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Abstract 
The current research work is to design a neural-swarming heuristic procedure for numerical investigations of Singular Multi-Pantograph Delay 

Differential (SMP-DD) equation by applying the function approximation aptitude of Artificial Neural Networks (ANNs) optimized efficient 

swarming mechanism based on Particle Swarm Optimization (PSO) integrated with convex optimization with Active Set (AS) algorithm for 

rapid refinements, named as ANN-PSO-AS, A merit function (MF) on mean squared error sense is designed by using the differential ANN 

models and boundary condition. The optimization of this MF is executed with the global PSO and local search AS approaches. The planned 

ANN-PSO-AS approach is instigated for three different SMP-DD model based equations. The assessment with available standard results relieved 

the effectiveness, robustness and precision that is further authenticated through statistical investigations of Variance Account For, root mean 

squared error, Semi Interquartile Range and Theil’s inequality coefficient performances. 
 
Keywords :  Multi-pantograph systems; Particle swarm optimization, Neural networks; Active-set algorithm; Numerical computing; 
Statistical measures
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1. INTRODUCTION 
The singular multi-pantograph delay differential (SMP-DD) 

equations is considered very important due to its wide-ranging 
applications in the theory of statistics, physics, electrodynamics, 
astrophysics, number theory, direction-finding control of ships, 
engineering, quantum mechanics, finances, chemical sciences, 
nonlinear dynamical models, chemical kinetics, cell growth, 
electronic models, infectious viruses and medicine [1-7]. The 
literature form of the second kind of SMP-DD equation is given 
as [8]: 

1

1 1( ) ( ) ( ) ( ),   
( ) ( )

0 , 1, 1, 2,3..., ,

n

k
k k

k

Y Y r Y G
P Q

r k n

χ χ χ χ
χ χ

χ
=

′′ ′+ + =

< < =

∑
 

(1) 

1 2(0) , (0) ,Y A Y A′= =
 

where ( )kP χ  and ( )Q χ  are the continuous functions and 

only a few schemes based on analytical or numerical exist in the 
literature to solve SMP-DD equation. Some reported studies in 
this regard for SMP-DD equation can be seen in [9-11]. It is not 
easy to solve the SMP-DD equation based model (1) due to its 
harder nature, i.e., multi-pantographs and multi-singular points. 
All the cited approaches in [9-11] have their specific efficiency, 
accuracy, performance and limitations. Alongside these 
mentioned stochastic approaches, the numerical solvers using the 
heuristic/swarm schemes [12-14] look proficient to integrate the 
area of multi-pantographs and multi-singular points based 
nonlinear systems. Some up-to-dated applications of these 
solvers are nonlinear optics [15], Thomas-Fermi singular model 
[16], financial market prediction [17], mosquito dispersal model 
[18], singular three-point model [19], nonlinear system of prey-
predator equations [20], singular fourth order model [21], plasma 
physics problems [22], magnetohydrodynamic studies [23], 
singular model of Lane-Emden using the Morlet wavelet 
function [24], fluid dynamics [25], model of heartbeat dynamics 
[26], corneal shape model [27], multi-singularity based nonlinear 
models [28], nonlinear models arising in electric circuits [29], 
nonlinear reactive transport model [30], SIR nonlinear 
mathematical model for the dynamics of the dengue fever [31], 
HIV infection model of CD4+ T cells [32], functional 
differential based singular system [33-34] and nonlinear Riccati 
equation [35], doubly singular multi-fractional order Lane–
Emden system [36], nonlinear unipolar electrohydrodynamic 
pump flow model [37], future generation disease control 
mechanism for nonlinear system of COVID-19 epidemic model 
[38], 3D flow of Eyring-Powell magneto-nanofluidic model [39] 
and nonlinear dusty plasma system [40]. The aim of this research 
is to discuss the 2

nd order SMP-DD system together with the 
numerical simulations for superior model understanding using 
the stochastic approach through Artificial Neural Networks 
(ANNs) trained with Particle Swarm Optimization (PSO) aided 
with the Active-Set (AS) algorithm, called as ANN-PSO-AS 
scheme. Few potential structures of the suggested ANN-PSO-AS 
algorithm are briefly narrated as follows: 
• A novel integrated intelligent approach ANN-PSO-AS is 

proposed for the numerical treatment of the second order 
SMP-DD equation based models. 

• Overlapping outcomes using the proposed scheme ANN-
PSO-AS from reference results for different SMP-DD based 
examples demonstrated the worth by means of accuracy and 
convergence indicators.  

• Performance of the ANN-PSO-AS solver is endorsed via 

statistical investigation on multiple executions means of 
Variance Account For (VAF), root mean square error 
(RMSE), Semi Interquartile Range (SI-R) and Theil’s 
inequality coefficient (TIC) performance metrics. 

• Beside the accurate outcomes for the second order SMP-DD 
equation, ease of understanding the concepts, consistency, 
smooth operation, exhaustive applicability and robustness 
are other appreciated perks. 

The rest of the work is organized as follows: Sect 2 presents 
the ANN-PSO-AS algorithm; performance indices are provided 
in Sect 3. The numerical solutions of the second order SMP-DD 
model is given in Sect 4. Whereas, conclusions and future 
research plans are given in Sect 5. 

2. SOLUTION PROCEDURE:  The framework for solving the 

second order SMP-DD model is provided in two sections. 

• Introducing a mean squared error sense merit/cost function (MF) for 

solving the differential equation with initial conditions. 

• The combination of ANN-PSO-AS algorithm is accessible to 

optimize the MF for second order SMP-DD model. 

2.1 ANN modeling procedures: The ANNs type of models 

presented by many researchers to solve the linear/nonlinear structures in 

various areas [41-42]. The feed-forward ANN based models are used to 

approximate the continuous mapping solutions and the corresponding 

derivatives taking the log-sigmoid activation function 

( ) 1
( ) 1 eS χχ

−−= +  is shown as: 

( )

( )

( )
( )

1( )

1 1

1
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1
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i i i i
i i

k

i i i
i
k

w a w a
i i

i
k

i i i
i

w a w a
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=
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=
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−− + − +

−− + − +=
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= +

′′ ′′= +

 + − =   + 

∑ ∑

∑

∑

∑

,
k

∑

 
(2) 

where the weights are 1 2 3[ , , ,..., ],mz z z z=z  

1 2 3[ , , ,..., ]mw w w w=w  and 1 2 3[ , , ,... ]ma a a a=a . For solving the 

second order SMP-DD model presented in equation (1), an error-based 

function is introduced as follows: 

1 2FIT FIT FITe e e− −= +
, 

(3) 

where 1FITe −  and 2FITe −  are an unsupervised error functions related to 

second order SMP-DD model and initial conditions, given as: 
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2

1 ,
1 1 ,

1 1 1ˆ ˆ ˆ ,

1, 1, 2,..., , 1, 2,...,

N n

FIT i k i i i
i k k i i

k

e Y Y Y G
N P Q

r k n i N

−
= =

 
′′ ′= + + −  

 
< = =

∑ ∑
 (4) 

where ( ),
ˆ ˆ1, ( ), ( ), ,k i i k i i i iNh P P Q Q Y Yχ χ χ= = = = . 

( ),
ˆ ˆ ,k i k i iY Y r khχ χ= = . Similarly, eFIT-2 is the error function 

associated to the initial conditions, written as: 

( )2 2
2 0

1 ˆ ˆ( ) ( ) .
2FIT Ne Y Y− = +

 
(5) 

2.2 Network Optimization: PSO-AS approach 
The combined framework of PSO and AS approach ratifies the 

optimization of the parameters for solving the second order SMP-DD 

model given in equation (1). 

There are many global search schemes, among them PSO is a well-known 

global search algorithm used as an optimization solver. PSO works as an 

alteration of genetic algorithm process, which is introduced by Eberhart 

and Kennedy in the previous century [43-44]. It is metaheuristic in nature 

due to its optimization capabilities in large search spaces. The execution 

process of the PSO as compared to GA is relatively efficient to implement 

due to the less memory requirement. In the optimization of PSO approach, 

initial swarm spreads in the larger domain. To improve the PSO, the 

procedure gives iteratively optimal results 
1

LB
φ−P  and 

1
GB
φ−P , which 

designate the position and velocity of the swarm, written as: 

 

1 1,i i i
φ φ φ− −= +X X V

 
(6) 

1 1 1
1

1 1
2 2

( )
( ) ,

i i LB i 1

GB i

φ φ φ φ

φ φ

φ

φ

− − −

− −

= Ψ + −

+ −

V V P X r
P X r  

(7) 

where Ψ  is the inertia weight vector, Xi is the position and Vi. represents 

velocity. Whereas, 1φ  and 2φ  are the constant for acceleration factors. 

PSO has widespread applications in parameter estimation of plane waves 

[45], nonlinear electric circuits [46], nonlinear optimization problems [47], 

reactive power dispatch problems [48], active-noise control systems [49], 

optimization in atomic power plants [50] and design of novel epidemic 

models [51]. 

The convergence performance of the PSO scheme is boosted by the 

hybridization of a local search technique. In this regard, “active-set” 

(AS) algorithm is used for quick modification of the results. Active-set is 

a valuable scheme that confines the system model for better understanding 

along with optimization of the proposed system. Recently, AS method is 

applied for convex unconstrained and constrained optimization problems 

reported in [52-55]. 

In this work, the PSO-AS method is functional to present the solution of 

the second order SMP-DD model provided in equation (1). The detail of 

the pseudocode using the ANN-PSO-AS method is tabulated in Table 1.  

3. PERFORMANCE METRICS: The section presents the 

mathematical form of the statistical operators based on VAF, RMSE and 

TIC for solving three variants of second order SMP-DD system. The 

mathematical forms are introduced as: 

( )
( )

ˆvar ( ) ( )
1 *100,

var ( )

100 ,

i i

i

Y Y
VAF

Y

EVAF VAF

χ χ

χ

  −
  = −    

= −  

(8) 

( )
2

1

1 ˆRMSE=
n

i i
i

Y Y
n =

−∑
 

(9) 

( )
2

1

2 2

1 1

1 ˆ

TIC= ,
1 1 ˆ

n

i i
i

n n

i i
i i

Y Y
n

Y Y
n n

=

= =

−

 
+  

 

∑

∑ ∑
 

(10) 

 

Table 1: Optimization process using the designed ANN-PSO-AS approach  
Start of PSO  
...Step 1: Initialization: Randomly generate the primary swarms. Transform the parameters of the     
 ‘PSO’ and ‘optimoptions’. 
...Step 2: Fitness formulation: Using equation (3), scrutinize the ‘‘fitness  values’’ of each 
 particle. 

.   Step 3: Ranking: Rank individually the particle for minimum values of the  “Merit function”. 

.   Step 4: Stopping Standards: Dismiss if 
• “Fitness level” accomplished. 
• Selected “flights/cycles” executed. 

 When “stopping” standard meets, move to Step 5 
.   Step 5: Renewal: By using equations (6) and (7), call the ”position” and “velocity” 
.   Step 6: Improvement: Repeat the step (2)(6), until the whole ‘flights’ are achieved. 
...Step 7: Storage: Save the best “Merit function values”, represented as “best global particle” 
PSO process Ends 
 
Start the PSO-AS approach 
 Inputs: Global best values 
 Output: WPSO-AS signifies the best PSO-AS approach values 
 Initialize: Used “Global best values” as a start point 

 Termination: Stop if {Fitness= FITe =10-18},{Generation=700}, 
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 {TolCon = TolX = TolFun = 10-21} and {MaxFunEvals = 275000} gets the above standards. 
 While {Stop} 

 Calculation of Fitness: Use FITe  for the “fitness values” given in equation (3) 

 Adjustments: Invoke the ‘fmincon’ routine for the AS approach to  
 finetune the values of the “weight vector”. 
 Move to “fitness step” using the “weight vector’s” updated form. 

 Store: Store the WPSO-AS, iterations, FITe , function count and time for the present trial. 

PSO-AS approach Ends 
 

4. RESULTS AND DISCUSSIONS: The detailed discussion of the 

results to solve three different examples based on second order SMP-DD 

model is provided in this section. 

Example I: Consider the second order SMP-DD equation involving 

exponential functions is written as: 

2

1 1 1( ) ( ) ( ),
2 4 1

  0 1,

Y Y Y Y Hχ χχ χ χ
χ χ χ

χ

   ′′ ′ ′+ + + =    −   
< ≤

 
(11) 

(0) 1, (0) 1,Y Y ′= =
 

where

4 2

2

( 1) ( 1)
( ) ( 2) .

4 2

e e
H e

χ χ

χ

χ χ χ
χ χ χ

   
− −   

   = − − − −  

The exact solution of the second order SMP-DD equation (11) is e
χ

 

and the MF function becomes as: 

( ) ( )( )

22

1

2 2

2 2

0 0

ˆ(1 ) ( )
1ˆ(1 )
21

1ˆ(1 )
4

(1 )
1 ˆ ˆ1 1
2

m m m

m m mN

FIT
m

m m

m m m m m

Y

Y
e

N
Y

F H

Y Y

χ χ χ

χ χ χ

χ χ

χ χ χ

=

 ′′− +
 

  ′− +    =
  ′− +    
 − − 

′+ − + −

∑
. (12) 

Example II: Let a 2nd order SMP-DD system with trigonometric 

expressions as: 

2

1 1 1( ) ( ) ( ),
2 4 1

  0 1,

Y Y Y Y Rχ χχ χ χ
χ χ χ

χ

   ′′ ′ ′+ + + =    −   
< ≤

 
(13) 

(0) 1, (0) 0,Y Y ′= =
 

where
2

1 1( ) cos sin sin .
1 2 4

R χ χ χχ χ
χ χ χ

   = − −   −    
 

The exact solution of the second order SMP-DD equation (13) is 

( )Cos χ  and the MF function becomes as: 

( ) ( )( )

22

1

2 2

2 2

0 0

ˆ(1 ) ( )
1ˆ(1 )
21

1ˆ(1 )
4

(1 )
1 ˆ ˆ1 .
2

m m m

m m mN

FIT
m

m m

m m m m m

Y

Y
e

N
Y

F R

Y Y

χ χ χ

χ χ χ

χ χ

χ χ χ

=

 ′′− +
 

  ′− +    =
  ′− +    
 − − 

′+ − +

∑
 (14) 

Example III: Let a 2nd order SMP-DD system with hyperbolic 

trigonometric expressions as: 

2

1 1 1( ) ( ) ( ),
2 4 1

  0 1,

Y Y Y Y Gχ χχ χ χ
χ χ χ

χ

   ′′ ′ ′+ + + =    −   
< ≤

 
(15) 

(0) 0, (0) 1,Y Y ′= =
 

where

( ) 2

2 1 1( ) .
1 2 4

G Sinh Cosh Coshχ χ χχ χ
χ χ χ

−    = + +   −      
The exact solution of the second order SMP-DD equation (15) is 

sinh( )χ  and the MF function becomes as: 

( ) ( )( )

22

1

2 2

2 2

0 0

ˆ(1 ) ( )
1ˆ(1 )
21

1ˆ(1 )
4

(1 )
1 ˆ ˆ 1 .
2

m m m

m m mN

FIT
m

m m

m m m m m

Y

Y
e

N
Y

F G

Y Y

χ χ χ

χ χ χ

χ χ

χ χ χ

=

 ′′− +
 

  ′− +    =
  ′− +    
 − − 

′+ + −

∑
 (16) 

The designed ANN-PSO-AS approach is applied for sixty runs to get the 

system parameters using the ANN-PSO-AS to solve the second order 

SMP-DD model-based Examples I, II and III. The set of trained decision 

variables that are used to demonstrate the estimated numerical solution of 

the model (1). The mathematical formulation of the projected solutions is 

written as: 
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(  

1 (1.143 7.658) ( 4.767 7.766)

1.064 2.228) ( 8.393 5).636

5.9788 1.6700ˆ ( )
1 1

9.0929 3.2410... ,
1 1

Y
e e

e e

χ χ

χ χ

χ − + − − −

− − − −

= + +
+ +

+ +
+ +

 
(17) 

2 (4.177 0.622) (4.137 12.892)

( )  111.822 11.81 07) ( 9.1.8 8 72 3

0.2002 11.7221ˆ ( )
1 1

6.536 0.9502... ,
1 1

Y
e e

e e

χ χ

χ χ

χ −

−

− + −

− + − −

= + +
+ +

−
+ −

+ +

 
(18) 

3 ( 2.323 6.028) ( 2.045 6.163)

(  1 20.7494 .013) ( 8.62 66. 27 )

3.8295 6.4774ˆ ( )
1 1

4.3507 1.7718... .
1 1

Y
e e

e e

χ χ

χ χ

χ − − − − − +

− + − −

−
= − +

+ +

+ −
+ +

 
(19) 

Optimization is performed to solve the second order SMP-DD model-

based problems I-III for the interval [0, 1] with 0.05 step size applying the 

PSO-AS hybridization for 60 independent executions. A best weights set 

and the exact, mean and proposed results comparison for the second order 

SMP-DD model-based examples I-III are provided in figure 1. It is 

observed that for all the examples, all the said solutions overlapped with 

each other. This coinciding of the outcomes indicates the perfection of the 

ANN-PSO-AS approach. The values of the absolute error (AE) and 

performance investigations through ANN-PSO-AS approach for second 

order SMP-DD model-based examples I-III are plotted in figure 2. The 

values of the AE are plotted in subfigures 2(a-c), while the performance 

measures are drawn 2(d-f). 

 

  
(a) Example 1: Best weights (d) Example 1: Result comparison 

  
(b) Example 2: Best weights (e) Example 2: Result comparison 
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(c) Example 3: Best weights (f) Example 3: Result comparison 

Figure 1: A best weights set along with the exact, mean and proposed solutions of the second order SMP-DD model-based 

examples I-III 
 

 

 

  
(a) AE for SMP-DD Example-I (d) Performance analysis for SMP-DD Example-I 

  
(b) AE for SMP-DD Example-II (e) Performance analysis for SMP-DD Example-II 
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(c) AE for SMP-DD Example-III (f) Performance analysis for SMP-DD Example-III 

Figure 2: The AE along with other performance metrics of ANN-PSO-AS approach for second order SMP-DD model-based 

examples I-III 
 

It is seen that the best values for example I, II and III are found near to 10-

6 to 10-7, 10-5 to 10-6 and 10-6 to 10-7, while the mean and worst for all the 

examples are found around 10-4 to 10-5 and 10-2 to 10-4, respectively. The 

best fitness and EVAF for all the examples observed near to 10-9 to 10-12, 

while for all examples, the best RMSE and TIC lie 10-4 to 10-6 and 10-8 to 

10-10, respectively. The mean Fitness and TIC values for all the examples 

are about 10-6 to 10-8, while the mean for EVAF and RMSE lie around 10-

4 to 10-6 and 10-2 to 10-4, respectively. Moreover, even the worst indices for 

all the gages are also found to be satisfactory. 

The statistical investigation for ANN-PSO-AS approach via Fitness, 

EVAF, RMSE and TIC operators together with the boxplots/histogram 

values for SMP-DD model-based examples I to III are provided in figures 

3 to 6. These statistical studies are accomplished for 60 independent 

executions using 10 numbers of neurons. It is seen, the Fitness, EVAF, 

RMSE and TIC values lie around 10-06 to 10-10, 10-07 to 10-09, 10-03 to 10-05 

and 10-07 to 10-09, respectively. 

For accuracy analysis of the ANN-PSO-AS designed approach, statistical 

values are accomplished for 60 executions using minimum (Min), Mean, 

semi interquartile range (SI-R) and median (MED) to solve the second 

order SMP-DD model-based examples I to III. SI-R is the 

( )3 10.5* Q Q−
, where 1Q

and 3Q
 are the respective first and third 

quartiles. The Min, Mean, SI-R and MED statistic measures are given in 

Table 2 to solve the SMP-DD equations. It is indicated that the Min values 

lie 10−06 to 10−08, 10−06 to 10−09 and 10−06 to 10−08 ranges for example I-III. 

The mean and MED and SI-R values are found in the 10−04 to 10−06 region 

for all examples. These values stipulate very good measures for the SMP-

DD model. 

 
Table 2: Statistics results for the second order SMP-DD model based Examples I-III 

χ  Example I Example II Example III 

Min Mean MED SI-R Min Mean MED SI-R Min Mean MED SI-R 
0 3×10-08 1×10

-05
 1×10

-06
 1×10

-06
 7×10

-08
 7×10

-06
 2×10

-06
 2×10

-06
 4×10

-08
 6×10

-06
 1×10

-06
 2×10

-06
 

0.05 5×10-08 1×10-05 4×10-06 4×10-06 2×10-07 1×10-05 4×10-06 3×10-06 4×10-08 1×10-05 4×10-06 2×10-06 

0.1 1×10
-07

 2×10
-05

 6×10
-06

 5×10
-06

 1×10
-07

 1×10
-05

 7×10
-06

 5×10
-06

 1×10
-07

 1×10
-05

 5×10
-06

 4×10
-06

 

0.15 5×10
-08

 3×10
-05

 6×10
-06

 7×10
-06

 2×10
-07

 4×10
-05

 1×10
-05

 7×10
-06

 6×10
-08

 2×10
-05

 7×10
-06

 6×10
-06

 

0.2 2×10-07 8×10-05 2×10-05 1×10-05 3×10-07 1×10-04 3×10-05 2×10-05 3×10-08 4×10-05 1×10-05 2×10-05 

0.25 1×10-06 1×10-04 3×10-05 3×10-05 1×10-06 2×10-04 5×10-05 4×10-05 2×10-06 8×10-05 4×10-05 3×10-05 

0.3 1×10-06 2×10-04 6×10-05 5×10-05 1×10-07 4×10-04 8×10-05 6×10-05 2×10-06 1×10-04 6×10-05 4×10-05 

0.35 3×10-07 3×10-04 8×10-05 7×10-05 5×10-06 5×10-04 1×10-04 8×10-05 6×10-07 1×10-04 9×10-05 6×10-05 

0.4 1×10-07 3×10-04 9×10-05 8×10-05 6×10-06 6×10-04 1×10-04 1×10-04 3×10-06 1×10-04 1×10-04 7×10-05 

0.45 5×10-08 4×10-04 1×10-04 1×10-04 3×10-09 7×10-04 1×10-04 1×10-04 2×10-06 2×10-04 1×10-04 8×10-05 

0.5 4×10-06 4×10-04 1×10-04 1×10-04 5×10-06 7×10-04 1×10-04 1×10-04 1×10-06 2×10-04 1×10-04 8×10-05 

0.55 3×10-06 5×10-04 1×10-04 1×10-04 1×10-06 7×10-04 2×10-04 1×10-04 4×10-07 2×10-04 1×10-04 8×10-05 

0.6 2×10
-06

 5×10
-04

 1×10
-04

 1×10
-04

 1×10
-06

 7×10
-04

 2×10
-04

 1×10
-04

 7×10
-08

 2×10
-04

 1×10
-04

 1×10
-04

 

0.65 1×10
-06

 5×10
-04

 1×10
-04

 1×10
-04

 6×10
-06

 7×10
-04

 2×10
-04

 1×10
-04

 1×10
-06

 2×10
-04

 1×10
-04

 1×10
-04

 

0.7 1×10-07 4×10-04 1×10-04 1×10-04 6×10-06 6×10-04 2×10-04 1×10-04 7×10-07 2×10-04 1×10-04 9×10-05 

0.75 1×10-06 4×10-04 1×10-04 1×10-04 5×10-06 5×10-04 1×10-04 1×10-04 1×10-07 2×10-04 1×10-04 8×10-05 

0.8 3×10-06 3×10-04 1×10-04 1×10-04 7×10-06 4×10-04 1×10-04 9×10-05 1×10-06 2×10-04 1×10-04 8×10-05 
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0.85 2×10-06 3×10-04 9×10-05 9×10-05 1×10-06 3×10-04 1×10-04 7×10-05 3×10-08 2×10-04 1×10-04 8×10-05 

0.9 2×10-06 2×10-04 6×10-05 7×10-05 2×10-06 2×10-04 1×10-04 9×10-05 3×10-06 2×10-04 1×10-04 9×10-05 

0.95 8×10-07 2×10-04 5×10-05 6×10-05 1×10-10 1×10-04 8×10-05 9×10-05 1×10-08 1×10-04 9×10-05 7×10-05 

1 1×10-07 1×10-04 3×10-05 6×10-05 2×10-06 2×10-04 6×10-05 7×10-05 5×10-07 1×10-04 8×10-05 6×10-05 

 

 
(a) Fitness values in convergence measures for Examples I-III 

   
(b) Example I: Histograms (c) Example II: Histograms (d) Example III: Histograms 

   
(e) Example I: Boxplots (f) Example II: Boxplots (g) Example III: Boxplots 

Figure 3: Statistical assessments on ANN-PSO-AS approach via fitness together with the boxplots/histograms for SMP-DD model-

based examples I to III. 
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(a) EVAF values in convergence measures for Examples I-III 

   
(b) Example I: Histograms (c) Example II: Histograms (d) Example III: Histograms 

   
(e) Example I: Boxplots (f) Example II: Boxplots (g) Example III: Boxplots 

Figure 4: Statistical assessments on ANN-PSO-AS approach via EVAF together with the boxplots/histograms for SMP-DD model-

based examples I to III. 
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(a) RMSE values in convergence measures for Examples I-III 

   
(b) Example I: Histograms (c) Example II: Histograms (d) Example III: Histograms 

   
(e) Example I: Boxplots (f) Example II: Boxplots (g) Example III: Boxplots 

Figure 5: Statistical assessments on ANN-PSO-AS approach via RMSE together with the boxplots/histograms for SMP-DD model-

based examples I to III. 
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(a) TIC values in convergence measures for Examples I-III 

   
(b) Example I: Histograms (c) Example II: Histograms (d) Example III: Histograms 

   
(e) Example I: Boxplots (f) Example II: Boxplots (g) Example III: Boxplots 

Figure 6: Statistical assessments on ANN-PSO-AS approach via TIC together with the boxplots/histograms for SMP-DD model-

based examples I to III. 
 

4. CONCLUSION: The design of the numerical computing solver 

ANN-PSO-AS is presented to solve 2nd order singular multi-pantograph 

delay differential system and the outcomes are precise, stable and 

consistent using the ANNs competency of regression. A merit function of 

the networks is designed based on the error function and accordingly 

optimization with local and global capabilities of the active-set approach 

and particle swarm optimization, respectively. The ANN-PSO-AS 

approach is accomplished to solve 3 different examples of the second order 

singular multi-pantograph delay differential model. The precise 

performance of ANN-PSO-AS approach is verified through AE within 

reasonable accuracy, i.e., around 6 to 8 decimals of precision from the 

true/exact outcomes for all variants of the singular multi-pantograph delay 

differential equations. The statistical investigations on Min, SI-R, Mean 

and MED indices further certified the robustness, stability and precision of 

ANN-PSO-AS approach for solving the second order singular multi-

pantograph delay differential system. 

In the future, the ANN-PSO-AS algorithm based accurate stochastic 

numerical procedure can be implemented on for higher order functional 

differential model [56-57], computer virus models [58-59], mathematical 
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model for information security [60-61], bioinformatics [62-63] and 

dynamical analysis of computational fluid mechanics problems [64-66]. 
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