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Abstract:

The aim of the present study is to design a second order nonlinear Lane-Emden coupled

functional differential model and numerically investigate by using the famous spectral col-

location method. For validation of the new designed model, three dissimilar variants have

been considered and formulated numerically by applying a famous spectral collocation

method. Moreover, comparison of the obtained results with the exact/true results endorse

the effectiveness and competency of the new designed model, as well as, the present tech-

nique.
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1 Introduction

The present research work is related to the singular models for the second order nonlinear

system of functional differential (FD) equations. These FD equations have a huge variety

of applications, some are them are, the growth rate population model [1], electrodynamics

[2], infection HIV-1 model [3], growth rate of tumor model [4], chemical kinetics model

[5], hepatitis-B virus infection model [6] and gene regulatory system [7]. Few numerical

techniques have been applied to solve these FD equations, e.g., Kadalbajoo et al [8] pre-

sented a numerical scheme for solving the FD equations, Mirzaee et al [9] implemented a

collocation technique, Xu et al [10] used fractional measures and boundary functions for

presenting the solution of these equations and Genga et al [11] discussed a numerical ap-

proach for solving the singularly perturbed FD equations. Due to the singular point, these

models have achieved diverse attention of the research community. One of the significant

and historical singular model is Lane-Emden (LE) model introduced by Lane and further

investigated by Emden, which has a wider range of applications in science, technology and

engineering. The LE model is used in the density field of gaseous star [12], catalytic dif-

fusion reactions [13], mathematical geometry and physics [14], isothermal and polytrophic

gas spheres [15], the theory of electromagnetic [16], magnetic field oscillation [17], quantum

and classical mechanics [18], isotropic continuous media [19], morphogenesis [20] and dusty

fluid models [21]. To the solution of LE model, many numerical and analytic techniques

have been applied. Shawagfeh [22] applied method of Adomian decomposition, Bender

et al [23] used method of perturbation, Liao [24] proposed an analytic algorithm, Nouh

[25] implemented power series technique by using Pade approximation, Mandelzweigand

and Tabakin [26] used method of Bellman and Kalabas quasi linearization to solve the LE

equation. Recently, some numerical techniques are also broadly implemented to solve the

singular LE type of models [27-33].

The present research work is about to model the second kind of singular nonlinear coupled
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LE system of FD equations and its modeled form is written as:

Z ′′
(ax+ α) +

η1
x
Z ′

(bx+ β) +Q(x)Z(cx+ γ) = F(x)

Q′′
(ax+ α) +

η2
x
Q′

(bx+ β) + Z(x)Q(cx+ γ) = H(x), 0 ≤ x ≤ L,
(1)

with the following conditions

Z(L) = ζ1, Z ′
(0) = ζ2, Q(L) = ζ3, Q′

(0) = ζ4. (2)

where a, b, c, α, β, γ, η1, η2, ζ1, ζ2, ζ3 and ζ4 are given constants while F(x), H(x) are

given functions. The FD model is basically the extension of the research study of Sabir et

al [34-36], which is applied to solve the singular nonlinear functional differential equations.

The designed model is verified by solving the three variants based on nonlinear LE second

order coupled FD equations using the numerical spectral collocation scheme. The novel

features of the current work are briefly shortened as:

• The mathematical model for the nonlinear LE second order coupled FD equation is

successfully presented and verified by solving the three variants of the models using

the spectral collocation method.

• The comparison is performed of the obtained numerical results from the spectral

collocation method with the true results, which shows the correctness of the presented

system, as well as, designed approach.

• Manipulation of the present spectral collocation method by applying the designed

model provided brilliance solutions with higher accuracy and greater dependability.

• The consistency of the designed mathematical model is certified from the reliable

absolute error of the proposed and exact outcomes.

• The nonlinear LE second order system of FD model is not simple to handle nu-

merically because of the singularity, harder in nature and non-linearity. spectral

collocation method is one of the best suggestions, as well as great selection to tackle

such kinds of complex systems.
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A Large amount of work to model the physical systems has been restricted to ordinary

differential equations. Therefore, the urgent requirement to achieve the exact solutions or

simply the approximate ones to these problems has emerged. Since, the finding of the exact

solutions is not possible for these fractional differential models mostly. Hence, the numer-

ical techniques have been implemented to find the approximate solutions to solve them.

Some local numerical techniques are introduced for solving such systems and this method

may become computationally heavy. Moreover, the local schemes listed the approximate

solution at particular points, whereas the global approaches provide the approximate re-

sults in whole interval. Hence, the global behavior of the solution can be naturally taken

into account. The spectral collocation technique is a global numerical metod that is a

particular kind of famous spectral methods, which is widely applicable for almost each

type of differential equations. Recently, there are more interest of appointing the spectral

collocation method to treat with various types of integral and differential models [37, 38],

due to its importance to finite/infinite ranges [39,40]. The convergence speed is the major

advantages of the spectral collocation method. This method has exponential convergence

rates as well as a high accuracy level. The spectral method has been classified into four

classes, collocation [42], tau [43], Galerkin [44] and Petrov Galerkin [45] method. The

collocation approach is a particular kind of spectral technique, that is widely suitable for

almost all kinds of differential systems.

The other parts of the paper are organized as: A few relevant properties of Jacobi shift

polynomials, designed scheme, detailed result discussions, conclusions and future research

guidance are described in the remaining sections.

2 Shifted Jacobi polynomials

The Jacobi polynomials (JP) known as the eigen functions based on the singular form

of the Sturm-Liouville equation. In view of this, many particular cases exist, like as

Legendre, the four type of Gegenbauer and Chebyshev polynomials. Furthermore, the
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JP have been applied in extensive applications because of its wider ability to approximate

the general categories of the functions. Few of them are the Gibbs’ phenomenon resolution,

data compression electrocardiogram and to solve differential models. For [0, L] interval, a

shifted Jacobi polynomials (SJP) is indeed applied with the freedom to select the Jacobi

indexes θ and ϑ, the method can be calibrated for a wide variety of problems. To consider

the SJP J (ρ,σ)
k (x), which satisfy the following properties:

J (ρ,σ)
k+1 (x) = (a

(ρ,σ)
k x− b(ρ,σ)k )J (ρ,σ)

k (x)− c(ρ,σ)k J (ρ,σ)
k−1 (x), k ≥ 1,

J (ρ,σ)
0 (x) = 1, J (ρ,σ)

1 (x) =
1

2
(ρ+ σ + 2)x+

1

2
(ρ− σ),

J (ρ,σ)
k (−x) = (−1)kJ (ρ,σ)

k (x), J (ρ,σ)
k (−1) =

(−1)kΓ(k + σ + 1)

k!Γ(σ + 1)
, (3)

where ρ, σ > −1, x ∈ [−1, 1] and

a
(ρ,σ)
k =

(2k + ρ+ σ + 1)(2k + ρ+ σ + 2)

2(k + 1)(k + ρ+ σ + 1)
,

b
(ρ,σ)
k =

(σ2 − ρ2)(2k + ρ+ σ + 1)

2(k + 1)(k + ρ+ σ + 1)(2k + ρ+ σ)
,

c
(ρ,σ)
k =

(k + ρ)(k + σ)(2k + ρ+ σ + 2)

(k + 1)(k + ρ+ σ + 1)(2k + ρ+ σ)
.

Moreover, the rth derivative of J (ρ,σ)
j (x), is formulated as

DrJ (ρ,σ)
j (x) =

Γ(j + ρ+ σ + q + 1)

2rΓ(j + ρ+ σ + 1)
J (ρ+r,σ+r)
j−r (x), (4)

where ′r′ represents an integer value. For the SJP J (ρ,σ)
L,k (x) = J (ρ,σ)

k (2xL − 1), L > 0, the

analytic explicit form is given as:

P
(ρ,σ)
L,k (x) =

k∑
j=0

(−1)k−j
Γ(k + σ + 1)Γ(j + k + ρ+ σ + 1)

Γ(j + σ + 1)Γ(k + ρ+ σ + 1)(k − j)!j!Lj
xj

=
k∑
j=0

Γ(k + ρ+ 1)Γ(k + j + ρ+ σ + 1)

j!(k − j)!Γ(j + ρ+ 1)Γ(k + ρ+ σ + 1)Lj
(x− L)j.

(5)

To deduce the following

P
(ρ,σ)
L,k (0) = (−1)k

Γ(k + σ + 1)

Γ(σ + 1) k!
,

J (ρ,σ)
L,k (L) =

Γ(k + ρ+ 1)

Γ(ρ+ 1) k!
,

(6)
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DrJ (ρ,σ)
L,k (0) =

(−1)k−rΓ(k + σ + 1)(k + ρ+ σ + 1)r
LrΓ(k − r + 1)Γ(r + σ + 1)

, (7)

DrJ (ρ,σ)
L,k (L) =

Γ(k + ρ+ 1)(k + ρ+ σ + 1)r
LrΓ(k − r + 1)Γ(r + ρ+ 1)

, (8)

DrJ (ρ,σ)
L,k (x) =

Γ(r + k + ρ+ σ + 1)

LrΓ(k + ρ+ σ + 1)
J (ρ+r,σ+r)
L,k−r (x). (9)

3 Methodology of Shifted Jacobi collocation method

The collocation technique is an easy weighted residuals approach. Lanczos [46] first time

introduced the proper trial function form together with the collocation point distributions

that is considered fundamental to the precision of the obtained outcomes. Further, this

research work is revived by the Clenshaw et al [47, 48] and Wright [49]. These studies

involve the applications of the expansions of the Chebyshev polynomial to the initial value

problems. Here, in this section, a numerical method based on shifted Jacobi collocation

approach is presented to solve a new nonlinear singular second kind of coupled functional

LE differential model, given as:

Z ′′
(ax+ α) +

η1
x
Z ′

(bx+ β) +Q(x)Z(cx+ γ) = F(x)

Q′′
(ax+ α) +

η2
x
Q′

(bx+ β) + Z(x)Q(cx+ γ) = H(x), 0 ≤ x ≤ L,
(10)

with the following conditions

Z(L) = ζ1, Z ′
(0) = ζ2, Q(L) = ζ3, Q′

(0) = ζ4, (11)

where a, b, c, α, β, γ, η1, η2, ζ1, ζ2, ζ3 and ζ4 are given constants while F(x), H(x) are

given functions. The solution of Eq. (10) is approximated as.

ZK(x) =
K∑
j=0

ςjJ (ρ,σ)
L,j (x) = ∆

(ρ,σ)
L,K (x), QK(x) =

K∑
j=0

εjJ (ρ,σ)
L,j (x) = Ω

(ρ,σ)
L,K (x). (12)

The approximate independent variables by applying the shifted Jacobi collocation scheme

at x
(ρ,σ)
L,K,j grids. These grids are the point set in a indicated range, where the values of

dependent variable are estimated. Generally, the performance of the nodes location become
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optional using x
(ρ,σ)
L,K,j as a Jacobi-Gauss-Lobatto nodes. Thus, we can approximate the

functions Z(cx+ γ), Q(cx+ γ) as:

ZK(cx+ γ) =
K∑
j=0

ςjJ (ρ,σ)
L,j (cx+ γ) = ∆

(ρ,σ)
L,K (cx+ γ)

QK(cx+ γ) =
K∑
j=0

εjJ (ρ,σ)
L,j (cx+ γ) = Ω

(ρ,σ)
L,K (cx+ γ).

(13)

Thus, the required derivatives of first and second orders of the approximate solutions are

then estimated as

Z ′

K(x) =
K∑
j=0

ςj
(
J (ρ,σ)
L,j (x)

)′
=
K∑
j=0

ςj
j + ρ+ σ + 1

L
P(ρ+1,σ+1)
L,j−1 (x)

=℘
(ρ,σ)
L,K (x),

(14)

Q′

K(x) =
K∑
j=0

εj
(
J (ρ,σ)
L,j (x)

)′
=
K∑
j=0

εj
j + ρ+ σ + 1

L
P(ρ+1,σ+1)
L,j−1 (x)

==(ρ,σ)
L,K (x),

(15)

Z ′

K(bx+ β) =
K∑
j=0

ςj
(
J (ρ,σ)
L,j (bx+ β)

)′
=
K∑
j=0

ςj
b(j + ρ+ σ + 1)

L
P(ρ+1,σ+1)
L,j−1 (bx+ β)

=φ
(ρ,σ)
L,K (x),

(16)

and

Q′

K(bx+ β) =
K∑
j=0

εj
(
J (ρ,σ)
L,j (bx+ β)

)′
=
K∑
j=0

εj
b(j + ρ+ σ + 1)

L
P(ρ+1,σ+1)
L,j−1 (bx+ β)

=ϕ
(ρ,σ)
L,K (x).

(17)

7



Also, we get

Z ′′

K(ax+ α) =
K∑
j=0

ςj
(
J (ρ,σ)
L,j (ax+ α)

)′′
=
K∑
j=0

ςj
a2(j + ρ+ σ + 1)(j + ρ+ σ + 2)

L2
P(ρ+2,σ+2)
L,j−2 (ax+ α)

=χ
(ρ,σ)
L,K (x),

(18)

and

Q′′

K(ax+ α) =
K∑
j=0

εj
(
J (ρ,σ)
L,j (ax+ α)

)′′
=
K∑
j=0

εj
a2(j + ρ+ σ + 1)(j + ρ+ σ + 2)

L2
P(ρ+2,σ+2)
L,j−2 (ax+ α)

=ψ
(ρ,σ)
L,K (x).

(19)

Then, we can estimated the residual of (10) as:

χ
(ρ,σ)
L,K (x) +

η1
x
φ
(ρ,σ)
L,K (x) + Ω

(ρ,σ)
L,K (x)∆

(ρ,σ)
L,K (cx+ γ) =F(x)

ψ
(ρ,σ)
L,K (x) +

η2
x
ϕ
(ρ,σ)
L,K (x) + ∆

(ρ,σ)
L,K (x)Ω

(ρ,σ)
L,K (cx+ γ) =H(x).

(20)

In the shifted Jacobi collocation method, the residual (20) is let to be zero at the K − 1

points

χ
(ρ,σ)
L,K (x

(ρ,σ)
L,K,i) +

η1

x
(ρ,σ)
L,K,i

φ
(ρ,σ)
L,K (x

(ρ,σ)
L,K,i) + Ω

(ρ,σ)
L,K (x

(ρ,σ)
L,K,i)∆

(ρ,σ)
L,K (cx

(ρ,σ)
L,K,i + γ) =F(x

(ρ,σ)
L,K,i),

ψ
(ρ,σ)
L,K (x

(ρ,σ)
L,K,i) +

η2

x
(ρ,σ)
L,K,i

ϕ
(ρ,σ)
L,K (x

(ρ,σ)
L,K,i) + ∆

(ρ,σ)
L,K (x

(ρ,σ)
L,K,i)Ω

(ρ,σ)
L,K (cx

(ρ,σ)
L,K,i + γ) =H(x

(ρ,σ)
L,K,i),

(21)

where i = 1, 2, 3 . . . ,K − 1. So, the 2K − 2 algebraic model for 2K + 2 , the remaining

unknown equations can achieved from the conditions (11) as:

∆
(ρ,σ)
L,K (L) = ζ1, ℘

(ρ,σ)
L,K (0) = ζ2, Ω

(ρ,σ)
L,K (L) = ζ3, =(ρ,σ)

L,K (0) = ζ4, (22)

Finally, from Eqs. (21) and (22), the (K+1) nonlinear algebraic system can be implemented

to the unidentified coefficients ςj, j = 0, . . . ,K.
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4 Numerical results and comparisons

Using the algorithm presented in the last section, the three numerical variants to solve the

coupled FD model to show the high accuracy as well as precision of the proposed method.

4.1 Problem I

Consider the following nonlinear singular second order coupled functional differential model

of LE type is given as:

Z ′′
(2x− 1) +

3

x
Z ′

(3x) +Q(x)Z(x+ 1) = F(x),

Q′′
(2x− 1) +

2

x
Q′

(3x) + Z(x)Q(x+ 1) = H(x), 0 ≤ x ≤ 1,

Z(1) = 2, Z ′
(0) = 0, Q(1) = 0, Q′

(0) = 0,

(23)

where, F(x) and H(x) are selected as an exact solution as:

Z(x) = 1 + x3, Q(x) = 1− x3.

In Table (1), the numerical solutions are (ZK and QK) of Problem I for different param-

eter values. The resulting values of Table (1), shows more accurate results. The prefect

matching of the obtained and exact solutions is observed in Figs. 1 and 2 . The curves of

absolute error (AE) EZ and EQ for the Problem I is provided in 3 and 4.

4.2 Problem II

The following nonlinear singular second order coupled functional differential model of Lane-

Emden type is written as:

Z ′′
(2x− 1) +

3

x
Z ′

(3x) +Q(x)Z(x+ 1) = F(x)

Q′′
(2x− 1) +

2

x
Q′

(3x) + Z(x)Q(x+ 1) = H(x), 0 ≤ x ≤ 1,

Z(1) = 1 + cos(1), Z ′
(0) = 0, Q(1) = 1− cos(1), Q′

(0) = 0,

(24)

where F(x) and H(x) are selected for the exact solutions as: Z(x) = 1 + cos(x), Q(x) =

1− cos(x). Table 2 highlights the accurate obtained results for the MEZ and MEQ using
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Table 1: Numerical solutions of Problem I.

K 2 3

ρ = σ = 0

ZK 1.92174x2 − 2.2204× 10−16x+ 0.0782624 x3 + 2.2204× 10−16x2 + 1.11022× 10−16x+ 1

QK −1.87192x2 + 2.2204× 10−16x+ 1.87192 1− 1.11022× 10−16x− 4.44089× 10−16x2 − x3

ρ = −0.5, σ = 0

ZK −0.463357 + 2.46336x2 1 + 2.22045× 10−16x2 + x3

QK 2.48434− 2.48434x2 1− 4.44089× 10−16x− x3

ρ = σ = 0.5

ZK 0.0782624 + 1.92174x2 1− 1.11022× 10−16x+ x3

QK 1.87192− 1.87192x2 1 + 2.22045× 10−16x2 − x3

ρ = σ = −0.5

ZK 0.0782624 + 1.92174x2 1 + 2.22045× 10−16x+ x3

QK 1.87192 + 2.22045× 10−16x− 1.87192x2 1 + 1.11022× 10−16x− x3

Figure 1: Plots of the exact and numerical results (Z and ZK) of Problem I with ρ = σ = 0,

and K = 3.
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Figure 2: Plots of the exact and numerical results (Q and QK)of Problem I with ρ = σ = 0,

and K = 3.

Figure 3: Plots of the AE (EZ) of Problem I with ρ = σ = 0, and K = 3.
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Figure 4: Plots of the AE (EQ) of Problem I with ρ = σ = 0, and K = 3.

Table 2: MEZ and MEQ of Problem II.

ρ = 0, σ = 1
2

ρ = σ = 1
2

ρ = σ = 0

K MEZ MEQ MEZ MEQ MEZ MEQ

2 1.34× 10−1 1.21× 10−1 1.04× 10−1 9.47× 10−2 1.04× 10−1 9.47× 10−2

6 3.09× 10−4 9.56× 10−4 3.43× 10−4 9.73× 10−4 4.61× 10−4 1.14× 10−3

10 7.16× 10−6 3.04× 10−5 7.28× 10−6 2.91× 10−5 7.88× 10−6 2.97× 10−5

14 6.57× 10−8 2.94× 10−7 5.35× 10−8 2.82× 10−7 4.72× 10−8 2.86× 10−7

18 3.93× 10−9 1.28× 10−8 6.46× 10−9 1.00× 10−8 1.16× 10−8 1.22× 10−9
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Figure 5: MEZ convergence of Problem II.

the spectral collocation method. Moreover, the logarithmic graphs of MEZ and MEQ are

plotted using the current scheme for different values of ρ, σ and (K = 2, 4, · · · , 18) in Figs.

4 and 5. Take ρ = σ = −1
2
, the obtained form of the numerical solution becomes as:

Z18(x) =2 + 2.64225× 10−17x− 0.5x2 + 2.93062× 10−8x3 + 0.0416666x4+

2.36602× 10−9x5 − 0.00138888x6 − 5.80661× 10−9x7 + 0.000024802x8+

7.2645× 10−10x9 − 2.75948× 10−7x10 + 7.96816× 10−11x11 + 2.09201× 10−9x12−

9.37722× 10−12x13 − 7.83276× 10−12x14 − 8.39506× 10−13x15 + 1.72737× 10−13x16−

1.12777× 10−14x17 + 3.31034× 10−16x18,

Q18(x) =1.21754× 10−9 − 1.89035× 10−17x+ 0.5x2 + 1.22541× 10−8x3 − 0.0416667x4−

1.16041× 10−8x5 + 0.00138889x6 + 2.43626× 10−9x7 − 0.0000248026x8+

1.25299× 10−11x9 + 2.75684× 10−7x10 − 4.29394× 10−11x11 − 2.08151× 10−9x12+

1.24306× 10−12x13 + 1.05259× 10−11x14 + 2.72614× 10−13x15 − 9.49649× 10−14x16+

4.89297× 10−15x17 − 9.21167× 10−17x18.
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Figure 6: MEQ convergence of Problem II.

4.3 Problem III

Consider the nonlinear singular second kind of coupled functional differential LE system

model is given as:

Z ′′
(2x− 1) +

3

x
Z ′

(3x) +Q(x)Z(x+ 1) = F(x)

Q′′
(2x− 1) +

2

x
Q′

(3x) + Z(x)Q(x+ 1) = H(x), 0 ≤ x ≤ 1,

Z(1) = 1 + cos(1), Z ′
(0) = 0, Q(1) = 1− cos(1), Q′

(0) = 0,

(25)

where F(x) and H(x) are selected as the exact solution, i.e., Z(x) = x + e−x, Q(x) =

x− e−x. Table 3 provides the accurate results for the MEZ and MEQ using the Spectral

collection method. Moreover, the sketches in Figs. 7 and 8 shows the logarithmic graphs

of MEZ and MEQ , that are obtained from the present scheme for different values of ρ, σ

and (K = 2, 4, · · · , 18). Taking ρ = σ = 0, the numerical solutions of Problem III are

14



Figure 7: MEZ convergence of Problem III.

Figure 8: MEQ convergence of Problem III.
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Table 3: MEZ and MEQ of Problem III.

ρ = σ = 0 ρ = 0, σ = 1
2

ρ = −1
2
, σ = 0

K MEZ MEQ MEZ MEQ MEZ MEQ

2 8.36× 10−2 3.18× 10−1 1.06× 10−1 4.28× 10−1 1.12× 10−1 4.63× 10−1

6 6.52× 10−4 4.17× 10−3 5.44× 10−4 3.78× 10−3 5.94× 10−4 4.15× 10−3

10 8.98× 10−6 1.10× 10−4 8.74× 10−6 1.15× 10−4 8.96× 10−6 1.17× 10−4

14 3.96× 10−8 1.06× 10−6 3.83× 10−8 1.107× 10−6 3.92× 10−8 1.12× 10−6

18 2.23× 10−9 2.59× 10−9 6.10× 10−9 8.50× 10−9 4.55× 10−9 7.78× 10−9

given as:

Z18(x) =1 + 2.74967× 10−17x+ 0.5x2 − 0.16765x3 + 0.0523669x4 − 0.00433457x5+

0.00238683x6 − 0.000198414x7 + 0.0000248017x8 − 2.75562× 10−7x9+

2.75502× 10−7x10 − 2.50341× 10−8x11 + 3.08738× 10−9x12−

1.62179× 10−10x13 + 1.21612× 10−11x14 − 9.28464× 10−13x15+

7.09953× 10−14x16 − 4.45469× 10−15x17 + 1.51078× 10−16x18,

Q18(x) =− 1− 1.58323× 10−17x− 0.5x2 − 0.168767x3 − 0.0415439x4 − 0.00833331x5−

0.00267886x6 − 0.000198417x7 − 0.0000247997x8 − 2.75582× 10−6x9−

2.75762× 10−7x10 − 2.49717× 10−8x11 − 2.10074× 10−9x12 − 1.62453× 10−10x13−

9.7797× 10−12x14 − 1.24893× 10−12x15 + 2.79433× 10−14x16−

8.70301× 10−15x17 − 7.23672× 10−17x18.

5 Conclusion

To model the nonlinear Lane-Emden system of functional differential equations and numer-

ical presentations is not easy to handle. However, the solutions of the model are numeri-

cally presented by taking three different variants and compared with the true results, which

depicts the competency of the designed form of the system. The numerical spectral collo-

cation method is the best choice to handle such complicated, singular, coupled nonlinear
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functional differential form models, whereas, the traditional/conventional schemes do not

work. Consequentially, the adopted numerical approach is an effective and suitable form

to solve such systems. Spectral collocation method is a fast track of convergent approach,

that can implemented effectively with many types of linear/nonlinear, fractional/integer,

singular/non-singular and functional differential models. The present investigations show

that the spectral collocation method is an effective and suitable scheme for solving the

nonlinear Lane-Emden second order system of functional differential equations.

In future, the designed method is an alternate promising solver to be exploited in order

to examine the computational models of fluid dynamics, wire coating model, thin film

flow, squeezing flow systems, Jeffery Hamel type of systems, stretching flow problems,

calendaring models, food processing systems and related research areas [50-54]
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