> ξ
410	and $\tau \in [0, 1]$. Taking $\nu = \nu_{\tau}$ in (20), we get $\mathcal{H}(u + \tau\xi(\nu, u)) \cong \mathcal{H}(u) \ge \langle \mathcal{H}'(u), \xi(u + \tau\xi(\nu, u), u) \rangle + \omega \ \xi(u + \tau\xi(\nu, u), u)\ ^2.$	
411	Therefore, for every $\gamma \in [0, 1]$, we have	
412	$\begin{aligned} \mathcal{H}_*(u + \tau\xi(v, u), \gamma) - \mathcal{H}_*(u, \gamma) &\geq \langle \mathcal{H}_*'(u, \gamma), \xi(u + \tau\xi(v, u), u) \rangle + \omega \ \xi(u + \tau\xi(v, u), u) \\ \mathcal{H}^*(u + \tau\xi(v, u), \gamma) - \mathcal{H}^*(u, \gamma) &\geq \langle \mathcal{H}^{*'}(u, \gamma), \xi(u + \tau\xi(v, u), u) \rangle + \omega \ \xi(u + \tau\xi(v, u), u) \end{aligned}$	$\ ^{2}$, $\ ^{2}$.
413	Using Condition C, we have	
414	$\begin{aligned} \mathcal{H}_*(u+\tau\xi(v,u),\gamma)-\mathcal{H}_*(u,\gamma) &\geq (1-\tau)\langle \mathcal{H}_*'(u,\gamma),\xi(v,u)\rangle+\omega(1-\tau)^2 \ \xi(v,u)\ ^2,\\ \mathcal{H}^*(u+\tau\xi(v,u),\gamma)-\mathcal{H}^*(u,\gamma) &\geq (1-\tau)\langle \mathcal{H}^{*'}(u,\gamma),\xi(v,u)\rangle+\omega(1-\tau)^2 \ \xi(v,u)\ ^2. \end{aligned}$	(27)
415	In a similar way, we have	
416	$ \begin{aligned} \mathcal{H}_*(u,\gamma) - \mathcal{H}_*(u + \tau\xi(v,u),\gamma) &\geq -\tau\langle \mathcal{H}_*'(u,\gamma),\xi(v,u)\rangle + \omega\tau^2 \ \xi(v,u)\ ^2, \\ \mathcal{H}^*(u,\gamma) - \mathcal{H}^*(u + \tau\xi(v,u),\gamma) &\geq -\tau\langle \mathcal{H}^{*'}(u,\gamma),\xi(v,u)\rangle + \omega\tau^2 \ \xi(v,u)\ ^2. \end{aligned}$	(28)
417	Multiplying (27) by τ and (28) by $(1 - \tau)$, and adding the resultant, we have	
	$\begin{aligned} \mathcal{H}_*(u+\tau\xi(\nu,u),\gamma) &\leq (1-\tau)\mathcal{H}_*(u,\gamma)+\tau\mathcal{H}_*(\nu,\gamma)-\omega\tau(1-\tau)\ \xi(\nu,u)\ ^2,\\ \mathcal{H}^*(u+\tau\xi(\nu,u),\gamma) &\leq (1-\tau)\mathcal{H}^*(u,\gamma)+\tau\mathcal{H}^*(\nu,\gamma)-\omega\tau(1-\tau)\ \xi(\nu,u)\ ^2, \end{aligned}$	
418	That is	
	$\mathcal{H}(u+\tau\xi(v,u)) \leq (1-\tau)\mathcal{H}(u)\widetilde{+}\tau\mathcal{H}(v)\widetilde{-}\omega\tau(1-\tau)\ \xi(v,u)\ ^2.$	
419	Hence, \mathcal{H} is strongly preinvex-FM w.r.t. ξ .	
420	Theorem 3.10 and Theorem 3.12, enable us to define the followings new definitions.	
421	Definition 3.13. A G-differentiable FM $\mathcal{H}: K_{\xi} \to \mathbb{F}_0$ is said to be:	
422	(i) Strongly monotone w.r.t. bi-function ξ if and only if, there exist a constant 0	$\leq \omega$
423	such that	
424	$\langle \mathcal{H}'(u), \xi(v, u) \rangle \widetilde{+} \langle \mathcal{H}'(v), \xi(u, v) \rangle \leq \widetilde{-} \omega \{ \ \xi(v, u)\ ^2 + \ \xi(u, v)\ ^2 \}, \text{ for all } u, v \in \mathbb{R} \}$	ξ.

425	(ii) Strongly pseudo monotone w.r.t. bi-function ξ if and only if, there exist a
426	constant $0 \le \omega$ such that
427	$\langle \mathcal{H}'(u), \xi(v, u) \rangle \widetilde{+} \omega \ \xi(v, u) \ ^2 \ge \widetilde{0} \Longrightarrow \widetilde{-} \langle \mathcal{H}'(v), \xi(u, v) \rangle \ge \widetilde{0}, \text{ for all } u, v \in K_{\xi}.$
428	If $\xi(v, u) = -\xi(u, v)$, then Definition 3.13, reduce to new one.
429	Example 3.14. We consider the FMs $\mathcal{H}: (0, \infty) \to \mathbb{F}_0$ defined by,
	$\left(\frac{\sigma}{2u^2}\qquad \sigma\in[0,2u^2]\right)$
430	$\mathcal{H}(u)(\sigma) = \begin{cases} \frac{5u^2 - \sigma}{\sigma} & \sigma \in (2u^2, 5u^2) \end{cases}$
	$\begin{pmatrix} 3u^2 \\ 0 & otherwise. \end{pmatrix}$
431	Then, for each $\gamma \in [0,1]$, we have $\mathcal{H}_{\gamma}(u) = [2\gamma u^2, (5-3\gamma)u^2]$, $\mathcal{H}(u)$ is fuzzy strongly
432	pseudomonotone w.r.t. bifunction $\xi(v, u) = u - v$, with $1 \le \omega$, where $v \le u$. We have
433	$\mathcal{H}_*(u, \gamma) = 2\gamma u^2$ and $\mathcal{H}^*(u, \gamma) = (5 - 3\gamma)u^2$. Now we computing the following
	$\langle \mathcal{H}_*'(u,\gamma),\xi(\nu,u)\rangle + \omega \ \xi(\nu,u)\ ^2 = 4\gamma u(u-\nu) + \omega \ u-\nu\ ^2 \ge 0,$
434	for all $u, v \in K_{\xi}$ and $\gamma \in [0, 1]$ with $v \leq u, 1 \leq \omega$; which implies that
	$-\langle \mathcal{H}_*'(\nu,\gamma),\xi(u,\nu)\rangle = -4\gamma u(\nu-u) = 4\gamma \nu(u-\nu) \ge 0, \forall u,\nu \in K_{\xi},$
	$-\langle \mathcal{H}^{*'}(\nu,\gamma),\xi(u,\nu)\rangle\geq 0.$
435	Similarly, it can be easily show that
	$\langle \mathcal{H}^{*'}(u,\gamma),\xi(\nu,u)\rangle+\omega\ \xi(\nu,u)\ ^2=2(5-3\gamma)u(u-\nu)+\omega\ u-\nu\ ^2\geq 0,$
436	for all $u, v \in K_{\xi}$ and $\gamma \in [0, 1]$ with $v \leq u, 1 \leq \omega$; that means
437	$-\langle \mathcal{H}^{*'}(\nu,\gamma),\xi(u,\nu)\rangle = -2(5-3\gamma)u(\nu-u) = 2(5-3\gamma)\nu(u-\nu) \ge 0, \forall u,\nu \in K_{\xi},$
438	From which, It follows that
	$-\langle \mathcal{H}^{*'}(\nu,\gamma),\xi(u,\nu)\rangle\geq 0.$
439	Hence, the G-differentiable FM $\mathcal{H}_{\gamma}(u) = [\gamma u, (5 - 4\gamma)u]$ is fuzzy strongly pseudo
440	monotone w.r.t. $\xi(v, u) = u - v$, with $1 \le \omega$, where $v \le u$. it can be easily note that
441	$\mathcal{H}'(u)$ is neither fuzzy pseudomonotone nor fuzzy quasimonotone w.r.t. ξ .
442	If $\omega = 0$, then from Theorem 3.12 we obtain following result.
443	Corollary 3.15. [36] Let $\mathcal{H}: K_{\xi} \to \mathbb{F}_0$ be a G-differentiable FM on K_{ξ} . Let Condition C
444	holds and $\mathcal{H}(u)$ satisfies the following condition
445	$\mathcal{H}(u + \tau \xi(v, u)) \leq \mathcal{H}(v),$
446	then the followings are equivalent:
447	(a) \mathcal{H} is invex-FM.
448	(b) \mathcal{H}' is monotone
449	Theorem 3.16. Let $\mathcal{H}: K_{\xi} \to \mathbb{F}_0$ be FM on K_{ξ} w.r.t. ξ and Condition C hold. Let $\mathcal{H}(u)$ is G-
450	differentiable on K_{ξ} with following conditions:
451	(a) $\mathcal{H}(u + \tau \xi(v, u)) \leq \mathcal{H}(v)$.
452	(b) $\mathcal{H}'(u)$ is a fuzzy strongly pseudo monotone.
453	Then ${\mathcal H}$ is a strongly pseudo invex-FM.
454	Proof. Let \mathcal{H}' be a strongly pseudo monotone. Then for all $u, v \in K_{\xi}$, we have
	$\langle \mathcal{H}'(u), \xi(v, u) \rangle \widetilde{+} \omega \ \xi(v, u) \ ^2 \ge \widetilde{0}.$
455	Therefore, for every $\gamma \in [0, 1]$, we have
	$\langle \mathcal{H}_*'(u,\gamma),\xi(v,u)\rangle + \omega \ \xi(v,u)\ ^2 \ge 0,$
	$\langle \mathcal{H}^{*'}(u,\gamma),\xi(v,u)\rangle + \omega \ \xi(v,u)\ ^2 \ge 0,$
456	which implies that

457	$-\langle \mathcal{H}_*'(u, \gamma), \xi(u, u) angle \geq 0, \ -\langle \mathcal{H}^{*'}(u, \gamma), \xi(u, u) angle \geq 0.$	(29)
458	Since, $v_{\tau} = u + \tau \xi(v, u) \in K_{\xi}$ for all $u, v \in K_{\xi}$ and $\tau \in [0, 1]$. Taking $v = v_{\tau}$ in (29)), we get
	$-\langle \mathcal{H}_{*}'(u+\tau\xi(v,u),\gamma),\xi(u,u+\tau\xi(v,u))\rangle \geq 0, \\ -\langle \mathcal{H}^{*'}(u+\tau\xi(v,u),\gamma),\xi(u,u+\tau\xi(v,u))\rangle \geq 0.$	
459	by using Condition C, we have	
460	$egin{aligned} & \langle \mathcal{H}_*{}'(u+\tau\xi(v,u),\gamma),\xi(v,u) angle \geq 0, \ & \langle \mathcal{H}^*{}'(u+\tau\xi(v,u),\gamma),\xi(v,u) angle \geq 0. \end{aligned}$	(30)
461	Assume that	
	$H_*(\tau) = \mathcal{H}_*(u + \tau\xi(\nu, u), \gamma),$ $H^*(\tau) = \mathcal{H}^*(u + \tau\xi(\nu, u), \gamma),$	
462	taking G-derivative w.r.t. τ , then using (30), we have	
463	$H_*'(\tau) = \langle \mathcal{H}_*'(u + \tau\xi(v, u), \gamma), \xi(v, u) \rangle \ge 0, \\ H^{*'}(\tau) = \langle \mathcal{H}^{*'}(u + \tau\xi(v, u), \gamma), \xi(v, u) \rangle \ge 0,$	(31)
464	Integrating (31) between 0 to 1 w.r.t. τ , we get	
465	$egin{array}{ll} H_*(1) - H_*(0) \geq 0, \ H^*(1) - H^*(0) \geq 0, \end{array}$	
466	which implies that	
	$\mathcal{H}_*(u+\xi(v,u),\gamma)-\mathcal{H}_*(u,\gamma)\geq 0,\ \mathcal{H}^*(u+\xi(v,u),\gamma)-\mathcal{H}^*(u,\gamma)\geq 0.$	
467	From condition (i), we have	
	$egin{aligned} &\mathcal{H}_*(u,\gamma)-\mathcal{H}_*(u,\gamma)\geq 0,\ &\mathcal{H}^*(u,\gamma)-\mathcal{H}^*(u,\gamma)\geq 0, \end{aligned}$	
468	that is	
469	$\mathcal{H}(\nu) \cong \mathcal{H}(u) \geq \tilde{0}, \forall u, \nu \in K_{\xi}.$	
470	Hence, \mathcal{H} is a strongly pseudo invex-FM.	
471	If $\omega = 0$, then from Theorem 3.16 reduces to the following result:	<u></u>
472	Corollary 3.17. [36] Let $\mathcal{H}: K_{\xi} \to \mathbb{F}_0$ be a FM on K_{ξ} w.r.t. ξ and Condition	n C hold. Let
473	$\mathcal{H}(u)$ is G-differentiable on K_{ξ} with following conditions	
474	(a) $\mathcal{H}(u + \tau\xi(v, u)) \leq \mathcal{H}(v)$.	
475	(b) $\mathcal{H}'(.)$ is a fuzzy pseudomonotone.	
470	men <i>x</i> is a pseudo invex-rivi.	
477	The fuzzy optimality requirement for G-differentiable strongly preinvex-FM	ls, which is
478	the fundamental impetus for our findings, is now discussed.	
479	4. Fuzzy mixed variational-like and integral inequalities	
480	The variational inequality problem has a close relationship with the	optimization
481	problem, which is a well-known fact in mathematical programming. Simila	rly, the fuzzy
482	variational inequality problem and the fuzzy optimization problem have a s	trong link.
483	Consider the unconstrained fuzzy optimization problem	
484	$\min_{u\in K_{\xi}}\mathcal{H}(u),$	
485	where K_{ξ} is a subset of $\mathbb{R}, \mathcal{H}: K_{\xi} \to \mathbb{F}_0$ is a FM.	

487		
488		
489	A feasible point is defined as $u \in K_{\xi}$ is called an optimal solution, a globa	l optimal
490	solution, or simply a solution to the fuzzy optimization problem if $u \in K_{\xi}$ and	no $\nu \in K_{\xi}$,
491	$\mathcal{H}(u) \preccurlyeq \mathcal{H}(v).$	
492	The fuzzy optimality criterion for G-differentiable preinvex-FMs is discuss	ed in the
493	following theorems, and this is the fundamental rationale for the results.	
494	Theorem 4.1. Let \mathcal{H} be a G-differentiable strongly preinvex-FM modulus	$0 \le \omega$. If
495	$u \in K_{\xi}$ is the minimum of the FM \mathcal{H} , then	
496	$\mathcal{H}(\nu) \cong \mathcal{H}(u) \ge \omega \ \xi(\nu, u)\ ^2$, for all $u, \nu \in K_{\xi}$.	(32)
497	Proof: Let $u \in K$ be a minimum of \mathcal{H} . Then	
498	$\mathcal{H}(u) \leq \mathcal{H}(v)$, for all $v \in K_{\xi}$.	
499	Therefore, for every $\gamma \in [0, 1]$, we have	
500	$\mathcal{H}_*(u,\gamma) \leq \mathcal{H}_*(v,\gamma),$ $\mathcal{H}^*(u,\gamma) \leq \mathcal{H}^*(v,\gamma).$	(33)
501	For all $u, v \in K_{\xi}$, $\tau \in [0, 1]$, we have	
502	$\nu_{\tau} = u + \tau \xi(\nu, u) \in K_{\xi}.$	
503	Taking $\nu = \nu_{\tau}$ in (33), and dividing by " τ ", we get $0 \leq \frac{\mathcal{H}_{*}(u + \tau\xi(\nu, u), \gamma) - \mathcal{H}_{*}(u, \gamma)}{\tau},$ $0 \leq \frac{\mathcal{H}^{*}(u + \tau\xi(\nu, u), \gamma) - \mathcal{H}^{*}(u, \gamma)}{\tau}$	
504	Taking limit in the above inequality as $\tau \to 0$, we get	
505	$0 \le \langle \mathcal{H}_*'(u, \gamma), \xi(v, u) \rangle, \\ 0 \le \langle \mathcal{H}^{*'}(u, \gamma), \xi(v, u) \rangle.$	(34)
506	Since $\mathcal{H}: K_{\xi} \to \mathbb{F}_0$ is a G-differentiable strongly preinvex-FM, so	
	$\begin{aligned} \mathcal{H}_*(u+\tau\xi(\nu,u),\gamma) &\leq (1-\tau)\mathcal{H}_*(u,\gamma)+\tau\mathcal{H}_*(\nu,\gamma)-\omega\tau(1-\tau)\ \xi(\nu,u)\ ^2\\ \mathcal{H}^*(u+\tau\xi(\nu,u),\gamma) &\leq (1-\tau)\mathcal{H}^*(u,\gamma)+\tau\mathcal{H}^*(\nu,\gamma)-\omega\tau(1-\tau)\ \xi(\nu,u)\ ^2 \end{aligned}$, 2
	$\mathcal{H}_*(\nu,\gamma) - \mathcal{H}_*(u,\gamma) \ge \frac{\mathcal{H}_*(u + \tau\xi(\nu,u),\gamma) - \mathcal{H}_*(u,\gamma)}{\tau} + \omega(1-\tau) \ \xi(\nu,u)\ ^2$	2,
	$\mathcal{H}^*(\nu,\gamma) - \mathcal{H}^*(u,\gamma) \ge \frac{\mathcal{H}^*(u + \tau\xi(\nu,u),\gamma) - \mathcal{H}^*(u,\gamma)}{\tau} + \omega(1-\tau) \ \xi(\nu,u)\ $	² ,
507	again taking limit in the above inequality as $\tau \rightarrow 0$, we get	
	$\begin{aligned} \mathcal{H}_*(\nu,\gamma) - \mathcal{H}_*(u,\gamma) &\geq \langle \mathcal{H}_*'(u,\gamma), \xi(\nu,u) \rangle + \omega \ \xi(\nu,u)\ ^2, \\ \mathcal{H}^*(\nu,\gamma) - \mathcal{H}^*(u,\gamma) &\geq \langle \mathcal{H}^{*'}(u,\gamma), \xi(\nu,u) \rangle + \omega \ \xi(\nu,u)\ ^2, \end{aligned}$	
508	from which, using (34), we have	
	$\begin{aligned} \mathcal{H}_*(\nu,\gamma) - \mathcal{H}_*(u,\gamma) &\geq \omega \ \xi(\nu,u)\ ^2 \geq 0, \\ \mathcal{H}^*(\nu,\gamma) - \mathcal{H}^*(u,\gamma) \geq \omega \ \xi(\nu,u)\ ^2 \geq 0, \end{aligned}$	
509	that is	
510	$\mathcal{H}(\nu) \widetilde{-} \mathcal{H}(u) \geq \widetilde{0}.$	
511	Hence, the result follows.	
512	Theorem 4.2. Let \mathcal{H} be a G-differentiable strongly preinvex-FM modulus $0 \leq \omega$, and
513	$\langle \mathcal{H}'(u), \xi(v, u) \rangle \widetilde{+} \omega \ \xi(v, u) \ ^2 \ge \widetilde{0}$, for all $u, v \in K_{\xi}$,	(35)

514	then $u \in K_{\xi}$ is the minimum of the FM \mathcal{H} .	
515	Proof. Let $\mathcal{H}: K_{\xi} \to \mathbb{F}_0$ be a G-differentiable strongly preinvex-FM and $u \in K_{\xi}$ satisfie	s
516	(35). Then, by Theorem 3.10, we have	
	$\mathcal{H}(\nu) \cong \mathcal{H}(u) \geq \langle \mathcal{H}(u), \xi(\nu, u) \rangle = \omega \ \xi(\nu, u) \ ^2,$	
517	Therefore, for every $\gamma \in [0, 1]$, we have	
	$\mathcal{H}_*(\nu,\gamma) - \mathcal{H}_*(u,\gamma) \ge \langle \mathcal{H}_*'(u,\gamma), \xi(\nu,u) \rangle + \omega \ \xi(\nu,u)\ ^2,$	
	$\mathcal{H}^*(\nu,\gamma) - \mathcal{H}^*(u,\gamma) \ge \langle \mathcal{H}^{*'}(u,\gamma), \xi(\nu,u) \rangle + \omega \ \xi(\nu,u)\ ^2,$	
518	from which, using (35), we have	
	$\mathcal{H}_*(\nu,\gamma) - \mathcal{H}_*(u,\gamma) \ge 0,$	
	$\mathcal{H}^*(\nu,\gamma) - \mathcal{H}^*(u,\gamma) \ge 0,$	
519	that is	
520	$\mathcal{H}(u) \preccurlyeq \mathcal{H}(v).$	
521	If $\omega = 0$ then, Theorem 4.2 reduces to the following result:	
522	Corollary 4.3 [32] Let \mathcal{H} be a G-differentiable preinvex-FM w.r.t. ξ . Then $u \in K_{\xi}$ is th	e
523	minimum of \mathcal{H} if and only if, $u \in K_{\xi}$ satisfies	
524	$\langle \mathcal{H}'(u), \xi(v, u) \rangle \geq \tilde{0}$, for all $u, v \in K_{\xi}$.	
525	Remark 4.4. The inequality of the type (35) is called strongly variational like-inequality	7.
526	It is very important to note that the optimality condition of preinvex-FMs can't b	e
527	obtained with the help of (35). So this idea inspires us to introduce a more general form	n
528	of fuzzy variational-like inequality of which (35) is a special case. To be mor	e
529	unambiguous, for given FM Ψ , bi function $\xi(.,.)$ and a $0 \leq \omega$, consider the problem of	of
530	finding $u \in K_{\xi}$, such that	
531	$\langle \Psi(u), \xi(\nu, u) \rangle \widetilde{+} \omega \ \xi(\nu, u) \ ^2 \ge \widetilde{0}, \forall \nu \in K_{\xi}. $ (36))
532	This inequality is called strongly fuzzy variational-like inequality.	
533	We look at the functional $I(v)$, which is defined as	
534	$I(\nu) = \mathcal{H}(\nu) \widetilde{+} \mathcal{J}(\nu), \forall \nu \in \mathbb{R}, $ (37))
535	where ${\mathcal H}$ is a G-differentiable preinvex-FM and ${\mathcal J}$ is a strongly preinvex-FM which i	s
536	non G-differentiable.	
537	The following theorem shows that the functional $I(v)$ minimum can be distingusihed by	y
538	a class of variational-like inequalities.	
539	Theorem 4.5. Let $\mathcal{H}: K_{\xi} \to \mathbb{F}_0$ be a G-differentiable preinvex-FM and $\mathcal{J}: K_{\xi} \to \mathbb{F}_0$ be	а
540	non G-differentiable strongly preinvex-FM. Then the functional $I(v)$ has minimum	n
541	$u \in K_{\xi}$, if and only if $u \in K_{\xi}$ satisfies	
542	$\langle \mathcal{H}'(u), \xi(v, u) \rangle \widetilde{+} \mathcal{J}(v) \widetilde{-} \mathcal{J}(u) \widetilde{+} \omega \ \xi(v, u) \ ^2 \ge \tilde{0}, \forall v \in K_{\xi}. $ (38))
543	Proof: Let $u \in K_{\xi}$ is the smallest value of <i>I</i> , then for all $v \in K_{\xi}$ we have	
544	Therefore, for every $\gamma \in [0, 1]$, we have	
E 4 E	$I_*(u,\gamma) \le I_*(v,\gamma),\tag{20}$	、
545	$I^*(u,\gamma) \le I^*(v,\gamma). \tag{39}$)
546	Since, $v_{\tau} = u + \tau \xi(v, u)$, for all $u, v \in K_{\xi}$ and $\tau \in [0, 1]$. Replacing v by v_{τ} in (39), we get	
	$I_*(u,\gamma) \leq I_*(u+\tau\xi(v,u),\gamma),$	
	$I^*(u,\gamma) \leq I^*(u+\tau\xi(v,u),\gamma).$	
547	which implies that, using (37)	

	$\begin{aligned} \mathcal{H}_*(u,\gamma) + \mathcal{J}_*(u,\gamma) &\leq \mathcal{H}_*(u + \tau\xi(\nu,u),\gamma) + \mathcal{J}_*(u + \tau\xi(\nu,u),\gamma), \\ \mathcal{H}^*(u,\gamma) + \mathcal{J}^*(u,\gamma) &\leq \mathcal{H}^*(u + \tau\xi(\nu,u),\gamma) + \mathcal{J}^*(u + \tau\xi(\nu,u),\gamma). \end{aligned}$
548	Since $\mathcal J$ is strongly preinvex-FM then,
	$\begin{aligned} \mathcal{H}_*(u,\gamma) + \mathcal{J}_*(u,\gamma) &\leq \mathcal{H}_*(u + \tau\xi(\nu,u),\gamma) + (1-\tau)\mathcal{J}_*(u,\gamma) + \tau\mathcal{J}_*(\nu,\gamma) \\ &+ \omega\tau(1-\tau) \ \xi(\nu,u)\ ^2, \\ \mathcal{H}^*(u,\gamma) + \mathcal{J}^*(u,\gamma) &\leq \mathcal{H}^*(u + \tau\xi(\nu,u),\gamma) + (1-\tau)\mathcal{J}^*(u,\gamma) + \tau\mathcal{J}^*(\nu,\gamma) \\ &+ \omega\tau(1-\tau) \ \xi(\nu,u)\ ^2, \end{aligned}$
549	that is
	$0 \leq \mathcal{H}_*(u + \tau\xi(v, u), \gamma) - \mathcal{H}_*(u, \gamma) + \tau(\mathcal{J}_*(v, \gamma) - \mathcal{J}_*(u, \gamma)) + \omega\tau(1 - \tau) \ \xi(v, u)\ ^2,$ $0 \leq \mathcal{H}^*(u + \tau\xi(v, u), \gamma) - \mathcal{H}^*(u, \gamma) + \tau(\mathcal{J}^*(v, \gamma) - \mathcal{J}^*(u, \gamma)) + \omega\tau(1 - \tau) \ \xi(v, u)\ ^2,$
550	Now dividing by " $ au$ " and taking $\lim_{\tau \to 0}$, we have
	$0 \leq \lim \left\{ \frac{\mathcal{H}_*(u+\tau\xi(\nu,u),\gamma) - \mathcal{H}_*(u,\gamma)}{\mathcal{H}_*(\nu,\gamma) - \mathcal{J}_*(\nu,\gamma) - \mathcal{J}_*(u,\gamma) + \omega(1-\tau) \ \xi(\nu,u)\ ^2 \right\},$
551	$0 \leq \lim_{\tau \to 0} \left\{ \frac{\mathcal{H}^*(u + \tau\xi(\nu, u), \gamma) - \mathcal{H}^*(u, \gamma)}{\tau} + \mathcal{J}^*(\nu, \gamma) - \mathcal{J}^*(u, \gamma) + \omega(1 - \tau) \ \xi(\nu, u)\ ^2 \right\},$
552	then
	$0 \le \langle \mathcal{H}_*'(u,\gamma), \xi(v,u) \rangle + \mathcal{J}_*(v,\gamma) - \mathcal{J}_*(u,\gamma) + \omega \ \xi(v,u)\ ^2, \\ 0 \le \langle \mathcal{H}^{*'}(u,\gamma), \xi(v,u) \rangle + \mathcal{J}^*(v,\gamma) - \mathcal{J}^*(u,\gamma) + \omega \ \xi(v,u)\ ^2,$
553	that is
554	$\tilde{0} \leq \langle \mathcal{H}'(u), \xi(v, u) \rangle \tilde{+} \mathcal{J}(v) \tilde{-} \mathcal{J}(u) \tilde{+} \omega \ \xi(v, u) \ ^2.$
555	Conversely, let (38) be satisfy to prove $u \in K_{\xi}$ is a minimum of <i>I</i> . Assume that for all
556	$\nu \in K_{\xi}$ we have
557	$I(u) \cong I(v) = \mathcal{H}(u) \cong \mathcal{H}(v) \cong \mathcal{J}(v),$
558	$= \mathcal{H}(u) \widetilde{-} \mathcal{H}(v) \widetilde{+} \mathcal{J}(u) \widetilde{-} \mathcal{J}(v),$
559	Therefore, for every $\gamma \in [0, 1]$, we have
	$I_*(u,\gamma) - I_*(v,\gamma) = \mathcal{H}_*(u,\gamma) - \mathcal{H}_*(v,\gamma) + \mathcal{J}_*(u,\gamma) - \mathcal{J}_*(v,\gamma),$ $I^*(u,\gamma) - I^*(v,\gamma) = \mathcal{H}^*(u,\gamma) - \mathcal{H}^*(v,\gamma) + \mathcal{J}^*(u,\gamma) - \mathcal{J}^*(v,\gamma).$
560	by Corollary 3.11, we have
	$I_*(u,\gamma) - I_*(v,\gamma) \le -[\langle \mathcal{H}_*'(u,\gamma), \xi(v,u) \rangle + \mathcal{J}_*(v,\gamma) - \mathcal{J}_*(u,\gamma)],$ $I^*(u,\gamma) - I^*(v,\gamma) \le -[\langle \mathcal{H}^{*'}(u,\gamma), \xi(v,u) \rangle + \mathcal{J}^*(v,\gamma) - \mathcal{J}^*(u,\gamma)].$
561	from which, using (38), we have
	$I_*(u,\gamma) - I_*(v,\gamma) \le -\omega \ \xi(v,u)\ ^2 \le 0,$ $I^*(u,\gamma) - I^*(v,\gamma) \le -\omega \ \xi(v,u)\ ^2 \le 0,$
562	that is
563	$I(u) \cong I(v) \preccurlyeq \tilde{0},$
564	hence, $I(u) \preccurlyeq I(v)$.
565	Note that the (38) is called strongly fuzzy mixed variational-like inequalities. This result
566	shows that the minimum of fuzzy functional $I(v)$ can be characterized by strongly fuzzy
567	mixed variational-like inequality. It is very important to observe that optimality
568	conditions of preinvex-FMs and strongly preinvex-FMs can't be obtained with the help
569	of (38). This idea encourage us to introduce a more general type of fuzzy variational-like
570	inequality of which (38) is a particular case. In order to be more precise, for given
571	FMs Ψ , ϖ , bi function $\xi(.,.)$ and a $0 \le \omega$, consider problem of finding $u \in K_{\xi}$, such that

572	$\langle \Psi(u), \xi(\nu, u) \rangle \widetilde{+} \varpi(\nu) \widetilde{-} \varpi(u) \widetilde{+} \omega \ \xi(\nu, u) \ ^2 \ge \tilde{0}, \forall \nu \in K_{\xi}. $ $\tag{40}$
573	This inequality is called strongly fuzzy mixed variational-like inequality.
574	Now we'll look at a few specific types of strongly fuzzy mixed variational-like
575	inequalities:
576	If $\xi(v, u) = v - u$, then (40) is called strongly fuzzy mixed variational inequality such as
577	$\langle \Psi(u), \nu - u \rangle \widetilde{+} \overline{\varpi}(\nu) \widetilde{-} \overline{\varpi}(u) \widetilde{+} \omega \ \nu - u \ ^2 \ge \widetilde{0}, \ \forall \ \nu \in K_{\xi}.$
578	If $\omega = 0$, then (40), is called fuzzy mixed variational-like inequality such as
579	$\langle \Psi(u), \xi(\nu, u) \rangle \widetilde{+} \overline{\varpi}(\nu) \widetilde{-} \overline{\varpi}(u) \ge \widetilde{0}, \ \forall \nu \in K_{\xi}.$
580	If $\xi(v, u) = v - u$ and $\omega = 0$, then (40) is called fuzzy mixed variational inequality such
581	as
582	$\langle \Psi(u), \nu - u \rangle \widetilde{+} \overline{\varpi}(\nu) \simeq \overline{\varpi}(u) \ge \overline{0}, \ \forall \ \nu \in K_{\xi}.$
583	Similarly, we can obtain fuzzy variational inequality and fuzzy variational-like
584	inequality in [32], as special cases of (40). In a similar way, some special cases of strongly
585	fuzzy variational-like inequality (36) can also be discussed.
586	Remark 4.6. The inequalities (36) and (40), show that the variational-like inequalities
587	arise naturally in connection with the minimization of the G-differentiable preinvex-FMs
588	subject to certain constraints.
589	The Theorem 4.7 provides Hermite-Hadamard inequality for strongly preinvex-FM. this
590	inequality provides a lower and an upper estimation for the average of strongly
591	preinvex-FM defined on a compact interval.
592	Theorem 4.7 Let $\mathcal{H}: [u, u + \xi(v, u)] \to \mathbb{F}_0$ be a strongly preinvex-FM with $\mathcal{H}(z) \ge 0$. If \mathcal{H}
593	is fuzzy integrable and $\xi(.,.)$ satisfies the Condition C, then
594	$\mathcal{H}\left(\frac{2u+\xi(\nu,u)}{2}\right) \widetilde{+} \frac{\omega}{12} \ \xi(\nu,u)\ ^2 \leq \frac{1}{\xi(\nu,u)} (FR) \int_u^{u+\xi(\nu,u)} \mathcal{H}(z) dz \leq \frac{\mathcal{H}(u)\widetilde{+}\mathcal{H}(\nu)}{2} \simeq \frac{\omega}{6} \ \xi(\nu,u)\ ^2. $ (41)
595	If $\mathcal H$ is preconcave FM then, we inequality (41) reduces to the following inequality:
596	$\mathcal{H}\left(\frac{2u+\xi(v,u)}{2}\right)\widetilde{+}\frac{\omega}{12}\ \xi(v,u)\ ^2 \geq \frac{1}{\xi(v,u)} (FR) \int_u^{u+\xi(v,u)} \mathcal{H}(z)dz \geq \frac{\mathcal{H}(u)\widetilde{+}\mathcal{H}(v)}{2} \simeq \frac{\omega}{6} \ \xi(v,u)\ ^2.$
597	Proof. Let $\mathcal{H}: [u, u + \xi(v, u)] \to \mathbb{F}_0$ be a strongly preinvex-FM. Then, by hypothesis, we
598	have
599	
600	$2\mathcal{H}\left(\frac{2u+\xi(v,u)}{2}\right) \leq \mathcal{H}\left(u+(1-\tau)\xi(v,u)\right) \widetilde{+} \mathcal{H}(u+\tau\xi(v,u)) \simeq \frac{\omega}{2}(1-2\tau)^2 \ \xi(v,u)\ ^2.$
601	Therefore, for every $\gamma \in (0, 1]$, we have
	$2\mathcal{H}\left(\frac{2u+\xi(v,u)}{v},v\right) \leq \mathcal{H}\left(u+(1-\tau)\xi(v,u),v\right) + \mathcal{H}\left(u+\tau\xi(v,u),v\right)$
	$-\frac{\omega}{2}(1-2\tau)^{2}\ \xi(\tau,u)\ ^{2}$
602	$= \frac{1}{2} (1 - 2t) \xi(v, u) $
	$2\mathcal{H}^{*}\left(\frac{1}{2},\gamma\right) \leq \mathcal{H}^{*}\left(u+(1-\tau)\xi(v,u),\gamma\right) + \mathcal{H}^{*}\left(u+\tau\xi(v,u),\gamma\right)$
	$-\frac{\pi}{2}(1-2\tau)^{2}\ \xi(\nu,u)\ ^{2}.$
603	Then

$$\begin{split} 2\int_{0}^{1}\mathcal{H}_{*}\left(\frac{2u+\xi(\nu,u)}{2},\gamma\right)d\tau &\leq \int_{0}^{1}\mathcal{H}_{*}(u+(1-\tau)\xi(\nu,u),\gamma)d\tau + \int_{0}^{1}\mathcal{H}_{*}(u+\tau\xi(\nu,u),\gamma)d\tau \\ &\quad -\frac{\omega}{6}\|\xi(\nu,u)\|^{2},\\ 2\int_{0}^{1}\mathcal{H}^{*}\left(\frac{2u+\xi(\nu,u)}{2},\gamma\right)d\tau &\leq \int_{0}^{1}\mathcal{H}^{*}(u+(1-\tau)\xi(\nu,u),\gamma)d\tau + \int_{0}^{1}\mathcal{H}^{*}(u+\tau\xi(\nu,u),\gamma)d\tau \\ &\quad -\frac{\omega}{2}\|\xi(\nu,u)\|^{2}. \end{split}$$

It follows that

$$\begin{aligned} \mathcal{H}_*\left(\frac{2u+\xi(\nu,u)}{2},\gamma\right) + \frac{\omega}{12} \|\xi(\nu,u)\|^2 &\leq \frac{1}{\xi(\nu,u)} \int_u^{u+\xi(\nu,u)} \mathcal{H}_*(z,\gamma) dz \,, \\ \mathcal{H}^*\left(\frac{2u+\xi(\nu,u)}{2},\gamma\right) + \frac{\omega}{12} \|\xi(\nu,u)\|^2 &\leq \frac{1}{\xi(\nu,u)} \int_u^{u+\xi(\nu,u)} \mathcal{H}^*(z,\gamma) dz \,. \end{aligned}$$

That is

$$\begin{split} \left[\mathcal{H}_*\left(\frac{2u+\xi(\nu,u)}{2},\gamma\right), \mathcal{H}^*\left(\frac{2u+\xi(\nu,u)}{2},\gamma\right)\right] + \frac{\omega}{12} \|\xi(\nu,u)\|^2 \\ \leq_I \frac{1}{\xi(\nu,u)} \left[\int_u^{u+\xi(\nu,u)} \mathcal{H}_*(z,\gamma)dz, \int_u^{u+\xi(\nu,u)} \mathcal{H}^*(z,\gamma)dz\right]. \end{split}$$

Thus,

 $\mathcal{H}\left(\frac{2u+\xi(\nu,u)}{2}\right) + \frac{\omega}{12} \|\xi(\nu,u)\|^2 \leq \frac{1}{\xi(\nu,u)} \left(FR\right) \int_u^{u+\xi(\nu,u)} \mathcal{H}(z) dz.$ (42)

In a similar way as above, we have

$$\frac{1}{\xi(\nu,u)} (FR) \int_{u}^{u+\xi(\nu,u)} \mathcal{H}(z) dz \leq \frac{\mathcal{H}(u) + \mathcal{H}(\nu)}{2} - \frac{\omega}{6} \|\xi(\nu,u)\|^{2}.$$
(43)

614 Combining (42) and (43), we have

$$\mathcal{H}\left(\frac{2u+\xi(\nu,u)}{2}\right)\widetilde{+}\frac{\omega}{12}\|\xi(\nu,u)\|^2 \leq \frac{1}{\xi(\nu,u)} (FR) \int_u^{u+\xi(\nu,u)} \mathcal{H}(z)dz \leq \frac{\mathcal{H}(u)\widetilde{+}\mathcal{H}(\nu)}{2} \simeq \frac{\omega}{6} \|\xi(\nu,u)\|^2.$$

This completes the proof.

Remark 4.8. If $\omega = 0$, then Theorem 4.7 reduces to the result for preinvex convex-FM

$$\mathcal{H}\left(\frac{2u+\xi(\nu,u)}{2}\right) \leq \frac{1}{\xi(\nu,u)} (FR) \int_{u}^{u+\xi(\nu,u)} \mathcal{H}(z) dz \leq \frac{\mathcal{H}(u) \stackrel{\sim}{+} \mathcal{H}(\nu)}{2}.$$

If $\xi(v, u) = v - u$, then Theorem 4.7 reduces to the result for strongly convex-FM:

$$\mathcal{H}\left(\frac{u+\nu}{2}\right) + \frac{\omega}{12} \|\nu - u\|^2 \leq \frac{1}{\nu - u} (FR) \int_u^{\nu} \mathcal{H}(z) dz \leq \frac{\mathcal{H}(u) + \mathcal{H}(\nu)}{2} - \frac{\omega}{6} \|\nu - u\|^2$$

If $\xi(v, u) = v - u$ and $\omega = 0$, then Theorem 4.7 reduces to the result for convex-FM in [55]

$$\mathcal{H}\left(\frac{u+\nu}{2}\right) \leq \frac{1}{\nu-u} \left(FR\right) \int_{u}^{\nu} \mathcal{H}(z) dz \leq \frac{\mathcal{H}(u) + \mathcal{H}(\nu)}{2}.$$
(44)

If $\mathcal{H}_*(u, \gamma) = \mathcal{H}^*(v, \gamma)$ with $\omega = 0$ and $\gamma = 1$ then Theorem 4.7 reduces to the result for preinvex function, see [36]:

$$\mathcal{H}\left(\frac{2u+\xi(\nu,u)}{2}\right) \le \frac{1}{\xi(\nu,u)} \left(R\right) \int_{u}^{u+\xi(\nu,u)} \mathcal{H}(z) dz \le \frac{\mathcal{H}(u)+\mathcal{H}(\nu)}{2}.$$
(45)

If $\mathcal{H}_*(u, \gamma) = \mathcal{H}^*(v, \gamma)$ with $\xi(v, u) = v - u$, $\omega = 0$ and $\gamma = 1$ then Theorem 4.7 reduces to the result for convex function, see [42, 43]:

$$\mathcal{H}\left(\frac{u+\nu}{2}\right) \le \frac{1}{\nu-u} \left(R\right) \int_{u}^{\nu} \mathcal{H}(z) dz \le \frac{\mathcal{H}(u) + \mathcal{H}(\nu)}{2}.$$
(46)

631

634

635

636

639

641

643

644

645

646

647

648

649

650

651

652

653 654

655

656

657 658

659

$$\mathcal{H}(z)(\sigma) = \begin{cases} \frac{\sigma}{2z^2}, & \sigma \in [0, 2z^2], \\ \frac{4z^2 - \sigma}{2z^2}, \sigma \in (2z^2, 4z^2], \\ 0, & otherwise, \end{cases}$$

632 Then, for each
$$\gamma \in [0, 1]$$
, we have $\mathcal{H}_{\gamma}(z) = [2\gamma z^2, (4 - 2\gamma)z^2]$. Since for each $\gamma \in [0, 1]$,
633 $\mathcal{H}_*(z, \gamma) = 2\gamma z^2$, $\mathcal{H}^*(z, \gamma) = (4 - 2\gamma)z^2$ are preinvex functions w.r.t. $\xi(\nu, u) = \nu - u$ and

$$\omega = \frac{2}{3}\gamma$$
. Hence $\mathcal{H}(z)$ is preinvex fuzzy-IVF w.r.t. $\xi(v, u) = v - u$. We now compute the

following:

637
$$\mathcal{H}_*\left(\frac{2u+\xi(v,u)}{2},\gamma\right) + \frac{\omega}{12} \|\xi(v,u)\|^2 = \mathcal{H}_*(1,\gamma) = \frac{8\gamma}{3},$$

638
$$\frac{1}{\xi(\nu,u)} \int_{u}^{u+\xi(\nu,u)} \mathcal{H}_{*}(z,\gamma) dz = \frac{1}{2} \int_{0}^{2} 2\gamma z^{2} dz = \frac{8\gamma}{3},$$

$$\frac{\mathcal{H}_*(u,\gamma)+\mathcal{H}_*(v,\gamma)}{2}-\frac{\omega}{6}\|\xi(v,u)\|^2=\frac{32\gamma}{9},$$

for all $\gamma \in [0, 1]$. That means

 $\frac{8\gamma}{3} \le \frac{8\gamma}{3} \le \frac{32\gamma}{9}.$

642 Similarly, it can be easily show that

$$\mathcal{H}^*\left(\frac{2u+\xi(\nu,u)}{2},\gamma\right) \leq \frac{1}{\xi(\nu,u)} \int_u^{u+\xi(\nu,u)} \mathcal{H}^*(z,\gamma) dz \leq \frac{\mathcal{H}^*(u,\gamma)+\mathcal{H}^*(\nu,\gamma)}{2}.$$

for all $\gamma \in [0, 1]$, such that

$$\mathcal{H}^*\left(\frac{2u+\xi(\nu,u)}{2},\gamma\right) + \frac{\omega}{12} \|\xi(\nu,u)\|^2 = \mathcal{H}_*(1,\gamma) = \frac{36-16\gamma}{9},$$
$$\frac{1}{\xi(\nu,u)} \int_u^{u+\xi(\nu,u)} \mathcal{H}^*(z,\gamma) dz = \frac{1}{2} \int_0^2 (4-2\gamma) z^2 dz = \frac{8(2-\gamma)}{3},$$
$$\frac{\mathcal{H}^*(u,\gamma) + \mathcal{H}^*(\nu,\gamma)}{2} - \frac{\omega}{6} \|\xi(\nu,u)\|^2 = \frac{72-22\gamma}{9}.$$

From which, it follows that

$$\frac{36 - 16\gamma}{9} \le \frac{8(2 - \gamma)}{3} \le \frac{72 - 22\gamma}{9}$$

that is

$$\left[\frac{8\gamma}{3}, \frac{36-16\gamma}{9}\right] \leq_{I} \left[\frac{8\gamma}{3}, \frac{8(2-\gamma)}{3}\right] \leq_{I} \left[\frac{32\gamma}{9}, \frac{72-22\gamma}{9}\right], \text{ for all } \gamma \in [0, 1]$$

hence, the Theorem 4.7 has been verified.

5. Conclusions

In this study, we have introduced and studied a new class of preinvex-FMs is called strongly preinvex-FMs. Using Condition C, we have obtained equivalence relation between strongly preinvex and strongly invex-FMs. To characterize the optimality condition of the sum preinvex-FMs and strongly preinvex-FMs, we have introduced strong fuzzy mixed variational-like inequality. Moreover, we have established strong relationship between strongly preinvex-FM and Hermite-Hadamard inequality. There is

660	much room for further study to explore this concept in fuzzy convex and non-convex
661	theory like, the existence of unique solution of strong fuzzy mixed variational like-
662	inequalities can be conducted and some iterative algorithms can also obtained under
663	some mild conditions. From last two sections, we can conclude that these classes of FMs
664	will play important and significant role in fuzzy optimization and their related areas.
665	
666	Author Contributions: Author Contributions: Conceptualization, M.B.K; validation, H.M.S. and
667	P.O.M.; formal analysis, H.M.S. and P.O.M.; investigation, M.B.K and P.O.M.; resources, M.B.K
668	and L.G.J; writing-original draft, M.B.K and L.G.J; writing-review and editing, M.B.K and
669	P.O.M.; visualization, M.B.K. and P.O.M.; supervision, M.B.K. and P.O.M; project administration,
670	L.G.J and H.M.S. and P.O.M.; All authors have read and agreed to the published version of the
671	manuscript.
672	Funding: Not applicable
673	Data Availability
674	Not applicable
675	Competing Interests
676	The authors declare that they have no competing interests.
677	Authors' Contributions
678	All authors contributed equally to the writing of this paper. All authors read and approved the
679	final manuscript.
680	Acknowledgments
681	This paper has been partially supported by Ministerio de Ciencia, Innovaci ón y Universidades,
682	grant number PGC2018-097198-B-I00, and by Fundaci ón Séneca of Región de Murcia, grant
683	number 20783/PI/18.

684 References

- [1] Polyak, B. T. Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Soviet
 Math. Dokl. 1966, 7, 2–75.
- 688 [2] Karamardian, S. The nonlinear complementarity problem with applications, Part 2. J. Optimiz. Theory Appl. 1969, 4, 167–181.
- [3] Qu, G.; Li, N. On the exponentially stability of primal-dual gradeint dynamics, IEEE Control Syst. Lett. 2019, 3, 43-48.
- [4] Nikodem, K.; Pales, Z. S. Characterizations of inner product spaces by strongly convex functions, Banach J. of Math. Analy.
 2011, 1, 83–87.
- [5] Adamek, M. On a problem connected with strongly convex functions, Math. Inequal. Appl. 2016, 19, 1287–1293.
- [6] Angulo, H.; Gimenez, J.; Moeos, A. M. On strongly h-convex functions, Annals of Funct. Analy. 2011, 2, 85–91.
- 694 [7] Awan, M. U.; Noor, M. A.; Noor, K.I Hermite-Hadamard inequalities for exponentially convex functions, Applied Math. Inf.
 695 Sci., 2018, 12, 405–409.
- [8] Awan, M. U.; Noor, M. A.; Set, E. On strongly (p, h)-convex functions, TWMS J. Pure Appl. Math. 2019, 9.
- [9] Azcar, A.; Gimnez, J.; Nikodem, K.; Sánchez, J. L.; On strongly midconvex functions, Opuscula Math. 2011, 31, 15–26.
- [10] Jovanovic, M. V. A note on strongly convex and strongly quasi convex functions, Math. Notes. 1966, 60, 584–585.
- [11] Hanson, M. A. On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl. 1980, 80, 545–550.
- 700 [12] Ben-Isreal, A.; Mond, B. What is invexity? The Anziam J. 1986, 28, 1-9
- [13] Mohan, M. S.; Neogy, S. K. On invex sets and preinvex functions, J. Math. Analy. Appl. 1995, 189, 901–908.
- [14] Noor, M. A.; Noor, K. I. On strongly generalized preinvex functions, J. Inequal. Pure Appl. Math. 2005, 6, 102.
- [15] Noor, M. A.; Noor, K. I. Some characterization of strongly preinvex functions, J. Math. Analy. Appl. 2006, 316, 697–706.
- [16] Noor, M. A.; Noor, K. I. Generalized preinvex functions and their properties, Intern. J. Stochastic Anal. 2006, 2006, 12736.

- [17] Noor, M. A.; Noor, K. I.; Awan, M. U. Some quantum integral inequalities via preinvex functions, Appl. Math. Comp. 2015,
 269, 242–251.
- [18] Noor, M. A.; Noor, K. I.; Iftikhar, S. Integral inequalities for differentiable harmonic preinvex functions(survey), J. Inequal. Pure
 Appl. Math. 2016, 7, 3–19.
- [19] Weir, T.; Mond, B. Preinvex functions in multiobjective optimization, J. Math. Analy. Appl. 1986, 136, 29–38.
- 710 [20] Zadeh, L. A. Fuzzy sets, Inf. Control. 1965, 8(3), 338-353.
- 711 [21] Liu, Y. M. Some properties of convex fuzzy sets, J. Math. Analy. Appl. 1985, 111(1), 119-129.
- 712 [22] Lowen, R. Convex fuzzy sets, Fuzzy sets Syst. 3(3) (1980), 291-310.
- 713 [23] Ammar, E.; Metz, J. On fuzzy convexity and parametric fuzzy optimization, Fuzzy sets Syst. 1992, 49(2), 135-141.
- 714 [24] Ammar, E. E. Some properties of convex fuzzy sets and convex fuzzy cones, Fuzzy sets Syst. 1999, 106(3), 381-386.
- 715 [25] Dubois, D.; Prade, H. Operations on fuzzy numbers, Internat. J. syst. Sci. 1978, 9(6), 613-626.
- 716 [26] Goetschel, Jr, R.; Voxman, W. Topological properties of fuzzy numbers, Fuzzy sets Syst. 1983, 10(1-3), 87-99.
- 717 [27] Nanda, S.; Kar, K. Convex fuzzy mappings, Fuzzy sets Syst. 1992, 48(1), 129-132.
- 718 [28] Syau, Y. R. On convex and concave fuzzy mappings, Fuzzy sets Syst.1999, 103(1), 163-168.
- [29] Furukawa, N. Convexity and local Lipschitz continuity of fuzzy-valued mappings, Fuzzy sets Syst. 1998, 93(1), 113-119.
- [30] Goetschel, Jr, R. Voxman, W. Elementary fuzzy calculus. Fuzzy sets Syst. 1986, 18(1), 31-43.
- 721 [31] Yan, H.; Xu, J. A class of convex fuzzy mappings, Fuzzy sets Syst. 2002, 129(1), 47-56.
- 722 [32] Noor, M. A. Fuzzy preinvex functions, Fuzzy sets Syst. 1994, 64(1), 95-104.
- 723 [33] Syau, Y. R. (Φ1, Φ2)-convex fuzzy mappings, Fuzzy sets Syst. 2003, 138(3), 617-625.
- [34] Syau, Y. R.; Lee, E. S. Fuzzy Weirstrass theorem and convex fuzzy mappings, Comput. Mathe. Appl. 2006, 51(12), 1741-1750.
- [35] Bede, B.; Gal, S. G. Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy
 differential equations, Fuzzy sets Syst. 2005, 151(3), 581-599.
- [36] Ruiz-Garzón, G.; Osuna-Gómez, R.; Rufián-Lizana, A. Generalized invex monotonicity. European J. Operat. Research. 2003, 144(3), 501-512.
- [37] Stefanini, L.; Bede, B. Generalized Hukuhara differentiability of interval-valued functions and interval differential
 equations. Nonlinear Analysis, Theory, Meth. Appl. 2009, 71(3-4), 1311-1328.
- 731 [38] Syau, Y. R. Preinvex fuzzy mappings, Comp. Math. Appl., 1999, 37(3), 31-39.
- [39] Noor, M. A. Variational-like inequalities, Optimization. **1994** 30, 323–330.
- [40] Noor, M. A.; Noor, K. I.; Awan, M. U. Some quantum integral inequalities via preinvex functions, Appl Math.Compu. 2015
 269, 242–251
- [41] Rashid, S.; Khalid, A.; Rahman, G.; Nisar, K. S.; Chu, Y. M. On new modifications governed by quantum Hahn's integral
 operator pertaining to fractional calculus, J.Funct. Spa.2020 (2020), 1–12.
- [42] Hadamard, J. Étude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann," Journal
 de mathématiques pures et appliquées. 7, 171–215, 1893.
- [43] Hermite, C. Sur deux limites d'une intégrale définie, Mathesis. 3, 82-97, 1883.
- [44] Iscan, I. A new generalization of some integral inequalities for (α , m)-convex functions. Math. Sci. **2013** 7, 1–8.
- [45] Iscan, I. Hermite–Hadamard type inequalities for harmonically convex functions. Hacettepe J. Math. Stat. 2014 43, 935–942.
- [46] Iscan, I. Hermite–Hadamard type inequalities for p-convex functions. Intern. J. Analy. Appl. 2016 11, 137–145.
- 743 [47] Pachpatte, B. G. On some inequalities for convex functions. RGMIA Res. Rep. Coll 2003 6(1), 1-9.
- [48] Kaleva, O. Fuzzy differential equations, Fuzzy Sets Syst. 1987 24, 301-317.
- [49] Kulish, U.; Miranker, W. Computer Arithmetic in Theory and Practice, Academic Press, New York, 2014.

- [50] Osuna-G'omez, R.; Jim'enez-Gamero, M. D.; Chalco-Cano, Y.; Rojas-Medar, M. A.: Hadamard and Jensen Inequalities for
 s-Convex Fuzzy Processes, In: Soft Methodology and Random Information Systems. Advances in Soft Computing, Springer,
- 748 Berlin, Heidelberg, **2004** l 26, 1-15.
- [51] Costa, T. M. Jensen's inequality type integral for fuzzy-interval-valued functions, Fuzzy Sets Syst. 2017 327, 31-47.
- [52] Costa, T. M.; Román-Flores, H.; Chalco-Cano, Y. Opial-type inequalities for interval-valued functions, Fuzzy Sets Syst. 2019
 358, 48-63.
- 752 [53] R.E. Moore, "Interval Analysis." Prentice Hall, Englewood Cliffs, 1966.
- [54] Costa, T. M.; Roman-Flores, H. Some integral inequalities for fuzzy-interval-valued functions, Inf. Sci. 2017, 420, 110-125.
- [55] Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y-M. New Hermite-Hadamard Type Inequalities for (h1, h2)-Convex Fuzzy-Interval Valued Functions, Adv. Difference equat. 2021, 2021, 6–20.
- [56] Liu, P.; Khan, M. B.; Noor, M. A.; Noor, K. I. New Hermite–Hadamard and Jensen inequalities for log-s-convex fuzzy-intervalvalued functions in the second sense. Complex & Intell. Syst. 2021, 2021, 1-15.
- 758 [57] Khan, M. B.; Noor, M. A.; Abdullah, L; Noor, K.I. New Hermite-Hadamard and Jensen Inequalities for Log-h-Convex Fuzzy-
- 759 Interval-Valued Functions. Int. J. Comput. Intell. Syst. 2021, 14(1), 155.
- [58] Khan, M. B.; Noor, M. A.; Abdullah, L.; Chu, Y. M. Some New Classes of Preinvex Fuzzy-Interval-Valued Functions and
 Inequalities. Int. J. Comput. Intell. Syst. 2021, 14(1), 1403-1418.
- 762 [59] Khan, M. B.; Mohammed, P. O.; Noor, M. A.; Hamed, Y. S. New Hermite–Hadamard inequalities in fuzzy-interval fractional
- 763 calculus and related inequalities. Symmetry, **2021**, 13(4), 673.
- [60] Khan, M. B.; Mohammed, P. O.; Noor, M. A.; Abuahalnaja, K. Fuzzy Integral Inequalities on Coordinates of Convex Fuzzy
 Interval-Valued Functions. Math. biosci. Engin. 2021 18(5), 6552-6580.
- 766 [61] Khan, M. B.; Mohammed, P. O.; Noor, M. A.; Hameed. Y.; Noor, K. I. New Fuzzy-Interval Inequalities in Fuzzy-Interval
- 767 Fractional Calculus by Means of Fuzzy Order Relation. AIMS Math. 2021 6,10964-10988.
- 768 [62] Khan, M. B.; Mohammed, P. O.; Noor, M. A.; Baleanu, D.; Guirao, Guirao, J. L. G. Some New Fractional Estimates of
- 769 Inequalities for LR-p-Convex Interval-Valued Functions by Means of Pseudo Order Relation. Axioms. 2021 10(3), 1-18.
- [63] H. M. Srivastava, H.M. and S. M. El-Deeb, Fuzzy differential subordinations based upon the Mittag-Leffler type Borel
 distribution, Symmetry. 2021, 13, Article ID 1023, 1-15.
- 772