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Abstract: It is a familiar fact that convex and non-convex fuzzy mappings play a critical role in the 21 

study of fuzzy optimization. Due to the behavior of its definition, the idea of convexity plays a 22 

significant role in the subject of inequalities. The concepts of convexity and symmetry have a tight 23 

connection. We may use whatever we learn from one to the other, thanks to the significant 24 

correlation that has developed between both in recent years. Our aim is to consider a new class of 25 

fuzzy mappings (FMs) is known as strongly preinvex fuzzy mappings (strongly preinvex-FMs) on 26 

the invex set. These FMs are more general than convex fuzzy mappings (convex-FMs) and 27 

preinvex fuzzy mappings (preinvex-FMs), and when generalized differentiable (briefly, G-28 

differentiable) strongly preinvex-FMs are strongly invex fuzzy mappings (strongly invex-FMs). 29 

Some new relationships among various concepts of strongly preinvex-FMs are established and 30 

verify with the support of some useful examples. We have also shown that optimality conditions 31 

of G-differentiable strongly preinvex-FMs, and fuzzy functional, where fuzzy functional is sum of 32 

G-differentiable preinvex-FMs and non G-differentiable strongly preinvex-FMs, can be 33 

distinguished by strongly fuzzy variational-like inequalities and strongly fuzzy mixed variational-34 

like inequalities, respectively. In the end, we have established and verified a strong relationship 35 

between Hermite-Hadamard inequality and strongly preinvex-FM. Several exceptional cases are 36 

also discussed. These inequalities are very interesting outcome of our main results and appear to 37 

be new ones. The results in this research can be seen as refinements and improvements to 38 

previously published findings. 39 

Keywords: Preinvex fuzzy mappings; strongly preinvex fuzzy mappings; strongly invex fuzzy 40 

mappings; fuzzy strongly monotonicity; strongly fuzzy mixed variational like-inequalities 41 

1. Introduction 42 

Recently, many generalizations and extensions have been studied for classical 43 

convexity. Polyak [1], introduced and studied the idea of strongly convex functions on 44 

the convex set, which have a significant impact on optimization theory and related 45 

fields. Karmardian [2] discussed how strongly convex functions can be used to solve 46 
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nonlinear complementarity problems for the first time. Qu and Li [3] and Nikodem and 47 

Pales [4] developed the convergence analysis for addressing equilibrium issues and 48 

variational inequalities using strongly convex functions. For further study, we refer to 49 

reader about applications and properties of the strongly convex functions, see [5-10], and 50 

the references therein. For differentiable functions, invex functions were introduced by 51 

Hanson [11], which played significant role in mathematical programing. The concept of 52 

invex sets and preinvex functions were introduced and studied by Israel and Mond [12]. 53 

It is well known that differential preinvex function are invex functions. The converse 54 

also holds under Condition C, [13]. Furthermore, Noor [14], studied the optimality 55 

conditions of differentiable preinex functions and proved that minimum can be 56 

characterized by variational-like inequalities. Noor et al. [15, 16] studied the properties 57 

of strongly preinvex function and investigated its applications. For more applications 58 

and properties of strongly preinvex functions, see [17-19], and the references therein. 59 

In [20], a large amount of research work on fuzzy sets and systems has been 60 

devoted to the advancement of various fields, and it plays an important role in the 61 

analysis of broad class problems emerging in pure and applied sciences, such as 62 

operation research, computer science, decision sciences, control engineering, artificial 63 

intelligence, and management sciences,. Convex analysis has made significant 64 

contributions to the improvement of several practical and pure science domains. In the 65 

same way, fuzzy convex analysis fundamental principle in fuzzy optimization and it is 66 

worthwhile to explore some basic principles of convex sets in fuzzy set theory. Many 67 

scholars have addressed fuzzy convex sets. Liu [21] investigated some properties of 68 

convex fuzzy sets and updated the definition of shadow of fuzzy sets with the support 69 

of useful examples. Lowen [22], gathered some well-known convex sets results and 70 

proved separation theorem for convex fuzzy sets. Ammar and Metz [23, 24] investigated 71 

forms of convexity and established generalized convexity of fuzzy sets. Furthermore, 72 

they used the principle of convexity to formulate a general fuzzy nonlinear 73 

programming problem. 74 

A fuzzy number is a generalized version of an interval that can be discussed (in 75 

crisp set theory). Zadeh [20] defined fuzzy numbers, while Dubois and Prade [25] built 76 

on Zadeh's work by adding new fuzzy number conditions. Furthermore, Goetschel and 77 

Voxman [26] adjusted many conditions on fuzzy numbers to make them easier to 78 

handle. For example, in [25], one of the conditions for a fuzzy number is that it is a 79 

continuous function, whereas in [26], the fuzzy number is upper semi continuous. The 80 

purpose is to establish a metric for a collection of fuzzy numbers using the relaxation of 81 

requirements on fuzzy numbers, and then use this metric to examine some basic features 82 

of topological space. Nanda, and Kar [27], Syau [28] and Furukawa [29], introduced the 83 

concept of convex-FMs from    to the set of fuzzy numbers. Furthermore, they also 84 

defined different type of convex-FMs like logarithmic convex-FMs and quasi-convex-85 

FMs, as well as they studied Lipschitz continuity of fuzzy valued mappings. Yan and Xu 86 

[31] provided the notions of epigraphs and convexity of FMs, as well as the 87 

characteristics of convex-FMs and quasi-convex-FMs, based on Goetschel and Voxman's 88 
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concept of ordering [30]. The concept of fuzzy preinvex mapping on the invex set was 89 

introduced and studied by Noor [32]. He also demonstrated that variational inequalities 90 

may be used to specify the fuzzy optimality conditions of differentiable fuzzy preinex 91 

mappings. Syau [33], introduced notions of (     )  convexity,   -B-vexity and   -92 

convexity-FMs through the so called fuzzy max” order among the fuzzy numbers, and 93 

proved that   -B-vexity and   -convexity, B-vexity, convexity and preinvexity  of FMs 94 

are the subclasses. Syau and Lee [34] examined various aspects of fuzzy optimization 95 

and discussed continuity and convexity through linear ordering and metric defined on 96 

fuzzy integers. They also extended the Weirstrass theorem from real-valued functions to 97 

FMs. For recent applications, see [35-39], and the references therein. 98 

On the other hand, integral inequalities have various applications in linear 99 

programing, combinatory, orthogonal polynomials, quantum theory, number theory, 100 

optimization theory, dynamics, and in the theory of relativity, see [40, 41] and the 101 

references therein. The 𝐻𝐻-inequality is a familiar, supreme and broadly useful 102 

inequality.  This inequality has fundamental significance [42, 43] due to other classical 103 

inequalities such as the Oslen and Gagliardo-Nirenberg, Hardy, Oslen, Opial, Young, 104 

Linger, Arithmetic’s-Geometric, Ostrowski, levison, Minkowski, Beckenbach-Dresher, 105 

Ky-fan and Holer inequality [44-49], which are closely linked to the classical 𝐻𝐻-106 

inequality. It can be stated as follows: 107 

Let        be a convex function on a convex set    and        with      . Then, 108 

 .
   

 
/  

 

   
 ∫  ( )  
 

 
 

 ( )    ( )

 
      (1) 109 

If   is a concave function, then ineuality (1) is reversed. 110 

There are several integrals that deal with FMs and have FMs as integrands. For FMs, 111 

Oseuna-Gomez et al. [50] and Costa et al. [51] constructed Jensen's integral inequality. 112 

Costa and Floures [52] used the same method to present Minkowski and Beckenbach's 113 

inequalities, where the integrands are fuzzy- mappings. Costa et al established a 114 

relationship between elements of fuzzy-interval space and interval space, and 115 

introduced level-wise fuzzy order relation on fuzzy-interval space through Kulisch-116 

Miranker order relation defined on interval space. This was motivated by [48-53] and 117 

particularly [54], because Costa et al established a relationship between elements of 118 

fuzzy-interval space and interval space, and introduced level-wise fuzzy order relation 119 

on fuzzy-interval space through Kulisch-Miranker order relation defined on interval 120 

space. By using this relation on fuzzy-interval space, we generalize integral inequality 121 

(1) by constructing fuzzy integral inequalities for strongly preinvex-FMs, where the 122 

integrands are strongly preinvex-FMs. Recently, Khan et al. [55] introduced the new 123 

class of convex-FMs which is known as (     )-convex-FMs by means fuzzy order 124 

relation and presented the following new version of 𝐻𝐻-type inequality for (     )-125 

convex-FM involving fuzzy-interval Riemann integrals: 126 

Theorem 1.1. Let    ,   -     be a (     )-convex-FM with       ,   -     and 127 

  .
 

 
/   .

 

 
/     If   is fuzzy Riemann integrable (in sort,   -integrable), then 128 
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 ∫  ( )  
 

 
 , ( )  ̃  ( )- ∫   ( )   (   )   

 

 
  (2)  129 

If   ( )    and   ( )     then Theorem 1.1 reduces to the result for convex fuzzy-IVF: 130 

      .
   

 
/  

 

   
 ∫  ( )  
 

 
 

 
 ( )  ̃  ( )

 
    (3) 131 

For further informations related to fuzzy integral inequalities, see [56-63]. 132 

Motivated by ongoing studies as well as the relevance of the concepts invexity and 133 

preinvexity of FMs. In section 2, we go through some fundamental concepts, preliminary 134 

notations, and findings that will be useful in further research. In the parts that follow, 135 

the key results are considered and discussed. Section 3 introduces the concepts of 136 

strongly preinvex FMs and discusses some of their properties. Moreover, new 137 

relationships among various concepts of strongly preinvex-FMs are also investigated in 138 

Section 3. In Section 4, we introduce fuzzy variational-like and Hermite-Hadamrd 139 

inequalities for strongly preinvex-FMs. 140 

2. Preliminaries         141 

In this section, we first give some definitions, preliminary notations and results 142 

which will be helpful for further study. 143 

A fuzzy set of   is a mapping     ,   -, for each fuzzy set and   (   -, then  -level 144 

sets of   is denoted and defined as follows    *      ( )   +. The support of    is 145 

denoted by supp( ) and is defined as supp( )  *      ( )   +  A fuzzy set is 146 

normal if there exist     such that  ( )     A fuzzy set is convex and concave if 147 

 ((   )    )     ( ( )  ( )) and  ((   )    )     ( ( )  ( )) for     148 

 ,   ,   -, respectively. A fuzzy convex set is a generalization of classical convex set.  149 

A fuzzy set is said to be fuzzy number with the following properties 150 

( )   is normal. ( )   is convex fuzzy set. ( )    is upper semicontinious. ( )    is 151 

compact. 152 

   denotes the set of all fuzzy numbers. For fuzzy number, it is convenient to distinguish 153 

followings  -levels, 154 

        *      ( )   +    155 

from these definitions, we have  156 

     ,  ( )  
 ( )- 157 

where 158 

  ( )     *      ( )   +   
 ( )     *      ( )   +  159 

Since each     is also a fuzzy number, defined as 160 

 ̃( )  2
         
         

   161 

It is also well known that for any        and     162 

  ̃  *(  ( )    ( )  
 ( )    ( )  )   ,   -+   (4) 163 

   *(   ( )   
 ( )  )   ,   -+     (5) 164 

Obviously,    is closed under addition and nonnegative scaler multiplication. 165 

Furthermore, for each scaler number      166 

  ̃  *(  ( )     
 ( )     )   ,   -+    (6) 167 
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For any       , we say that     (“   relation between fuzzy numbers   and   ) if 168 

for all   (   -,   ( )    ( ) (    relation   ( ) and   ( )) and   ( )    ( ). We 169 

say comparable if for any       , we have     or     otherwise they are non-170 

comparable.  171 

 172 

We can state that    is a partial ordered set under the relation   if we write     173 

instead of    . If          there exist       such that     ̃   then we have the 174 

existence of the Hukuhara difference (in short, H-difference) of   and  , and we say that 175 

  is the H-difference of   and    and denoted by   ̃ , see [37]. If this fuzzy operation 176 

exist, then 177 

     ( ) ( )  (  ̃ ) ( )    ( )    ( ),  ( ) ( )  (  ̃ ) ( )    ( )    ( )  178 

A mapping        is called fuzzy mapping (FM). For each   ,   -  denote 179 
, ( )-  ,  (   )  

 (   )- and in parameterized form, denote 180 
 ( )  *(  (   )  

 (   )  )   ,   -+  181 
  182 

Definition 2.1. [35] Let’s say   (   ) and   (   ). Then FM   (   )     is said 183 

to be a generalized differentiable (briefly, G-differentiable) at   if there exists an element 184 

   ( )     such that 185 

for any    , sufficiently small, there exist  (   ) ̃ ( )  ( ) ̃ (   ) and the 186 

limits are (in the metric  ) 187 

   
    

 (   ) ̃ ( )

 
    

    

 ( ) ̃ (   )

 
    ( )  

or        
 ( ) ̃ (   )

  
    

    

 (   ) ̃ ( )

  
    ( ) 188 

or        
 (   ) ̃ ( )

 
    

    

 (   ) ̃ ( )

  
    ( )  189 

or        
 ( ) ̃ (   )

  
    

    

 ( ) ̃ (   )

 
    ( )  190 

where the limits are taken in the metric space (   )  for        191 

 (   )     
     

𝐻(     )  

and 𝐻 denote the well-known Hausdorff metric on space of  intervals  192 

Definition 2.2. [27] A FM        is said to be convex on the convex set   if  193 

                               ((   )    )  (   ) ( ) ̃  ( )        ,    ,   -  (7) 194 

Similarly,   is said to be concave-FM on   if inequality (7) is reversed. 195 

Definition 2.3. [12] The set    in   is said to be invex set with respect to (w.r.t.) arbitrary 196 

bifunction  (   )  if  197 

    (   )    ,         ,    ,   -  198 

The invex set    is also known as  -connected set. Note that, each convex set with 199 

     (   )  is an invex set in classical sense, but the reverse is not true.  For instance, 200 

the following set     ,     -  ,    - is an invex set w.r.t. non-trivial bi-function 201 

        given as 202 

       (   )               203 
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      (   )               204 

       (   )              205 

      (   )             206 

Definition 2.4. [32] A FM         is said to be preinvex on the invex set    w.r.t. bi-207 

function   if  208 

                                 (    (   ))  (   ) ( ) ̃  ( )   (8) 209 

for all        ,    ,   -, where              is said to be preconcave-FM on    if 210 

inequality (8) is reversed. 211 

Lemma 2.5. [21] Let    be an invex set w.r.t.   and let         be a FM, 212 

parameterized by  213 

 ( )  *(  (   )  
 (   )  )   ,   -+       .  214 

Then   is preinvex on    if and only if, for all   ,   -  215 

   (   ) and   (   ) are preinvex w.r.t.   on   . 216 

If  (   )       then Lemma 2.5, reduce to following result: 217 

“Let    be a convex set and let         be a FM parameterized by  218 

 ( )  *(  (   )  
 (   )  )   ,   -+         219 

Then   is convex on    if and only if, for all   ,   -    (   ) and   (   ) are convex 220 

w.r.t.   on   . 221 

Theorem 2.6. [54] If   ,   -       is an interval valued function on  ,   - such that 222 

,    
 -  Then   is Riemann integrable over  ,   - if and only if,    and    both are 223 

Riemann integrable over  ,   - such that 224 

   (  ) ∫  ( )  
 

 
  0( ) ∫   ( )  

 

 
 ( ) ∫   ( )  

 

 
1.   (9) 225 

From above literature review, following results can be concluded, see [31, 32, 53, 54]: 226 

Definition 2.7. [47] Let   ,   -       be a FM. The fuzzy Riemann integral of    227 

over ,   -  denoted by (  ) ∫  ( )  
 

 
, it is defined by 228 

  0(  ) ∫  ( )  
 

 
1
 

 (  ) ∫   ( )  
 

 
 2∫  (   )  

 

 
  (   )   ,   -3   (10) 229 

 for all   ,   -  where  ,   - is the collection of end point functions of IVFs.   is (  )-230 

integrable over ,   - if (  ) ∫  ( )  
 

 
     Note that, if both end point functions are 231 

Lebesgue-integrable, then   is  fuzzy Aumann-integrable. 232 

Let    be a nonempty invex set in   for future investigation. Let           be an 233 

arbitrary bifunction and         be an FM. We denote ‖ ‖ and 〈   〉 be the norm and 234 

inner product, respectively. Furthermore, throughout in this article FMs are discussed 235 

through the so-called "fuzzy-max" order among fuzzy numbers. As it is well-known, the 236 

fuzzy-max order is a partial order relation     on the set of fuzzy numbers. 237 

3. Strongly preinvex fuzzy mappings 238 

In this section, we propose and study the class of strongly preinvex-FMs. WE also 239 

establish the relationship between strongly preinvex-FMs, strongly monotone operators 240 

and strongly invex-FMs. Firstly, we will define the following notion of strongly 241 

preinvex-FM. 242 
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Definition 3.1. Let    be an invex set and   be a positive number. Then FM         243 

is said to be strongly preinvex-FM on    w.r.t. bi-function   (   ) if  244 

 (    (   ))  (   ) ( ) ̃  ( ) ̃  (   )‖ (   )‖     (11) 245 

for all          ,   -    is said to be strongly preconcave-FM on    if inequality (11) 246 

is reversed.   is said to be strongly affine preinvex-FM on    if 247 

 (    (   ))  (   ) ( ) ̃  ( ) ̃  (   )‖ (   )‖     (12) 248 

for all          ,   -.  249 

Remark 3.2. Strongly preinvex-FMs, like preinvex-FMs, have some really desirable 250 

features. 251 

 )     is also strongly preinvex for    , if   is strongly preinvex-FM. 252 

 )    ( ( )  ( )) is also strongly preinvex-FM if   and   both are strongly preinvex-253 

FMs. 254 

Now we discuss some special cases of strongly preinvex-FMs: 255 

If  (   )        then strongly preinvex-FM becomes strongly convex-FM, that is 256 

          ((   )    )  (   ) ( ) ̃  ( ) ̃  (   )‖   ‖              ,   -  257 

If     then, inequality (11) reduces to the inequality (8). 258 

If     and  (   )        then inequality (11) reduces to the inequality (7). 259 

Following result characterizes the definition of strongly preinvex-FMs and establishes 260 

the relationship between strongly preinvex-FMs and endpoint functions. With the help 261 

of this theorem, we can easily handle upcoming results.  262 

Theorem 3.3. Let         be a FM parametrized by  263 

 ( )  *(  (   )  
 (   )  )   ,   -+            (13) 264 

Then   is strongly preinvex on   w.r.t.    with modulus   if and only if, for all   ,   -  265 

   (   ) and   (   ) are strongly preinvex w.r.t.   and modulus      (14) 266 

Proof. Assume that for each   ,   -    (   ) and   (   ) are strongly preinvex w.r.t. 267 

  and modulus   on     Then from (11), for all          ,   -  we have  268 

  (    (   )  )  (   )  (   )     (   )    (   )‖ (   )‖
 ,  269 

and 270 

   (    (   )  )  (   )  (   )     (   )    (   )‖ (   )‖   271 

Then by (13), (4), (5) and (6), we obtain 272 

  (    (   ))  *(  (    (   )  )  
 (    (   )  )  )   ,   -+  273 

   {((   )  (   ) (   ) 
 (   )  )   ,   -} ̃*(   (   )   

 (   )  )   ,   -+274 

      ̃  (   )‖ (   )‖         275 

       (   ) ( ) ̃ ( ) ̃  (   )‖ (   )‖   276 

Hence,   is strongly preinvex-FM on    with modulus     277 

Conversely, let   is strongly preinvex-FM on    with modulus    Then for all        278 

and   ,   -  we have  (    (   ))  (   ) ( ) ̃  ( ) ̃  (   )‖ (   )‖   279 

From (13), we have 280 

 (    (   ))  *(  (    (   )  )  
 (    (   )  )  )   ,   -+  

Again, from (13), (4), (5) and (6), we obtain 281 
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 (   ) ( ) ̃  ( ) ̃  (   )‖ (   )‖       282 

     {((   )  (   ) (   ) 
 (   )  )   ,   -}    283 

               ̃*(   (   )   
 (   )  )   ,   -+ ̃  (   )‖ (   )‖   284 

for all        and   ,   -  Then by strongly preinvexity of  , we have for all        285 

and   ,   - such that 286 

  (    (   )  )  (   )  (   )     (   )    (   )‖ (   )‖
   

and 287 

               (    (   )  )  (   )  (   )     (   )    (   )‖ (   )‖   288 

for each   ,   -  Hence, the result follows. 289 

Example 3.4. We consider the FM   ,   -     defined by, 290 

     ( )( )  {

 

   
             ,     -

     

   
     (       - 

                        

  291 

Then, for each   ,   -  we have   ( )  ,   
  (    )   -. Since   (   )   

 (   ) are 292 

strongly preinvex functions for each   ,   -. Hence  ( ) is strongly preinvex-FM 293 

w.r.t.  294 

 (   )       

with          It can be easily seen that for each   (   -, there exist a strongly 295 

preinvex-FM and  ( ) is neither convex FM and nor preinvex-FM w.r.t. bifunction 296 

 (   )      with        297 

Now we show that the difference between strongly preinvex-FM and strongly affine 298 

preinvex-FM is again a preinvex-FM for strongly preinvex-FM.  299 

Theorem 3.5. Let FM         be a strongly affine preinvex w.r.t.   and    . Then   300 

is strongly preinvex-FM w.r.t. same bi-function   if an only if,       is preinvex-301 

FM. 302 

Proof. The “If” part is obvious. To prove the “only if” assume that,         be a 303 

strongly fuzzy affine preinvex w.r.t. non-negative bi-function   and    . Then  304 

            (    (   ))  (   ) ( ) ̃  ( ) ̃  (   )‖ (   )‖ ,  (15) 305 

Therefore, for each   ,   -  we have  306 

  (    (   )  )  (   )  (   )     (   )    (   )‖ (   )‖
  

  (    (   )  )  (   )  (   )     (   )    (   )‖ (   )‖  
 

Since   is strongly preinvex-FM w.r.t. same bi-function  , then, for each   ,   -  we 307 

have 308 

     
  (    (   )  )  (   )  (   )     (   )    (   )‖ (   )‖

  

  (    (   )  )  (   )  (   )     (   )    (   )‖ (   )‖  
  (16) 309 

from (15) and (16), we have 310 

  (    (   )  )    (    (   )  )  (   )  (   )     (   )

 (   )  (   )     (   ) 

  (    (   )  )    (    (   )  )  (   )  (   )     (   )

 (   )  (   )     (   ) 
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  (    (   )  )    (    (   )  )  (   )(  (   )    (   ))

  (  (   )    (   )) 

  (    (   )  )    (    (   )  )  (   )(  (   )    (   ))

  (  (   )    (   )) 

 

from which it follows that  311 

  (    (   )  )    (    (   )  )    (    (   )  ) 

  (    (   )  )    (    (   )  )    (    (   )  ) 
 

  (    (   )  )  (   )  (   )     (   ) 

  (    (   )  )  (   ) 
 (   )     (   ) 

 

that is 312 

 (    (   ))  (   ) ( ) ̃  ( )  

Showing that        is preinvex-FM.  313 

We know that under certain condition invex-FMs, we get a solution of fuzzy 314 

optimization problem because with the help of these FM, we obtain relationship 315 

between the fuzzy variational inequalities and optimization problems. 316 

 317 

Definition 3.6. The G-differentiable FM          on    is said to be strongly invex-318 

FM w.r.t. bi-function   if there exist a constant     such that        319 

 ( ) ̃ ( )  〈  ( )  (   )〉 ̃ ‖ (   )‖ , for all           (17) 320 

Example 3.7. We consider the FMs   (   )     defined by,   ( )  ,   
  (    )  -  321 

as in Example 3.4, then  ( ) is strongly invex-FM w.r.t. bifunction  (   )       with 322 

         where      We have   (   )    
  and   (   )  (   )    Now we 323 

computing the following 324 

  (   )    (   )    
       

while 325 

〈  
 (   )  (   )〉   ‖ (   )‖    (   )   ‖   ‖   

And           (   )   ‖   ‖   with        where       326 

Similarly, it can be easily show that 327 

  (   )    (   )  〈   (   )  (   )〉   ‖ (   )‖  

Hence,  ( ) is strongly invex-FM w.r.t. bifunction  (   )       with        It can 328 

be easily seen that  ( ) is not invex-FM w.r.t. bifunction  (   )       329 

Definition 3.8. The G-differentiable FM          on    is said to be strongly pseudo 330 

invex-FM w.r.t. bi-function   if there exist a constant     such that      331 

〈  ( )  (   )〉 ̃ ‖ (   )‖   ̃    ( ) ̃ ( )   ̃, for all         (18) 332 

If       then from Definition 3.6 and Definition 3.8, we obtain the classical definitions 333 

of invex-FM and pseudo invex-FM, respectively. If  (   )       then Definitions 334 

11and Definition 3.8 reduce to known ones.  335 

Example 3.9. We consider the FMs   (   )     defined by,   ( )  ,   (    ) -  336 

then  ( ) is strongly pseudo invex-FM w.r.t. bifunction  (   )       with        337 

where      We have   (   )     and   (   )  (    )   Now we computing the 338 

following 339 

〈  
 (   )  (   )〉   ‖ (   )‖   (   )   ‖   ‖     

for all        and   ,   - with           which implies that 340 
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  (   )          (   )  

  (   )    (   )  

Similarly, it can be easily show that 341 

〈  
 (   )  (   )〉   ‖ (   )‖  (    )(   )   ‖   ‖     

for all        and   ,   - with           that means 342 

  (   )  (    )       (   )  

From which, It follows that 343 

  (   )    (   ) 

Hence, the FM   ( )  ,   (    ) - is strongly pseudo invex-FM w.r.t.   (   )    344 

 , with      where      It can be easily seen that  ( ) is not a pseudo invex-FM 345 

w.r.t.  . 346 

Theorem 3.10. Let          be a G-differentiable and strongly preinvex-FM then   is 347 

a strongly invex-FM. 348 

Proof. Let          be G-differentiable strongly preinvex-FM. Since    is strongly 349 

preinvex then, for each        and   ,   -, we have  350 

      (    (   ))  (   ) ( ) ̃  ( ) ̃  (   )‖ (   )‖   351 

             ( ) ̃ ( ( ) ̃ ( )) ̃  (   )‖ (   )‖   352 

Therefore, for every   ,   -, we have 353 

  (    (   )  )    (   )   (  (   )    (   ))    (   )‖ (   )‖
  

  (    (   )  )    (   )   ( 
 (   )    (   ))    (   )‖ (   )‖  

  354 

which implies that 355 

 (  (   )    (   ))    (    (   )  )    (   )    (   )‖ (   )‖
               356 

   (  (   )    (   ))    (    (   )  )    (   )    (   )‖ (   )‖   357 

     (   )    (   )  
  (    (   )  )    (   )

 
  (   )‖ (   )‖   

      (   )    (   )  
  (    (   )  )    (   )

 
  (   )‖ (   )‖   

Taking limit in the above inequality as    , we have 358 

  (   )    (   )  〈  
 (   )  (   )〉   ‖ (   )‖   

  (   )    (   )  〈   (   )  (   )〉   ‖ (   )‖   

that is 359 

          ( ) ̃ ( )  〈  ( )  (   )〉 ̃ ‖ (   )‖   360 

As special case of Theorem 3.16, when    , we have the following: 361 

Corollary 3.11. [32] Let          be a G-differentiable preinvex-FM on   . Then   is 362 

an invex-FM, 363 

It is well known that the differentiable preinvex functions are invex functions, but the 364 

converse is not true. However, Mohan and Neogy [13], have shown that the preinvex 365 

functions and invex functions are equivalent under certain Condition C. Similarly, the 366 

converse of Theorem 3.16, is not valid; the natural question how to get a strongly 367 

preinvex-FM from strongly invex-FM.  To prove converse, we need the following 368 

assumption regarding the bi-function    which plays an important role in G-369 

differentiation of the main results.  370 
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Condition C. 371 

 (      (   ))  (   ) (   )  

 (      (   ))     (   )  

Clearly for   = 0, we have  (   ) = 0 if and only if,     for all       . Additionally, 372 

note that from Condition C, we have 373 

 (     (   )      (   ))  (     ) (   ) 

For the application of Condition C, see [13, 14-17].  374 

The following Theorem 3.12 gives the result of the converse of Theorem 3.10. 375 

Theorem 3.12. Let         be a G-differentiable FM on   . Let Condition C holds and 376 

 ( ) satisfies the following condition 377 

 (    (   ))   ( )       (19) 378 

 then the followings are equivalent: 379 

(a)    is strongly preinvex-FM. 380 

(b)  ( ) ̃ ( )  〈  ( )  (   )〉 ̃ ‖ (   )‖ ,  for all       ,    (20) 381 

(c) 〈  ( )  (   )〉 ̃〈  ( )  (   )〉   ̃ *‖ (   )‖  ‖  (   )‖ +,   (21) 382 

for all         383 

Proof (a) implies (b) 384 

The demonstration is analogous to the demonstration of Theorem 3.10. 385 

(b) implies (c). Let (b) holds. Then, for every   ,   -, we have  386 

  (   )    (   )  〈  
 (   )  (   )〉   ‖ (   )‖  

  (   )    (   )  〈   (   )  (   )〉   ‖ (   )‖  
   (22) 387 

Then, by replacing   by   and   by   in (22), we get 388 

  (   )    (   )  〈  
 (   )  (   )〉   ‖ (   )‖  

  (   )    (   )  〈   (   )  (   )〉   ‖ (   )‖  
         (23) 389 

Adding (22) and (23), we have  390 

〈  
 (   )  (   )〉  〈  

 (   )  (   )〉    (‖ (   )‖  ‖ (   )‖ ) 

〈   (   )  (   )〉  〈   (   )  (   )〉    (‖ (   )‖  ‖ (   )‖ ) 
 

That is 391 

   〈  ( )  (   )〉 ̃〈  ( )  (   )〉   ̃ *‖ (   )‖  ‖  (   )‖ +. 392 

 (c) implies (b). Assume that (21) holds. Then, for every   ,   -, we have 393 

〈  
 (   )  (   )〉   〈  

 (   )  (   )〉   (‖ (   )‖  ‖ (   )‖ ) 

〈   (   )  (   )〉   〈   (   )  (   )〉   (‖ (   )‖  ‖ (   )‖ ) 
 (24) 394 

Since,        (   )     for all        and   ,   -. Taking  =   in (24), we get 395 

〈  
 (    (   )  )  (      (   ))〉   〈  

 (   )  (    (   )  )〉

                                                                          (‖ (    (   )  )‖  ‖ (      (   ))‖ ) 

〈   (    (   )  )  (      (   ))〉   〈   (   )  (    (   )  )〉

                                                                           (‖ (    (   )  )‖  ‖ (      (   ))‖ ) 

   

by using Condition C, we have 396 

〈  
 (    (   )  )   (   )〉  〈  

 (   )   (   )〉      ‖ (   )‖  

〈   (    (   )  )   (   )〉  〈   (   )   (   )〉      ‖ (   )‖  
 

〈  
 (    (   )  )  (   )〉  〈  

 (   )  (   )〉     ‖ (   )‖  

〈   (    (   )  )  (   )〉  〈   (   )  (   )〉     ‖ (   )‖  
  (25) 397 



Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 23 
 

Let 398 

𝐻 ( )    (    (   )  ) 

𝐻 ( )    (    (   )  ) 
 

Taking derivative w.r.t.  , we get 399 

𝐻 
 ( )    

 (    (   )  )  (   )  〈  
 (    (   )  )  (   )〉 

𝐻  ( )     (    (   )  )  (   )  〈   (    (   )  )  (   )〉 
        400 

from which, using (25), we have 401 

𝐻 
 ( )  〈  

 (   )  (   )〉     ‖ (   )‖  

𝐻  ( )  〈   (   )  (   )〉     ‖ (   )‖  
   (26) 402 

By integrating (26) between 0 to 1, w.r.t.  , we get 403 

𝐻 ( )  𝐻 ( )  〈  
 (   )  (   )〉   ‖ (   )‖  

𝐻 ( )  𝐻 ( )  〈   (   )  (   )〉   ‖ (   )‖  
  404 

                               
  (   (   )  )    (   )  〈  

 (   )  (   )〉   ‖ (   )‖  

  (   (   )  )    (   )  〈   (   )  (   )〉   ‖ (   )‖  
 405 

Using (19), we have 406 

  (   )    (   )  〈  
 (   )  (   )〉   ‖ (   )‖  

  (   )    (   )  〈   (   )  (   )〉   ‖ (   )‖  
 

that is 407 

 ( ) ̃ ( )  〈  ( )   (   )〉 ̃ ‖ (   )‖   for all         408 

( ) implies ( ). Assume that (  ) holds. Since   ,        (   )     for all        409 

and   ,   -. Taking  =   in (20), we get   410 

 (    (   )) ̃ ( )  〈  ( )  (    (   )  )〉 ̃ ‖ (    (   )  )‖   

Therefore, for every   ,   -, we have 411 

    
  (    (   )  )    (   )  〈  

 (   )  (    (   )  )〉   ‖ (    (   )  )‖  

  (    (   )  )    (   )  〈   (   )  (    (   )  )〉   ‖ (    (   )  )‖  
 412 

Using Condition C, we have 413 

  (    (   )  )    (   )  (   )〈  
 (   )  (   )〉   (   ) ‖ (   )‖  

  (    (   )  )    (   )  (   )〈   (   )  (   )〉   (   ) ‖ (   )‖  
 (27) 414 

In a similar way, we have 415 

  (   )    (    (   )  )    〈  
 (   )  (   )〉     ‖ (   )‖  

  (   )    (    (   )  )    〈    (   )  (   )〉     ‖ (   )‖  
  (28) 416 

Multiplying (27) by   and (28) by (   ), and adding the resultant, we have 417 

  (    (   )  )  (   )  (   )     (   )    (   )‖ (   )‖
  

  (    (   )  )  (   )  (   )     (   )    (   )‖ (   )‖  
 

That is 418 

 (    (   ))  (   ) ( ) ̃  ( ) ̃  (   )‖ (   )‖   

Hence,   is strongly preinvex-FM w.r.t.  . 419 

Theorem 3.10 and Theorem 3.12, enable us to define the followings new definitions. 420 

Definition 3.13. A G-differentiable FM         is said to be: 421 

(i) Strongly monotone w.r.t. bi-function   if and only if, there exist a constant     422 

such that 423 

〈  ( )  (   )〉 ̃〈  ( )  (   )〉   ̃ *‖ (   )‖  ‖  (   )‖ +                 . 424 
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(ii) Strongly pseudo monotone w.r.t. bi-function   if and only if, there exist a 425 

constant     such that 426 

 〈  ( )  (   )〉 ̃ ‖ (   )‖   ̃    ̃〈  ( )  (   )〉   ̃                . 427 

If  (   )    (   )  then Definition 3.13, reduce to new one.  428 

Example 3.14. We consider the FMs   (   )     defined by, 429 

 ( )( )  {

 

   
             ,     -

     

   
     (       - 

                        

   430 

Then, for each   ,   -  we have   ( )  ,   
  (    )   -,  ( ) is fuzzy strongly 431 

pseudomonotone w.r.t. bifunction  (   )       with      where      We have 432 

  (   )     
  and   (   )  (    )    Now we computing the following 433 

〈  
 (   )  (   )〉   ‖ (   )‖     (   )   ‖   ‖     

for all        and   ,   - with           which implies that 434 

 〈  
 (   )  (   )〉      (   )     (   )              

 〈   (   )  (   )〉     

Similarly, it can be easily show that  435 

〈   (   )  (   )〉   ‖ (   )‖   (    ) (   )   ‖   ‖     

for all        and   ,   - with            that means  436 

   〈   (   )  (   )〉    (    ) (   )   (    ) (   )              437 

From which, It follows that 438 

 〈   (   )  (   )〉     

Hence, the G-differentiable FM   ( )  ,   (    ) - is fuzzy strongly pseudo 439 

monotone w.r.t.   (   )     , with      where       it can be easily note that 440 

  ( ) is neither fuzzy pseudomonotone nor fuzzy quasimonotone w.r.t.  . 441 

If    , then from Theorem 3.12 we obtain following result. 442 

Corollary 3.15. [36] Let         be a G-differentiable FM on   . Let Condition C 443 

holds and  ( ) satisfies the following condition 444 

     (    (   ))   ( )  445 

 then the followings are equivalent: 446 

(a)   is invex-FM. 447 

(b)    is monotone 448 

Theorem 3.16.  Let         be FM on    w.r.t.   and Condition C hold. Let  ( ) is G-449 

differentiable on    with following conditions: 450 

(a)  (    (   ))   ( )  451 

(b)   ( ) is a fuzzy strongly pseudo monotone.  452 

Then   is a strongly pseudo invex-FM. 453 

Proof. Let    be a strongly pseudo monotone. Then for all         we have 454 

〈  ( )  (   )〉 ̃ ‖ (   )‖   ̃  

Therefore, for every   ,   -, we have 455 

〈  
 (   )  (   )〉   ‖ (   )‖    

〈   (   )  (   )〉   ‖ (   )‖    
 

which implies that  456 
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 〈  
 (   )  (   )〉    

 〈   (   )  (   )〉    
     (29) 457 

Since,        (   )     for all        and   ,    -. Taking  =   in (29), we get 458 

 〈  
 (    (   )  )  (      (   ))〉    

 〈   (    (   )  )  (      (   ))〉    
 

by using Condition C, we have 459 

〈  
 (    (   )  )  (   )〉    

〈   (    (   )  )  (   )〉    
     (30) 460 

Assume that 461 

𝐻 ( )    (    (   )  ) 

𝐻 ( )    (    (   )  ) 
 

taking G-derivative w.r.t.  , then using (30), we have 462 

𝐻 
 ( )  〈  

 (    (   )  )  (   )〉    

𝐻  ( )  〈   (    (   )  )  (   )〉    
       (31)  463 

Integrating (31) between 0 to 1 w.r.t.  , we get 464 

       
𝐻 ( )  𝐻 ( )    

𝐻 ( )  𝐻 ( )    
 465 

which implies that 466 

  (   (   )  )    (   )    

  (   (   )  )    (   )    
 

From condition (i), we have 467 

  (   )    (   )    

  (   )    (   )    
 

that is 468 

 ( ) ̃ ( )   ̃            469 

Hence,   is a strongly pseudo invex-FM. 470 

If    , then from Theorem 3.16 reduces to the following result: 471 

Corollary 3.17. [36] Let         be a FM on    w.r.t.   and Condition C hold. Let 472 

 ( ) is G-differentiable on    with following conditions 473 

(a)  (    (   ))   ( )  474 

(b)   ( ) is a fuzzy pseudomonotone.  475 

Then   is a pseudo invex-FM. 476 

The fuzzy optimality requirement for G-differentiable strongly preinvex-FMs, which is 477 

the fundamental impetus for our findings, is now discussed. 478 

4. Fuzzy mixed variational-like and integral inequalities 479 

The variational inequality problem has a close relationship with the optimization 480 

problem, which is a well-known fact in mathematical programming. Similarly, the fuzzy 481 

variational inequality problem and the fuzzy optimization problem have a strong link. 482 

Consider the unconstrained fuzzy optimization problem 483 

        ( )         484 

where    is a subset of   ,         is a FM. 485 
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 486 

 487 

 488 

A feasible point is defined as      is called an optimal solution, a global optimal 489 

solution, or simply a solution to the fuzzy optimization problem if      and no     , 490 

 ( )   ( ).  491 

The fuzzy optimality criterion for G-differentiable preinvex-FMs is discussed in the 492 

following theorems, and this is the fundamental rationale for the results. 493 

Theorem 4.1.  Let   be a G-differentiable strongly preinvex-FM modulus    . If 494 

     is the minimum of the FM  , then  495 

  ( ) ̃ ( )   ‖ (   )‖                    (32) 496 

Proof: Let     be a minimum of  . Then 497 

                                                           ( )   ( ), for all     . 498 

Therefore, for every   ,   -, we have 499 

                                                             
   (   )    (   ) 

   (   )    (   ) 
    (33) 500 

For all       ,   ,   -, we have 501 

       (   )    .  502 

Taking      in (33), and dividing by    , we get 503 

   
  (    (   )  )    (   )

 
 

   
  (    (   )  )    (   )

 
 

 

Taking limit in the above inequality as    , we get 504 

     
   〈  

 (   )  (   )〉 

   〈   (   )  (   )〉 
     (34) 505 

Since         is a G-differentiable strongly preinvex-FM, so 506 

  (    (   )  )  (   )  (   )     (   )    (   )‖ (   )‖
  

  (    (   )  )  (   )  (   )     (   )    (   )‖ (   )‖  
 

  (   )    (   )  
  (    (   )  )    (   )

 
  (   )‖ (   )‖  

  (   )    (   )  
  (    (   )  )    (   )

 
  (   )‖ (   )‖  

 

again taking limit in the above inequality as    , we get 507 

  (   )    (   )  〈  
 (   )  (   )〉   ‖ (   )‖  

  (   )    (   )  〈   (   )  (   )〉   ‖ (   )‖  
 

from which, using (34), we have  508 

  (   )    (   )   ‖ (   )‖
    

  (   )    (   )   ‖ (   )‖    
 

that is 509 

                         ( ) ̃ ( )   ̃  510 

Hence, the result follows. 511 

Theorem 4.2. Let   be a G-differentiable strongly preinvex-FM modulus      and  512 

〈  ( )  (   )〉 ̃ ‖ (   )‖   ̃                    (35) 513 
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 then      is the minimum of the FM    514 

Proof. Let         be a G-differentiable strongly preinvex-FM and      satisfies 515 

(35). Then, by Theorem 3.10, we have  516 

 ( ) ̃ ( )  〈  ( )  (   )〉 ̃ ‖ (   )‖   

Therefore, for every   ,   -, we have 517 

  (   )    (   )  〈  
 (   )  (   )〉   ‖ (   )‖   

  (   )    (   )  〈   (   )  (   )〉   ‖ (   )‖   

from which, using (35), we have 518 

  (   )    (   )     

  (   )    (   )     

that is 519 

                 ( )   ( ). 520 

If     then, Theorem 4.2 reduces to the following result: 521 

Corollary 4.3 [32] Let   be a G-differentiable preinvex-FM w.r.t.  . Then      is the 522 

minimum of   if and only if,      satisfies 523 

 〈  ( )  (   )〉   ̃                 524 

Remark 4.4. The inequality of the type (35) is called strongly variational like-inequality. 525 

It is very important to note that the optimality condition of preinvex-FMs can’t be 526 

obtained with the help of (35). So this idea inspires us to introduce a more general form 527 

of fuzzy variational-like inequality of which (35) is a special case. To be more 528 

unambiguous, for given FM  , bi function  (   ) and a      consider the problem of 529 

finding       such that 530 

  〈 ( )  (   )〉 ̃ ‖ (   )‖   ̃             (36) 531 

This inequality is called strongly fuzzy variational-like inequality. 532 

We look at the functional  ( ), which is defined as 533 

      ( )   ( ) ̃ ( ),           (37) 534 

where   is a G-differentiable preinvex-FM and   is a strongly preinvex-FM which is 535 

non G-differentiable. 536 

The following theorem shows that the functional  ( ) minimum can be distingusihed by 537 

a class of variational-like inequalities. 538 

Theorem 4.5.  Let         be a G-differentiable preinvex-FM and          be a 539 

non G-differentiable strongly preinvex-FM. Then the functional  ( ) has minimum 540 

    , if and only if      satisfies  541 

〈  ( )  (   )〉 ̃ ( ) ̃ ( ) ̃ ‖ (   )‖   ̃              (38) 542 

Proof: Let       is the smallest value of  , then for all      we have 543 

Therefore, for every   ,   -, we have 544 

   (   )    (   ) 

   (   )    (   ) 
     (39) 545 

Since,        (   ), for all        and   ,   -. Replacing   by    in (39), we get 546 

   (   )    (    (   )  ) 

   (   )    (    (   )  ) 
 

which implies that, using (37) 547 
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   (   )    (   )    (    (   )  )    (    (   )  ) 

   (   )    (   )    (    (   )  )    (    (   )  ) 
 

Since   is strongly preinvex-FM then, 548 

   (   )    (   )    (    (   )  )  (   )  (   )     (   )

   (   )‖ (   )‖  

   (   )    (   )    (    (   )  )  (   )  (   )     (   )

   (   )‖ (   )‖  

 

that is 549 

     (    (   )  )    (   )   (  (   )    (   ))    (   )‖ (   )‖
  

     (    (   )  )    (   )   (  (   )    (   ))    (   )‖ (   )‖  
 

Now dividing by “ ” and taking         we have 550 

      
   

2
  (    (   )  )   (   )

 
   (   )    (   )   (   )‖ (   )‖

 3  

      
   

2
  (    (   )  )   (   )

 
   (   )    (   )   (   )‖ (   )‖ 3  

  551 

then  552 

   〈  
 (   )  (   )〉    (   )    (   )   ‖ (   )‖

  

   〈   (   )  (   )〉    (   )    (   )   ‖ (   )‖  
 

that is 553 

   ̃  〈  ( )  (   )〉 ̃ ( ) ̃ ( ) ̃ ‖ (   )‖   554 

Conversely, let (38) be satisfy to prove      is a minimum of  . Assume that for all 555 

     we have 556 

                          ( ) ̃ ( )   ( ) ̃ ( ) ̃ ( ) ̃ ( )                      557 

                                          ( ) ̃ ( ) ̃ ( ) ̃ ( )  558 

Therefore, for every   ,   -, we have 559 

   (   )    (   )    (   )    (   )    (   )    (   ) 

   (   )    (   )    (   )    (   )    (   )    (   ) 
 

by Corollary 3.11, we have 560 

   (   )    (   )   ,〈  
 (   )  (   )〉    (   )    (   )- 

   (   )    (   )   ,〈   (   )  (   )〉    (   )    (   )- 
 

from which, using (38), we have 561 

   (   )    (   )    ‖ (   )‖
    

   (    )    (   )    ‖ (   )‖    
 

that is 562 

        ( ) ̃ ( )   ̃  563 

 hence,  ( )   ( )  564 

Note that the (38) is called strongly fuzzy mixed variational-like inequalities. This result 565 

shows that the minimum of fuzzy functional  ( ) can be characterized by strongly fuzzy 566 

mixed variational-like inequality.  It is very important to observe that optimality 567 

conditions of preinvex-FMs and strongly preinvex-FMs can’t be obtained with the help 568 

of (38). This idea encourage us to introduce a more general type of fuzzy variational-like 569 

inequality of which (38) is a particular case. In order to be more precise, for given 570 

FMs  ,    bi function  (   ) and a      consider problem of finding       such that 571 
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  〈 ( )  (   )〉 ̃ ( ) ̃ ( ) ̃ ‖ (   )‖   ̃             (40) 572 

This inequality is called strongly fuzzy mixed variational-like inequality. 573 

Now we'll look at a few specific types of strongly fuzzy mixed variational-like 574 

inequalities: 575 

If  (   )       then (40) is called strongly fuzzy mixed variational inequality such as 576 

〈 ( )    〉 ̃ ( ) ̃ ( ) ̃ ‖   ‖   ̃          577 

If       then (40), is called fuzzy mixed variational-like inequality such as 578 

〈 ( )  (   )〉 ̃ ( ) ̃ ( )   ̃           579 

If   (   )      and      then (40) is called fuzzy mixed variational inequality such 580 

as 581 

〈 ( )    〉 ̃ ( ) ̃ ( )   ̃          582 

Similarly, we can obtain fuzzy variational inequality and fuzzy variational-like 583 

inequality in [32], as special cases of (40). In a similar way, some special cases of strongly 584 

fuzzy variational-like inequality (36) can also be discussed.   585 

Remark 4.6. The inequalities (36) and (40), show that the variational-like inequalities 586 

arise naturally in connection with the minimization of the G-differentiable preinvex-FMs 587 

subject to certain constraints.  588 

The Theorem 4.7 provides Hermite-Hadamard inequality for strongly preinvex-FM. this 589 

inequality provides a lower and an upper estimation for the average of strongly 590 

preinvex-FM  defined on a compact interval.  591 

Theorem 4.7 Let    ,     (   )-     be a strongly preinvex-FM with  ( )   ̃. If   592 

is fuzzy integrable and  (   ) satisfies the Condition C, then 593 
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If   is preconcave FM then, we inequality (41) reduces to the following inequality:  595 

                 .
    (   )

 
/  ̃

 

  
‖ (   )‖  

 

 (   )
 (  ) ∫  ( )  

   (   )

 
 

 ( )  ̃  ( )

 
 ̃
 

 
‖ (   )‖    596 

Proof. Let   ,     (   )-     be a strongly preinvex-FM. Then, by hypothesis, we 597 

have 598 
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It follows that 605 
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In a similar way as above, we have 612 
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Combining (42) and (43), we have 614 
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This completes the proof. 616 

Remark 4.8.  If      then Theorem 4.7 reduces to the result for preinvex convex-FM 617 
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If  (   )      , then Theorem 4.7 reduces to the result for strongly convex-FM: 619 
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If  (   )       and    , then Theorem 4.7 reduces to the result for convex-FM in 621 

[55] 622 
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If   (   )   
 (   ) with     and     then Theorem 4.7 reduces to the result for 624 

preinvex function, see [36]: 625 
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If   (   )   
 (   ) with  (   )      ,     and     then Theorem 4.7 reduces to 627 

the result for convex function, see [42, 43]: 628 
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Example 4.9. We consider the fuzzy-IVF   ,     (   )-  ,   (   )-     defined by, 630 
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Then, for each   ,   -  we have   ( )  ,   
  (    )  -. Since for each   ,   -, 632 
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     (   )  (    )   are preinvex functions w.r.t.  (   )      and 633 

  
 

 
 . Hence  ( ) is preinvex fuzzy-IVF w.r.t.  (   )     . We now compute the 634 

following: 635 
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Similarly, it can be easily show that  642 
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From which, it follows that 648 
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1  for all   ,   -  651 

hence, the Theorem 4.7 has been verified. 652 

5. Conclusions 653 

In this study, we have introduced and studied a new class of preinvex-FMs is called 654 

strongly preinvex-FMs. Using Condition C, we have obtained equivalence relation 655 

between strongly preinvex and strongly invex-FMs. To characterize the optimality 656 

condition of the sum preinvex-FMs and strongly preinvex-FMs, we have introduced 657 

strong fuzzy mixed variational-like inequality. Moreover, we have established strong 658 

relationship between strongly preinvex-FM and Hermite-Hadamard inequality. There is 659 



Appl. Sci. 2021, 11, x FOR PEER REVIEW 21 of 23 
 

much room for further study to explore this concept in fuzzy convex and non-convex 660 

theory like, the existence of unique solution of strong fuzzy mixed variational like-661 

inequalities can be conducted and some iterative algorithms can also obtained under 662 

some mild conditions. From last two sections, we can conclude that these classes of FMs 663 

will play important and significant role in fuzzy optimization and their related areas. 664 
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