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Abstract

We derive a novel chiral power counting scheme for in-medium chiral perturbation theory with
explicit nucleonic and pionic degrees of freedom coupled to external sources. It allows for a sys-
tematic expansion taking into account both local as well as pion-mediated inter-nucleon interactions.
Based on this power counting, one can identify classes of non-perturbative diagrams that require a
resummation. In this work we develop in detail a non-perturbative method based on Unitary Chiral
Perturbation Theory (UCHPT) for performing those needed resummations. We have applied this
power counting and non-perturbative techniques to the pion self-energy in asymmetric nuclear matter
up-to-and-including next-to-leading order (NLO) contributions. We show explicitly the cancellation of
the contributions to the pion self-energy with in-medium nucleon-nucleon interactions at NLO employ-
ing the non-perturbative techniques presented here. Some N2LO contributions to the pion self-energy
in the nuclear medium are also evaluated for further illustration of the non-perturbative methods. This
technical report covers the methodical and technical details of refs. [1, 2].
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1 Introduction

Nuclear physics treats typically systems of many nucleons. This is a non-perturbative problem and for
most of the cases of interest the system is bound due to the strong interactions. One of the long standing
issues in nuclear physics is the calculation of atom nuclei and nuclear matter properties from microscopic
internucleon forces in a systematic and controlled way.

In the last decades Effective Field Theory (EFT) has shown as an inevitable tool to accomplish
such aim. It is based on a power counting that establishes a hierarchy between the infinity amount of
contributions so that for an order given a finite number of mechanisms have to be considered. In this
way, a controlled expansion results that allows to guess the size of the error due to the truncation of the
series. In this work we employ Chiral Perturbation Theory (CHPT) [3, 4, 5] to nuclear systems, being our
degrees of freedom the nucleons and the pions. CHPT has also the virtue of being connected with QCD
since it shares the same symmetries and breaking of them. For the lightest nuclear systems it has been
successfully applied to 2, 3 and 4 nucleons [6, 7, 8,9, 10, 11] and for such systems the previous aim has been
accomplished to a large extend. Nonetheless, still some issues are raised concerning the full consistency
of the approach and variations of the power counting are from time to time suggested [12, 13, 14, 15].
For heavier nuclei one standard technique is to employ the chiral nucleon-nucleon potential delivered by
CHPT in standard many body algorithms, sometimes supplied with regularization group techniques [16].
In present days one issue of interest is the role of multinucleon interactions involving 3 or more nucleons
in nuclear matter and nuclei [17, 18, 19].

In ref.[20] many body field theory was derived from quantum field theory by considering nuclear
matter as a continuous set of free nucleons at asymptotic times. The generating functional of CHPT in
the presence of external sources was deduced, similarly as in the pion and pion-nucleon sectors [21, 22].
These results were applied in ref.[23] to study CHPT in nuclear matter but including only nucleon
interactions due to pion exchanges. Thus, the local nucleon-nucleon (and multinucleon) interactions were
neglected. In this work we pursue to fill the gap and derive a power counting that takes the latter into
account as well. Let us stress that many present applications of CHPT to nuclei and nuclear matter
[18, 24, 23, 25, 26, 27, 28, 29] only consider meson-baryon Lagrangians. Short range interactions are
included in an ad-hoc way without any relation to free nucleon-nucleon scattering. In addition, as it is
well known since the seminal papers of Weinberg [4, 5], the nucleon propagators do not always count as
1/k but often they do as the inverse of a nucleon kinetic energy, m/k?, so that they are much larger than
assumed. This, of course, invalidates the straightforward application of the pion-nucleon power counting
valid in vacuum as applied e.g. in [23, 30, 24, 25, 26].

Our novel power counting is applied to the problem of calculating up to NLO the pion self-energy
in asymmetric nuclear matter. This problem is in tight relation to that of pionic atoms [31, 32] due
to the relation between the pion self-energy and the pion-nucleus optical potential. Despite it is an
old subject it still lacks a conclusive calculation of the pion self-energy in a systematic and controlled
expansion. For recent calculations see [23, 33, 28, 34, 30]. In particular, the issues of the pion-nucleus
S-wave missing repulsion, the renormalization of the scattering length a~ in the medium [33, 28] and
the energy dependence of the isovector amplitude [32] is not settled yet, despite the recent progresses
(23, 35, 32].

After this introduction, we derive in section 2 a novel chiral power counting in the medium that takes
into account multinucleon local interactions, pion exchanges and the enhancement of nucleon propagators.
In the following sections, up to section 7, we calculate the different pion-nucleon contributions to the pion
self-energy in asymmetric nuclear matter. We dedicate section 8 to the calculation of the vacuum and
in-medium nucleon-nucleon scattering amplitudes up to next-to-leading order. These new contributions
will be applied to the pion self-energy in the sections 9, 10 and 11, where we also give some N?LO



contributions. The sections 12, 13 and 14 provide technical details for calculations of the pion-production
box diagrams. Results for the pion self-energy are shown in section 15, including the pion mass in the
medium discussed in the subsection 15.5. Some conclusions are presented in sec.16. In the Appendices
we include various mathematical derivations used in previous sections. Appendix B offers a derivation of
the partial wave expansion on nucleon-nucleon scattering. Appendix D provides the one-pion exchange
nucleon-nucleon partial waves up to the F'—wave. The appendices E, G and H develop the calculation
of the in-medium integrals needed for the evaluations performed in the earlier sections.

2 Chiral Power Counting

In ref.[20] the effective chiral pion Lagrangian was determined in the nuclear medium with the presence
of external sources. For that the Fermi seas of protons and neutrons were integrated out making use of
functional techniques. A similar approach was followed in ref.[22] but for the case of only one nucleon.
Nonetheless, in ref.[20] only the meson-baryon chiral Lagrangian is employed. That is, if we write a
general chiral Lagrangian in terms of an increasing number of baryon fields

with ¢ denoting a generic baryon field, ref.[20] only retains L, and L,,. Based on these results ref.[23]
derived a chiral power counting in the nuclear medium.

Also in ref.[20] there was established the concept of a “generalized in-medium vertex” (IGV). These
vertices result because one can connect several bilinear vacuum vertices through the exchange of baryon
propagators with the flow through the loop of one unit of baryon number, contributed by the nucleon
Fermi seas. This is schematically shown in fig.1 where the thick arc segment indicates an insertion of
one Fermi. At least there is needed one because otherwise we would have a vacuum closed nucleon
loop that in a low energy effective field theory is not explicitly taken into account. On the other hand,
the filled larger circles in fig.1 indicate a bilinear nucleon vertex from L.y, while the dots refer to the
insertion of any number of them. It was also stressed in ref.[23] that within a nuclear environment a
nucleon propagator could have a “standard” or “non-standard” chiral counting. To see this, note that
a soft momentum (@, related to pions or external sources attached to the bilinear vertices in the figure,
can be associated to any of the vertices. This together with the Dirac delta function of four-momentum
conservation implies that the momenta running along the nucleon propagators in fig.1 just differ from
each other by quantities of O(Q). Denoting by k the on-shell four-momenta associated with one Fermi
sea insertion in the in-medium generalized vertex, the four-momentum running through the j;, nucleon
propagator can be written as p; = k + Q. In this way,

¥+ @Q; +my . ¥+ Q@Q; +my
(k+Qj)%—m% +ie Q3 +2QE(k) — 2Q;k + ie |

iDy\(py) = i (2.2)

and FE(k) = %, with m the physical nucleon mass (not the bare one). Two different situations occur

depending on the value of Q?. If Q? = O(my) = O(p) one has the standard counting so that the chiral
expansion of the propagator in eq.(2.2) is

2_90. .
iDy ' (p;) = K+ @ tmy <1 _ Q5 —2Q, -k 1 @(p2)> ' (2.3)

1
QQ?mN + i€ QQ?mN

Thus, iDy ' counts as a quantity of O(p~!). But it could also occur that Q? is O(E(k)), that is, of the
order of a kinetic nucleon energy in the nuclear medium, or that it even vanishes. The dominant term in



Figure 1: In-medium generalized vertex (IGV). The thick solid line corresponds to a Fermi sea insertion while the
filled circles are bilinear nucleon vertices from L, .

eq.(2.2) is then

KB dm
Q?+2Q; k—ic’

iDyt = (2.4)

and then the nucleon propagator should be counted as O(p~?2), instead of the previous O(p~!). This is
referred as the “non-standard” case in ref.[23]. We should stress that this situation also occurs already
at vacuum when considering the two-nucleon reducible diagrams in nucleon-nucleon scattering. This
is indeed the reason advocated in ref.[4] for solving a Lippmann-Schwinger equation with the nucleon-
nucleon potential given by the two-nucleon irreducible diagrams. The case of nucleon reducible diagrams
also occurs in the nuclear medium where there are an infinite number of nucleons.

In the present investigation, we extend the results of refs.[20, 23] in a twofold way. i) We are able to
consider chiral Lagrangians with an arbitrary number of baryon fields (bilinear, quartic, etc). First only
bilinear vertices like in refs.[20, 23] are considered, but now the additional exchanges of heavy meson
fields of any type are allowed. The latter should be considered as merely auxiliary fields that allow one to
find a tractable representation of the multi-nucleon interactions that result when the masses of the heavy
mesons tend to infinity. ii) We take the non-standard counting from the start and count any nucleon
propagator as O(p~2). In this way, no diagram whose chiral order is actually lower than expected if the
nucleon propagators were counted assuming the standard rules is lost. This is a novelty in the literature.

Let us denote by H the heavy mesons responsible because of their exchanges between bilinear vertices,
of local nucleon interactions, NN, NN N, etc, and by 7 the pions. From the counting point of view there
is a clear similarity between the interactions driven by the exchanges of H and 7 fields as both emerge
from bilinear vertices. The large mass of the former is responsible of the local character of the induced
interactions. A heavy meson propagator is counted as po.

The chiral order of a given diagram is represented by v and it is given by

Vy Vx Vp
v=ALg + 4Ly — 2L+ Y (D dj—2mi| + > L+ 3. (2.5)
i=1 =1 i=1

j i=

Here, V) is the number of in-medium generalized vertices, m; is the number of nucleon propagators in the
14, in-medium generalized vertex minus one, the one that corresponds to the needed Fermi sea insertion
for each in-medium generalized vertex. In addition, d; is the chiral order of the #;, vertex bilinear in the
baryonic fields, ¢; is the chiral order of a vertex without baryons (only pions and external sources) and
V,: is the number of the latter ones. As usual, L, is the number of pionic loops and I is the number of
internal pionic lines. Ly is the number of loops due to the internal heavy mesonic lines.

Let us note that associated with the bilinear vertices in an in-medium generalized vertex one has four-
momentum conservation delta functions that can be used to fix the momentum of each of the baryonic



lines joining them, except one for the running three-momentum due to the Fermi sea insertion. Of course,
this cannot be fixed because one four-momentum delta function has to do with the conservation of the
total four-momentum. This is the reason why we referred above only to loops attached to mesonic lines
and not to baryonic ones.

Let us now introduce another symbol, Vg. Here, we take as a whole any set of generalized in-medium
vertices that are joined only through heavy mesonic lines H. The number of all them is denoted by V3.
These clusters are connected among them by pionic lines and associated to every of these sets there is a
total four-momentum conservation delta function. In this way,

L,=I,-V,—Vo+1, (2.6)
Similarly,

Vo
Ly=In—=>Y (Voi=1)=In—-V,+ Vs . (2.7)
i=1

V,,i is the number of in-medium generalized vertices within the 4, set of generalized vertices connected
by the heavy mesonic lines. In turn,

|4 Vr
2y +2L + E=) vi+» ni. (2.8)
=1 i=1

Where V is the total number of bilinear vertices, v; is the number of mesonic lines attached to the iy,
bilinear vertex and n; is the number of pions in the ;;, mesonic vertex. F is the number of external
pionic lines.

Taking into account egs.(2.6) and (2.7) one has,

ALg + 4Ly — 21 = 4l + 21, — 4V, — 4V, +4 . (2.9)

Now considering eq.(2.8) as well,

Vv Vr
4LH+4LW—2LT:QIH—E+Zvi+Zn,~—4Vp—4VF+4. (2.10)
=1 i=1
Substituting the previous line in eq.(2.5) ,
Ve |4
v=2Ig—E+4-4Ve+ > (Li+n)+ > (di+v) —2m—V, . (2.11)
=1 =1

with m = Z;/:pl m;. We now employ that V, +m =V , and 21y = ZZV:1 wj, where w; is the number of
heavy meson internal lines for the iy, bilinear vertex. Then, we arrive to our final equation,

Vr 1% m Vo
v=A—E+Y (ni+bL—-H+) (ditwi—1)+> (bi—1)+> v (2.12)
=1 =1 =1 =1

Note that v given in eq.(2.12) is bounded from below because



as £; > 2 and n; > 2, except for a finite number of terms that could contain only one pion line but always
having external sources attached to them. Similarly

di+w;—1>0. (2.14)

For pion-nucleon Lagrangians this is always true as d; > 1. For those bilinear vertices mediated by
heavy lines d; > 0 but then w; > 1. For the term before the last one v; — 1 > 0, except for the finite
number of terms which would not have pionic lines but only external sources from L,y. For the last
term in eq.(2.12) v; > 0 and then positive. It is specially important to note that adding a new in-medium
generalized vertex to a connected diagram increases the counting at least by one unit because then v; > 1.

The number v given in eq.(2.12) represents a lower bound for the actual chiral power of a diagram,
let us call this by u, and then p > v. The reason why p might be different from v is because the nucleon
propagators are counted always as O(p~?2), while for some diagrams there could be propagators following
the standard counting. The point of eq.(2.12) is that it allows to ensure that no other contributions to
those already considered would have a lower chiral order. As a result, one can handle systematically the
so called anomalous chiral counting.

Another form of eq.(2.12) that is also useful for practical applications stems

Vr 14 |4
v = 4=E+) (ni+li—4)+> (di+twi—1)+> v—m (2.15)
=1 i=1 i=1

From these equations one can augment the number of lines in a diagram without increasing the power
counting by:

1. Adding pion lines attached to mesonic vertices, ¢; = n; = 2.
2. Adding pion lines attached to meson-baryon vertices, d; = v; = 1.
3. Adding heavy mesonic lines attached to bilinear vertices, d; = 0, w; = 1.

There is no way to decrease the order.#! We apply eq.(2.12) by increasing step by step V, up to
the order pursued. For each V| then we look for those diagrams that do not further increase the order
according to the previous list. Some of these diagrams are indeed of higher order and one can refrain
from calculating them by establishing which of the propagators scales as O(p~!). In this way, the actual
chiral order of the diagrams is determined and one can select those diagrams that correspond to the
precision required. For higher orders one should consider the other possibilities for a fixed V,.

3 In-medium pion self-energy diagram >;

Here we start the application of the chiral counting in eq.(2.12) to calculate the pion self-energy in the
nuclear medium up to NLO or O(p°). The different contributions are denoted by ¥; and are calculated
in the following sections. In terms of the pion self energy ¥ the dressed pion propagators reads

1

prep——— (3:-1)

#IOnly by adding vertices with ¢; = 2 and n; < 2 or d; = 1 and v; = 0. However, its number is bounded from above by
the necessarily finite number of external sources.



Figure 2: The diagram X; is obtained by closing the Weinberg-Tomozawa pion-nucleon interaction.

The nucleon propagator contains both the free and the in-medium piece [36],

0(&. — k 0(|k| —¢&; 1 X

K ESZfE(k‘) —Dz'e T : g(kfli)ie = B e emO — kDI - Bk (32)
In this equation the superscript ig refers to the third component of isospin of the nucleon, so that,
i3 = +1/2 corresponds to the proton and —1/2 to the neutron, and the symbol &;, is the Fermi momentum
of the Fermi sea for the corresponding nucleon. We consider that isospin symmetry is conserved so that
all the nucleon and pion masses are equal. One can use a common expression for the proton and neutron
propagators,

1+713 1—m3 1
< 5 0(& — k) + —5—0(& — |k|)> m+
1+713 1—m3 1
( 5 (k| — &) + (k| — fn)> W B +ic (3.3)
or the equivalent one,
e 2w 0K — B(K)) 006, — k) + - 20(6, — k) (3.4
kO — B(k) + ie 2 P " ' '

In the previous equations 7¢ corresponds to the Pauli matrices in the isospin space. In the same way, o’
will correspond to the same matrices but in the spin space.
Y1 results by closing the Weinberg-Tomozawa pion-nucleon interaction (WT), eq.(A.3),

ig® &k -
mi= e [ oo [ {100, - ) + L5 06 - )}

—iqo
W&'jﬁ%(ﬂp — Pn) - (3.5)

In the previous equation, and this will be the case in the following, we denote by tr (with lower case t) the
trace including only the isospin space. Instead, Tr (with capital T) will denote the trace both including
the isospin and spin spaces. Indeed, the factor 2 inside the integral corresponds to the sum over spins.
On the other hand, the proton and neutron densities are indicated by p, and p,, respectively, and are

given by
Bk &
B 3
o = 2/ Gyt = ) = % . (3.6)



Eq.(3.5) is a S-wave isovector self-energy.

4 In-medium pion self-energy diagram >

q q
N

g
% a1
a) b)

Figure 3: ¥ results by closing the nucleon pole terms in the pion-nucleon scattering.

The diagrams in fig.3 involve the one-pion vertex from the lowest order meson-baryon chiral Lagrangian
LN which is given in eq.(A.1). The expression for the diagram in fig.3 is

a gi d3k 1+73 1—73 TG -qd - q
E2 - _W/ (271')3 Tr |:< 9 9(617 - ‘k‘) + 9 H(Sn - ‘k‘)> E(k) — q() — E(k — CI) ¥+ e : (41)

In the previous equation we have not included the in-medium part of the intermediate nucleon propagator
because ¢° ~ m, > F(k) — E(k — q), since the latter corresponds to nucleon kinetic energies. In this
way, the argument in the in-medium Dirac delta function in eq.(3.4) cannot be fulfilled. By the same
token

1 1 Ek)—-Ek—q)
= - 4.2
Ek)-Ek-q)—¢ —¢ ¢ oW, (42)
and the O(q) terms contribute one order higher to NLO. On the other hand
q’>—2k-q

Ek) - Ek-q)= (4.3)

2m
The k - q term in this equation, when included in eq.(4.1), does not contribute because of the angular
integration. Then,

" 2 q2 Bk 1+ 1— o )
Y5 = 4?&20 (1 > /(27‘1’)3 Tr [( 27'39(517 —|k|) + 27'39(£n — |k|)> T Tjo'.qo'.q:| . (4.4)

"~ 2mgO®

Proceeding in the same way for Eg (which corresponds to the same expression as for ¢ but with ¢ — —¢°
and i < j), and summing both, one has

- 2 2
w  193d
ZZU = 2,];42(]0 5@']’3(/% - pn) ’
2 2\2
s —94(d®)
¥y = 4fgl mq025z’ (Pp + pn) - (4.5)

The superscript iv refers to the isovector part and it is leading order, while is refers to the isoscalar part,
which is of next-to-leading order. Both are P-wave self-energies but %’ is a relativistic correction of %",
rising by the expansion of the free nucleon propagator, and it is suppressed by the inverse of the nucleon
mass.

10



5 In-medium pion self-energy diagram >3

Figure 4: The X3 contribution stems from diagrams similar to those of fig.3 but with one vertex from the NLO
meson-baryon Lagrangian L£,n. This vertex is indicated by the square on the figure. Every diagram actually
represents two diagrams by the exchange of the initial and final pion lines.

We now consider the diagrams shown in fig.4. It should be understood that the pion lines can be
leaving or entering the diagram, similarly as explicitly shown in fig.3. In the figure the square indicates
a NLO one pion vertex from Ly, given in eq.(A.2).

We also employ the expansion of eq.(4.2) for the nucleon propagator but for this case it is only
necessary to keep the term +1/¢° because the diagram is already a NLO contribution. The calculation
is straightforward with the result,

929>
33 = W(Pp + pn)dij - (5.1)
This is a P-wave isoscalar contribution. In this case the NLO vertex is a relativistic correction to the LO
one and this is why Y3 is suppressed by the inverse of the nucleon mass.

6 In-medium pion self-energy diagram 3,

Figure 5: X, is similar to 31, but instead of the WT vertex it has a NLO vertex, indicated by the square.

We now consider the diagram in fig.5 with the NLO vertex given in eq.(A.4). When summing over
the nucleons in the proton and neutron Fermi seas one has,

_ 204 2 02 94 2
Yy = 72 2comy —q (C2+C3—8—m)+03q (pp + pn) - (6.1)

In this equation the term —28;;c3q%(pp + pn)/f? is a P-wave contribution and the rest is S-wave.

7 Pion loop nucleon self-energy

Let us consider the contributions to the pion self-energy due to the nucleon self-energy from the one-pion
loop, as represented by the diagrams in fig.6. These diagrams originate by the dressing of the in-medium

11



q 4q

qg q P
! N A 4 q, /\
a) b) c)

Figure 6: The pion self-energy due to the pion loop contribution to the nucleon self-energy in the nuclear medium
that dresses the diagrams in figs.2 and 3.

nucleon propagator of figs.2 and 3 due to the one-pion loop nucleon self-energy. As a preliminary result
we first evaluate the nucleon self-energy in the nuclear medium corresponding to fig.7.

7.1 Pion loop nucleon self-energy

s
p ;o \\ p
_»%\_>
k k—1 k

Figure 7: Pion loop contribution to the nucleon self-energy in the nuclear medium. The four-momenta are
indicated below the corresponding line in the figure.

First we consider the case of a 7%. The results for the charged pions follow immediately from the 7"
case. In Heavy Baryon CHPT (HBCHPT) the proton self-energy due to a 7° loop, see fig.7, is given by,

o0 _ g g / dPe pngr
p 2 ] @2m)P (02 —m2 +ie)(v(k — £) + ie)
2 4 v
9a d*¢ 14 B P 7
+27Tf2 SHSI,/ i E =2 +i65(v(k‘ 0)0(ky. — |k —¢]) . (7.1)

Here v is a four-vector normalized to unity, v = 1, such that the four-momentum of a nucleon is given
by p = mv + k, where k is a residual small momentum, v - k£ < m. In practical calculations we will take
v = (1,0). Instead of the full non-relativistic nucleon propagator eq.(3.2), HBCHPT implies the so called
extreme non-relativistic limit in which E(k) — 0. In addition, instead of k° one uses the scalar v- k. The
covariant spin operator S), fulfills

1 .
{8 Su} = 50wty = gw)  [Sys 8] = € VS0 (7.2)
Thus, the combination S,,S,¢*¢" that enters in the integrals of eq.(7.1) corresponds to
1 1
SuS et = 5{5,“ Sy perer = 1 ((v- 0)? - 62) . (7.3)

7.1.1 Free part

For the free part we have the integral,

a0 . 92 de (06)2 _ EQ
- i / 2m)D (2 —m2 +ie)(v(k — £) + ie) ’ (7.4)
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as follows from eqs.(7.1) and (7.3). This can be evaluated straightforwardly in dimensional regularization
with the result [37, 38],

2 2 2 2
2 gamaw (1 my gabw [1 m2 Vb (. w4 ivb
by lo - —1+log— + — [ il . 7.5
pf 64772f2< + g)\2>+32ﬂ2f2{€ Tlog g+ ZOg_w_H\/— (7.5)

where w = v -k and 1/é = 1/e + vg — 1 — log4m, with g the Euler constant and ¢ = (D —4)/2. We
use here b = m2 — w? — ie, because w = v - k = k¥ for our final choice of v = (1,0). The divergent
pieces cancel with the appropriate O(p3) counterterms of the Heavy-Baryon meson-baryon Lagrangian
[39].72 In addition, there is also the contribution of the charged pions in the intermediate pion loop.

This contribution is a factor 2 larger than for the 7° case. Adding both one has

3g5b
o = s = 32g§f2{ wf( —ww++2§ >} o

As indicated in the equation above, the same expression is also valid for the neutron case because of
isospin symmetry, that we assume is conserved.

We also need below the derivative
n 39>
pn).f _ 294 m§+w2—mm@<u wtivh | )

ow  32m2f2?

oxr .
ey (7.7

7.1.2 In-medium part

i\\ /IJ' i o ] i\{\\ /j

Figure 8: The equivalence between the diagram of fig.6a and the one-pion exchange reduction of the diagram on
the right hand side of fig.18. We show the second diagram from the left as an intermediate step in the continuous
transformation of the diagram to the far left to that on the far right.

The contribution to the diagrams of fig.6 from the second integral on the right hand side of eq.(7.1)
is accounted for by the one-pion exchange reduction of the nucleon-nucleon scattering amplitudes in the
crossed exchange diagrams (see diagrams in figs.18 and 20). In fig.8 we depict such equivalence for the
diagram a) of fig.6 and the second diagram of fig.18. An analogous result holds for the diagrams b)—c)
of fig.6 and the second diagram of fig.20. For the latter it should be understood that any pion line can
leave or enter the diagram. Since all these contributions will be calculated in sections 10 and 11 we skip
them by now.#3

#2The counterterms are 524 and él;g of ref.[39]. They do not have finite counterpart because they are proportional to the
nucleon equation of motion.
#3In ref.[1] these contributions were finally neglected at NLO because they are of higher order.
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7.2 In-medium pion self-energy diagram 3
The expression for the diagram in fig.6a is

o qO / d*k Tr{Tk<1+T3 H(Sp_‘k‘) +1_7'3 9(§n—’k’) >E7T

~ 2725k | (2n)a > K _E(k) —ic 2 k0 E(k) —ic

L+73 0(5 — ki) L—13 0(5 — k)
% ( 2 W_Ek) —ic 2 W-BEk) —ic)| " (78)
Here,
L5 S 3 (7.9)

2 P 2 "
with X7 and X7 given in eq.(7.6). Once the trace in the isospin and spin spaces is taken, the previous
expression simplifies to

0 d'k 1 R
= e | oy =g i % (7.10)

where E? is given in eq.(7.6). We have also introduced the shorter notation, to be kept in mind, that
0(& — |k|) = 0, and 6(&, — |k|) = 6, . The k" integration is done by applying the Cauchy theorem
closing the integration contour with a circle at infinity on the upper half k%-complex plane, so that the
contribution from the nucleon Fermi seas is picked up [36]. Then, we have:

iq d°k _ _.0%
S:Fefijg/w(p —Hn)a—kg
kO=FE

. (7.11)
(k)

Y5 is an isovector S-wave pion self-energy contribution. We have evaluated X5 considering it as a contri-
bution of O(p®), however it is actually O(p®). This is due to the fact that ox7%/ kY is O(p?), as follows
directly from eq.(7.7). We originally booked X5 as O(p°) because 32;{31{0 was taken as O(p), due to the
fact that X7 is O(p?) and k° = O(p?). However, this dimensional evaluation of the order of a derivative

represents indeed a lower bound and its actual order can be higher. This is indeed what occurs in this
case.

7.3 In-medium pion self-energy diagram >4

Let us consider now the diagrams corresponding to fig.6b and c. The diagram of fig.6b is given by the
expression

2 4
.94 d*k 1+7m . 1—73 _\ . ., 1473, 1—13,_
2%”——147@/%4“{( g O g ) TTIO AT A\ Ty

1 1
xr . 7.12
x (k0 — E(k) — i€)? k:o—qo—i-ie} (7.12)

The integration over kY is done as usual, picking up the pole at k° = E(k), and we also employ the
expansion of the nucleon propagator, eq.(4.2). Then,

2 2 3 m m
a [7Lel d’k 1+73 _ 1—7 _ i q 1+7m3 _ 1—7 _ oY by

14

KO=E(k)
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with X7 defined in eq.(7.9). The analogous expression for Eg can be obtained just by exchanging ¢° — —¢°
in 3. Summing both and taking the trace over isospin and spin, one has

102 2 3 2 2 3
—ig3 d &’k _\ 0%y 93 d / ak
6 f2 q0€j3/ (27T)3 ( D )ako KO- (k) f2 q02 J (271.)3( p ) f KO B (k) ( )

Y is a P-wave self-energy contribution but while the first line is of isovector character, denoted by %”,
the latter one is isoscalar and denoted by Eés . Notice that the integral in Eé” is the same as the one for
Y5 in eq.(7.11). It is also the case that %” is actually one order higher than expected, as follows from
the same reasons given above for 5. Then, both Eé” and Eés are O(p%). For the latter this is obvious
from its expressions in the last line of eq.(7.14) as the nucleon self-energies are O(p?).

8 Nucleon-nucleon interactions

The inclusion of the nucleon-nucleon interactions for the calculation of the pion self-energy takes place
at NLO, because they require at least V, = 2. As a result, for our purposes, it is only necessary to work
out them at the lowest chiral order, O(p°). First, we discuss the nucleon-nucleon interactions in the
vacuum and then consider their extension to the nuclear medium. For the vacuum case we also discuss
the nucleon-nucleon interactions calculated at O(p).

8.1 Free nucleon-nucleon interactions

We follow the standard chiral counting [4, 5] where the lowest order amplitudes for the two-nucleon irre-
ducible diagrams, O(p°) are given by the quartic nucleon Lagrangian without quark masses or derivatives
and by the one-pion exchange with the lowest order pion-nucleon coupling, eq.(A.1). The O(p°) lowest
order four nucleon Lagrangian [5] is

Lo — —%CS(NN)(WN) _ %CT(NﬁN)(NﬁN) . (8.1)

Of course, this Lagrangian only contributes to the S-wave nucleon-nucleon scattering. The scattering
amplitude for the process N, i, (P1)Nsy,in(P2) — Nay iz (P3)Nsy iy (Pa), with s, a spin label and ., an
isospin one, that follows from the previous Lagrangian is

TNN = —Cs (0535105455 Oigir Oigin — Osgs205451 5i3i25i4i1)
- Cr (58381 ’ 55452 5i3i15i4i2 - 55382 ’ 55481 5i3i25i4i1) : (8'2)
Because of the selection rule S+ ¢+ I =odd (with S the total spin of the system and ¢ its orbital angular
momentum) that holds for any possible nucleon-nucleon partial wave due to the Fermi statistics, the only
partial waves from eq.(8.2) are
N¢(1Sy) = —2(Cs — 3C7) ,
N¢(®S1) = —2(Cs + Cr) . (8.3)
In addition one also has the one-pion exchange amplitudes depicted in fig.9. Which are given by the
expression,

Tlr ﬁ (7_—;31'1 ’ 7:%4i2)(5 ) q)SSSI (O_: ) q)8482 _ (7_—;4i1 ) 7:;3@2)(5 ’ q,)8481 (5 ) q/)SSSQ
NN 42 q% +m2 —ie q? 4+ m2 —ie

15



Figure 9: One-pion exchange diagrams for the nucleon-nucleon scattering amplitude. The digram on the left
corresponds to the direct contribution and the one on the right to the exchange one.

with q = p3s — p1 and ¢’ = ps — p;1. For the singlet case (S =0) and I =0, 1 one has,

32 2 12
T”(S:O,I:O):ng 4 4 ] ,

. 2 .
Q>+ m2 —ie  q*+m2 —ic

1 _931
T"(8S=0,1=1)= e

8.4)
Q?+m2—ie o +m2 — ie

2
q? qd ]

For the triplet case (S = 1) a 3 x 3 matrix results with labels given by the third component of the
total spin, o¢, 0;, with the subscripts f (rows) and i (columns) referring to the final and initial third
components, respectively:

| -1 0 +1
HB , H _ -1 qg _\/E(QI + iQ2)C]3 (QI + i(I2)2 (85)
%% 0 | —v2(q1 —ig2)as i + a3 — 43 V2(q1 +ig2)qs
+1 | (¢ — ig2)? V2(q1 —ig2)gs 43
The Cartesian coordinates of q are indicated as subscripts. For I = 0,1 one has
—392 Bs’ s
1 _ _ _ A 3 /
2 B,
- g shs
TS =11=1)=4_ T (qeq). (8.6)

CAf2 R+ m2 e

Considering the eqgs.(8.4) and (8.6), one can calculate the corresponding nucleon-nucleon partial wave
due to one-pion exchange using eq.(B.31). Since these amplitudes are already calculated in terms of
nucleon-nucleon states with definite spin and isospin, the latter equation simplifies to

vz Y@ ¢ - —_ S
NIFE6,8) = S5 ST (Ooanles.) (mogen|E57) / APTA, (S, Y (5)" . (8.7)
0,0 p=—38

In practical calculations we shall keep all the partial waves up to and including ¢ = 3. Explicit expression
for the resulting one-pion exchange nucleon-nucleon partial waves N}’}(Z, ¢,S) are given in Appendix D.
The sum of the local contributions, eq.(8.3), and the one-pion exchange partial wave amplitudes,
eq.(8.7), is represented diagrammatically in the following by the exchange of a wiggly line as in fig.10.
It is well known [4, 5] that due to the large nucleon mass one has to resum the two-nucleon reducible
diagrams, as it is schematically depicted in fig.11. For these diagrams the nucleon propagators follow the
non-standard counting and each of them is O(p~2). The two nucleon propagators altogether are O(p~*)
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Figure 10: The exchange of a wiggly line between two nucleons indicate in the following the sum of the local and
one-pion exchange contributions.

Figure 11: Resummation of the two-nucleon reducible diagrams. This is referred in the text also as a resummation
of the right hand cut or unitarity cut.

that multiplied by the O(p*) contribution from the measure of the loop integral produces an O(p")
contribution which does not rise the chiral order and the series of diagrams in fig.11 must be resummed.
The resummation of the two-nucleon reducible diagrams makes the resulting amplitude to fulfill unitarity.
For this resummation we follow the techniques of the so called Unitary Chiral Perturbation Theory
(UCHPT) [41, 42, 43]. This allows to resum the right hand cut or unitarity cut partial wave by partial
wave (this cut is the one generated by the infinite string of diagrams in fig.11). This is different to solving
a Lippmann-Schwinger equation, as performed in many recent nucleon-nucleon scattering analyses using
CHPT [6, 7, 8, 9] following refs.[4, 5]. In this case, the scattering amplitude is calculated and afterwards
the different partial waves are obtained. UCHPT has been applied with great success in meson-meson
[41, 44, 45], meson-baryon scattering [46, 42, 47, 48, 49] and we now use it for the nucleon-nucleon case.

The master equation for UCHPT is the same independently of whether we have fermions, mesons or
both in the scattering process and can be written as [42]

TJ[(Z,E, S) = [I + NJ[(Z,E, S) . g] -t NJ[(Z,E, S) . (8.8)

This equation, derived in detail in refs.[41, 42, 50], results by performing a once subtracted dispersion
relation of the inverse of a partial wave amplitude. The latter fulfills, because of unitarity,
- m
ImTy;(¢,¢,5)"" = —ﬂéﬂ : (8.9)
4

in the CM frame and above the elastic threshold. A dispersion relation along the physical energy axis
from threshold up to infinity is written. One subtraction is needed because |q| = v2mw, with w the
energy of one nucleon in the CM. As a result of this dispersion relation one ends with the integral,

9(4) :g(B)_MiT_?B)/OOOde(k?—A—ie)]zk?—B—ie) ! (8.10)

with B < 0 so that g(B) must be real because there is imaginary part only above threshold. This integral
can be done straightforwardly with the result,

o(4) = 9(B) ~ T (VA - iy/TBT) = go — 2 (8.11)
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Note that gg is the value of g(A) at threshold, A = 0. This function corresponds to the divergent integral

>k 1
m/ o A e (8.12)

Figure 12: Unitarity loop corresponding to the function ¢ in eq.(8.12).

The previous integral, depicted in fig.12, is linearly divergent although it shares the same analytical
properties as eq.(8.11). In dimensional regularization with D — 3 one has,

dPk 1 mvA

A)=—mli = — . 8.13
9(4) "oy (2m)P k2 — A —ie e (8.13)

This result is purely imaginary above threshold, A > 0, and it corresponds to the imaginary part of
eq.(8.11). However, this is just a specific characteristic of the regularization method employed since, as
it is explicitly shown in the dispersion relation, eq.(8.10), there is always the freedom to choice any value
of the real subtraction constant g(B). On more physical grounds, we can calculate the function g(A) of
eq.(8.12) in dimensional regularization but also preserving the purely linear divergence contribution,

A 3 D
d’k 1 d“k 1 mA mv A
A) =— o373 =——F —1— .14
9(4) m/ (2m)3 k? m/(QW)DkQ—A—ie o ar (8.14)

with A a cut-off in the modulus of the three-momentum appearing only in the first integral. Comparing
with eq.(8.11) it follows that

mA
9.2
This result is the same as the one obtained by calculating g(A) in terms of a three-momentum cut-off,
eq.(E.3). In the following we take this expression in terms of A for gy and fix the former by comparing
with the nucleon-nucleon scattering data.

Next, we consider how to fix Ny;(£,¢,5) in eq.(8.8). The effects of the large nucleon mass associated
with the two-nucleon reducible diagrams corresponding to the unitarity loop in fig.12 are taken into
account by eq.(8.8), since the latter results by integrating over the two-nucleon intermediate states at
the level of the inverse of a partial wave, eq.(8.10). The imaginary part in eq.(8.9) gives rise to the right
hand or unitarity cut and this is resummed by the dispersion integral eq.(8.8). In a plain perturbative
chiral calculation of a nucleon-nucleon partial wave the previous effects are not resummed. However, the
perturbative result can be matched with the expansion in powers of g of eq.(8.8) up to the same number
of two-nucleon reducible loops. The aforementioned expansion corresponds to the geometric series

go = — (8.15)

TJI(Z7£7S) = NJ[(Z,K,S) _NJI(Z7£7S) 'Q'NJI(KAS)
—i—NJ[(Z,e, S) - g - NJ[(Z,& S) - g - NJ[(Z,& S) + ... (8.16)
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Together with this expansion one also has the standard chiral one. In this way, for the calculation of

Nﬁ?), one has to match the O(p") CHPT calculation of a nucleon-nucleon partial wave with at most n
two-nucleon reducible loops with eq.(8.16), where N is also expanded up to the considered order

n
Ny =S NP (8.17)
m=0
Here, the chiral order is indicated by the superscript. Thus, at lowest order NL(](}) (¢,¢,5) is given by the
calculation in CHPT at O(p°) without any two-nucleon reducible loop (the first diagram of the right hand
side of fig.11). At O(p) the new contribution is the two-nucleon reducible part of the second diagram in
the same figure, that for a given partial wave is denoted by Lf,ll) (€,£,5). Tt corresponds to the reducible

part of the first iteration of the one-pion exchange plus local vertices. Writing N5 = Nﬁ(}) +N§1[) +0(p?),
and matching eq.(8.16) up to order g with the sum of the first two diagrams on the right hand side of
fig.11 one has

N+ N N0 NO o) =N + L) + 0w, (8.18)
with the result
1 1 0 0
Nﬁl) = Lf]l) +N§1) g N}I) : (8.19)

Notice that in the expansion of eq.(8.16) each factor of the kernel N7 (¢, £, S) multiplies the loop function

g with its value on-shell. This is why in eq.(8.18) we have —N‘(](}) . g-N‘(](}) for one iteration of g. This result

is then subtracted to the function Lf,ll) in eq.(8.19). In this way, it is clear that the previous expansion

in the number n of two-nucleon reducible loops for fixing N}T;) implies that UCHPT takes as O(p) the
difference between a full calculation of a two-nucleon reducible loop and the result obtained by factorizing
on shell the vertices, eq.(8.16). The difference is incorporated in the interaction kernel N (¢, ¢, S), which
is then improved order by order.

At O(p?) new contributions arise which require the calculation of the irreducible part of the box in
fig.11 and the reducible part of the second iteration of the wiggly line, last diagram of fig.11. In addition
there are also chiral counterterms from the quartic nucleon Lagrangian and two-nucleon irreducible pion
loops [18, 9, 8]. If we denote all these new contributions by LFIQI) (¢,¢,9), projected in the corresponding
partial wave, one ends with

2 2 1 0 0 1 0 0 0
N‘(H) = Lf]l) +N§I) '9'N§1) +N§I) '9'N§1) - N}I) '9'N§1) 'Q'thl) . (8.20)

That is, we are just subtracting to LS2I) the two-nucleon reducible contributions obtained from eq.(8.16)
up to O(p?), in the UCHPT expansion of the interaction kernel Ny;(¢,¢,S). In the previous equations
we have been using the notation Nyj - g as if g were a matrix for the case of coupled channels. However,
since g is given by the same expression for all the partial waves it just corresponds to the identity matrix
times eq.(8.11).

The resulting Nz, eq.(8.17), is then substituted in eq.(8.8). The latter gives rise to contributions of all
chiral orders to the full partial wave amplitude T (¢, ¢, S), which is then calculated non-perturbatively.
A comparison with experimental data of a perturbative calculation of the latter, particularly for the
partial waves ¢ < 2 [18], would be not realistic because the already discussed necessity to resum the
two-nucleon reducible diagrams, fig.11.
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Regarding the issue of the large size of the S-wave nucleon-nucleon scattering lengths [12], one can
match formally eq.(8.8) with a perturbative chiral calculation of Ty;(¢,¢,S) because the latter enter
parametrically in the calculation. This procedure gives rise to values of the chiral counterterms Cg and
Cr, consistent with their ascribed O(p°) scaling, see eq.(8.24) below. Finally, we also want to stress
that eq.(8.8) is an algebraic one, which simplifies tremendously the numerical burden for in-medium
calculations.

We now concentrate on fixing the constants C's and Cr from the local quartic nucleon Lagrangian,
eq.(8.1). These constants and gg are the only free parameters that enter in the evaluation of the nucleon-
nucleon scattering amplitudes from eq.(8.8) up to O(p). We first discuss the LO result and then the NLO
one, fixing Cg and Cr by considering the S-wave nucleon-nucleon scattering lengths a; and ag for the
triplet and singlet S-waves, respectively. At O(p”) we have

_ -1
Ti(2,4,9)| . = [I +NO -g] NO. (8.21)
Note that the one-pion exchange, eq.(8.4), vanishes at the nucleon-nucleon threshold because it depends

quadratically on the nucleon three-momentum. For the amplitudes”* 1S, and 39, at threshold one has
from eq.(8.21),

~ —(Cs—=3Cr)
T('50) = 1—go(Cs—3Cr)’
T(8)) = —— s +C1) (8.22)

 1-g0(Cs+Cp)

The factor —(Cs — 3Cr) for Np1(0,0,0) is a factor 2 smaller than N (1Sp) in eq.(8.3), and similarly also
for the triplet case, because N is given by the direct term. The resulting expressions for the scattering
lengths from eq.(8.22) are

1 2A 4 /m
Qg - s CS —3CT ’
1 2A 4 /m

— ==y R 2
a; 7T+CS—|-CT (8.23)

So that
o ™ 3/as +1/ay —8A /7
57 m(1/as — 2A/7)(1/a; — 2A/7)
T 1/as —1/ay
O = ey =20 m) (1 Jay — 2A)7) (8:24)

One of the characteristics of nucleon-nucleon scattering are the large absolute values of the S-wave
scattering lengths as; = (—23.758 + 0.04) fm and a; = (5.424 4+ 0.004) fm. For typical values of A,
A > [1/ag|, 1/a;, and then |Cg| =~ 272 /mA > |Cr| = O(n3/a;/mA?). Because of the introduction of the
subtractions constant gg, the low energy constants C's and C'r do not diverge for ags, a; — co. In this way,
A is a new scale that adds to the inverse of the scattering lengths so that their sum, the one that appears
for determining the values of C's and Cr, eq.(8.24), has a natural size. Indeed, taking into account that:
i) Eq.(8.24) is the same as in the pionless nucleon-nucleon EFT, because the pion-exchange contribution

#4For general considerations the already introduced notation T 1(£,£,8) is employed. Specific partial waves are denoted
by the standard spectroscopic notation T(QS+1EJ).
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to N}? vanishes at threshold. ii) Naive dimensional analysis implies that Cg, Cp ~ 47/m@, with @ the

expansion scale for the pionless EFT because of i). It follows then that A should be comparable to @
so that @, A = O(m,). Note also that the order of Cg in eq.(8.24) is fixed by the product mA, which
is O(p°) for A = O(p) because of the largeness of the nucleon mass. In the same way that before g was
counted as O(p°) with its imaginary part linear in mp, see eq.(8.11). One has to stress that only local
terms and one-pion exchange contributions enter in the calculation of NL(](}) (¢,¢,5). This is certainly too
simplistic in order to properly describe the nucleon-nucleon interactions as a function of energy.

Figure 13: Box diagram, LSII) , from the first iteration of a wiggly line. It consists of the diagrams shown on the

right hand side of the figure with two, one or no one local or one-pion exchange amplitudes.

Let us now consider eq.(8.8) with Ny evaluated up to O(p). Thus,

7 0 1 -1 0 1
T‘H(E’E’S)‘NLO: [I+(N§I)+N§I))'9 '(N§I)+N§I)) : (8.25)

with N}ll) given in eq.(8.19). For the evaluation at this order of Cs and Cr we consider eq.(8.25) at
threshold for the 1S, and 35 partial waves, as in the LO case. The last partial wave is elastic at this
energy, without mixing with the 3D; partial wave because of the vanishing of the three-momentum.
Then, if we denote by a the scattering length of any of the S-waves, we have from eq.(8.8)

1 ImT N.
a=—-2Jr_ M L (8.26)
/{?RGTJ[ 47T1+90NJI

Particularizing eqs.(8.18) and (8.19) at threshold we rewrite N‘(](}) as —C', with the latter given by Cg+Cr

for the triplet case and C's —3C'r for the singlet one. In addition, we express lel) = —C?gg+Cl1+0y. This
rewriting is based on the fact that the box diagram, Lgll) , as shown in fig.13, consists of four contributions
with two, one and no one local vertices. The first contribution is given by —C?gq, the second by C/¢;
and the last one by /s, respectively. The coefficients ¢; and ¢y are given in terms of gy and the known
parameters m, g4 and my. ¢ is the same for the partial waves 3S; and 3D; while ¢y is different. In
fig.14 we show the values of ¢ and ¢ as a function of A in units of m,. Substituting these expressions

in eq.(8.26) one obtains

(0)
SRCLET 52)
with
Ina T 90

the O(p°) result, compare with eq.(8.23).
In figs. 15, 16 and 17 we show the LO and NLO results for the nucleon-nucleon scattering data by
employing eq. (8.8) up to |pem| = 300 MeV, with p.,, the CM three-momentum. The values of A employed
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Figure 14: Values for ¢; (solid line), ¢5(1Sp) (dashed line) and ¢5(®S1) (dashed dotted line) as a function of A. ¢;

is expressed in units of m 2.

are 90 MeV for the LO results (dashed lines) and of 90 MeV (dot-dashed lines) and 50 MeV (dotted lines)
at NLO. For the latter value the mixing parameter €; is better reproduced, while the other observables
are very similar for both A values employed at NLO. These values for A are consistent with being O(p).
For |p| ~ 360 MeV the pion production threshold opens and it does not make sense to compare with data
above this point with the simple inputs employed for N;;. In the same way, since the Fermi momentum
for nuclear matter saturation density is around 2m,, close to the upper limit of |p| shown in the figures,
an accurate description of nuclear matter requires a better description of the nucleon-nucleon S-waves.
At least an O(p?) calculation, which includes important new physical mechanisms, as non-reducible two-
pion exchanges between others as indicated above before eq.(8.20), is presumably needed. Once this is
done, a discussion on the issue of the convergence of the UCHPT expansion of Tj; for nucleon-nucleon
scattering will be in order.

8.2 Nucleon-nucleon scattering in the nuclear medium

When calculating a loop function in the nuclear medium we typically use the notation L;;, where 4
indicates the number of two-nucleon states in the diagram (0 or 1) and j the number of pion exchanges
(0, 1 or 2). In addition, we also use Lyj f, Lijm and L;j; 4, with the subscripts m and d indicating one
or two Fermi sea insertions from the nucleon propagators in the medium, in that order. The subscript
f refers to the “free” part and it does not involve any Fermi sea insertion. The subscripts f, m and d
originate because the nucleon propagator in the nuclear medium contains both a free and an in-medium
part, the last proportional to the Dirac delta function in eq.(3.2). In this way, the function g = Lyo s and
its in-medium counterpart is L1g. The former function is calculated in the Appendix E.

We use the same eq.(8.8) but now the function g is substituted by L1o. The same process as previously
discussed is then used to fix Ny in the medium. At lowest order they can be easily obtained from our
previous result in the vacuum since the only modification without increasing the chiral order is by using
the corresponding nucleon propagator in the medium, which is directly accomplished by replacing g(A)
by Lig. Note that any in-medium contribution requires V,, = 1 at least, which then increases the order
at least by one more unit, eq.(2.12). This new in-medium generalized vertex must be associated with
the nucleon-nucleon scattering diagrams of LO. The modification of the meson propagators (both heavy
or pionic ones) by the inclusion of an in-medium generalized vertex increases by two units the chiral
order. However, the modification of the enhanced nucleon propagators with one in-medium generalized
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Figure 15: 1Sy, 351, 3D; phase shifts and the mixing angle €; as a function of |p|e,. The solid lines correspond
to the Nijmegen data [51, 52]. The LO results are given by the dashed lines. The NLO ones with A = 90 MeV are
the dot-dashed lines and the dotted lines are the NLO results with A = 50 MeV.

vertex only increases the order by one unit and these contributions must be kept at NLO. This is the
same reason why X7 and g above were considered for the calculation of the pion-self energy at NLO.
It is beyond the present research to offer a complete study of the in-medium pion self-energy at N?LO
where the full in-medium NLO nucleon-nucleon interactions are needed. What we do here, for illustrative
purposes only, is to exchange the free nucleon propagators by the in-medium ones in the calculation of
the box diagram LSII) as well as in g that enter in fixing N}ll), eq.(8.19).

Then, eq.(8.8) becomes

T (0,¢,S) = [1 +N3(0,0,8) - L) g N (0,¢,5) . (8.29)
We have included the superscript i3, which corresponds to the third component of the total isospin of the
two nucleons involved in the scattering process, both in the partial wave Ty;(¢,¢,S) and in L1g. This is
due to the fact that in the nuclear medium the Fermi momentum of the nucleon and proton Fermi seas
are different for asymmetric nuclear matter. In this way, Lig,, and Li94 depend on weather one has
two protons, neutrons or a proton and a neutron as intermediate states. As a result, a nucleon-nucleon
partial wave in the nuclear medium depends on the total charge of the intermediate state. Of course,
this is not the case for the nucleon-nucleon interactions in vacuum where they only depend on the total
isospin, but not on its third component. Let us also stress that the total isospin of the nucleon-nucleon
state is a good quantum number and does not mix because of the nucleon-nucleon interactions. The
function Lqg conserves I, because it is symmetric under the exchange of the two nucleons, though it
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Figure 16: 1Py, 3Py, 3Py, 3Py, 3F; phase shifts and the mixing angle €3 as a function of |p|em,. For notation, see
fig. 15.

depends on the charge (or third component of the total isospin) of the intermediate state. This is a
general rule, all the 73 = 0 operators are symmetric under the exchange p <» n, so that they do not mix
isospin representations with different exchange symmetry properties.

9 In-medium pion self-energy diagram >.;

We now consider the evaluation of the diagrams shown in fig.18. The one on the left corresponds to the
direct nucleon-nucleon interactions while that on the right corresponds to the exchange part. We call the
sum of both contributions ¥7. It is given by similar expressions to those used for Y5 and Xg, eqs.(7.8)
and (7.12), respectively.

0 4

q d*kq e (1+7m _  1—13 _ 147 . 1—713 _
Yo = ——=¢s — T 0 + 6 |x 6 + 0
Y Sigh / (2m)4 g {T < 2 P 2 ) TNN 2 P 2 "

1
C W B) —ie)?

On the other hand,
1+ T3 1-— T3
p,NN +

ENN = En,NN . (92)
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Figure 17: D, 3Dy, 3D3, 2G5 phase shifts and the mixing angle €3 as a function of |p|e,. For notation, see
fig. 15.

Performing the .k integration as usual one then has,

d3ky (32p NN, OX, NN _>
Y7 = €i53 0, — =0, . (9.3)
2f2 J Z/ 3 8/{? p 3k? =B (k)

Here o071 corresponds to the spin of the incident nucleon. The nucleon self-energy due to the nucleon-
nucleon interactions corresponds to fig.19 and is given by the expression,

A3k
Yy, NN = Z/ 2 0(fas — |ka|)a(kioron, kooooo| Ty vl kiora1, kaooas) 4 (9.4)

«2,02

In this expression Ty is the nucleon-nucleon scattering amplitude between the indicated initial and final
states. These are characterized by three labels. The first label corresponds to the three-momentum, the
second to the spin and the third to the isospin. Note that in this equation there is a sum over all the
quantum numbers of the second nucleon. The subscript A in the scattering amplitude indicates that the
nucleon-nucleon amplitude contains both the direct and exchange contributions.

It is convenient to decompose the nucleon-nucleon interactions in a partial wave expansion as given in
eq.(B.8). In the center of mass frame (CM) one has,

AP, o1 oha | TN |p, o110000) 4 = 47 Z(Uiaésg\slsgS)(010233\31325)(m'séu!ﬁ'SJ)(ms;),uMSJ)
X YV (D) Y (D) (o ayiz|mima ) (ancgiz|mima D) x (SET)x (SLD TS (¢, 4, S) . (9.5)
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Figure 18: Contribution to the pion self-energy by dressing the nucleon propagator in fig.2 due to the in-medium
nucleon-nucleon interactions. This is called 7.
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Figure 19: In-medium nucleon self-energy due to the nucleon-nucleon interactions with the Fermi seas.

In this expression the repeated indices must be summed. The Clebsch-Gordan coefficients for spin and
isospin follow the notation (cjcacs|C1C2C3), where ¢; is the third component and Cj is its highest value.
In our case, s; = sy = 1/2 for spin and 71 = 7 = 1/2 for isospin. Y;"(n) is a standard spherical
harmonics of angular momentum ¢ and third component m. In addition, ¢ and ¢ are the final and initial
orbital angular momenta, respectively, with m’ and m their third components, in order. The coefficient

V2 0+ S+T1= odd
X(SET) = { 0 ¢4+ S+1= even (9:6)
The nucleon-nucleon scattering partial wave amplitude is denoted by Tf’[(ﬁ’ ,0,5), with J =0+ 8§ the
total angular momentum and p its third component. [ is the total isospin and i3 is its third component.
Although the partial wave amplitude do not depend on i3 in the vacuum they do in the case of asymmetric
nuclear matter because the Fermi momenta are different for protons and nucleons. Let us recall that
because of parity the total spin S is conserved. The partial wave decomposition of the nucleon-nucleon
amplitudes is derived in detail in Appendix B.

While eq.(9.5) is given in the CM of the two nucleons involved in the scattering, egs.(9.1) and (9.4) are
given in the nuclear matter rest frame. This implies that one must take the boost from the former frame
to the latter in order to use eq.(9.5). However, as we show in Appendix C, up to two chiral orders higher
in the counting one can use the nucleon-nucleon scattering amplitude as a Lorentz invariant, similarly as
for the meson-meson ones. Thus, we can directly use eq.(9.5) in eq.(9.4). Let us recall that our calculation
is up to NLO O(p®) and these relativistic corrections are of O(p”).

From eqs.(9.3) and (9.4) one has to sum over the spins o and o2. The fact that both the initial and
final nucleon-nucleon states are the same implies an important simplification in the equations, as we show
now. First, if we place 01 = o] and o2 = ¢/, and sum,

> (010285]51525") (010253]51525) = G5y 5,055 - (9.7)

01,02
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Thus, independently of whether S is conserved in the nucleon-nucleon interactions, when summing over
spins for the evaluation of the pion self-energy the equality of both the initial and final nucleon-nucleon
total spins results. The sum over the third components of orbital angular momentum and s3 in eq.(9.4)

results,
_2J+1

2w+

> (msaull’ S.T) (mssp|ST)YE (B)Y,™ (B)*

m/,m,s3

See Yy 1Y ()” (9-8)

Here we have made use of the symmetry properties of the Clebsch-Gordan coefficients [40],

2J+1
200+ 1

1/2
(m/ssp|l'SJ) = (—1)%+9 ( ) (—sapm/|SJTLC) (9.9)

and similarly for (mssu|¢SJ). Because of the addition theorem for the spherical harmonics one has,
1 , 1
— E Y P =—. 9.10
Then, eq.(9.8) can be written as

2J +1
v

N (mssplt’ST)(mssultSTYE (B)Y™ (D) = o

m/,m,s3

(9.11)

The sum of partial waves that matters for eq.(9.1) can be expressed as,

> alp o1a10200|Tnn[p, o1a10902) 4 = Y (20 + DTF (4,6, 9)x(SU)* (araziz| L b)* . (9.12)
01,02 I7J,€7S

Here we have taken one step more, since we have equalized also I' = I of eq.(9.5). This can be done
because after summing over the third components of total spin and orbital angular momentum the labels
¢, S diagonalize. Hence, because of the rule £+ .S+ I =odd, I must be the same as well for the initial and
final nucleon-nucleon states. Let us remark that in an asymmetric nuclear medium I = 0 and 1 could
mix for i3 = 0, though in our present problem this does not occur.#>

Inserting the result of eq.(9.12) in eq.(9.3) we are left with

- 0 d3k‘ d3k aTJrl iis
21 = gpzen [ Gy | (o 227+ DS {% — (e, — o) ZILELS)

(2m)3 ) (2m)3 b Ok
T, 0, S
— 0(& — k1 |)0(&n — ’kﬂ)%)} . (9.13)
1 K=E(k;)

This is a S-wave isoscalar self-energy contribution. The integration over two Fermi seas is discussed in
Appendix F.

10 In-medium pion self-energy diagram >g

We now consider the diagrams in fig.20. They are similar to those of fig.6, but now the nucleon self-energy
is dressed due to the in-medium nucleon-nucleon interactions. An equation analogous to eq.(7.14) for g
can be used here but now with ¥, vy and ¥,, yn instead of 3 (of course, Yg has no a free term),

#5In all our calculations the i3 = 0 operators are symmetric under the exchange p < n, so that they do not mix isospin
representations with different exchange symmetry properties.
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Figure 20: Contribution to the pion self-energy by dressing the nucleon propagators in fig.3 due to the in-medium
nucleon-nucleon interactions. Every diagram actually represents two diagrams by the exchange of the initial and
final pion lines. This is called Xg.

—ZgAq dBky (0Sp NN, OSnu NN,
dig = i 0 — 0
8 2]02 5J3Z/ 3 ak(l) p ak? n K= B(ky)
gA q? d3 k‘1 _ _ _
f2 02 ljZ/(27T)3 2pJVNap +En,NN9n) : (10.1)
o1

The expression for g vy is given in eq.(9.4). When introduced in eq.(10.1) and performing the sums
over spins and third components of orbital angular momentum, as already done for 7 in section 9, see
eq.(9.12), one is left with

_ —ZgAq d3k1 / d3ks 5 B B OTHL(¢,0,5)
B g e [ i | Gy S ST D06 — Bl ) g

oT e, ¢, 8
~ (6~ Ol - |k2|>%}
! k)=E(k1)

2 2 3 3
- / % / % 320 +1) (006~ BaDoley ~ Dl (ST (16,
0(En — [KaB(En — (ko)X (SEL TS (€,0,5) + 6(6, — ki )O(En — [k

x [x(SC0)*T9(¢,¢,8) + x(Se1)*TH,(¢,4,9)]) . (10.2)

Yg is a P-wave self-energy contribution that comprises both a part of isovector character, the piece
proportional to €;;3 that we denote by Y2 and another of isoscalar type, proportional to di;, and denoted
by Eés.

Egs. (9.13) and (10.2) involve the knowledge of the derivative of the nucleon-nucleon partial wave
amplitude with respect to the energy kY. Instead of the variable k! we use the variable A, eq.(E.4), which
is also the argument of Ly and use the relation

o 0 B
_ = — = B — 1 .
ok~ oky ~ oA (10.3)

Let us rewrite eq. (8.8) as
TJ]:NJ[—NJ]'Llo'TJ] . (104)
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Taking the derivative to both sides of the previous equation

OTyr _ ONyr  ONyg dL1g 0Ty

= «Lio-Tyr — Nyy - -Tyjr— Nyr-Lig- —— . 10.5
9A A ga Lo Tor = Nyr—2=Tyr = Nop - Lo - —7 (10.5)
It follows then
Ty 1 ONj1 1 ONj1 1 1 OLip 4
8A :DJI a—A_DJI 'a—A'Llo'DJI 'NJ[—DJI 'NJ['a—A'DJI 'NJ] 3 (106)
with
D%.(0,6,8) =1+ N%(0,¢,8)- LY, . (10.7)
Here we have shown the explicit dependence of D j; on all the discrete indices. Eq.(10.6) can be simplified
by taking into account that D j; and N j; commute and then writing L%-NJI [I + Nyg - Lif’o] = I—D;Il.
Then,
g1 ONjr o 0Ly

At LO the previous expression is

0Ty O (0)y29L10 O
oA LO:DJI ’ _(NJI) A -Dyr (10.9)
with
DY) =14+ NY . L. (10.10)
We have taken into account that
oN'Y
—ab=0. (10.11)

as it is clear from eqs.(8.2) and (8.4). At NLO eq.(10.8) reads

9T _pt a(N‘(I(}) +N§11)) (0) 1)\29L10 (1)1
OA NLO_DJI A _(NJ] +NJ[) A - DYy , (10.12)
where
DY) =1+ (N + N§)) - Lo = D) + NS - Lo . (10.13)
Expanding eq.(10.12) and neglecting terms of O(p?)
1 _ nnt aLflll) 1) 0 9L1o 1)~1
0A |yo 71 |04 {0 | o (10.14)

Where we have used the standard notation {B,C} = B-C + C - B.
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Figure 21: Diagrams Y9 and Yj¢ for the pion self-energy in the medium involving the pion production in one
intermediate loop. Then, this elementary process is dressed by initial and final state interactions as indicated by
the iterative nucleon-nucleon interactions.

11 Non nucleon self-energy contributions with V, =2 (3¢ and X))
and cancellation of the isovector terms

In this section we start the calculation of those contributions that originate from the diagrams in fig.21
where a pion scatters inside a two-nucleon reducible loop. This loop has to be corrected by initial (ISI)
and final (FSI) state interactions as denoted in the figure by the ellipsis which represent iterated nucleon-
nucleon interactions. This iteration is the same as occurs for the nucleon-nucleon scattering in the nuclear
medium, see fig.11. The “elementary” nucleon-nucleon interaction Ny is dressed by the iterative process
which gives rise to eq.(8.8), with N;; multiplied by the inverse of the matrix Dy;. In this way, if we
denote by £;7(¢, ¢, S) the elementary partial wave for a generic “production” process, F;(£,¢,S), then
FSI dress it so that

Fy1(0,6,8) =D} (E,0,S)-&50(0,0,8) . (11.1)
The matrix Dy is already known by the study of the nucleon-nucleon interactions up to some order.
On the other hand, &5 can be fixed following an analogous process to that used before for determining
Njr in section 8.1. In this way, f‘(;}) is determined by expanding eq.(11.1) in powers of Lip up to LY,
and then compare with a full CHPT calculation up to O(p#*") with at most n + 1 two-nucleon reducible
diagrams. Note that we have written p+ n and n + 1 because for our present purposes the basic process,
made up by a two nucleon-reducible loop with the two pions attached to one nucleon propagator, starts
at O(p~1), so that p = —1, and it implies already one two-nucleon reducible loop. Were the basic process

a tree-level one then instead of n + 1 one would have n. In addition, fig.21 also implies not only FSI but
also ISI. Then, instead of eq.(11.1) we have

Hy(0,6,8) =Dy (0,0",S) - &51(¢", 0, S) - D1 (€, ¢,8) . (11.2)

The disposition of the indices in this equation can be easily deduced as follows. The chain of processes
in fig.21, already projected in partial waves, can be schematically written as

> SulliiSje (11.3)

i7j

with II; ; the production process and S the evolution operator. Now,

S = I+i%T - I+i¥[[+ Ny L3 Ny = I+i%Nﬂ- I+ L3 Ny~ (11.4)
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where the last step follows because T}P’I(Z,E, S) is symmetric under the exchange ¢ « /, the same as
Nyi(4,¢,8) and L3 Equivalent forms of the terms on the right hand sides of the last two equalities in
eq.(11.4) are, respectively,

41 . m . m . -1
S = [I + Ny - Llfb} (I+Ny L3 +¢2—5le) — (I+L% Ny +¢2—5le) : [I L NJ,] . (11.5)
Incorporating these last forms for S into eq.(11.3) one has
S T+ Ny LS8 Ty [T+ L§3 - Nyt ™ e
ij
=Y D3N, 8) T DS (.6, S)
i7j
- ZDﬁiil(aZas) ﬁl] D3?71(¢77€7 S) ’ (116)
i7j
as in eq.(11.2).
The LO result requires to employ DS(}) and to calculate the two-nucleon reducible loop to which the two

pions are attached by factorizing on-shell the nucleon-nucleon scattering amplitudes. We use the notation

Df;?m =1 +N§7});i3 -Llfo with n the chiral order. Recall that UCHPT treats as O(p) the difference between

a fully calculated two-nucleon reducible loop and the result obtained by the factorization on-shell the
nucleon-nucleon vertices, as discussed in section 8.1 after eq.(8.19).

SOI) = —(Nﬁ))z -DLy ,
—1 —1
Hyllpo=DY) &) -DY) . (11.7)

We give below explicit expressions for DLjg in egs.(11.17) and (11.21).

\ / \ / \ /
\ / \ / \ /
\ / \ / \ /
®
exact + fact exact + exact fact

a) b) c)

Figure 22: Diagrams that contribute for the calculation of 5(11[) Those two-nucleon reducible loops that contain
the remark “exact” must be calculated exactly in the EFT, while those with the work “fact” must be calculated
with the factorization on-shell of the pertinent vertices. The filled circle in the figure indicates that the pion-nucleon
scattering process contains both the local and Born terms, as explicitly indicated in fig.21.

At NLO one has an extra two-nucleon reducible loop. Expanding the D;} matrices in eq.(11.2) up to
one Lig and &1 up to O(p) it results

e +€) —oND Ly (11.8)

We now match the previous equation with the result of fig.22. In this figure we have included inside
each loop the remarks “exact” or “fact” according to whether the loop is calculated exactly or factorizing
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on-shell the nucleon-nucleon vertices. The filled circle refers to the pion-nucleon scattering process that

contains both the local and Born terms, fig.23. We denote by LSII) the two-nucleon reducible loop without
pions calculated exactly in CHPT and that occurs in figs.22b and 22c¢. There is also the new contribution

of fig.22a whose exact calculation is denoted by DLSII) . The result is
(1) (0) (1) (1) (0)
DLy; — N7 -DLyg-Ly; — Ly - DLyg- Ny . (11.9)

The equality of eqs.(11.8) and (11.9), taking into account eq.(11.7) for 55()[)’ implies that

O el) —oNG Ly ) = ~(N$)? DLy +2NT) - Lyg - €5 + DLY)
—LY) DLy NY) = N§) - DLy - LG . (11.10)

The last two terms in the previous expression correspond to the diagrams fig.22b and c¢, in order. Sub-

stituting eq.(11.7) in 2N§(}) - Ly - 550} one has

e + €5 = pLb) — {15 + (NI9)? - Lao, NS} - DLy (11.11)
In the last term we have the combination LSII) + (Nﬁ(}))z - L1g which is O(p) in our counting because
it corresponds to the difference between an exact calculation of a two-nucleon reducible loop and that
obtained by factorizing the vertices on-shell. The other contribution to 551} is given by DLSD — S()I), as
follows from eq.(11.11), that is also O(p) by the same token. Finally, let us note that in the previous
expression the two pions are attached to the loops DLSII) and DLqg, while the rest of terms originate
because of nucleon-nucleon scattering.

Since we are concerned with the calculation of a pion self-energy this implies that the initial and final
pion is the same. As a result, the nucleon propagator before and after the filled circles in fig. 22 is
also the same and then it appears squared in the corresponding two-nucleon reducible loop. Instead of a
nucleon propagator squared we write,

{ 0(§ — [p1 — k) 0(lp1 — k| - &) ]2
p?—k?—E(pl—k)—ie p?—k?—E(pl—k)—i—ie
_ 9 (& — |P1 — k|) 0(lp1 — k[ — &)
0z p?—i—z—k?—E(pl—k)—ie p?—l—z—k?—E(pl—k)—i—ie .0
0 1
== 21id(p) + 2 — kY — E(p1 — k . 11.12
- [p9+z—k?—E(p1—k)+z'e+ mid(p) + 2 — k) — E(py ))LZO (11.12)
\Qq /q q, +a
4 . Q.
k \\,L. //j k ‘7//4 \\Z
B — P B —

Figure 23: Nucleon pole terms in pion-nucleon scattering. The lowest order pion-nucleon vertex is given in
eq.(A.1).

The filled circles in fig.22 consists of a WT pion-nucleon vertex, eq.(A.3), and of the pion-nucleon
scattering Born terms shown in fig.23. Its sum is

g0k <9_A > { TI7(5q)(Fq) N 7't (Fq)(Fq) }
227" 2f) " +p] -k — E(p1+q—k)+ie —q0+p?—k‘?—E(p1—q—k)+i(€ )
11.13
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We do not include the in-medium part of the nucleon propagator because for ¢° = O(m,) the argument
of the Dirac delta function in eq.(3.2) is never satisfied as m, >> O(nucleon kinetic energy). For the
same reason, when performing the k° integration in the loop the poles at k% = p? F ¢°, resulting from
eq.(11.13), are not considered because the nucleon propagators will not be any longer of O(p~2) but
just of O(p~!) (standard counting). A contribution two orders higher would then result. Once the k°
integration is done the latter acquires from eq.(11.12) the value z + p{ — E(p; — k) + ic from the free
part of the propagator by applying the Cauchy integration theorem and closing the upper &% complex
half-plane with a infinite semicircle centered at the origin. On the other hand, the term proportional
to the Dirac delta function fixes k° to z + p{ — E(p1 — k). The integration on k" for the evaluation of
the two-nucleon reducible loop is analogous to the one performed in Appendix E to calculate the Lqg
function with z = 0. The point is that Lo only depends on the energy of the external legs through the
variable A = m(p? + p9) — a2, defined in eq.(E.4), that in turn only depends on the total energy. As a
result, when the derivative with respect to z acts on a baryon propagator not entering in eq.(11.13) we
can take instead the derivative

OLiyy _ OLigy _ OLgwy _ 0Ly
0z oY 0A oS

(11.14)

Taking into account the chiral expansion of the nucleon propagator involved in eq.(11.13) the pole terms
in this equations give rise to

2 2 2 2
9a\" 9 i i i .9ad 5
<ﬁ> ? ( - T]TZ) = Z—2f2 ?52‘]‘]@7 5 (1115)
that has the same structure as the WT term. Their sum is
. 0 2
1q k : . 2 q
——= Ke&irT" with K=1—g3—= . 11.16
2f2 Y A 002 ( )

Thus, employing the latter vertex allows to discuss simultaneously all the diagrams in fig.21 for the case
when the derivative with respect to z, that stems from eq.(11.12), does not act on the baryon propagators
in the Born terms of eq.(11.13). Regarding the antisymmetric tensor in eq.(11.16) for the 7% vanishes
because here i = j = 3. For the 7% 4 and j can be 1 or 2 and the surviving contribution is proportional
to 73. This isospin matrix gives +2 for i3 = +1, —2 for i3 = —1 and vanishes for i3 = 0. Notice that the
pions are attached not only to the baryon 1 in the loop, as represented in eq.(11.12), but also to the other
baryon and both contributions sum symmetrically. As a result we can rewrite eq.(11.7) for this case as

0 2 i3
0 .mq q’\ . 0).0OL
i(ll)nv = _Z—f2 (1 - 9,24?> i3€ij3 [—(N‘(H))2 6/110 , (11.17)
0
so that
_mq° 2\ oL
DLlO;iv = —Z—fg <1 — g%%) 2361']'36—/110 . (1118)
0

Notice that in eq.(11.17) the term between brackets is the same as the one in eq.(10.9). In the previous
1)

equations we have included the subscript ¢sv given their isovector character. In the same way for DL};
one has

0 2 (1)sis
L _ _.mq 50 q”\ . oLy,
DLJI;iv =t 72 <1 - QA—QS> 13€453 9A (11.19)
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which corresponds to eq.(11.17) but substituting the term between brackets With the nucleon-nucleon
3

vertices on-shell, by its exact calculation. By applying eq.(11.11) we can fix § Il
and (11.19).

We now consider the case where the derivative with respect to z from eq.(11.12) acts on the baryon
propagator involved in the Born terms of eq.(11.13). For that one has to take into account that kY =
p{ + 2z — E(p1 — k). The term E(p; —k) — E(p1 — k4 q) can be neglected when summed with ¢° so that
the derivative with respect to z of eq.(11.12) gives rise to the isoscalar contribution

in terms of egs.(11.17)

9,4 q

22y
For any 73 the spin operator just gives rise to +2 1nstead of 2i3 as in the isovector case. In this way,
we can use egs.(11.17) and (11.19) substituting the vertex of eq.(11.16) by eq.(11.20) and removing the
action of the derivative md/0A. Thus,

(11.20)

. gAq 0)\2 71
5JI 1S f2 5 |: (NJI) LZIPE] ’
q
DLyois = ?fé i L8
n gAq (1)
DLy, = g S0 LG (11.21)

Here we have included the subscript is given their isoscalar character. It also allows us to distinguish
this case to the previous one of isovector type.

Now, we proceed to obtain the expressions for the pion self-energy corresponding to fig.21 as a sum
over partial waves, similarly as for X7, eq.(9.13), and X3, eq.(10.2). For our present diagrams we have to
correct by IST and FSI employing eq.(11.2). Next, we have to sum over the two Fermi seas and we take
also into account the simplification analogous to eq.(9.12) after summing over the quantum numbers of
the Fermi seas. Additionally one has to include a symmetric factor 1/2 given the symmetry under the
exchange of the two external lines when they are finally closed. The isovector and isovector contributions
from the diagrams of fig.21 are denoted by g + E’f() and Eilso, in that order.

The contributions at lowest order for these self-energy contributions employ 550}, eqs.(11.17) and
(11.21). The following expressions result

0
; . mq 2q

S+ 20) = iegm (1

( 9+ 10)LO 1&ij3 212 < gAq2>

Bk [ Pk OL}! :

1 2 2 1 —_— 10 . D(O)=+1 —1
%X(Se )7(2] + )/(277)3/(277)3 011 9A <[ g
OLig
0A

(N2 (D)L — oz T DL (VD)2 [Dg?;—l]—l) : (11.22)

where

i =+1 0(& — [ki])0(&p — |kao|)
0, =9 3=0 0(& - \kl\)a(& — |kal) (11.23)
ig=—1 6(& — [ki[)0(&n — [kal)

with & = min(&p, &,) and & = maxz(&p,&,) as in Appendix F.

939> ki [ ke 0o [ a(0)y2 (0)sis 11
ol 0 = 955 %:SIZ X(SED2(2T + 1) / o | Gyt DS (V)] - 15

(11.24)
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where we have omitted the arguments (¢,¢,5) in both DS()I);iB and N}?. As usual the chiral order is
shown as a superscript in the corresponding symbols. From the previous expression it is clear that ij
is at least O(p°), one order higher than Xg + X%

Including those contributions to g + %1 and X% up to one more order, DL(Ill) and &7 = —|— § J 17
eq.(11.11), must be employed. The input functions DL(I) is given in eqgs.(11.19) and (11.21) for the

isovector and isoscalar cases, respectively. In the same order the also needed function DL can be found
in egs.(11.18) and (11.21).

3 3
3 x(se) (2J+1)/é7p;,,/é7p;

0
(29 + Zl%)NLO:_Zgijgz 2 <1 g4 2>
f %/ jus

——(pWitt 8L(1)+1 1);+1 0 o\ OLfy 1)i+17—
-[% (D3 ( S T R P LR NG | | - D

L 1. aL( )i—1 B B 8L71 L
-0 [Dflll)7 1] - (éjiil N {Lﬁ(fllx ' + (Nf,?)2 : Llol,Nﬁ(})} ' 8;10 ’ [D§11)7 1] ! )

(11.25)
is _ 929> dpr [ By, (1)is—1
10/NLO — ]2f2 (2] %;X 551 2J—|— 1)/ ( ) / (271‘)3 92‘3 [DJI 3]
1)1 1);4 0 i 0 i 1);i31—
(LG = {5 D Ly N S 23) (DS (11.26)

In ref.[1] we established that at O(p°) all the contributions to the pion self-energy involving nucleon-
nucleon interaction (V, = 2) vanish. This implies that the contributions from figs.18, 20 and 21 must
vanish at this order. The argument followed in ref.[1] was a general one without any mention to a specific
process for resumming and evaluating nucleon-nucleon interactions. We now show that UCHPT fulfills
this requirement. For that one has to substitute in the expressions for X7, eq.(9.13), and ¥, eq.(10.2),
OTy1/OA and check that their sum cancels with X9 + X%. At leading order the previous derivative is
given in eq.(10.9) and then

0 2 3 3
iv _ ..y 29 2 d°ky / d’ka [ (0411
(Zr+3¢) 0 = Z’5113_2]02 <1 QA—q(%) E x(Se1)”(2J + 1)/ (2m)3 | (2m)3 [9+1 Dy

JL,S

oLy 1 _ 1 oL} 1
AR R e e e B T N e

(11.27)

This equation is the same as eq.(11.22) but with opposite sign so that the cancellation takes place.
We also show this cancellation between the isovector contributions with V), = 2 for one order higher,
O(p%). In this case we substitute in eqs.(9.13) and (10.2) the derivative dT;;/0A at NLO given in
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eq.(10.14) with the result
0 3 3
by by =13 —m | 1 — £1)7(2 1 —
(554 58) w0 = g gAq2>JZwX(S rer e [ s [

—peiyr (985 - oL} 1y
[9 D] < T AL v L N ) S

0
ey [(OLS) T (1);i-1 02 -1 v OLig (1)i-1y-1
—0-1 Dy 94 {LJI + (Nj7 )™ Ly, Nyp } 94 |- Dy ] )

that exactly cancels with g+ %% calculated up to O(p®), eq.(11.25). In the previous expression we have
replaced N§ I) by its explicit expression in terms of L( )
at O(p°) because it involves a precise balance between loops calculated exactly or factorizing vertices as
required in fig.22. For comparison we give here the isoscalar expressions Egg

Notice that this cancellation is less trivial than

gad’ &’k Bhy o (0)isr
flio =~y 3 SN+ [ s [ oo NG (11.29)
D o5 T
ES‘NLO: 132?22229( S@I 2J+1)/( ) /(27‘() 6i3 [DSI) 3] 1.<N§I+N§1> .
JL,S 1,i3
(11.30)

For the calculation of the diagrams in fig.22 one has to recall that the exchange of a wiggly line
corresponds to local plus one-pion exchange terms, as indicated in fig.10. When the nucleon loop to
which the two pion lines are attached includes only nucleon-nucleon local vertices, we then have 17y and
Ty, for the isovector and isoscalar cases, respectively. When one of the nucleon-nucleon vertices in this
loop is due to one-pion exchange then 775 and Ti3 result. Finally, when both vertices are due to one-pion
exchange one has T4 and T15. We denote by 71, J1(€,£,5) the resulting partial waves for Ty, at that
order. Summing over the previous partial waves it follows that

DL}, = Tii+ Tis + Tis - (11.31)

Comparing with eq.(11.21) it is straightforward to determine L( ). The explicit calculations of the box
diagrams 719115 and their partial waves 719—715 will be the toplc of the following three sections.

12 Explicit calculation of T, and T3,

In this section we evaluate explicitly T and 771 up to and including O(p%). The basic needed input is
lel) since it enters for fixing N‘(Ill) and 531[) In order to illustrate with explicit calculations some steps
introduced in the derivations of the previous section we evaluate explicitly the required two-nucleon
reducible loop in the nuclear medium with the pions attached to it corresponding to fig.22.

We first consider the two-nucleon reducible loop with only local vertices, fig.24. For the isovector case

the derivative with respect to z from eq.(11.12) acts on a nucleon propagator not entering in eq.(11.13).
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q q
P8 A

Figure 24: Two-nucleon reducible loop with only local vertices. The free part of the in-medium nucleon propagator
in eq.(3.2) is indicated by a thin line while the in-medium part, proportional to the Dirac delta function, is denoted
by a thick line.

With the four nucleon local vertex of eq.(8.2) we then have for T,

Tyo = — ”gojf;j’“ {C5 (Bur, 1000 30mrodirs = Sau, 1300 admriS00) + Cr (Fa, aGap3Omrodire — G 13Foadmidro) }
x 7k i / ﬂS(o p1—k)S(t,p2 + k) x {Cs (0a,,a0q B89mo0rt — OaynB0a aOmt0eo)
o) | @nt | oo i
+Cr (5’aam6’5w5m05& — 6’5am5’aal5mt5go)} . (12.1)

With S(o,p1 — k) the nucleon propagator with flavor index o and four-momentum p; — k, and similarly
for S(t,p2 + k). The spin indices are indicated with Greek letters. The momentum integration in the
previous equation is the same as for the function Lo, evaluated in Appendix E. This function only
depends on the energy of the external legs through the variable A, defined in eq.(E.4), so that eq.(11.14)
holds. In this way, after some straightforward algebra one can write

ikg ez OLY

TlO = T]@m oA [Cg‘(sam/améazzag + C%(gam/ao_:ayﬁ)(o_:aamo_:ﬁag) + 2CSCT0_:am/am0_:al/a[]
X <5£’€T§1’m + 5m’m7-;;£) - [Cgéam/agéa[/am + C%(Eam/ao_:aelﬁ)(&aagatﬁam) + QCSCT&am/ag&aezam]
x <5m/ﬂ,§m n 5g/m75ﬁ) } (12.2)

after taking the derivative one has to fix A — p?. This equation contains both the direct and exchange
terms, the latter corresponding to the last contribution between squared brackets preceded by a minus
sign. However, as explained in eq.(B.31) the direct term is the only one needed to evaluate the different
partial waves. Notice that since Lif’o is pure S-wave, because it only depends on A and o2, eq.(12.2) only
contributes to the partial waves 1Sy and 2S;. We work out now the spin and isospin projections of the

direct term in eq.(12.2) with the result

S=0 S=1
P 1 1 12.3)
GoromBapar  —3 1 :
(0_:am/a0_:o¢y6) (O_:aamo_:ﬁag) 9 1

As it should, we have the combinations (Cs — 3C7)? and (Cs + Cr)? for S = 0 and 1, respectively.

The isospin projection corresponding to the operator (53/37';:’1,”1 + 5m/m7'£3,£), which is the relevant com-
bination for eq.(12.2), is 2 for i3 = +1, —2 for i3 = —1 and 0 for i3 = 0, which excludes I = 0 altogether.
Keeping only the direct term in eq.(12.2) we then have

. 0 i3
s . UK €53 2 OLT}
Tll(g],d = ZgT(CS — 3CT) 814 . (12.4)
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In this equation the subscript d indicates that we are keeping only the direct contribution.
Next, we consider the isoscalar contribution 7; 4 making use of the vertex in eq.(11.20). Instead of
eq.(12.2) one has now

2 2
s _ 9% lal” L L . .
lef = I;;;L; szb {[Cg’éam/améaelag + C%(Uam/aaayﬁ)(o'aamo-ﬁae) + 2CSCTO-O{m/O{mO-O{[/O{g:|
0
X 200 00m/m — [Cg’éam/agéa[/am + C%(gam/agazlﬁ)(o_:aaggﬁam) + 2CSCTO_:am/ag5a4/am] 25m’£6€’m}

(12.5)

The spin projection is the same as before, eq.(12.3). However, the isospin operator now is different and
for the direct term just corresponds to twice the identity operator. Then, we always have 42, for ig = +1,
0. As a result

2 2

T, = f’fg‘;‘g (Cs + (48 — 3)Cp)2LE, . (12.6)

13 Explicit calculation of Ty, and T3

We now consider T1» and 773 when one-pion exchange vertex and one local vertex happen in the two-
nucleon reducible loop at which the two pions are attached. Similarly as in the previous section, we start
by considering the isovector case. The pion can be exchanged between the final two nucleons, fig.25, or
between the initial ones, fig.26. They are denoted by Tlf2 and TY,, respectively.

Figure 25: Two-nucleon reducible loop with one local and one-pion exchange vertices between the final nucleons.
The free part of the in-medium nucleon propagator in eq.(3.2) is indicated by a thin line while the in-medium part,
proportional to the Dirac delta function, is denoted by a thick line.

Figure 26: Two-nucleon reducible loop with one local and one-pion exchange vertices between the initial nucleons.
The free part of the in-medium nucleon propagator in eq.(3.2) is indicated by a thin line while the in-medium part
is denoted by a thick line.
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a) b)

Figure 27: The internal four-momenta and discrete indices are indicated on the two figures. The figure on the left
corresponds to T1f2’a and the one on the right to T1f2’b. Note that the final pions are exchanged in T12’b with respect
to /5"

Taking into account the labelling of four-momenta in the internal lines, given in fig.27a, and the vertices
of eq.(8.2) and (A.1), one has

0 2 4
Kq €ij3 [ ga k| S
T1f27a = 2f;] (ﬁ) / (27T)4 {Uam/a : rTgoTﬁl/oT;t OaupB - I‘} {CS((Saozm 5[304[ OmoOet — 50404@ 56am 5mt5€o)
1

+ CT((Smo(SZt&aozm : 0_:60:@ - 5mt5€oo_:6am : 5:04044)} S(prl - k)zs(tap2 + k)ﬁ ) (131)
T4 —mz + 1€

where repeated indices are summed and 7 = p} —p; +k from fig.27a. In the previous equation, S(o, p; — k)
and S(t,p2 + k) are the in-medium nucleon propagators, (3.2), with isospin indices o and ¢ and four-
momenta p; — k and ps + k, respectively. Instead of keeping S(0)? we take — 95(0)/0z|,_,, as done in
eq.(11.12). On the other hand, for the pion propagator we neglect its dependence on 73, since it is O(p*),
while r? is O(p?). Then, the energy dependence enters in Tlf2 similarly as in Lig and the derivative is
taken with respect to the variable A, analogously to eq.(11.14). Then, it results

0 2 4
KQ €ii3 g4\~ mo d*k o o . . o o

7e (ﬁ) o | amy1 ULCsOaan 0)Faya, x) + Cr(Ga o 1)(Fayp ) (Faam * Fhor)]

X Tr?;LmFm’mFﬁ’K - [CS(&am/Oég : r)(o_:oz[/ozm : I‘) + CT(&am/a . r)(&a[/ﬁ . r)(o_:ozag : &ﬁam)] TZ?)ZFm’E : 7_:K’m}

x S(m,p1 — k)S(¢,p2 + k)

)y =

B 13.2

r2 +m2 (13.2)
with A fixed to p? after the derivative is taken. One still has a similar diagram to that of fig.27a but
with the two final nucleons exchanged, this is fig.27b, denoted by Tlfz’b. Note also the different disposition
of the internal four-momentum lines as compared with fig.27a. Its expression is

0 2 4
fb K4 €53 [ gA mo d*k . R o o . .
s = —m (ﬁ) 6—A/(27r)4 {~ [Cs(Fapam " T)(Fa, 0, ) + O1(Gaya  1)(Fa,, 6 T)(Faam - Fpay)]

XTSmmﬁ'm T+ [CS(O_:C“WC“Z ’ I') (O_:C'fm/am ’ I') + CT(O_:O%/OZ : r)(&am,ﬁ ’ I') (O_:Cval ’ 0_:60!m):|

XTEZ?Z’@Fm’M} S(m,p1 — k)S({,p2 + k) (13.3)

r2 +m2
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Summing eqs.(13.2) and (13.3),

0 2 4

KQ Eij A\ mo [ dk . S L S S .

= "0 (1) 57 [ o {05 i D)oy 1)+ CrlGy )Gy s T
X TﬁL/mTél/é - [CS(O_:Oém/O% : r)(&ayam ' I‘) + CT(Eam,a ' r)(&a[/ﬁ ' r)(&aae ' Eﬁam)] T&’éTgm}

X (T3 m + 7o) S(m, p1 — k)S(L,pa + k) (13.4)

r2+m2
Now we proceed to the isospin and spin projections for the direct term, given by the first square bracket
in the previous equation, which is the only one needed for the calculation of the partial waves. One has
the isospin operator

Tﬁm’ngﬁ(Tng + Tgﬁ) ) (13'5)

whose projection between states of well defined isospin is 2i3. This implies that for i3 = 0 there is no
contribution.
For the case of spin we first perform the following manipulation of the term multiplied by Cr,

(O_:am/a : r)(o_:ozyﬁ : r)(o_:aam : 0_:504[) = 1'2 [5am/am6azlag - 5am/am : 0_:04[/0%] + (O_:am/am : r)(o_:azlag : I') .

(13.6)

The last structure is common with that multiplied by Cs in eq.(13.4) for the direct term. Here, we have
made use of the well known identity,

0% o = 69T 4 ie%eoC (13.7)
Then, we have for the first square bracket in eq.(13.4),
(CS + CT)(O_:am/am : r)(o_:az/ag : I') + CT 1'2 (5am/am6az/ag - O_:am/am : 6ae/ag) . (138)

The structures dq, ,ap,9a, 0, and 5am/am <O sa, are already projected in eq.(12.3) for the different spin
states. There is, however, the new structure (Ga, ,a,, 1) (0 sap ' T). Its projection for different spin states
is

S=0, —r?,
S=1
\ —1 0 +1
1Bull = | =V 2rs(r i) (ri +ir2)” (13.9)
353 0| —v2r3(ry —irg) r? —2r3 V2r3(ry +iro)
+1 (r1 —ire)?  2r3(ry —irs) r

In this matrix the rows correspond to the final third component of the total spin, s§, and the columns to
the initial one, s3. Notice that for S = 1, because of eq.(12.3), there is no contribution proportional to
Crr? from eq.(13.8). For S = 0 the net result is —(Cs — 3C7)r?. Then we can write for the direct term

0 2 4 2
S= . KQUgii3 [ ga mo d*k r
le;i; 0 = —13 f2 J3 <ﬁ> (CS — 3CT)8—A WS(m,pl - k)S(f,pQ + k?)m . (1310)

Here, we have included the superscript S = 0 to indicate that it corresponds to S = 0 and the subscript
d referring that only the direct term is shown. Only partial waves with £ = even contribute because of
the rule S + I + ¢ =odd and the fact that only the I = 1 contribution does not vanish.
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For S =1 and the transition from a state with total third component of spin s3 to another of s§, one
has from eqs.(13.4) and (13.9),

0 2 .
f,5=1 _ . KG'&i3 [ g9a mo d*k 1
1754 (s3,83) = i3 72 (ﬁ) (Cs + CT)a—A Ws(m,]h —k)S(4,pa + ]{:)71.2 n m%Bsé 55 -
(13.11)

In this case, the rule S + ¢ + I =odd requires ¢ to be odd.
For the integrals in egs.(13.10) and (13.11) it is convenient to perform the shift of integration variable

k—ﬂ%wg:pwg, (13.12)
so that
_l’_
pok— 2k Q=0T
p2+/€—>%+k,
r
rzp’l—p1+k—>p’+k,p’=p12p2, (13.13)
In this way,
0(&m — |0 — K]|) 0(la — k| — &m)
S —k)S(£ k) =
(m, p1 = R)S(E,pz + k) [Q0/2—k0—w(o7—k)—ie+QO/Q—kO—w(&—k)—i—ie
Q%2+ k0 —w(@+k)—ie QY2+ k0 —w(d+k)+ie| ’ '

with the same four-momenta in the propagators as in eq.(E.1) for Lig. The vector & = (p1 + p2)/2,
defined in eq.(E.2). Because of the factor i3 in front of T1f2’S there is contribution only when i3 = +1 and
then m = ¢ = +1.
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Figure 28: The internal four-momenta and discrete indices are shown on this figure contributing to T%,.

We now consider the one-pion exchange between the initial nucleons, fig.26. The disposition of four-
momenta, spin and isospin indices is indicated in fig.28. Proceeding in the same way as before when
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calculating T1f2, eq.(13.4), we have for the sum of the diagrams in the previous figure,

0 2 4
i Kqgyz (ga\ mo [ dk . . . . S
Ti, = 2f2] (ﬁ) 94 ) (2m)? 1 1[Cs(Ga,yam - K)(Faya, - k) + C1(Fa, a0 Fayp)(Faam - k) (Fsa, - k)]
X TimTere — [CS(O_:am/ag ) )( Qpram ) + CT(O_:CMZICY ’ O_:amzﬁ)(o_:aam : k)(o_:ﬁozg : k)] ﬁ’mFm’ﬁ}
k)S(l,pa + k)

X (ng’m’ + 7'(3/(/) S(m pP1— (1315)

k? +m2

The shift in the integration variables,
k—>¥+k:p+k, (13.16)

is taken as in eq.(13.12). The same expressions for TlfﬁS:O and T1f2,S:17 after incorporating in egs.(13.10)
and (13.11) the change of variables of eq.(13.13), can be used for 703 =" and T73°=! with the exchange
p’ — p. T}, only contributes to S-wave because it depends on p but not on p’.

We now introduce the functions Lyq, L$; and L} given by

R A L

2m)4 (k+r)2+m2 | QY/2 — kO —w(d — k) —ie Q°/2 — k0 —w(a@ — k) + ie
(& —|a +k|) 0(la + k[ — &) |
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i (r) _1/ (2m)* (k +1)2 + m2 [Q0/2 — k9 —w(d — k) — ie * Q%/2 — kO — w(d — k) —i—ie}
i (& —|a +k|) 0(la + k[ — &) |
QY2+ K0 —w(@+k)—ie Q2+ k0 —w(d+k)+ie| ’
aby o [ 'K kK (§m — |a — Kk]) 0(la — k| — &m)
Lii(r) _Z/ 2% (k +1)2 + m2 [QO/Q "R —w(d—k) —ie T Q2 — 0 — w(d@ — k) +¢J
[ (& —|a + k|) 0(la +k|[— &)
Q%/2 + k0 —w(@+k) —ie  QV/2 + kY —w(a + k) + ie

X

X

(13.17)

These integrals will be evaluated in Appendix G. For our present purposes it is enough to write them
taking explicitly into account their tensor structure in terms of a few scalar integrals:
11(r) = LYo + Lhyr
L (r) = L{76 + LTl + L{Frort + LT (o + abr?) (13.18)
where we have taken into account that L{% is symmetric in the superscripts as follows from its definition,

eq.(13.17). In terms of these integrals one can write the different matrix elements of Tf;’s (similar
expressions hold for Tf’zs with the exchange of p’ — p, as discussed above).

_ikgVei; 2 mo
T1f25d O =i qu = (%) (Cs —3CT) 7~ 94 (L1o — m2Lyy) , (13.19)
ikqVey; mo
TS0 = i (1) Covn i 1 (w20t 4 217)

+ 2007k (L5 + Lif") + LY
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7‘5':1 ,Szl
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The other contribution originates by taking the derivative of the intermediate nucleon propagator in
fig.23. We have the same expression as for T1f2, eq.(13.4), but removing the operator md/dA and with
the replacement

.q0€ij3 3 9,24 \CI\Q
1 f2 Ton! — Fg(snn/ . (1321)

As a result, the isospin operator changes and for the direct term it is given now by
27 mTreS(m, Q)2 — k)S(,Q/2 + k) . (13.22)
The projection for a state with is = £1 is 2(41 — 3)S(£1/2,Q/2 — k)S(£1/2,Q/2 + k), instead of

2i35(£1/2,Q/2—Fk)S(£1/2,Q/2+k) previously introduced for T12. For aig = 0 there is now a contribution
from eq.(13.22) and it is given by

24T — )5 [S(+1/2,Q/2 ~ K)S(-1/2,Q/2+ k) + 5(~1/2,Q/2 ~ KIS(+1/2.Q/2+ k)] . (13.23)
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Hence, instead of eqs.(13.10) and (13.11) one has now, respectively,
2 4 2
d*k r
TF5=0 _ soar — 39Aq5A 94 Ceo — 30 /_7
13,d i( )f2 2f (Cs T) (2m) 12 + m2

Y % 1S(m, Q/2 — k)S(£,Q/2 + k) + S(6,Q/2 — k)S(m, Q/2 + k)]

4
f,5=1 . gAq gA d*k 1
Tida (hoss) == =9 5”( f) ©s+01) [ Gy B

xS 1S0m,Q/2 ~ K)S(6,Q/2+ k) + 5(6,Q/2  K)S(m,Q/2 + k)] | (13.24)

such that m = ¢ = +1/2 for i3 = 1 and m = +1/2, £ = —1/2 for i3 = 0. Due to their isoscalar character
we have included the subscript iss. We now have instead of eqgs.(13.19) and (13.20)

2 2 2 _ _
Tlfg’ilzo = (4[ — 3)g—Aq— <9_A> (CS — 3CT)(L10 — m2 L11) s

a5 \2f "
2
T (1,1) = (41—3)?;;2 (%) (Cs + Cr) [pgz (L11+2L’1’1+L1Tf’) + a2LTe
0

+ 2a3p <L11 + LTap) + zm ;

Tl 1.0) = a1 -9 B (B VB + 0 [(on i) { s + T + T}
(LIYP + L)as + (LP + Lu + 2L0)ps })
TSN, 1) = —(al — 3)%% <9—A>2 (Cs + Cr) [(a1 = 022 LT + () — iph)A(L{F +2L8, + L)
+ 2(p} — iph)(an — i) (LI} + L)
TS5 0,1) = — (41 - 3)%‘1_22 <9_A>2 Va(Cs + Cr) [(n +ian) { Effos + (17 + Lyt )
+ (h +iph) L (L1 + L§)as + (L] + L + 25]1)1)]93” ;
T/3571(0,0) = —(4I - 3) f22 Ad <_f> (Cs + Cr) [Zlo —m2Ly — 2079 — 2032 LT
— 20> (L + L{P + 2L8)) — dasph (L1F + L) |
TS (~1,1) = —(4I - 3)?3 a (ﬁ) (Cs + Cr) [(an + i) LT + (0 + iph)*(L1] + 2T%, + Lny)
+ 29 +iph) (o + i) (LITP + L))

,S=1 ,S=1
Tlfw (0,—1) = —Tf;d (1,0) ,

,S=1 ,S=1
Tlfgd (—1,0):—T{3d (0,1) ,

T (-1, -0 = TN (L) (13.25)
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Where the tilde indicates the symmetric form
~ 1
L =5 (L5 (m, 0) + LgP=(¢,m)) (13.26)

with m and ¢ given in terms of ag as explained above.

We now proceed to the partial wave projection of TIS’2 =T 1f2’S+Tf’25 and Tl% =T lf?;s—i—Tliés. As discussed
in the clarifying remark at the end of Appendix B, we can still use eq. (B.31), valid in the vacuum, for
Tf; and Tf; though we are evaluating transition amplitudes in the nuclear medium. For T}, and T7; it
was also established that the same partial waves as for Tf; and Tf; result with the exchange ¢ < ¢'. We
denote the corresponding partial waves by ’2'12 g1, ¢,S) and ’]'1]; g1(4 ¢,S). To simplify the notation we
omit the subscript 12 and 13. Then,

0(z
700 = 328 [ apmi vy
T](0,0,1) = QYOEF)l {/dpn( ") [T;=1(0,0)(000[¢1.7)(000]£1.])
+ (T7=H(+1,+1) +T§:1(—1,—1)) (011]1.J)(011[£1.)]
/ =1(—1,0) + Y (®)T7= (+1,0)) (000[£1.])(1 — 10[¢1.])
/ =10, +1) + Y (®) 77710, —1)) (011|£1.7)(101|¢1.])

+/ p (Y, 2T (— 1,+1)+Y;(p’)Tf1(+1,—1))(011|Z1J)(2—11|£1J)}. (13.27)

Let us recall that in order to apply eq.(13.27) the vector p must be taken along the z-axis. Namely, for
the partial wave projections, we take the reference frame with axes

z=p,
. bXxa
X =
sing3 ’
S (D X 4
y = w = pctgl — dcsecl . (13.28)

sin 3

As follows from the discussion at the end of Appendix B for Tjs, that requires I = 1, only the partial
wave 712,01(0,0,0) = 2’]'1];;01(0,0,0) is not zero. On the other hand, for T73 both isospin combinations
occur. Then one has the partial waves 713.01(0,0,0) = 2’]'1&01(0,0,0), T13:10(0,0,1) = 2’]'{;;10(0,0,1),
Ti510(2,0,1) = Th14(2,0,1) and Tiz10(0,2,1) = Tk (2,0, 1).

14 Explicit calculation of T4, and Ti;

Let us move to now to the evaluation of T4 and T}5 where both vertices in the two-nucleon reducible
loop at which the two pions are attached correspond to one-pion exchange. In fig.29 a specific arrange of
pion four-momenta and labels is shown for this case. As in the previous cases we start by calculating the
isovector contribution. We restrict from the beginning to the direct term, corresponding to the diagrams
in fig.30, the one that is finally used when evaluating the associated partial wave amplitudes.
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Figure 29: Two-nucleon reducible loop with two one-pion exchange vertices between the initial and final nucleons.
The free part of the in-medium nucleon propagator in eq.(3.2) is indicated by a thin line while the in-medium part,
proportional to the Dirac delta function, is denoted by a thick line.

q q q q
i i j
1 Pi p2 Ph
m o p1—Fk m’ ¢ L ptk 4
kv AT koA Vor
p2 t po+k Y p1 o p1—k j2
14 4 m o m’

Figure 30: The internal four-momenta and discrete indices are indicated on the two figures whose sum determines
T14,4. Note that the pion labels and four-momenta are exchanged for the initial and final states separately between
the two figures. The one on the left is 77, ; and that on the right is T1b47d.

For the diagram of fig.30a, denoted by 17, ;, one has

4 0 4
_ gA\ KQ €ij3 3 0 d*k R B .
T == () St iorturiingy | Gest@ Doyol@ Dol Koo (7Kl
1 1
* 2 +m2 k% 4+ m?2

S(o,p1 — k)S(t,p2 + k) . (14.1)

Where r = p} — p1 + k and we have also neglected energy dependences in the pion propagators since they
are of two chiral orders higher. le4 4 corresponding to fig.30b, reads

4 0 4
9gA\ Kq €ij3 3.4 o O d*k . . B
Tb —__[Z4 J a ¢ / ) ) k Kk
14,d <2f> 22 ToreTeeTeeTe oToé—apg/—(2W)4 (0 1)a, (0 T)a, a0 K)aan, (0 - K)pa,
1 1
S —k)S(t k) . 14.9
T mi gz O RS k) (14.2)

The energy dependence on p? and p) enters into these integrals only through the variable A, similarly
as for Lip, and we apply eq.(11.14). In this way, le4 4 is given by the same expression as 17, ; with the
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exchanges ¢ «<» m and ¢’ < m/. Their sum is

b
Tiag =Ty 4+ T1a4

4 0 .
94" K4 €ijs md [ d'% B}
- (ﬁ) 2f;] (T%’oTocngoT;tthz + TgtT&TgTﬁl/ngm) a—A (27‘1’)4 (Uozyﬁ . r)(Uam/a . I')
o o 1 1
X (Faa,, - k)(aﬁae - k) S(o,p1 — k)S(t,p2 + k) . (14.3)

r2 +m2k? +m?2
We now evaluate the diagonal matrix elements of the isospin operator
(TooTomTooTetTiz + T T Tt T oTom) S(0:p1 = K)S(t,p2 + k) | (14.4)

present in eq.(14.3), between states with well defined isospin. For i3 = +1 then £ =¢ =m =m' =0 =
t = £1/2 and the result is

1 1
ig =1, 2ig S(+5,p1 — k)S(k5,p2 + k) - (14.5)

For i3 = 0 it is required by charge conservation that o+t = 0, so that o and ¢ have different sign. Working
out explicitly the matrix elements for I = 1, and 0 one has,

§ a_3 __c __a c a__3 __c a c a 3. c__a_c a 3 . ¢ a_c
{7—107—007—017—71257—2571 + T10TooTo—1T—1tTt1 + T_10To0To1T1tTt—1 + T—-10T00To—1T1tTt1 + (t = 0)}

a,c

1
x 55(0,p1 = k)S(t,p2 + k) . (14.6)

Let us stress that here o and t are fixed. It is straightforward to show that the previous equation is zero
for o = £1/2 = —t. Thus, for i3 = 0 eq.(14.3) is zero. Then we can write 2i3 for the needed expectation
values of the isospin operator in eq.(14.4).

Regarding to spin we can rewrite,

(O_: ’ r)azlﬁ(o_: ’ r)am/a(o_: ’ k)aam (O_: : k)ﬁag = (I’ : k)25azzag5am/am - [(I’ X k) ) 5:al/ag] [(I’ X k) ) O_:am/am]
+i(r X k) - Fapay(t - K)o, yam +i(r X K) - Fa_am (- Kk)da,a, - (14.7)
The matrix elements of the spin operators da, ,a,, 00,0, a0d (Ga, am * V)(Taya, - V) between states with

well defined total spin were already worked in eqgs.(12.3) and (13.9), respectively. We have now in addition
the operator

(5am/o¢m0_:ozyoz4 + 5ozyoc40_:ozm/ozm) "V, (148)
which in matrix notation is
(&1®12+11®&2)'V . (14.9)
Its matrix elements are
\ —1 0 +1
-1 —2v3  V2(v1 + iv9) 0 (14.10)
0 \/5(2}1 — ’iUQ) 0 \/5(’01 + Z"UQ) ’ '
+1 0 v2(v1 —ivg) 2v3
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and 0 for S = 0. We follow in the previous matrix the same notation as in eq.(13.9). Taking into account
these matrix elements and those from eqgs.(12.3) and (13.9) one has for the operator of eq.(14.7):

S=0—-S5=0:r’k?,

S=1—-58=1"_:
+1— 41 : [r-k+i(rx k)’
—1—-1: [r-k—i(rxk)®,
0—0 : 2(r k) —r’k?® + 2[(r x k)3]* ,
+1 =0 —V2[(rxk);+i(rxk)o][(rxk)3—ir-k|,
0— 41 : —V2[(rxk); —i(rxk)o|[(rxk)3—ir-k],
+1——1: —[rxk)+i(rxk))?®,
—1 =41 : —[(rxk); —i(rxk)*,
0——1: V2[(rxk);+i(rxk)][(rxk)zs+ir-k],
~1—=0: V2[(rxk); —i(rxk)][(rxk)z+ir-K] , (14.11)

where the Cartesian coordinates of r x k are indicated with subscripts. Inserting into eq.(14.3) these
matrix elements for spin and 2i35(+1/2)S(£1/2) for the isospin operator of eq.(14.4), the amplitudes
Tﬁzdo and Tﬁ:dl(sg, s3) are determined. These amplitudes are then implemented in eq.(13.27), instead of

using Tls;lo’l, and the partial waves T14.77(¢, ¢, S) are evaluated.

The other contribution stems by taking the derivative of the intermediate nucleon propagator in fig.23
with respect to z, as discussed in eq.(11.12). We have the same expression as for T4 4, eq.(14.3), but
removing the derivative md/JA and with the replacement of eq.(13.21). As a consequence the isospin
operator in eq.(14.3) changes and now it is given by

2T o TomTo TS (0,01 — K)S(t,p2 + k) (14.12)

mio’om

One can work out straightforwardly its diagonal matrix elements between states with definite isospin
with the result,

2(9 — 8])% (S(0,p1 — K)S(tps + k) + S(t, p1 — K)S(0,ps + k) . (14.13)

with o + ¢t = i3. Then, instead of eq.(14.3) one has now,

ngd:i(g—A) a9 708D

4
X/ é”; 1{5(0 p1— k)S(t,p2 + k) + S(t.pr — K)S(0,p2 + )}
1 1

X (Fap 1) (Faya 1) (Faay,  K) (Foa, k) Tl (14.14)
with o+t = i3 as before. Of course, the spin operator is the same as for 714 and the results of eq.(14.11)
are used again. The partial wave amplitudes ’Z?g ;1 are then determined by employing eq.(13.27) in terms
of T fg d

The tensor integrals required by eq.(14.11) and involving one intermediate two-nucleon state with two
one-pion exchanges are calculated in Appendix H.
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15 Numerical results

We now discuss here the numerical results that we obtain for the 7~ self-energy in the nuclear medium
according to our approach. We distinguish between the different contributions. For the case of the 7+
the isovector contributions will have opposite sign to those for the 7~ self-energy. For the 7° they are

absent. The isoscalar contributions are the same for all the three charge species of pions.

15.1

S-wave. Isoscalar

Isoscalar S-wave contribution

40 ! ! ! !
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-1500 -
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Figure 31: The left panel is the isoscalar contribution X4 for w = m, and q = 0. The solid, dashed and dot-dashed
lines correspond to the central value of a{f , plus and minus one o, in that order, according to eq.(15.3). The right

panel is the comparison between ¥4 calculated with the central value of aar 4+, q=0and w = m, (solid line) and
w = 1.1m, (dot-dashed line).

The only isoscalar S-wave contribution that we have stems from ¥4, eq.(6.1), without the term propor-
tional to c3q? which is P-wave. Recall that ¥, is already a NLO contribution. It depends on the O(p*)
CHPT counterterms ¢q, ¢ and c3. It is more accurate to rewrite it in terms of measured quantities. For
that, taking into account ref.[53], one has

2m2 94 3
o, = 2 <_2q terte -2 1 oph) . (15.1)
Then eq.(6.1) can be expressed as
ag. 4cq 2¢3|ql?
B4 = lafy + (W —m2) | 2=+ — ] - ‘2 | (pp + pn)di - (15.2)
mz f f
For the isoscalar S-wave N scattering length a6r+ we use its recent determination [54]
ag, = (—0.0010 £ 0.0012)m; " | (15.3)
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and we take the value
c1 = (—0.8140.12) GeV ™!, (15.4)

from ref.[55]. This value is based on a chiral expansion of the 7N scattering amplitude inside the
Mandelstam variable where it is better behaved. We show in fig.31 the S-wave part of >4 as a function
of £, with w = m, and |q| = 0, at the pion threshold. In the following we fix

gn = 1-157512 ) (15.5)

with the proportionality factor corresponding to neutron rich nuclei like §g8Pb (that has &, ~ 241 MeV
and &, ~ 279 MeV).

The solid, dashed and dot-dashed lines on the left panel of fig.31 correspond to the central value of
aaﬁr, plus and minus one o, in order, as given in eq.(15.3). One sees that this contribution is very small
and compatible with zero, as it is ag ., because for w = m; and |g| = 0 the two quantities, ¥4 and ag |, are
proportional. At the order of our calculation we cannot address the interesting problem of the missing
repulsion having to do with a repulsive contribution in the S-wave isoscalar piece of the pion optical
potential [28, 35, 56|, needed to fit data from pionic atoms. New contributions to the S-wave isoscalar
pion self-energy will emerge in a calculation just one order higher to the one performed here. E.g. the
well known Ericson-Ericson Pauli corrected S-wave rescattering term [31] would appear at O(p°®) because
it involves an extra nucleon propagator that is not enhanced. Of course, since a8  is so tiny higher order
corrections will have impact. Nevertheless, as soon as w? departs slightly from m2 in eq. (15.2), the
modulus of 34 becomes much larger as shown by the dot-dashed line on the right-hand panel of fig. 31.
The solid line is the same as in the left panel. This is an important source for the missing pion repulsion
as first noticed in ref.[23]. It will be discussed below in more detail in section 15.5.

15.2 Isovector S-wave contribution

S-wave. Isovector

500 ;
0
-500 |-
& -lo00
20 -1500 -
=
[q 2000 |
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-3500 -
-4000 -
-4500 L L L L L
0 50 100 150 200 250 300
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Figure 32: The non-vanishing S-wave isovector self-energy contributions calculated here. The solid line is X1 and
the dot-dashed one is ¥5. The sum of both is given by the dashed line.

The calculated isovector S-wave contribution are X, eq. (3.5), X5, eq. (7.11), X7, eq.(9.13), and
Yo + XY, eq. (11.22). Of them, the LO contribution is ¥1, 37 cancels with X9 + X% and X5 = O(p®) or
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N2LO. The contributions ¥; and and X5 are purely real because they only involve a one nucleon process
summed all over the Fermi seas.

Y1 and Y5 are shown in fig.32 for the 7~ self-energy and q = 0. For the 7" one has the same results
but with opposite sign and for the 70 they are zero. On the figure, ¥; is the solid line and X5 is the
dot-dashed line. The dashed line is the sum of both contributions and runs very close to 1 because X5
is much smaller than the latter.

15.3 Isoscalar P-wave contribution

P-wave. Isoscalar. Real Part P-wave. Isoscalar. Real Part
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Figure 33: The two panels correspond to the real part of the the different contributions to the P-wave isoscalar
pion self-energy for ¢° = |q| = m,. The meaning of the lines is the following: X% is the solid line, X3 is the
downwards dashed line, the P-wave contribution of ¥, is given by the upper dashed line, X§ is the dot-dashed line
and X¥ + X% correspond to the dashed double-dotted line. The solid circles correspond to the sum of all these
contributions. On the panel to the left ¥ + X% is calculated at LO while on the panel to the right it is calculated
at NLO.

The different contributions for the real part of the isoscalar P-wave pion self-energy are shown in fig.33:
Eés is the solid line, Y3 is the bottom dashed line while the upper dashed line is the P-wave contribution
of X4, %‘9 is the dot-dashed line and E? + E’f{) correspond to the dashed double-dotted line. On the left
panel the leading contribution to Eés + Eilso is given while on the panel to the right the latter is calculated
one order higher. The sum of all the contributions is indicated by the filled circles and ¢° = |q| = m,
in all the curves. It is clear that the real part of the isoscalar P-wave pion self-energy is overwhelmingly
dominated by the P-wave part of ¥4, that is proportional to c3, eq. (6.1). In turn, this low-energy constant
is dominated by the A resonance [60], which stresses the important role played by this resonance in the
P-wave pion self-energy [59]. The results presented in this figure have been calculated with the central
value of c3 = (—4.66 £ 0.36) GeV~! [55]. The imaginary part of the isoscalar P-wave pion self-energy is
shown in fig. 34. The only source of an imaginary part is from Z%f + E’fb. The solid line corresponds to
its leading order calculation, while the dot-dashed line shows its NLO evaluation. Comparing the V, = 2
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Figure 34: Imaginary part of the P-wave isoscalar pion self-energy for ¢° = |q| = m,. The only source of an

imaginary part is X + %% . The solid line corresponds to its leading contribution while the dot-dashed line stems
from its calculation at NLO.

contributions calculated at LO and at NLO in figures 33 and 34, one observes small corrections up to
around &, ~ 200 MeV.

15.4 Isovector P-wave contribution

The isovector P-wave contributions stem only from %, eq. (4.5), and é”, eq. (7.14), both being real.
Let us recall that the sum of X7, Eg”, Y9 and E’f() cancel each other [1], as shown in section 11 within
UCHPT. We show in fig. 35 by the solid and dot-dashed lines the contributions %%’ and X¥, respectively.
Their sum is given by the dashed line. The curves are calculated for w = |q| = m,. We see that, similar
to the case for the isovector S-wave, fig. 32, %” is much smaller in modulus than X%

15.5 The 7~ mass in nuclear matter

We now discuss the pion mass in the nuclear medium. The latter, denoted by m’fff, is defined by

(m¢H2 = m?2 —ReX(w =m%’,q=0). (15.6)

K

It corresponds to the energy at rest of the nuclear pionic modes. When applying this equation in an
asymmetric nuclear medium one has to distinguish between the 7% and 7° masses. We first discuss the
7~ mass, since this is the one involved in pionic atoms. On the other hand, given the relation between
the pion self-energy and the pion optical potential (U), with IT = 2wU, eq. (15.6) can be used to compare
our values for the effective pion masses with those stemming from potentials fitted to pionic atom data.

Ref. [57] fitted some terms in the pion-nucleus optical potential to accommodate the values of the
energy and width of the deeply bound pionic atoms there discovered. The other terms were taken
from fits to the bulk of pionic atom data. In ref. [57], eq. (15.6) was not solved self-consistently but
perturbatively so that the equation actually employed is

1
m?rﬂ =m, — 5 Rez(w =My, q = O) , (157)
T
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Figure 35: The non-vanishing P-wave isovector self-energy contributions. The solid line is 3’ and the dot-dashed
one is X%, The sum of both is given by the dashed line.

with the threshold energy of the pion fixed to its vacuum mass. This is the so-called energy-independent
approximation for the pion optical potential. Ref. [57] reports

Amgz =m —m, =23 - 27 MeV . (15.8)
We now give a similar discussion on the in-medium pion mass as in ref. [1]. However, we now include
in addition Y5 and present slightly different results. We first consider eq. (15.7). We have

1
Amy, = —2 Re (21 + X4+ 25) R (159)

K

with the argument w in the different 3; fixed to m,. We obtain the result
Am, =8 MeV . (15.10)

This number is very similar to that of ref. [1] because X5 is much smaller than ¥, as shown on the right
panel of fig. 32. Furthermore, the contribution from 34 is negligible given the smallness of aaLJr.

It is worth stressing that the energy dependence of the pion optical potential cannot be neglected
when studying pionic atoms since this is an important source of repulsion as shown in refs. [58, 35].
When solving the Klein-Gordon equation a proper treatment of the Coulomb potential, V,(r), requires
the argument of the pion self-energy to be X(w — V,(r)) [35], instead of ¥(w = my ). As a result one
should expect a mismatch between a first principle calculation of the pionic potential potential and its
parameterization from purely phenomenological studies [57], where the energy is fixed to m,. In order to
take care of this we use eq. (15.7) but evaluated at w = m, + 10 MeV and w = m, + 20 MeV, similarly
as in ref. [28]. Note that —V,(r) is ~ 16 MeV at around the nuclear surface and ~ 25 MeV at the center,
see e.g. fig.10 of ref. [57]. The resulting values obtained for Am, are

w=mg+ 10 MeV , Am, = (13.6 £0.7) MeV ,
w=mg + 20 MeV , Am, = (19.3 £ 1.5) MeV . (15.11)

53



As announced, the increase of w > m, gives rise to an extra repulsion and then an enhanced 7~ mass as
compared to eq. (15.10). The leading Weinberg-Tomozawa linear density term experiences an increase
of +(8 —9) MeV. The main source of the w-dependence in Am;, as w slightly increases in eq. (15.11)
is the quadratic term in w present in ¥4, eq. (6.1). This term is zero for w = m, but +10 MeV for
w = my + 20 MeV, see also the right panel of fig. 31. Here we have used for ¢; the value in eq. (15.4).
The errors quoted in eq. (15.11) are indeed given by the error in ¢; since the contribution from the
uncertainty in ag' - is negligible.
In ref.[34] the Ericson-Ericson rescattering term was estimated to contribute an extra +6 MeV to A.
If this N°LO piece is added to the result in the second line of eq. (15.11) from our NLO calculation,
then one would obtain Am, ~ 25 MeV, in agreement with the result of ref. [57]. However, the full
rescattering model of ref. [28], where the in-medium isovector amplitude is used in the rescattering,
obtains a significant reduction of the Ericson-Ericson repulsion or even an attraction. From our side a
full N2LO calculation is mandatory. The self-consistent solution of eq. (15.6) gives rise to results very
similar to those with w = m,; + 20 MeV in eq. (15.11). In order to distinguish to the previous case we
denote this quantity by AmJ. Self-consistency leads to an algebraic equation in w (note that X5 is linear
inw
)

dey | ag Pp—Pn | Xs
R (7 * m—> (oot )| o0 |24 2 iyt p) =0 (152
Solving it one has
Am’ = (16 +2) MeV | (15.13)

with the error bar due to that of ¢;. Eq (15.12) can be solved to a good approximation in terms of
dw? = w? —m2, as it was done in ref. [23]. In this way it is clear why the previous result is around
a factor two larger than the perturbative solution in eq. (15.10). With w = Vw? ~ m, + dw?/2m,,

neglecting terms of order dw?/m?2 < 1, the solution is approximately given by

—ad, (pp + pn) + M [(pn — pp)/2f? — T5/w]

dw? = , 15.14
T4 81/ 72 + gy mi2) (p & pu) + (p — o) AT Pmn + oy (1519

S 2

2;‘; = (17 +2) MeV ,

notice that ¥5/w, eq. (7.11), is a constant independent of w. The denominator in eq. (15.14) equation is
around 0.5 instead of 1, where the correction is dominated by the term proportional to ¢; with 4c¢;(pp, +
pn)/f? = —0.46. This denominator corresponds to the square of the wave function renormalization of
pions in the medium [23], and it is also the major source for dressing the pion decay constant in a nuclear
environment [23]. Its importance for the study of the pion mass in the medium was first shown in ref. [23].
For the 7+ we have the shift Am* = (—14.4 + 1.7) MeV. The shift in the 7 mass is negligible at this
order.

16 Conclusions

We have derived a promising scheme for an EFT in the nuclear medium based on a chiral power counting
that combines both short-range and pion-mediated internucleon interactions. The power counting is
bound from below and at a given order it requires to calculate a finite number of contributions, which
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typically implies the resummation of an infinite string of two-nucleon reducible diagrams with the leading
multi-nucleon CHPT amplitudes. These resummations arise because this power counting takes into
account from the onset the presence of enhanced nucleon propagators and it can also be applied to
multi-nucleon forces. We have developed the required non-perturbative techniques that perform these
resummations both in scattering as well as in production processes. This non-perturbative method is
based on Unitary CHPT, which is adapted now to the nuclear medium by implementing the new power
counting. Using these non-perturbative techniques we have first calculated the LO and NLO vacuum
nucleon-nucleon interactions. For the in-medium case the LO nucleon-nucleon scattering is given as
well. Then, the pion self-energy in nuclear matter up to O(p®) was determined together with some
other contributions at N2LO. The latter are calculated to further illustrate the application of these non-
perturbative techniques to non-trivial calculations and for first studies on the issue of the size of higher
orders corrections. In particular, the resulting NLO nucleon-nucleon contribution to the isoscalar P-wave
in-medium pion self-energy is of similar size to other NLO contributions obtained by closing meson-baryon
diagrams, and larger than the N>LO nucleon-nucleon one for Fermi momenta up to around 200 MeV. The
cancellation between all leading corrections to the linear density approximation for the pion self-energy is
explicitly shown here for the amplitudes calculated with the non-perturbative methods developed. This
cancellation also affects some other N?LO contributions and this is a good check for the consistency of the
full approach. A complete O(p®) (or N2LO) calculation of the pion self-energy is a very interesting task
and is underway employing the present techniques. It will merge important meson-baryon mechanisms
like e.g. the Ericson-Ericson-Pauli rescattering effect [31], with novel multi-nucleon contributions that
can be worked out systematically within our EFT. More calculations and applications of the present
theory to other interesting physical problems should be pursued.
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Appendices
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Figure 36: One and two pion-nucleon vertices.

1. Two-nucleon and one-pion vertex, fig.36a.
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2. Two-nucleon and two-pion vertex, fig.36b.
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We have not shown the contribution from c5 because it violates isospin symmetry.

B Partial wave decomposition of nucleon-nucleon amplitudes

We now derive the partial wave decomposition of the nucleon-nucleon scattering amplitudes in the CM
frame. Our states are normalized as,

1 — particle state: (p',j|p,4) = 8;;(27)*(p’ — p)
42 W
pE1Ey

2 — particle state: (p', j1ja|P, i192) = 8111, 055i (27) 5 (Py — P) 5(Q -9, (B.1)

Here, Py corresponds to the total four-momentum of the final state and P; to that of the initial one, with
W = 7320 = PJOC, the total CM energy. In addition, F; and Es are the energies of the particles 1 and 2,
in order. The indices ¢ and j refer to any discrete quantum number used to characterize the states. The
solid angle in the CM frame is denoted by €. Finally, p = |p| is the modulus of the three-momentum in
the CM frame. The two-particle states with well defined orbital angular momentum are defined as,

oo 1 ANl e
[m, i1, i2) = E/dpye (P)*|p, i1i2) - (B.2)

Taking into account eq.(B.1) it follows then

W
pE1Eo

<€/,m/,j1j2|€,m,z'1i2> = 6€’£6m’m6j1i15j2i2 . (B3)

The decomposition in states with well defined total angular momentum J, third component p, orbital
angular momentum ¢ and total spin S is given by,

|p,o102) = VAT Z (0109283|51525) (massu|lST)Y, ™ (P)*|JulSsis2) , (B.4)
J,S,0,m

Where the indices o1 and o9 refer to the third components of spin, and s and s to their maximum values
and m to the third component of the orbital angular momentum ¢. Now, we introduce the isospin indices
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a1, ag, for the third components, 71, 79, for their maximum values, and decompose the free state in terms
of states that have well defined total isospin I and third component a3. In addition, the antisymmetric
nature of a two fermion state is introduced, as corresponds to a nucleon-nucleon state.

1
7 (|p, o10n0202) — | — p, 020001001)) = VA Z {(o10283|51525) (Ms3u|lST)(cyagas|TiTol)

X nm(f))*]JM6533Ia3> — (020133\32315)(m33,u\€SJ)(042a1043]Tgﬁ[)YZm(—f))*]Ju65331a3>} s (B.5)

with the repeated indices to be summed. This convention is used along this section. To simplify the
notation we use in the following

1
P, o1010209) 4 = NG (Ip; o1a10202) — | — p,o2000101)) (B.6)

with the subscript A indicating that the state is antisymmetrized. Applying the symmetry relations,

Y (-p) = (1Y (D) ,
(0'20'183’82815) = (—1)5_81_82(0'10'283‘81825) s

(agaragmmsl) = (1) "2 (apanag|mrl) | (B.7)

eq.(B.5) for the nucleon-nucleon case (s1 = s2 = 7 = 72 = 1/2) simplifies to

|p, o1vi02000) 4 = VAT Z (010253|51525) (msspu[€ST)Y,™ (p)* x(¢ST)|JplSsslas) (B.8)
J,Se,m, I, a3
with ( )£+S+I \/_
C1-(-1 B 2 (+S+1= odd
X(S) = V2 N { 0 (4+S+1= even (B.9)

In this way, x(S¢I) ensures the well known rule that a partial wave contributes to nucleon-nucleon
scattering only if S+ ¢+ I is odd. Using the decomposition eq.(B.8) we have for the scattering amplitude,

AP, 0100504 |T (&) |p, o1ar09a2) 4 = 47 Z(aiaésg]slsgS')(m’sgu'w'S'J')(010233]31325)(m33u]€SJ)
x (ajayiz|rimal) (aragis|mra )Y (B)Y{™ ()" X(S'E I)X(SED) Ty g1 (¢'S"; £S) - (B.10)

Here, Ty j;(¢'S’;£S) is the partial wave with final total angular momentum J’, initial one J, final total
spin S’ initial one S, isospin I and final and initial orbital angular momenta ¢’ and ¢, respectively. Notice
that in the previous equation we have distinguished between the final and initial total angular momenta
J" and J, and similarly for the total spins S” and S. For free two nucleon scattering we have of course
J' = J because of angular momentum conservation. This conservation law, the conservation of parity and
the rule S+/¢+1 =odd imply that S’ = S. However, the resulting matrix elements in the nuclear medium
depend additionally on the total three-momentum of the two nucleons because the medium rest-frame
does not coincide in general with their center-of-mass. This is why we have included @ as an argument
in the scattering operator, with the former defined in (F.4). Employing the orthogonality properties of
the Clebsch-Gordan coefficients and spherical harmonics, one can invert eq. (B.10) with the result,

A (SO T)x (S Ty y1(£'S';48) = Z/df)'/df) AP, 0100504 |T(Q)|p, o1aro2a2) 4(0) 0% s5]51525)

x (m/ sy |08 ") (010283]51529) (msspl6S T ) adyiz|Timo ) (o i | 2 D) YR (B)) Y™ (D) -
(B.11)
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This expression can be further reduced by making use of properties under rotational invariance so that
the initial relative three-momentum p can be taken parallel to the z-axis. In deriving this simplification
we omit the isospin indices that do not play any role in the following considerations, and introduce the
symbol

To1010202

rof o! /(P p,d) = A(p,0104102042|T( ¥)|p, o1010202) 4 - (B.12)

010050

Eq.(B.11) can be further reduced so that the angular integration over the initial relative three-momentum
p can be removed making use of properties under rotational invariance. In deriving this simplification
we omit the isospin indices that do not play any role in the following considerations. Let R(p) such that
R(p)z = p and consisting first of a rotation around the y-axis of angle 6 and then a rotation around the
z-axis of angle ¢, with 8 and ¢ the polar and azimuthal angles of p. We could also have taken first an
arbitrary rotation of angle v around the z-axis. Then,

R) pso102) = 3~ DL (RO (R s152)
51,52

R0, oty = > DL(RNDE (RN[p",5175) (B.13)

01,02

with p” = R(p)~!'p’ and @ = R(p)~'a@. The dependence on the total three-momentum has been
made explicit in the state vectors to emphasize that the total three-momentum also is rotated. Inserting
eq. (B.13) into eq. (B.11) we have,

(SIS Tyn(¢8'508) =Y [dp! [ dp Tz e m ) DY) (R DL (R DL (RDLL)
x Yy )Y (p) (0 05sh]s1525 ) (m/ sy’ |€/S" J") (01 0253|51525) (ms3u|€ST) . (B.14)

As usual in this section repeated indices are summed. The spherical harmonics satisfy the following
transformation properties under rotations,

m' [x v m’ [
Yo (B />=ZD< ) (RNY (9

ZD (RNY™(z) . (B.15)

Inserting these equalities into eq. (B.14) we are then left with the following product of rotation matrices,

W?’(RT)* ) ) (R W2 (RHYDW2 (RHYDY (RY . (B.16)

82 2 $101 5202

DY/ ?’ (RHY*D

510

We now take into account the Clebsch-Gordan composition of the rotation matrices [40],

ZDM/M mimyM'|0loL) = > DY (R)DY? (R)(mymaM]|e16sL) . (B.17)

mh m1 m2m2
mi,ma2

Since eq.(B.16) appears in eq.(B.14) times Clebsch-Gordan coefficients we can make use of the previous
composition repeatedly. First,

> DU RNDGD (R (01048 s1528") = > D) (RN (515555 s1505')
ZD;{? RT 1/2)(RT)(010253|5152S) = ZD(S) (RT)(515253|5152S) : (B.18)

8202 0383

58



The rotation matrix Dgs), , that appears on the right-hand-side of the first of the previous equalities, can
3°3

be combined in eq.(B.14) such that

ZD( o BN (/s |08 T") = S DU (R (/b 105" ") (B.19)
Similarly
ST DEL(RNDS), (R (mssplesT) = > DY) (R (maslesT) . (B.20)

Incorporating egs. (B.19) and (B.20) in eq. (B.14), the latter takes the form

Arx (SO T)X (ST 51(£'S'; £S) Z/dp /de“m( 2, @)Y ()Y (2)DY ) (RN DY) (RT)
x (m'ahi'|0'S"J') (55555 s1525") (T3 €S T)(515203|s1525) . (B.21)

Let us first consider the vacuum case where the scattering amplitude does not depend on &. In
this way the integration over p in the previous equation can be done explicitly taking into account the
orthogonality relation between two rotation matrices [40]. For that let us recall our previous remark
about the fact that an arbitrary initial rotation over the z-axis and angle v can also be included. In this
way we take

a7
2J +

1 27
) @ / dpDS ) (RN D) (R = Syt Sda (B.22)

Inserting this back to eq. (B.21) one arrives at

2)05 0 . o o
2J+1 s Z/ dp" T35 (0, p2) Vi () (m' 35|t S.T) (05353]¢5.7)

X (81550%5|51529) (51520351525 . (B.23)

X(SE D)X (SENT (0,0, S) =

In this expression we have made use that only m = 0 gives a contribution to Y;™(2z) and, as explained
after eq. (B.10), S’ = S. In addition, we have also used that dp’ = dp”, since both vectors are related
by a rotation. The subscript J’ in T/ is suppressed because J’ = J and it is redundant. Also, we have
employed the notation for the partial waves of section 8, T;;(¢',¢,S).

We now come back to the in-medium case and keep the dependence on @. Here also m = 0 so that
it = &3. Let us show first that a Fermi sea with all the free three-momentum states filled up to £ has total
spin zero. This is required because for a given three-momentum p; one has two spin states that must be
combined antisymmetrically because of the Fermi statistics so that S = 0 for this pair. Then, since this
happens for any pair, the total spin of the Fermi sea must be zero. Regarding total angular momentum
we now give a non-relativistic argument to claim that the orbital angular momentum must also be zero.
This is due to the fact that the nuclear medium in the CM of the two nucleons that scatter is seen with
a velocity parallel to —a. In this way, both the CM position vector and the total three-momentum of
the nuclear medium are also parallel so that their cross product vanishes. As a result, since the intrinsic
orbital angular momentum of the medium is also zero, one expects that the total angular momentum is
zero for the system also in the CM frame of the two nucleons. Thus, J’ = J also in this case and then,
because of the same reasons as in vacuum, S’ = S. Let us recall the remark after eq. (9.12) to justify that
I is conserved also in the nuclear medium. In addition the third component of total angular momentum
must be conserved, p = ', and summing over p one has

1
2J+1

O
—r B.24
2J+1° (B.24)

(J) * () —
ZDIL’M(RT) Dy (R) =
"
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given the unitary character of the rotation matrices. Then,

X(SEDUST(¢.0.5) = 12 J+1 3 / da” / 4B T35 (0 p2, &) (51554 150") (5150351 525)
x Yg,”/(f)”)*(m’5§53|£’SJ)(00303|£SJ) . (B.25)

This expression reduces to the one in the vacuum, eq. (B.31), when the dependence on & in the scattering
operator can be neglected once

Z/ ”Tf}s? " pz, @) (55555 s1529") (51503]51509) Y (") (/G4 [0S T) (05353/¢ST)  (B.26)

is performed. In that case the integration over d&” is simply 47 and eq. (B.23) is restored.

Eq.(B.25) can be further simplified because for evaluating a nucleon-nucleon partial wave amplitude
one only needs to consider the direct term in the nucleon-nucleon scattering amplitude. This follows
because

To1010202

ot (B, @) = o (P, 0@ ohab| — (=p', 05ab0101[) T(d) ([P, s10n5202) — | = P, s200s101))

(B.27)

1
2

and the operator T is Bose symmetric under the simultaneous exchange of particles 1 and 2 so that,

o1 0202

T ; ,(p p,a) = (p/, 010050 |T(&)|p, c1a10200) — (=P, ohaho o |T(d)|p, crar0o2as) . (B.28)
When implementing the second or exchange term in eq. (B.25), reincluding the isospin indices as
well, and using the above referred symmetry properties of the Clebsch-Gordan coefficients and spherical

harmonics, one is left with the same expression as for the direct term in eq. (B.28) except for the global
sign —(—1)5++ Summing both expressions the factor

1— (—1)5¢+H (B.29)

arises. Given the definition of x(S¢I) in eq. (B.9) and imposing the rule that ¢ + S + I =odd and
'+ S+ 1 = odd, the factor x(SI)x(S¢'I) can be simplified on both sides of eq. (B.25). The latter then
reads

Y (2
T0.0.8) = 1o 5 (0l t1528) o120]1528) Osass65) ' s 5
X (0/10/21.3’TlTQI)(Ql@Qig‘TlTQI)/déé/df) <p,O’ialldéaé’Td(O_f)’pi,0'1(110'2042>Y€7/nl(p)* s (B.30)

in terms of only the direct term, as indicated by the subscript d in the scattering operator. For the
particular case of the vacuum nucleon-nucleon scattering the previous expression simplifies to

Y (Z
Tyl 0,8) = TS—Z)l Z(O’idésg|51525)(0’10‘283|51525)(05353|ESJ)(m,8g83|€/SJ)
X (0/10/21.3’7'17'2]—)((XlaQig’TlTQI)/df) <p,0'110/10'50/2‘Td’pi,0'1(110'2042>Y€7/nl(p)* . (B.31)

For our practical applications after performing the operations of eq. (B.26) one can proceed in a way
such that the integration over & in eq.(B.30) becomes trivial and is equal to 4w. For the once iterated
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one-pion exchange, fig. 30, that gives rise to the amplitudes 714 and 715, this has been checked numerically
and it holds at the level of one per mil. This is similar to the numerical accuracy to which the in-medium
integrations have been calculated. For the diagrams in fig. 27, with the one-pion exchange between the
final nucleons, this is clearly the case because Tlf2 and Tf; only depend on & through its scalar product
with p”. Thus, there is no angular dependence on @ once the integration over dp” is performed. For
the case when the pion is exchanged between the initial nucleons, fig. 28, the resulting T, and T}3 do
not depend on p”. In this way, the integration over dp” can not remove the dependence on &. This also
implies that this diagram only can contribute to partial waves with ¢ = 0, that is, 2S; and 3D; — 35;.
However, as remarked above after eq. (13.13), the exchange p’ < p transforms T1f2, Tf; into Tf2, Tf3 and
vice versa. In addition, one has to notice the symmetry between p and p’ in eq. (B.11) for the partial
wave decomposition. It is then clear that the same partial waves result for the diagrams of figs. 27 and
28 with the exchange ¢/ < ¢. Thus, we can still use eq. (B.31) but using the diagrams with the pion
exchanged between the final nucleons. The elastic partial wave 35 is exactly the same for both diagrams
and 3D — 38 is equal to 25; — 3Dy evaluated as discussed. When only local vertices are involved in
the evaluation of the two-nucleon reducible loops, fig. 24, there is no dependence on & but just on |@|.
It follows from this discussion that for all the actual calculations performed here we can use the simpler
eq. (B.31) which does not require to integrate over da.

C Lorentz transformations

A nucleon state is defined by means of a Lorentz transformation of reference acting on a nucleon state
at rest with third component of spin o,

Ip,0) = U(Lyp)|0,0) , (C.1)
where U(Lp) is a Lorentz boost in the direction of the three-momentum p,
U(Lp) = R(b)B(vz)R(p) " . (C.2)
In this expression R(pP) is the rotation already introduced in Appendix B such that R(p)z =p ,
R(p) = e e | (C.3)

with ¢ and 6 the azimuthal and polar angles of p. On the other hand, B(vz) is a Lorentz boost along the
z-axis and velocity —|p|/F, with E = \/m? + p2. Simple expressions can be worked out for a rotation
and B(vz) acting on a particle of spin 1/2:

—iahd (0% RN & 2
e ’“na/2:0085—181n§na,

¢

B(vz) = e’ = coshg + sinhE 340, (C.4)

with

¥y0 = ( 0 0" ) : (C.5)

_0'3

On the other hand, for the boost from the rest frame to the moving one at rest with the particle one

has sinh¢/2 = —p/\/2m(E + m) and cosh¢/2 = /(m + E)/2m. It is then straightforward to obtain the

Dirac spinors,
E r
wiw) = 5m) (G ) =S axe ) ()

2m Eim

61



with

€1=<(1)>,€2=<(1)>. (C.7)

Now, the transformation of |p, o) under a Lorentz transformation U(A) can be described in terms of the
so called Little Wigner rotation. For that let us consider the manipulation

U(A)|po) = U(MU(Lp)|00) = U(Lap)U ™ (Lap)U (AU (Lyp)|00) . (C.8)
The point is that the transformation
R= U (Lap)UNU(Ly) (C.9)

is a rotation in the rest frame of the particle. Here, Ly, is the reference Lorentz boost for the particle with
four-momentum Ap. The fact that R in eq.(C.9) is a rotation follows because this transformation leaves
invariant the four-vector n = (1,0). Note that L, acting on mn = (m, 0) gives rise to the four-momentum
p, then A transforms it to Ap and, finally, the inverse of L, returns it to n.

For our studies of nucleon-nucleon interactions we are particularly interested of passing to the rest
frame of the two scattering nucleons,

. P
P':p’1+p’2:0:7(P—vW)—>v:W, (C.10)
with P = p;1 + p2, W = E; + E; and v = 1/v/1 —v2. The velocity for the reference boost for p is
w = —p/FE, and p = —p’/F’ that for the final four-momentum Ap. We also make use of the general

expression for a Lorentz boost of velocity v,

p' =p+[pV)(y—1) —vyEv]¥,
E' =~(E - vp) (C.11)

By definition we choose the vector p||x and the velocity v contained in the plane zy. In order to obtain
an expression for the angle ¢ of the little Wigner rotation we apply the different Lorentz transformations
of eq.(C.9) to a four-vector a. This is chosen such that its transformation under L, is

a®—wa=0,
Uy

a+ (aw)w(yp —1) —ypdlw=N| -2, |, (C.12)
0

where 79 = 1/v1 —w? and note that the vector (vy, —vg,0) in this equation is orthogonal to v. In
addition, the normalization condition
aw =1 (C.13)

is imposed. These conditions fix

tod ted
a— (w1, o= (w,_}ﬂ&y) 7
Y0 Y0

N = —1/~psinf . (C.14)
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b = Lpa, - 3 (C-l!li)

and bv = 0, because of eq.(C.12). This makes that the transformation of b under A is trivial
Ab=1b, (C.16)

the real reason for having imposed the conditions in eq.(C.12). The last transformation is

1 —v2bu
¢=Lyb= ( b+ (b)(y2 — 1)a >
P _p+pV)(y—1) —vEv
B Y(E - vp)
bu—_ PP v/

v(E - vp) Y(E —vp)

u =

(C.17)

0 since R must be a rotation. For that let us take into account that

It is interesting to check that ® = a
E' = v9m = v(FE — vp), so that
72 = 4(E - vp)/m . (C.18)

Then, substituting this expression in eq.(C.17),

YY(E—-vp) E

The expression for ¢ from eq.(C.17) can be worked straightforwardly taking into account the last two
lines of eq.(C.17) and 72 in eq.(C.18), that we use in the equivalent form 2 = vy7y0(1 + vw). Then,

X w3 v
c=—— 1+cos?0(y—1) —y—cosh
Yo [ 1+Wo(1+VW){ T-U-7 }]
S 2.2
y w™g v .
~— |ctgh — O(y—1)—~y—psinf| . C.20
+ - |:C gt — 7 I p— {cos (v—1) yw}sm } ( )

The resulting Wigner rotation is then a rotation around the z-axis whose general form is

1 :
T =xcosyp —ysing ,

y" =xsing +ycosp . (C.21)

Comparing this general expression with eq.(C.20), and keeping in mind the original vector a given in
eq.(C.14), one has,
1 1, 9 "
sing = 4 189" /%0 (C.22)
1+ ctg?0 /g
Since v and w are both O(p) one can check straightforwardly that ¢ is O(p?). Then for our present
calculation of the pion self-energy they are N3LO.
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D One-pion exchange nucleon-nucleon partial waves

The one-pion exchange nucleon-nucleon partial waves ’Z}l}r(@, ¢,S) up to the F—wave that result from
eqs.(8.4)—(8.7) are:

1 931 1 2
751" (S, 8,0) = —TF@[‘HB +m ]
™
1 931 1 2
u _
Tig (5,8,1) = —TF@{@ +m 2+4p2]
™
2 2
™ 9A 3m7r 2 m
TH(P,P,0) = 24 4 2p*)1
10(5’) 4f7%8p4[p+(m+p)nm +4p2:|
2
i oga 1 2 2 My
™
2 2
n ga 1 2/ 2 2 4 My
T\"(P,P1) = 24 _—_ |4 -2 In—"—
11( y 47 ) 4!}07%16p4|:p(77@7T p)+m7rnm72r+4p2],
2 2
I _oga 1 2 2 2 M
T (P, P,1) = @W p*(3m2 + 2p°) + m2(3m2 + 8p )hlm] :
1m 931 m72r 2/, 2 2 4 2.2 4 m72r
757 (D,D,0) = — 17232, 12p*(mZ 4 2p°) + (3m, + 12mZp° + 8p*) In m] ,
1 931 1 : 2 2 2 2 2 2 m2
T (D,D,1) = — —4f2 —16p4 4p*(3m3 + 2p°) + mZ(3mZ + 8p°) In m}
1 931 1 : 2 4 2 2 4 6 4 9 m2
Ty (D,D,1) = — ?W 4p*(3my + 3mip” — 2p") + 3(m, + 3m p°)In m]
= ™
1 m2
T4 (D,D,1) = 4p?(15m2 + 42m2p? + 8 3m2(5 24 24p*) In ———
30(’7) 4f224 [p( m7T+ mﬂp+p)+m(m+ m + p)nm%+4p2’
m2 2
1 _ 2 4 4 4 m
TAT(F,F,0) = 4f2647r [ (15m™ + 60m2p? + 44p*) + 3(5mS + 30m’p® + 48m2p* + 16p )IDW} ,
T, (F.F,1) = g—A ! [4p2(15m4 + 42m2p? + 8p*) + 3m2 (5mi + 24m p2—|—24p4)1nm772r]
4£2 480p0 i m m2 + 4p?
201
Ty (F,F,1) = —49 ]?2 7658 [4292(457%3 +150mip? + 48m2p* — 16p9)
2
3mA (15m + 80m2p? + 96p*)In — 7 | |
+ 3m2(15m3 + 80m2p? + p)nm%+4p2]
21
T (F,F,1) = 4%69121?8 [4}) (105mS + 510m2p? + 560m2p* + 48p)
™
2
3m2 (35 240mip? + 480 256p5) In — 7
+ 3m2(35m2 + 240mip® + 480m2p* + p)nm?r+4p2’
201
Ty (G, G, 1) = — f—}ﬁ‘g 70258 [4p2(105m?} + 510mip? + 560m2p* + 48p°)

2
3m2(35 240mip? + 480m2 p* + 256p°) In — 7
+ 3m2 (35m3 + 240m;p* + 480m2p* + p)nmgr+4p2
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2

2
1 _ 9a V2 2 2 2 2 2 2 my
T (S, D,1) = — 112 67 [417 (3mz = 2p%) + mz(3my + 4p”) In eyl I
- 7-1107r(D7 S, 1)
T (P, F,1) = 93 V6 Ap?(15m2 + 24m2p? — 4p?) + 3m2 (5mi + 18m2p? + 8p*) In ———
21 L] 4f7% 480]?6 s s s g ™ m72r _|_4p2
= L(F.P1),
2
3
TiM(D,G,1) = — f—ﬁ 8?32;98 [4p2(105m?} + 390mip? + 224m2p* — 16p%)
s
2
2 6 4,2 2 4 6 ™
— T(G.D.1) (D.1)
including those amplitudes coupling different ¢ and /.
E Calculation of L;; function
9k
Q% Q)
——
Q
5tk
Figure 37: Ly function.
The function Liq is given by
d*k 1 Q Q
Lig=1i 2mif(1 — | — k[)o(Q%/2 — K —w(= —k
10 Z/(Qw)zl [QO/Q—kO—w(%—k)+ie+ mi0(&1 |2 )0(Q"/ w(2 )
1 . Q 0 0 Q
X 2mif (& — |= + K|)d 2+ k" —w(=+k E.1
[@W2+Mtwm%+ky+m+ mib(61 ~ |15 +KDOQ"/2 + K~ w(5 + K) (5.1)

This integration corresponds to the loop in fig.37, where the four-momentum attached to each internal
line is shown. In the following we define,

= Lmitp)= 2. (5.2

The different contributions to Ly are calculated according to the number of in-medium insertions in
the nucleon propagators, eq. (3.2).
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E.1 Free part, Loy

We perform first the k° integration by applying the Cauchy’s theorem,

d*k 1 1
Ligs=1
10,f Z/ (2m)4QY/2 — kY — w(d@ — k) +ie Q0/2 + kO — w(@ + k) + ie

_/ &k 1 - /d3k 1
“JempreoE @ T " ol -4

A .
A [ A VA
_m ge M / dk __ ~mA - im ‘ (E.3)
272 Jo A2 J_ o k? — A —ie 22 47
with
Q* 2
A:mQO—T—H’e:mQO—a + 1€, (E.4)

with @ = |@|. One has to keep in mind in the following the +ie prescription in the definition of A. In
order to emphasize this, we will write explicitly the combination A + ic in many integrals, though the
+ie is already contained in A according to eq.(E.4).

The result in eq.(E.3) corresponds to eq.(8.14), as it should because g(A) = Lo, f(A). Note that here
we have used a somewhat different scheme of calculation starting from four dimensions and removing the
temporal component by explicit integration, so that we end with eq.(8.12) afterwards.

E.2 One-medium insertion, Ly,

For the one-medium insertion, Lyg,, the k%-integration is done by making use of the energy-conserving
Dirac delta-function in the in-medium part of the nucleon propagator. We are then left with

Liom = _/ (d?’k 0(&1 — [k — al) +0(& — [k + df)

2m)3 Qo—k—rj—&—nf—i—ie
Let us concentrate on the evaluation of the integral,
ol ) = m [ 2506 e d) (E6)
= % {51 —VA arctanhgl\/_za —VA arctanh&\/%a — A+ Zi_ & log EZ i_ 2;2 : i}

Here we have taken into account that the Heaviside function in the numerator implies the conditions,
o> §1 )

2 2 ¢2
k| €la—&,a+&], cosb e [Mjl}

2|k|a

a <&,

k| € [0, —a], cosf € [-1,1],

k®+0a’ — & 1}

Kl € 61— a6 +al, cost e [<he

(E.7)
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Despite the separation between the cases « > &1 and o < &1, both give rise to the same expression in
eq.(E.6). In terms of the function 410, (&1, 4, ), eq.(E.5), one has

L1om(&1,82, A, @) = L1om(61, A, @) + L19.m (&2, A, ) (E.8)

E.3 Two-medium insertions, Ly,

For the case with two medium insertions

—1 4 5 o QO 0 ~ QO 0 ~
Lo = g [ a0 — k= o — -+ aS(S- — K = w(lkc = )35 + 1~ wle +)
=TIV oe, — kA — (e — (kA + al) (5.9

812

Here we take that & > &. If the opposite were true one can use the same expressions that we derive
below but with the exchange & < &. This is clear after changing k — —k in the integral of eq.(E.9).
The two step functions can be easily solved. Denoting by 8 the angle between k and &, they imply

A 2 2
204\/Z
g-A-a
cosf < 22— =95 . E.10
=T ava e

One has to require that y; < 1 and that y2 > —1, otherwise cos @ is out of the range [—1,+1] from the
conditions (E£.10). In addition, it is also necessary that yo > ;.

yp<+l—a-& <VA<a+§,
p>—-1l-a-&E<VA<a+té,

2 2
ylng%Agﬁ—QQEAmax. (Ell)

For a > &; in order that (o — 51)2 < Az, as the last of the three previous conditions requires, then
a< L;& . (E.12)

Notice that because & > & the previous upper bound is larger than &;. From eq.(E.12) it follows then
that o — & < 0. In addition it is always the case that (a + £2)? > Ajee. On the other hand,

if a> 527;51 _’Ama:v < (Oé—|—£1)2 s
it o< 527;51 S A > (a4 612 (E.13)
For the final form of L1g 4 one also has to take into account the conditions,

y1> 1= VA> & —a,
Pp<+l—->VA>&H—a. (E.14)
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Gathering together the conditions in egs.(E.10)—(E.14) we have the following options,
n<-1,p<+l - G-a<VA<E —a. (E.15)
Which is not possible because £ > £;.
n<-1,p>+l - VA<GH—a. (E.16)

This only holds for v < &;. Then cosf € [~1,+1] and Lyggq = —i mvVA/(27).

“1<y <+, >+ = |G —al S VA< min(g +a,& - a) . (E.17)
In this case, cosf € [y1,+1] and Ligq = —im(&? — (VA — a)?)/(8ma) . Tt follows that & +a < & —
for a < (&9 —&1)/2 and & +a > & —a for a > (& — £1)/2. In both cases [min (& +a, & — a)]? < Am,m,
as can be easily seen.
The last possibility is that
1<y <+1, <+l - -a<VA<&G +a. (E.18)

For this case to hold, it is necessary that o > (& — &1)/2. But then A < (€1 + a)? so that the allowed
upper limit for VA is v/Apqee not & + . In this case, cos € [y1,y2] and Liga = —im(& + & —2A —
202)/(87a).

In summary;,

_im\/z \/ngl—a,aggl

Lig,a = SM( - (VA-a)), -0 S VA< &G +a, a< 58
| @ - (VA-ap),  Ja-o<VA<G-o, L <a<ie
_é_M(51+§2—2A—2a), 52—a§\/2§\/m,§2§§1 Sagflgfg

(E.19)

F Double Integration

For the final evaluation of ¥7—>1p, one needs to calculate an integral involving two Fermi seas that is
given by the multiple integral,

3 3
Trs = [ G GEE06 — [0 )0(E ~ IpA) (N0 Ne(ROION oD Nep)) . (P)

with O a nucleon-nucleon operator corresponding to any of the amplitudes that are calculated. By
definition & = min(&y,, &) and & = maz(&n, &), so that & > &. Let us distinguish between the cases
Enm > & and & > &,,. For the latter case one has

3 3
Ips = / é%;;é%;e@—rpmw (& = [Pel) (N (D) Ne(PO) O N (D) Ne(pe)) - (F2)

Due to the indistinguishable nature of the nucleons in a two-nucleon state within the isospin limit, we

can write (N, (Pm)Ne(Pe)|O| N (Pm) Ne(Pe)) = (Ne(Pe) Non (Pm)|O|Ne(pe) N (Prn)).  Exchanging also
the integration vectors p,, <> p¢ between them, eq.(F.2) can be written as

3 3
Ipg = / %%9(& — P02 — [Pm|) (Ne(Pm) Nin(Pe)|OINe (P ) Nen(Pe)) (F.3)
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and the same expression as in eq.(F.1) when §,,, > & is obtained with regarding the integration variables,
so that &; is associated with p, and & with p,,. Furthermore, p,, is always the first three-momentum
appearing from left to right in the matrix element and p, the second. Let us define

a= (pm+p€)/2 >

P=(Pmn—P0)/2,

Pn=4a+p,
pr=d—p. (F.4)
Then P 2
« N - -
uwzs/fﬁg/fg%ma—m—pwar4a+pbﬂmp» (F.5)

The two step functions present in this integral are the same as discussed in section E for the calculation
of Lyg,q. The only difference is that now we have |p| instead of VA, see eq.(E.9). The analogy is not
only formal because given the definition of A in eq.(E.4), one has now

p;  (p1+p2)’

pi 2
— — = F.

since @ in this case is the sum of the nucleon kinetic energies. In order to apply the conditions for o
and |p| = VA in eq.(E.19), one has to distinguish two cases, corresponding to &; > or < than (& —£1)/2.
The former case corresponds to & < 3¢ and the latter to & > 3&;. The following expressions follow
directly from eq.(E.19) and the allowed interval of values for cos § according to the egs.(E.16), (E.17) and
(E.18) with y; and y2 given in eq. (E.10) and Auq in eq.(E.11):

S1—a +1 &1ta +1
2 [/ dppz/ dcos@—i—/ dpp2/ dcos@] fa,p)
0 -1 §1—a Y1
1 &1 &1—a +1 a—a +1
+—= doa? [/ dpr/ dcosé?—i-/ dpr/ dcosf
T Ja 0 -1 &—a Y1

V Amaz Y2
+ [ gy [T dcoso| piap)
13 Y1

2—Q
1 51352 a—a +1 VAmaz Y2
+—4/ doa? / dpp2/ dcos@—i—/ dppz/ dcos@| f(a,p) .
T J& a—=§ Y1 §o—a Y1
(F.7)
b) 361 <&,
1 &1 51 @ +1 &1+a +1
Ipg = —4/ do o [ dpp? dCOSH+/ dpp2/ dcosﬂ} fla,p)
-1 Si—a Y1
1 £2— 51 £1+a
+—= / dp p? / dcos@ f(d,p)
7T a—
1 €1+£2 a—a +1 VAmaz Y2
+— doa? dp p? / dcos@—i—/ dppz/ dcos@| f(a,p) . (F.8)
24 51 a—&1 §o—a Y1
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These long expressions can be summarized in

§1+&2

1 P VAmaz to
Ipg=— daaQ/ dpr/ dcos f(a,p,cosb) , (F.9)

4
™ Jo 0 t1

where t; = max(y1, —1) and to = min(yo, +1).

G Calculation of L;;, L{; and L‘fl{

Let us now proceed to the calculation of the integrals defined in eq.(13.17). As in section E we distinguish
the free, one- and two-medium insertion parts.

G.1 Lll

Ly; is defined in eq.(13.17) and we evaluate its different contributions according with the number of
in-medium insertions.

I _Z./ d'k 1 0(&m — la —k|) n (10 — k| = &m)
et (k+r)2+m2 | Q02— k0 —w(@—Kk) —ie | Q0/2 — kO — w(d — k) + ic
0(&e — |0+ k) 0(la + k| — &) (@1)
Q%2+ k0 —w(@+k)—ie QY2+ k0 —w(d+k)+ie| ’
G.1.1 Free part, Ly
After performing the k° integration by applying Cauchy’s theorem we are left with
I / d3k 1 m ! 4 1
11 —m — = —— x

I k+P +m2 k? — A —ie 87 Jo  [p2a(l —x) + m2x — A(1 — z) — ic]V/?

8Wlpl m2 + (f— pl)?

Where we have introduced a Feynman integration parameter x € [0, 1] and v/—a + ie = +iy/a for a > 0.
One can also work out simply from eq.(G.2)

0Ly m/|p|

= for A =p?. G.3
0A 8mmx(2|p| + imx) o P (G:3)

G.1.2 One-medium insertion, L1,
Once the kY integration is done by the presence of an energy Dirac function, we have

I m/ d3k m(@—k)+0,(d+k)
o = —A—ie)((k+p)? +m2)

It
. d3k 0 (d — k) [ 07 (G — k)
| e e A - (G4
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Both terms in the sum can be obtained from the function

B d3k 0(& — |a—k|)
o= [ A T (9

Let us work out the scalar product k - p. For the integration, we introduce the reference frame

t=a,
. axp
X =
apsinf’
Yy =2 X X = Gctanf — pcsecl . (G.6)
From the last relation we have,
p=d&cosf—ysinf . (G.7)
Then,
k- p = |k||p|(cos 8 cos B — sin @ sin ¢ sin 3) , (G.8)

with € and ¢ integration variables in eq.(G.5) and
cosB=p-a. (G.9)
Let us perform the ¢ integration,

1 [ 1

— d . G.10
27 Jo ¢p2—|—k2+2k-p+m?r ( )

Notice that the denominator is always positive, (p + k)? + m2, so that the integrand is non-singular.
This integration is of the type,

1 2 b+ atan(¢p/2)
d = tan ————— . G.11
/ ¢a+bsinq§ a2 — b2 arctatl Va2 — b2 ( )
Since tan ¢/2 is singular at ¢ = 27 the integration eq.(G.10) is split in two intervals
L[y L PRI L L (G.12)
27 Jo p?+k®+2k-p+m2 27 L.+ "pP+k2+2k-p+m2’ ’
with 77 =7 — 0" and 7+ = 7 + 0". Then, one obtains the result
I 1 1
il d = G.13
27 Jo ¢p2+k2+2k-p+m§ a2 —p2’ ( )
that it has been checked also numerically. For eq.(G.10) we have
a = k% + p? + 2k||p| cos Bcos B + m?2
b= —2lk||p|sin Bsinf , (G.14)

where sin 3 = y/1 — cos? 8. Next, we move to the cosf integration of eq.(G.5). For this integration one
has to take into account the presence of the Heaviside function, which implies the conditions already
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worked out in eq.(E.7). These conditions determine an interval of integration for cos € € [z1(|k|), z2(|k]|)]
for a given value of |k|. Then, we can write,

o 1
d cos 0 ——— / dcos 6
/ va Va' + b cosf + ¢ cos? 6
1 b+ 2c cosf r2
= —log | —=——="2 42\ + ¥ cos b + ¢ cos? § , (G.15)
with
a =6 —4k’p?sin? 3,
' = 4[k||p|d cos 3 ,
d =4k’p? ,
§=k*+p*+m?. (G.16)

Now, we consider the final integration on |k| in eq.(G.4) and define the auxiliary function,

m b+ 2¢ cos b z2(/kl)
fi1m(k :—{1 [7%—2\/&’4—()’0059—%0’00829}} , (G.17)
11 (| |) 8772|p| \/g 1K)
in terms of which eq.(G.5) reads
o> 51 )
L e dk [k k
an(@rc0sf) = [ Akl ()
a <&,
§1—a a+&1 |k|
fumercoss) ={ [+ [T b= (i) (@18)
&1
Then from eq.(G.4) one has
Li1m = Li1,m(§m, cos B) 4+ L11,m (&, — cos ) . (G.19)

Here, we have only indicated those arguments that change for each term in the sum of eq.(G.4) to
calculate L1y . Indeed, £11 ,, depends furthermore on a and |p|.

G.1.3 Two-medium insertions, L 4

The integration over |k| can be done straightforwardly done because of the presence of an additional
Dirac delta function of energy, analogously as for Lyg 4 in section E.3, which fixes |k| = v/A. Then,

(G.20)

We have the same ¢ integration as in eq.(G.10), with the same result but now with |k| = v/A. The
integration over cosf is the same as that of eq.(G.15), though now the integration interval of cos is
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different and it is fixed by the value of A and «, according to the results of section E.3 and that we collect
here for & < &,

1’1] VA<&G-—a,a<

A |£1_0‘|§\/Z§£1+a,a§%

], [G-o<sVA<GH-—a, B <ac il
vyl . @—a < VAS VA, 5% <a< il

(G.21)

cosf € [x1,x9] , [11,22] =

with y; and y, defined in eq.(E.10). We also define, similar as done for ¢1; ,,, the auxiliary function

m b + 2¢ cos b *2
fi1,a(&1,&2,cos B) = log 1+ 2/ + ¥ cosf + ¢ cos? 6 , G.22
( )= 5] 7o ) (G-22)

with |k| = v/A for the values of @/, b’ and ¢’ in eq.(G.16) and x; and z9 according to eq.(G.21). In this
way,

Li1,4(&1, &2, cos B) = —im f11,4(&1, &2, cos B) . (G.23)
For the case & > & the change of variable k — —k is performed in eq.(G.20) and then for this case
Lia = —imf11,4(§2, 61, — cos B) (G.24)
with fi1 4 calculated as above.
As a result,
Ly = Liv g + Lty + Li,a(ém, &e) - (G.25)
G.2 L{
a _Z-/ d'k ke 0(&m — |0 — KI) n 0(10" — k| — &m)
D0 emtk+r)2+m2 Q02— k0 —w(@ —k) —ie  Q9/2 — k0 —w(d — k) + ie
(& — la + k) o(la+k| —&)
QV/2+ K0 —w(d@+k)—ie QV/2+ k0 —w(d + k) + ie
= LYo + LY p® . (G.26)

As usual the k¥ integration is firstly done either by applying the Cauchy’s integration theorem or by
using an energy Dirac delta function.

G.2.1 Free part, Ly ¢

a / dgq k® 1 LP a (G 27)
= —m = . .
1L.f 23 (k+p)2+m2k2—A—qc P
The function LY, s is given by
-m d3l<: k-p 1
. .2
llf / 3(k+p)2+m2k?2—A—ic (G.28)
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Completing the squares of the denominator, 2k - p = (2k - p + k?> + p2 + m2) — p? —m2 — (k2 — A) — A,
one has

1 d3k 1 ] (G.29)

p
Lllf 2p2 [Llof_( +A+m)L11f+m/ (2m)3 K2 + m2

The last integral diverges linearly. We perform its calculation as done for Ly ; in section E.1,

Bk 1 1 A m2 [® 1 A m
Lopwfr=| —5——==— dk| - —= dk|5—s5 = =— — — . G.30
01,f / (271')3 k2 +m72r 272 /0 | 272 0 | |k2 +m72r 272 A7 ( )

Note that the integral of eq.(G.28) is convergent and thus it cannot depend on A. This is accomplished
because the dependence on A from eq.(G.30) is cancelled with that from Ljg ; in eq.(G.29), recall that
Lyy,p is also finite. If Lgj ; were evaluated with dimensional regularization one would obtain only the
last term in eq.(G.30). Then, eq.(G.29) reads

1
Ly = =9 [Lio,y — (P + A+ m2)Li1 s+ m Loy . (G.31)

G.2.2 One-medium insertion, L{, ,,

« / d®k k@ 0,0 —k)+ 6, (d+k)
H,m = (2m)3 (k+p)? + m2 k2 — A —ie
_ / d®k k@ 0, (& — k) / d®k k@ 6, (a — k)
- 3(k+p)?+m2k?—A—ie m @2r)3 (k—p)2+m2k?—A—ie
= L{j ma” + i mP” (G.32)
We consider first the function
“ 3k ke 0, (& —k)
11,m = m/ S(k+pl+m2k2—A—is ellma +€11mp (G.33)
Multiplying eq.(G.33) by p® one has,
d3k p- ko (d—k) 1 p>+ A+ m?
Ep L m o = 3 m oy ,m
11mP +limd-p = m/ (k+p) +m2](k? — A — ie) 2 1% 2 H
_m d3k (@ —k)
: G.34
/ k + p)? +m2 ( )

As an intermediate step we have the integral

3 —
Lo1,m(&m, cos ) = / (d ];3 (kej—(pa);—i—angr = (26:)2 [1 - Zl—marctanmllnit% + —marctan’pl‘mi_ﬂgm
PRl SRR R TR 1) mﬂ]
41p1|&m ( m — |p1])? + m% ’
Ip1| = |@ + p| = Va2 + p? + 2alp|cos 3 . (G.35)

Then eq.(G.34) reads

A
wgn = mLOl,m ) (G.36)

1
2 N
le)me + €117ma P = 5610,1% - 5 5
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Eq.(G.33) is now multiplied by a“,

A3k -ko - > k|3
511)1,7715Z P+ 5(111,m m/ m(G — k) - e / dk:i’ |
0 _

k +p)2+m2|(k2 - A—ig) (2m)2 k2 — A —ie
+1 1
dcosf0,, 9— . (G.37
. /1 €05 06, (6 = k) cos 27 ¢k2—|—p2+m72r+2|k||p|(cos€cosﬁ—sianinBsingb) ( )

Where we have followed the same steps as used in the calculation of ¢11 ,,, in section G.1.2. As a result
we are left with the integration on cos 6

2 cos 6 1 v b+ 2c cos b z2([kl)
dcosf = Ve - lo [ + 2\/5} } , G.38
/ggl va +bcosh+c cos?f { 2V/¢ s Vi z1(|k|) ( :

with C = a’' + V' cos§ + ¢/ cos®. See also eqs.(E.7) and (G.16) for the rest of elements in the previous
expression. We define

e % b+ 2¢ cos b w2 (kD)
(i, cos _ma [ 5 o [___________4-2in‘} : G.39
11 (‘ ‘ B) 167 2‘p’2 { 2\/3 & \/E z1(/k|) ( )
Then,
o> 51 )
a+€1 |k|
ak
6117m = /agl d‘k‘m 11 m(’k’ COSﬁ)
a < §1 )
- a+€1 |k|
_ dlk k G.40
3 m {/ /£ } | ’ —A—ie {2 (i c0s ) . ( )
with
o m =10 @ P+ a0 (G.41)

From eqs.(G.36) and (G.41) it follows that,

1 a?
Ezl)l,m — m [ (flom — ( +A+m )611 m mLOl,m) |p|a cos G497 m] ,
1 —|p|a cos
E?l,m = p2042 Sinz/B |: |p| 92 ﬁ (Elo,m ( + A +m )gll m mLOl m) + P 611 m:| . (G42)

In terms of these functions
L(lll,m = [6?1,771(&7717 COS ﬁ) - 6?17771(567 — COS B)] o + [eﬁ)l,m(gn’m COS B) + eﬁ)l,m(é.fa — COS ﬁ):| pa . (G43)

G.2.3 Two-medium insertions, L{, ,

—imvVA ('51—\&—&\/_\) (52—\04+k\/_\)
872 (k+p)2+m2

LYy 4(&1,€2,co8 8) = = Ly go® + LY} p* .

(G.44)
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Recall that because of the two energy Dirac delta functions [k| = v/A.
Multiplying by p® one has,

—Z;n;/Z /df(a(fl — |kv/A - a@)o(& — [kvVA + Oé’) 1L p?+ A+ m?
Y

L11)1,dPQ+L?1,d@'p =

(k+p)Z+m2 = ghodm 5 lid-
(G.45)
Performing now the multiplication with o,
—imVA [ 06 — |kvVA-a — |k
872 (k + p) +m2

The angular integrations are the same as the ones calculated above in section G.2.2 for £§f 'm- LThough,
the values of 21 and x5 as function of A are given now in eq.(G.21) assuming that & < &s. Deﬁning the
function

mao b b + 2 cos 6
k|, cos —— _VC- lo 2\/_] } , G.47
bl cos 5) = 1575 { V€ - Sz og |25 ) (A7)
one simply has
Lifq = —infify . (G.48)

From eqs.(G.45) and (G.48) it results

1 a? k
szLd = m [ (Llo d— ( +A+m )Lll d) |p|ozcosﬁL‘f‘17d] )
1 —|p|acos 8

For the case that & > & we perform first the change of variable k — —k in eq.(G.44) so that one has

a _ _|_Zm\/Z dk (61 - ’&+ l;\/_’) (52 - ‘Oé - k\/_‘)
1hd ™ T g2 (k —p)2+m2
- _L?Ld(g?’gla COs ﬁ)a + L11 d(£2,£1,—COS ﬁ)pa 9 (G50)

with the functions L ; and L 4 given in eq.(G.49).
The final result is

=L+ Ll
LYy =L s+ LYy, + L 4 (G.51)
G.3 L
o Pen—la—K) | 0i—k &
L= L omikrr)2+m2 Q02 — k0 —w(@—k) —ie ' Q0/2 — kO —w(d@ — k) + ic
(& —|a +k|) n O(la + k| — &)
Q%2+ k0 —w(d@ +k) —ie  Q°/2+ kY —w(a + k) + ie

= LlTlg(Sab + LTl + L papb + LTap(ozapb + abp?) . (G.52)
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G.3.1 Free part, L%

11,f
The k° integration is performed by applying the Cauchy’s theorem as usual.
d3/<: kKb T T
—[t9 5ab LiP po b ) G.
Lity = / (K p2+m2 (& —A—iz) s thagPe (G-53)
In order to determine L11 s and L11 s we first contract eq.(G.53) with 5,
3L1T1gf 2L1T1pf = -—mLo1 s+ AL11y , (G.54)
with Ly ¢ given in eq.(G.30) and Ly ¢ in eq.(G.2). Next, we multiply by P,
3k kk - p
LT LT =—
LA m/ 2m)° [+ p)? + m2] (& = A — ie)
B m/ d3k [ 1 1 p2+A+m?2
k2 — A —ic (k+p)2+m72r [(k +p)2 +m2] (k2 — A —ie)
m d3l<: k@ 24+ A4+ m?
= Ik .
/ 5 (k+p)?+m2 2 SN (G.55)

where the function LY, 7 Is given in eq.(G.31). We have the intermediate integral

o  _ / 3k k® — pOLP
O @) (k4 p)? +m2 o
PO R S
oLf = p2 ) 2r)3 (k+p)2+m2 4r  3r2
We should stress that the result for L§, 7 is not the same as the one obtained by performing the shift

(G.56)

of variables k + p — k in the previous integral. In this (wrong) way we would obtain Lf)’l, = —Lo1,f

and the coefficient multiplying A would be different, —A/272. We have performed the integral for L, 7
exactly keeping those terms that do not vanish for A — oo.
Eq.(G.55) then reads

p2+A+m?er

Ly + L] = L& g 5 11,1 - (G.57)
Solving egs.(G.54) and (G.57) for Lngf and L11 s 1t results
A 2L A+ m? mm mA
Tg _ p TP T e
Liny =g lust 4 N T
T 1 3 MMy
Ly, = “op? <AL11,f + 2( + A+m2)LE, F TR > ) (G.58)
G.3.2 One-medium insertion, L%lim
Once the integration over k" is done with the energy Dirac delta function,
_ m/ d®k ke kb 0,0 —k)+0, (d+k)
Hm 3(k+p)2+m2 k2 —A—ie
/ d3k kKb 0. (a—k) / d®k kKb 0, (d —k)
(2 )3(k+p)2+m?k2 A —ie (2 )3(k—p)2+m$rk2—A—ie
- L,{Igm(sab + Lll ma Oé + Lll mp p + LflagL(a P ta p ) (G59)
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As usual, we first consider the integral
/ 3k kKb 0, (a—k)
=m
i = 3(k+p)2+m2k2—A—ic

_ pTg ab To
=1l m6 + 01

oo +£T1p,mpapb _|_€{1aﬁl(aapb —|—osza) ] (G.60)
‘We contract with 5“b,
d3k k? Om(d — k)

3(k+p)2+m2k?—A—ie

3€1T1gm+€11 mQ +€11 m\P’2+2€1T1a£104‘P’ cos 8 = m/ = mLo,m+Al11m ,

(G.61)
with & - p = a|p|cos 5. The integral £1; ,, is given in eq.(G.18) and Lgj , in eq.(G.35).
Contracting with a®a® it results

d®k  k?a?cos?f 0, (d —k)
T, T m T2ak
0 e +T ‘rar ' (@-p)?+2001 7 076 p = m/ Sktplimik®—A—_ic Gim (G.62)

We calculate ¢72¢% gimilarly as done above for ¢1; .m and 2% One has,
11,m y 11,m:

2 oo 4 +1 2
T20k _ MO k| / 2,1 / do
= k|l ———— dcos 8 0—
fitim (2m)? /0 d) ‘k2 —A—ie )4 OB o k%4 p?+2/k||p|(cos f cos f — sin O sin ¢psin 3) + m?2

(G.63)
We have the new angular integration on cos
z2 2 1 3b12 —Ad b+ 920 0 T2
/ dcos @ cos” 0 = —5 (=3 +2¢ cos 0)VC + ac log < T 2C 008 + 2\/E>
o1 Va + 1V cosh+ccos2h  Ac 2/¢c Ve o
(G.64)
following the notation of eq.(G.38). We also define the function
Toak ma? Ve 30? —4a/d b + 2 cos 0 Ve "
o — (=3 +2c cosH)VC + lo < +2 C) ) G.65
1L = S52lplik] | ) ve e\ T e - Gm
and then
(67 Z §1 )
oIk
i = /a_51 S vy — 120k (K], cos B) .
a < 51 )
f1—a a+é1 k
st = { [ [ g cons) (.66)

When contracting eq.(G.60) with p®p® one has in the numerator (k-p)? that is rewriting as [(k+p)? —
k? — p?|(k - p)/2. Then, it reads

Tepi 5. M d3l<: k- p9 ( _K)
ngmp +£11m( -p)* + 11m|p|4+2£11£b|P|2 ‘P=7 / —A—ie

m/ d3k k- pb, (d k)_p2+A+mﬂ / d>k k-pem( —k)
P (k+p)?+m2 2 (2m)? [(k + p)* + m3] (k* — A —ie)

(G.67)
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The last integral was already evaluated in eq.(G.36) while the first two integrals have not been calculated
yet. The first one on the right hand side of the previous equation is the scalar product of p with

d®k k0~ (d — k)
(110,771 m 2B K2 — A —ic elOm . (G.68)
Performing the shift
k=d+v (G.69)
and integrating over v,
d? o] d?
?O,moza =m Y atv = dflo’m +m Y M (G?O)

v<tm 2m)2 (A + V)2 — A —ie vetm (23 (@+ V)2 —A—ie

Multiplying by a® and completing squares,

A+ a? me 1 d3v v?2
e} 2 m
=——/ — — = . G.71
10,m& 5 10,m—i-127T2 Qm/uggm 2P G+ve—A—ic ( )

The evaluation of the last integral is straightforward with the result,

3 2
2 d°v v m 4 (m+a)?—A
= = - 4 3A
o= [ G VR A T (601 (e 306 10634+
+ém— VA a+m+ﬁi
—\/_—0441ga - VA + G.72
(VA -0 log SR (Vi ) og S LS (@72)
Thus,
1 mé3 2
om = 20 ((A + a®)l10,m + # - fifo,m> . (G.73)
We now consider the second integral in eq.(G.67). Taking the shift of eq.(G.69) one has,
d®k k-pb,. (@ —k) / Bv a-p+p-v
— = (a-p)L +(p-p1)LE, .., G.74
ot et e, B TR~ Pt e (G
with py = a4+ p and
d3v v®
L = — P a 7
o /vsgm @nF (vt +mz Pl
1 f 2
The only new integral is
d3v v? 1
Lv2 _ _ _3m2 3 9 2 2
= [ G = s (Pl + P+ 2l n ~ P
1
X {arctanigm :';lpﬂ + arctanimlpﬂ } + |p1 ]%ﬂ 1 [(m2 = |p1[*)? — 4mZ|p1|* — &)

(G.76)

X log

7n§+(&n+WpﬂV>
2 +(£m_|p1|)2 ‘
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In terms of integrals already evaluated eq.(G.67) can be written as

. 1/ A
511 mP + 0] (A p)’ + (1] m|P|4 + 2£ff‘&|p|2a b= €1o,m1 (a P [1 * @} - 6A>

m(@-p)éy,  d-p,2  m@ p+p’) (P> + A+m32)? m (. da
T U202 402 Fom — 2 Lng + 4 Ciim — S\ PT Lov,m
(G.77)
with 04 = p? + A+ m2.
We proceed now by contracting eq.(G.60) with a’p?,
o m d3l<: a—k
£1T1gm P+ (1m0’ +£11mp04 p+£11m(ap +(@-p)’) =+ / ( 25)
m/ d3/<: (a—k)_p2+A+m7rm/ d®k a- ) (@78)
(p +k)2+m2 2 (2m)3 [(p + k)* + m?r] (k2 A—ig) ‘

The first integral can be written as E‘f‘O’moﬁ, with £7; ,,, given in eq.(G.73). The last integral corresponds
to Ff{“m calculated in eq.(G.40). The remaining integral is

d®k a- kb, (ad —k) dv  a-v+a? 9 9
= = L m Y . Lp .
/a @2rP (k+p) +m2 /Nm ErFwapiamE - @ Lo T @+ & Plloyy o (G79)

with Lo, and Lng given in eqs.(G.35) and (G.75), respectively. Then eq.(G.78) reads,

Tg - T o
@ p+ 07, 0%a p+ 0, p?a-p+ ;7 (a®p® + (d - p)?)
2
« m N oA
=5 Tom — 5 [042L01,m +(0®+a- P)L&,m] - 511 m - (G.80)
We are then left with the system of equations
3 o? p? 24 - p nglgm Alyy g + mLo1m
a? ot (@-p)? 2a%@a-p) 511 m 5{12%6
2 = N2 4 2p2(& | rr = 12k ,  (G.81)
P> (@p) Ip (a 'p) 1m 11,m
d-p o*(d-p) p’(a@-p) o’p’+(a-p)’ ¢Ter (rork

with EITI%%“ given in eq.(G.66). On the other hand, €1T12 ﬁf and Krﬁa fff corresponds to the right hand side of
eqs.(G.77) and (G.80), respectively.The inversion of this system of equations is straightforward and then
the function Bﬂ’,m is calculated. Thus, from eq.(G.59) one has

LS8 o = 4 Ems 08) + £10, (60 —cB) ] 8% + [0, (6m, 08) + £112, (60, —cB)] a”a

|06 B) + 17 (Gt =) | P9 + |11 (6 08) = 1 (. —cB)| (0”8 + ")
(G.82)

with ¢8 = cos 3.
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G.3.3 Two-medium insertions, L‘lﬂl’ d

imvﬁ 0(&1 — [kvA — a0 — kVA+A]) L,
L dk K%k
A =g &+pﬁ+m%
= L1T19d5ab Lifga’a’ + Lif p"p"
+ LY (ap" + alp?) . (G.83)

We proceed similarly as in the calculation of the previous section for L11 m» though the process is
somewhat simpler because k? = A is fixed due to the presence of the two energy Dirac delta functions.
As usual we take & < &. First we contract with % resulting the equation

3L1T1gd + L11 da + Ln dp + Lle‘fﬂ ‘Pp=ALi14 , (G.84)

with L1 4 given in eq.(G.20). Contracting eq.(G.83) with a®a®

T T
L11gda + Lifo* + Lif qla p)’+ Ly 52 *(@-p)=Lig" . (G.85)
One has the same angular integrations for L1T1273‘k as before for 6{127%“, eq.(G.62). Then, in terms of the
function flTl?fl‘k,
ma? 3% —4a/d b + 2 cos b -
2ok — (=3 +2¢ cos0)VC + ———log <7 + 2\/5) ,

4 DerlplivVA NG vz .

LI = —im 5" . (G.86)

The limits x; and x9 are fixed according to eq.(G.21). We now contract with pp? with the result

7 ; Lompn P>+ A+m] (p” + A+ m3)

L11 aP >+ L WICE p)’+Ly] d’p\4+L11ag *(a@-p) = §L1§fd— 1 Lip,q+ 1 Liiq .
(G.87)

The only integral not yet evaluated is

Tpk zm\/_ o
Lk = /dk9 — k)05 (@ +k)k - p
A

= _“"';Wlm dk67 (@ — k)05 (& + k)(cos 0 cos § — sin 0 sin B sin ) . (G.88)

The term proportional to sin ¢ vanishes after the ¢ integration because the Heaviside functions do not
depend on it. Then,

—imA +1 —imA
LlTé’Z _ MMaIpIcosp [p[ cos 3 / dcos cos0; (A —k)b, (@ +k)= wm% —2?), (G.89)
’ i
with 1 and x5 given in eq.(G.21). Next, we contract with a’pb
Tg - T 1 p2+ A+m2
Llf’da p+L11da (a- P)+L11dP (a- )+L1f§(0¢ p’+(d-p)?) = QI/lTéXc]l§ # 11d (G.90)
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Where L{¥ , was already evaluated in eq.(G.48) and

Tok —imvVA N . B —imAa, 4 9 «o Tk
Ll()ojd = W dk@l (a — k)92 (a + k)Oé -k = 8771_(372 - IEI) m 10pd (Ggl)
We have the system of equations
T
3 a? p? 24 - p Ly
~ T
o’ ot (@-p)> 22%(a@-p) Lyt
p° (@-p? Ip/ 2p*(d - p) Lyfy
d-p o*ad-p) p’(d-p) o’p’+(d-p)’ Lter
ALy g
LTQak
11d p? 2 2 22 (G 92)
= Tpk . At+m?2 .
1L1(§)d +A+m Lo 4 (7 4+m ) Liig
A =
_LlTé)fc]? e +m L11d

Its inversion gives L‘fll’ 4 For the case {1 > &, similarly as done already in section G.2.3, one performs
first the exchange k — —k in eq.(G.83) which implies

LY = 1Tf’d(€2,§1,—cﬁ)5ab L&, &1, —cB)a’al + L7 (&2, &1, —cB)p"p”
Li7(&a, &1, —cB) (2" + ap?) (G.93)

with the different coefficient functions calculated as in eq.(G.92).
Thus,

Lffl :L11f+L11m+L11d )

Lit = Lt + Lty

L1T1p:L f+L11m+L11d ,
L = Lt + Lifh (G.94)

H Calculation of Ly, L%, and L.

The different integrals involved in the evaluation of 314 and Y15 can be expressed in terms of a set of scalar
integrals. The tensor structure of these integrals is determined by the matrix elements in eq.(14.11). We
also perform here the shift of integration variable k — 252 4k = p + k& , as in eq.(13.12) and rewrite
the matrix elements of eq.(14.11) accordingly, as well as the rest of terms in eqs.(14.3) and (14.14).
The integrals necessary for the calculation of the latter equations are evaluated along this section. In
the expressions that follow it is always assumed that the £° integration has been done either by using
Cauchy’s theorem or employing the energy Dirac delta functions from the in-medium insertions.

On the other hand, since now two pion propagators are involved we join them in one introducing an
integration Feynman parameter

1 _ /1 dy 1
(O e ] (0P il ~Jo Ty e+ 2]

(H.1)
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with

X=p +/P-p)y,
M? =m2 +2y(1—y)(p> —p-p) =m2 +2y(1 — y)(1 — cosp)p” , (H.2)

with

p-p =pcosyp. (H.3)
In order to apply the results already derived in Appendix G, where only one pion propagator was involved,
we take into account that

1 0 1 | (H.4)

(k + X)2 + M2 2 OmZ (k + X)2 + M?

as follows from the definition of M? in eq.(H.3). In this way, the calculation of the integrals involved
in Y14 and Y15 can be done following similar steps as already done in Appendix G, taking finally the
derivative with respect to m2 and then the y-integration, with the latter done numerically.

H.1 Ly

The scalar function Lis is defined by

L:i/d‘*k 1 [ 0(Em — | — K|) L Oa K~ &)
2 2m) [k +p)2 +m2][(k+p)2 +m2] [Q%/2 — k0 —w(d@ —k) —ie = Q°/2— kO — w(d — k) + ie

B¢ — |G +K)) 0(d + K| — &)
X - - — - (H.5)
Q2+ k0 —w(@+k) —ie  QY/2+ kY —w(a + k) + e
H.1.1 Free part, Lo ¢
For the free part
I / d3k: 1
-m
12,7 = [+ /)2 + 2] [(k + p)2 + m2] (2 — A— i)
3k 1
2L 2 | o)
" om (k4 X)2 + M2)(k2 — A — ie)
The integration over k was already done in eq.(G.2). Making use of this result one has
1
m 1
L127f = —— dy . (H?)

S7Jo T (p2 4 m - A - 2iMVA)

with M = vV M? of eq.(H.2).
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H.1.2 One-medium insertion, L2,

For the part with one medium insertion

&3 0n(d — k) + 0, (0 +k)
Ligm = m/ (k+p)? +m2][(k+ p)? +m2](k2—A—i5)

d3l<: 0-(d — k)
m/ [(k + p’)? +m2][(k+ ) +m2] (k? — A — ie)

d3l<: 0, (d — k)
+m/ e | S e Y ey s (H8)

The two terms in the sum can be obtained from the function

, / B3k 0 (d — k)
12,m = M [(k +p')? +m2][(k + p)? +m2] (k> — A — ig)
d3k Ha(&— k)
N m/ dy/ —ie)[(k + X)2 + M2 "

This integral is very similar to 411, in eq.(G.5), but with p in this equation replaced by X and
furthermore one of the factors in the denominator is squared. Following the calculation of 11, we adopt
the reference system

N>
I
jo)

»>
I
R

X

B | >

)

| sinn
X = @ ctann — \ csecn) (H.10)

1

Q
0

<>
Il
N>
X

with

a-x=|pla [(1—y)cos B +ycosf] = a|X| cosn
cos@ =p'-a, (H.11)

So that the scalar product
k- X = |k||X|(cos @ cos  — sin @ sin ¢sinn) (H.12)

where 6 and ¢ are the polar and azimuthal angles of k. Let us perform the ¢ integration in eq.(H.9)

1 21 1 1 27 1
o “T s =5 . . 2
[(k+)\)2+M2} 0 {k2—|—)\2—|—M2—|—2|k||)\|(cosﬂcos77—sinﬂsinqﬁsinn)]
-1 e 1
= 0o 1 / . . . (H.13)
2[A|[k| cos § d cosn 27 Jq k? + A2 + M2 + 2|k||A|(cos 6 cos ) — sin @ sin ¢ sin )
The last integral is of the type already evaluated in eq.(G.13) where now

a =6 + 2|X||k| cos B cos 7
b= —2|X||k|sin O siny . (H.14)
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It is convenient to remark that
S=K2+ X+ M=K +p>+m?, (H.15)

as already defined in eq.(G.16). Then, eq.(H.13) reads

1 1 8 + 2| X||k| cos  cos 6
- P _ - + 2|\||k]| cos n cos o (FL16)
T [(k—i—)\)Q —l—MQ} [4)\21(2(60829 — sin?n) —|—4|)\||k|5cosncosﬂ+62]

The cos 6 integration of the previous result is sensitive to the presence of the Heaviside function of
eq.(H.9) and is given by

dcos0

! [4‘X‘2’k’2(0082 0 — sin®n) + 4|X||k|6 cos 6 cosn + 62

2 8 + 2|X||k| cos i cos 0
. 3/2

x2

_ 2| X||K| cos n + & cos 6 . (H.17)

(02 — 4\X\2]kl2)\/4x2k2(0082 0 — sin? ) + 4|X| k|6 cos 7 cos 6 + 62

x1

The limits of integration x; and x4 are worked out in eq.(E.7) to guarantee that the Heaviside function
is fulfilled. Our result for f13,, is

o> 51 )
14 o dlk [k k
o= [ A fran ()
a < 51 )
§1—a &1+ K|
li2m = {/ / }d’k’ A f12 m(|k[) - (H.18)
§1—
Where we have used the function
. z2(|k|)
m|k| [* 2|\||k|cosn+ dcos @
fizm(k) =+ [ d - = -
6% — 4])\]2\k\2)\/4)\2k2(0082 6 — sin? n) + 4|\||k|d cos n cos O + 62 (1K)
1
(H.19)
For the function L, of eq.(H.8) we have
Lizm = iz m(Em, cB,¢B") + bz m(Ee, —cB, —cf') (H.20)
with ¢f' = cos 3.
H.1.3 Two-medium insertions, L1y 4
For the part with two medium insertions
Lina = —imy/A gi 0 — kvA — @) — [kvA + d)) (H.21)

82 [(k +p)? +m2][(k + p)? + mZ]
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The angular integrations are of the same type as already developed for the case of one-medium insertion
and, hence, we define

. . 962(\/Z)
Froa(VA) = my/A dy 2|\ v/ Acosn + dcos
12 = 55 ;
’ (2m)* Jo 2 _ 41X]2 Y2 20 _ sin2 \ 2
(62 — 4]\ A)\/4)\ A(cos? § — sin®n) + 4|\|\/Ad cosncos @ + 0 (V)
(H.22)

with the integration limits given in eq.(G.21), where it is assumed that & < &;. In terms of this function,

Lisg = —im fi2,a(§1, &2, ¢B,¢B') . (H.23)

When & > £ we perform, as usual, the change of variables k — —k in eq.(H.21) so that

Ligq = —imfi2,4(&2,&1, —cB, —cf') , (H.24)
H2 LY
L i I I
2 2m)* [(k+p')* +mZ][(k+p)? + m3] |Q°/2 - k® —w(d —k) —ie = Q°/2— k0 —w(d — k) +ic
06— 1 + k| 01+ k| - &) as)
Q2 + k0 —w(@+k)—ie  QV/2+ kY —w(a + k) + e ’

H.2.1 Free part, Lg{f

@ _ A3k k2
bz = m/( m)3 [(k 4+ p')? + mz][(k + p)? + mz](k* — A —ie)

/ d3k 1
- 5[k + p')2 + m2][(k + p)? + m2]

/ d3/<: 1 1
— Am -
(k+p)2+m2][(k+p)2+m2] k> — A—ic

= —mLOZf + AL127f . (H26)

With

I _/d3/<: 1 B / /d3k
25T ) CrE lk+p)2+m2[(k+p)2+m2]  om? (k + )2 +M2

1 L |

Here we have made use of the calculation of Lo ¢ in eq.(G.30) as an intermediate step.
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H.2.2 One-medium insertion, Lg)m

I m/ d3/<: 0,,(d — k) + 0, (d+k)
tm = k+p) +mz][(k +p)* +mz] (k* — A —ig)

/ d3/<: 0. (a4 — k)
- [+ p)? + m2] [+ )%+ m2] (& — 4~ ic)

0, (6 — k)
’ m/ P [+ w2l [k~ p)? + 2] 02— A~ ) (1:25)

The two terms in the sum can be obtained from the function
2 _ m/ d*k k[0, (6 — k)
12m )3 [(k+p')? +m2] [(k + p)? +m2] (k? — A — ic)

d3k |k|29;L(O7 — k)
a m/ dy/ —A—ig)[(k 4+ X)2 4+ M2]2 (H.29)

This integral can be expressed in terms of the function fia ., of eq.(H.19) and it is given by
a+& |k|3
= [ g fam(K)
12,m o k2 —A—qe’ o™

§1—a &1+a k|3
o= { [+ [ L i) (1.30)

As a result,
L) =00 o (Em B, ef) + 03 (€0, —cB, —cB) . (H.31)
H.2.3 Two-medium insertions, Lg)d

Since for this part k> = A then

e ey PRIGE R R R
[

1247 g2 k+p/)? +ma] [(k+p)? + m]
= ALjgq - (H.32)
H.3 L
0 / d'k e Om—la-K)  0(d -k &)
2o emtk+ )2+ m2] [(k+p)? +m2] [Q0/2— k0 —w(@ —k) —ie  QV/2— kO —w(d — k) + e
y [ 0(& |6 + k|) 0(1d +k| — &) ] (H.59
Q%/2+ k0 —w(@+k) —ie  QV/2+ k0 —w(d + k) + ie '
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H.3.1 Free part, L§42),f

3 4

(4) d’k ’k’ 1 (2) 9
A - L AL A2L

2= | G e T A ey AL+ AL

(H.34)
with
A3k k2 B
¥, = / - / / (HL35
21~ | Crp i+ p P+ m2l [k + P+ m2l  om2 et N2 +mg (H.35)

The integral over k can be calculated straightforwardly and neglecting those terms that vanish in the
limit A — oo we are left with

@ 1 /1 dy—3m?r +p*(1 —8y(1 —y)(1 —cosp))  go

0of = e i - (H.36)

H.3.2 One-medium insertion, L%)’m

4
LgQ),m

_m/dk:‘ y 07(6 — k) + 0, (@ + k)

3 [(k+p)2+m2][(k+p)2+m2] (k2 — A —ic)
Pk (@ — K)
‘m/f%w'H&+pW+mek+mLH@uw—A—m>

B 07 (G — k)
+m | M T PP e A

(H.37)

The two terms in the sum can be obtained from the function
o m/ d*k [k[*0;,( — k)
f2m )3 [(k+p')? +m2] [(k + p)? +m2] (k? — A — ic)

. d3l<: |k|49;L(& —K)
/ dy/ ek + N2+ M2 (FL.38)

In terms of the function fi2,, of eq.(H.19) this function is given by
o Z 61 )

a+é€1 K |k|5 N
R A e S T

§1—a &1+a kl|®
o= { [+ [ b i) (1.30)

Thus,

L§42),m = €§42 m(§m7 Cﬁ? Cﬁ ) 12 m(gfa Ba B/) . (H40)
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(4)

H.3.3 Two-medium insertions, L, ,

Since for this part k> = A then

Lo imA /df{@(& — [kVA - d)O(& — [kVA + dl)
12, 8 [(k+p/)? +mZ][(k + p)* + m3]
= A’Lygg . (H.41)
H.4 L4
[ d'k ke 0(&m — |a —k|) 0(la — k[ = &m)
¢ =1 +
12 (2n)4 [(k + p')2 +m2] [(k + p)2 + m2] |Q0/2 — k0 —w(d — k) —ie = Q0/2 — kO — w(d — k) + ie
" (& — |a + k) n 0(la + k| — &)
QY2+ K —w(@+k)—ie QYV/2+ K0 —w(d + k) + i€
= L% a® + L2y p* + LV, p/® . (H.42)

H.4.1 Free part, L?QJ

a _ / d3 k?a _Lp ( _|_ I)a
ST ) @ [ )7 m2] [k PPk mE] (2 — A —ie) RSP

(H.43)

Note that in this case p and p’ appears only in a symmetric way because it is the free part and there is
no vector of reference that could introduce any asymmetry between p and p'.

[ o [ e
L12,f—/0 dy( 6m7%>( )/(277)3 2 Aokt 02 ] (H.44)

Using the result of eq.(G.31), but now in terms of X and M. Then

1
0 @ >
L?2,f = /0 dy <_W> (LIO,f - ()\2 + M? + A)Lll,f + mLOl,f)

2 X2
m_ (1A f2 pPimi—iMVA i A— (X +iM)?
= — Y=o\ T 5 : — —log = . (H.45)
167 Jo (A2 (Mp?+mi—A-2iMVA X~ M2+ (VA |))?

—

From eq.(H.2) A = yp+ (1 — y)p’ and since M (y) is symmetric under the exchange y < 1 — y, as follows
from its definition in eq.(H.2), one can write

1
Y
LS :p+p'“—/d—~ 7 BT N
2,7 = ( )167T 0 y|)\|2 Mp?4m2—A-2iMVA |} gM2+( A —|)])?

So that,

2 pl+mi—iMVA i A-(;X\HM)?} (EL.46)

Ly = — dy—
125~ 167 J, y|)\|2

J— — O —
Mp24+m2—A-2iMVA |X gM2+(\/Z—|)\|)2

) m [} y{2 p? +m2 —iMVA i A-(\A]H‘M)?}_ (H47)
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H.4.2 One-medium insertion, L{,,,

" d3k k@ 0,,(d —k) +0, (@ +k)
e m/ [(k+p')? +mz][(k+ p)* + mZ] k2 — A —ic
:m/ d?’k k® 0, (@ — k)
2m)3 [(k +p')2 + m2][(k + p)? + m2] k2 — A —ic
m/ d3k ko 0, (@ — k)
—p')2+m2][(k—p)2+m2]k?— A—ic
L, a” +L2mp + LB 0" (H.48)

As usual, the previous integral can be put in terms of

o= [ s - 0@~ K)
e [(k+p)2 +m2][(k +p)> +m2] k2 — A —ic
= {15 +€ 12,m D" +€12mp : (H.49)

Eq.(H.49) is multiplied by p® and then we proceed by completing the square 2p k=(k+p)2+m2—
(k% + p? + m2) appearing in the denominator. The resulting integral is called 612 .m and is given by

k -
Ezl)Qm = ?Z,ma'p_FE 2mp +£12mp p
1 +mi+ A m
= §£11,m(£ma cos ') — p+€12,m - ELoz,m , (H.50)

with the new integral

[ &k 0. (d — k) [t -0 dk 6, (d—Kk)
Lo = [ @n)? [(k+ p)2 + m2|[(k + p)2+ m2Z] /0 W oma / P etz Y

This last integral corresponds to Loi,m, evaluated in eq.(G.35), but in terms of X, so that instead of py
we have now

51 =a+ X )
P2 =a®+ X +2alX cosn | (H.52)
with cosn defined in eq.(H.11). After taking the derivative one ends with

~ p1| — M
_ |1[,1|Mctan|pl|75m -5

M

1 L dy

82 Jo M|pi]

M

log

L (6 + [B1])? +M2}
02,m —

(|&m — P1])? + M?
(H.53)

{ |p1/arctan

We now contract eq.(H.49) with p’ and call the resulting integral by 612 m- Since eq.(H.49) is sym-
metric under the exchange p < p’ we are left with the same expression as eq.(H.50) but exchanging

p<p

'k .
511)2m =195 @ - p + 1] 2.mP " p’ +€12mp
1 +mzZ+ A m
= ifll,m(gm,COS B) — p+€12,m - 5L02,m . (H.54)
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Eq.(H.49) is contracted with a® so that

055 ‘m = 12 ma + £, m® P+ Efé,m& -p
m/ d3k 0 (k — &) - k
— A —ig) [(k+p)? +m2] [(k + p)? + m2]

dk||k|? 2m 1
= ma2/ 2| [k / dy/ dcosﬂcosﬂ—/ d¢ . (H.55)
(2m) k — i€ 0 { (k+ X2+ MQ}

The same integral in ¢ was already evaluated in eq.(H.16). Next, from the integration in cosf we define

ok mak? 8 + 2|X||k]| cos n cos §

1
= d d cos 0 cost
12,m B / y/ - N 3/2
ame - Jo 1 [52 + 4| X|2|k|2(cos? O — sin® 1) + 46|\ ||| cochosn]

mao /1 P {bg(b% cos 0 + ag(by — 2¢9 cos ) — 26%¢2(2ag + by cos 0)

1672 I\2(4agca — b3)6v ag + ba cos O + co cos? 0
b ba + 2c5 cos 6 w2l
+ _,22 lo < 2 2 +2\/a2+bg cos@+0200829>} , (H.56)
2APove Ve 21((K)
with the coefficients
ay = 62 — 4| X?[k[?sin’ 7 |
by = 4|X||K[0 cos 7 |
o = 4N K|? . (H.57)
On the other hand, z1(]k|) and z3(k) are given in eq.(E.7).
In this way,
o> 51 )
@ = [ gt )
1) = T o .
12 ,m oty k2 — A— 12 ,m
a < 51 ’
f1—a §1to K|
it ={ [ [ ban e (1.58)
&1—
Taking together egs.(H.50), (H.54) and (H.55) we have the system of equations
N k
ap p pp Baim U2
ap pp P lom |=]| &, (H.59)
o2 a-p a-p By m 065

with @ - p = alp|cos 3, @ - p’ = alp|cos F, p-p’ = |p|? cos p. From eq.(H.59) the functions 039 ms 6’{277”

and EII)/Zm are determined. In terms of them L, ,,, eq.(H.48), reads

(112,m = [6?2 m(§m7 Cﬁ? Cﬁ/) - ?2 m(gfa _Cﬁa _cﬁl)] at + [611)2 m(§m7 Cﬁ? Cﬁ ) + 612 m(gfa _Cﬁa _CB/) pa
+ [ Vo.m (Emy B, ') + 612 (&, —¢b, —05/)] P (H.60)
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H.4.3 Two-medium insertions, L, ,

o _ —imVA [0 — kA - a0~ [kVA+a)
ST [k +p)2 +m2] [(k + p)? +m?]

= Ly g0 + L0y 4 p® + LBy 40" . (H.61)

We are driven to the same angular integrations as before for the case of one-medium insertion so that
many of the previous results can be used. In particular, the contraction with p® and p’“ gives, respectively,

1 A+p?+m2
I, = 5 Livaleos 8) — —p2 12.d 5
1 A+ p?+m?
L11)2kd Lll,d(COS 8) — —p2 “Lig,q - (H.62)
Regarding the contraction with a® we can write
L12d = iﬂffgjn,d(\/z) ;
ok Ma /1 i {bg(b% cos ) + as(by — 2¢9 cos ) — 26%¢2(2az + by cos 0)
12,d = 162 I\|2(4agca — b3)6v ag + ba cos O + co cos? 6
z2(IVA])
b by + 2 0
+ _,22 10g< 2 + 203 COS —|—2\/a2—{—b20089+0200529>} , (H.63)
2A[*dv/ez Ve o (VA

where ag, by and ¢y are given in eq.(H.57) with [k| = v/A. The integration limits are given in eq.(G.21),
where it is assumed that £ < &;.

With the previous results for 612 s 6’12/2]“ , and 6‘{‘5 4 we are driven to the analogous equations as in
eq.(H.59) above,

5 k
a-p p’ pp ng,d L 4
ap pp p’ || L | =| L2, (H.64)
— — 12 / I,
a” a-p a-p LRy 4 Lgs%,

in terms of which L’fg & L’f;kd and L§% , are calculated for & < &.
For & > & the change of variable k — —k is performed in eq.(H.61) and then one has

f2,0 = —Liza(&2, &1, =B, —cB)a® + LY, 4(&2, &, —cB, —cB')p" + L12 (&2, &1, —cpb, —cA)p'*,  (H.65)

with the different coeflicients functions calculated as above.

H.5 L2
[2ka _ / d'k [k[?k [ 0(&m — |0 — k|) n 0(la — k| — &m)
@m)*[(k+p)? +mz][(k+p)> +mz] [QV/2 k0 —w(d —k) —ic  Q/2— k" —w(d —k) +ic
" 0(Se — |a + k) 0(la + k| — &)
Q%2 + k0 —w(@+k)—ie  QY/2+ kY —w(d + k) + ie
LZka + LQkP ay L%gp/ p/a ) (H66)
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H.5.1 Free part, L%lsz

2%
L5 = Ly (p + P/)a

m/ ‘k‘2]€a
[0+ p)? + m2] [(k + p)? + m2] (&2 — A —ie)
d3k1 k®
= ALY . H.67
oy - / (G )7 + 2] (G + )7 + ] (e
We need to evaluate the integral
/ 3k k® / / 3k k®
Gr)? [k + /)2 + m2] [(k + p)2 + 72 s R s 0]
3k
= - / / . (H.68)
8m (k + )\ + M?
The last integral was already evaluated in eq.(G.56), but now p — X Then,
@+ p? 2 V1—
L%gflf = AL{y s + m(p +p) \/ arcsin b kg . (H.69)
167p 1 —cosy V2m2 + p?(1 — cos )
H.5.2 One-medium insertion, L%é%
[2%ka _ / 3k k|2 ke O(d—k)+ 0, (d+k)
tm (2m)% [(k + p')* + mZ] [(k + p)? + mZ] k? — A —ic
B / d®k k|2 ke 0. (& —k)
- (2m)? [(k+p')* + mZ] [(k + p)? + m3] k* — A —ie
/ d*k k|2ke 6, (@ —k)
(2m)3 [(k+ p')* + mZ] [(k + p)* + m3] k* — A —ie
= L, o + Ligh, " + Ly, " (H.70)

We proceed along similar steps as those used in section H.4.2 for the evaluation of Lf,,, and define

the function

ke _ / Pk |k|*k 0,,(d — k)
) @) (e + p)? 4 m2] [(k + p)? + m2] K2 - A e
= (5% % + 050 o+ ef’;pm . (H.71)

The contraction with p® gives

B = (550 - P+ (57,07 + (50 p - P
43k 0-(@ —k)p-k
=AY / m : H.72
L2 T | G O+ 92 + m] [k + p)2 + i T
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We need to evaluate the last integral

&’k 0,,(d —k)p -k _m o
" | T e T 7 beos)

m(m2 + |p|?) m o
—— 5 Loam = 5 Loz -

with Loy, and Lo, given in eqgs.(G.35) and (H.53), respectively. On the other hand,

n d3k 0 (@ —k)|k|? d3/<: —(@—k)|k|?
L027m_/(2ﬂ.)3 [(k+p)2+m2][(k+p)2 + m2] / / k+)\) +M2]2 . (H.74)

The resulting integral can be written in terms of fi2,,, eq.(H.19), and one has

o Z 51 )
2% L oota 3
= [ A fram(K)
m 0*51
o <&,
2% e fete 3
Bin= A [ [ i) (1.75)
We can then write for eq.(H.72)
m m(m?2 + |p|?
2 = A8+ L fcos ) - PR (1L.76)

Similarly for the contraction with p'® of eq.(H.71)

12k . 2% 2%
Ko @lﬁn P+, pp 612pmp
wm m2 + |p|? m
= Aﬁl}lm + §L017m(COS ﬁ) — (meOQ,m — EL%IS,m (H.77)

When contracting eq.(H.71) with a® we have the same angular integrations as in E‘f‘é‘“’m and the only

difference is in the |k| integration in which we have now an extra power of |k|?. Modifying accordingly
eq.(H.58) one has

o> 51 ’
a+&1 ]k]?’

a2k

kl———— k
a6 = [ il ik k)
a < 51 )
p §1—a &1ta |k|3
g ={ [ [ b k) (.19

& 1€

with f1y m(\k\) given in eq.(H.56).
We then have the analogous set of equations as above for £{, , that now reads

2 / £2ka £p2k

a-p P’ p'pP 12.m 12,m
a -p2’ p-p P ||l | = éﬁ’f,’; : (H.79)

7. R s 2k ok

a a-p a-p 612?771 6(112771
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We can then write
L35, = |55 (Em, 08, 08') — 355, (&0, B, —c)|  + | 687, (6m, B, ) + L350, (60, —cB, —cB)]| p"
[ffgpm@m, cB,cf') + 1357, (&1, —cB, —06’)} P (H.80)

H.5.3 Two-medium insertion, L%g‘&

L2ka — _Zm\/z dl;|k|29( ’k\/z ’) (52 - ’k\/_+ (X’)
12.d 872 (k+p)2+m2
a _a k k
= L3S o + L7 p® + Lish p/® . (H.81)

Due to the extra energy Dirac delta function the additional factor |k|? is fixed to A so that we have
simply

L3y = ALy, (1.5
H.6 L%
Lo, [ A KR (6 — 13— K) 01 — k| = &)
B e e e T SR R SR

i) e(atk-&)
Q0/2+k0— (o7+k)—z‘e Q°%/2 + kO —w(a + k) + ie
= Lig aa + LY ppl + LY /" + LI (0" + p'p'") + L3P (D" + a’p®) + LT (a"p” + a'p'") .
(H.83)

In the tensor decomposition we have taken into account the exchange symmetry between the indices a
and b in eq.(H.83).

H.6.1 Free part, L‘fgf

ke kb
Liss = m/ [(k+p)? +mZ] [(k+ p)* + m3] (k* — A — ic)
d®k kKb

= /dya 5 (= m)/2 3 — . (H.84)

m3 (21)% (k2 — A —ie) [(k+)\)2+M2}

The last integral corresponds to Lﬁ 7 evaluated in section G.3 so that
1oLt aL»
L%, =- / dy ( aﬂzf 0% 4 — ”2f A“)\b> , (H.85)
0

with L11 g and LlTlp’ 7 given in eq.(G.58), where m, and |p| are replaced now by M and |X|, respectively.
One can simplify further the previous result.

b b
AN = 2 + (1= )% P + (1 — »)y(™p” + ') | (H.86)
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Taking into account that in the integral of eq.(H.85) we can exchange y < (1 — y) without changing the
result, because |A| and M depend only on the product y(1 — y), we can rewrite eq.(H.85) as

Tg

a Lll a a tb ! 8L{1p a, 1b ' 8L{1p
me__ab/ Womz L — (" + p')/ dyy'—— ——L— (" + )/0 dyy(1 —y) améf-
(H.87)

We have still to rewrite the tensor 6 in terms of the tensor basis employed in eq.(H.83). For that let
us note that given a Cartesian basis of vectors 11y, tio and i3 we can set

6% = afal + agad + agdaf . (H.88)
We take as as these unitary vectors,

a =2
pl’

L 5 :Ng(d—d-ﬁlfll) s
3 = N3(p/ —p/ -y 0y — p' - Qg ) | (H.89)
with the normalization constants No and N3 fixed such that fll = u2 = 1. With these expressions it is

then straightforward to rewrite eq.(H.87) in the basis of eq.(H.83).

H.6.2 One-medium insertion, L?g m

B m/ d3l<: kokb 0,,(d — k) + 6, (@ +k)
Liim = [(k +p)? +m2][(k + p)? + mZ] k?— A —ic
B / d3k ke kb 0 (@ —k)
B @2m)? [(k+p)?+mz][(k+p)* + mz] k? — A —ie
d3k kokb 0, (d@ — k)
+m / 2 2 2 2 2 .
p')? +m2][(k —p)? +m2] k? — A —ie
a b a Ib a o a o
L12m04 a’ + L1z mP “p’+ mep' o+ Lgifn(p P+ ) + LlTZf;(a P’ + abp?)
+ L7 (a%p” + abp'?) . (HL90)

As usual, we consider first the tensor integral

B / d3k kokb 0 (@ —k)
i = m k+p>+m2n<k+p>2+m21k2 A—ie

b, T b T
= (3, m & *+ 512 ;P P+ 512 mplap/ + flzp,ib(l)ap/ +p"p') + 512?%((1%}) +a’p?)
+ ngz‘fﬁl(a“p'b +ap') . (H.91)

The first equation to determine the coefficient functions is obtained by contracting with §%° the previous
integral with the result

/ d3k k|2 0 (& — k)
=m
fom = [(k +p")2 +m2] [(k +p)? +m2] k2 — A —ie
= Aly12m + mL02 m
= (]5" m@” + m|p|2 + 013 m|P|2 + €1T2p,lr)n2p p'+ 5?2?%2& P+ [{20,%2& p, (H.92)
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with £19,, given in eq.(H.18) and Lo, in eq.(H.53).
Now, we contract with a®a? and have

d’k (@ -k)° 0,,(d — k)
2ak _ s
i m/ [(k +p)2 +m2][(k+p)? +m2] k? — A —ie (H.93)

This integral is similar to ¢35 'm» €4-(H.55). We have now an extra factor of @ - k. Then, we introduce
2k3 § + 2|\ |k 0
1220{9”: me ‘ | / dy/ d cos 6 cos*0 + 2UAllk| cos  cos 372
[52 —1—4])\] |k|2(cos? @ — sin?n) —1—45\)\Hk]cosﬁcosn}
ma?|k[?
= %/ dy {2\/6[80,%[)202
m? 0 402 (b2 4a202) 5\/a2—|—0089(b2—|—02 cos )

—b3 cos 6 (363 —4cy 6+ bycy cosf) + as (—3b§ + 103 ¢z cosf — 8¢5 6% cos b
+4bs ¢y (52 + ¢y cos? 9))} + (b% —4das 02) (3b§ —4co 62) \/ag + cos @ (bg + c2 cosB)

9 2 (|k|)
x log [M +2/ay + cos B (by + ¢y cos 9)} } . (H.94)
Ve e1(K)
The coefficients ag, ba, c2 are given in eq.(H.57) and x1(|k|), z2(k|) in eq.(E.7). On the other hand, ¢
was already defined in eq.(H.15). In terms of flzélﬁ,b we can write
o Z §1 )
o 1K
2ak 2ak
dk|——— k|) .
dghe) = | A ()
a <&,
2ak e Gita | | 2ak
gk A ) (H.95)
Another equation then results
(35 = Usima +£12m( -p)° +€12m( -p)? +€{2plr)n2a pa-p +€12£L20‘ p+€12ﬁl2a v-p .
(H.96)
We contract now eq.(H.91) with ap®
P / i (@ K)(p k) 0,6 =10
2 [(k + p')? +m2][(k+p)2+m2]k2—A—i8
A+p’+m; ,
511 m(cos3') — ffu m L02 m (H.97)
The only new integrals is the last one
d3k a-ké, (a— d3k1 a-k (d’—k)
L$m=/ﬁ e - ) / / . (H98)

97



We perform now the shift of eq.(G.69) and have

a-(a+v bSO 5
02m / dy/ 27T ( = ) 5 = 042L02,m —/ dyp1 - QWLgl,m(PhM) , (H.99)
<60 O [(v 4@+ )2 + 112 0 "

with p; defined in eq.(H.52). The function Lng was already calculated in eq.(G.75), but now p; and
m, must be replaced by p; and M, respectively. Thus, we have another equation

k - N
e(lxgm_€12m P+€12mlp‘2 p+€12ma P'P-p +€12m(a'PP'P,+0¢'P/p2)
T T
+ 057 (0p* + (G- p)?) + 137 (o’ p P +p-dd-p) . (H.100)

Given the exchange symmetry between p and p’ in eq.(H.91) when contracting with a%p’ ® one has
from eq.(H.97)

" A+p?+m2 | m
ggm = 511 ‘m(cos B) — #512 m §L8‘§ . (H.101)
And have the new equation
'k - Tp' -
Gy = A5 0’a p' + 03,6 pp - p+ (1, IpP*a - p' + (37(@ pp® + - p'P D)
T — — T
+ 0057 (a®p’ - p+p - dd - p)+ {57 (0? p? + (p -@)?) . (H.102)

We now contract eq.(H.91) with p%p® giving rise to the integral

ok _ / Pk (p-k)*6,,(d — k)
tzm (2m)3 (k? — A —ie) [(k + P)* + m2] [(k + p)? + mZ]
B p —|—m —|—A€pk m/ d3k; p-ko, . (d—k)
B 12m — A—ie) [(k +p')? + m2]

_m dsk p-k6,,
/ 3[(k +p')? +m2] [(k+p) +m2]’ (H.103)

with E{’;m given in eq.(H.50). On the other hand,

m/d3k pke( — k)

—ie) [(k+p)2+m2] % { Tm(eB)a - p+ 4, (cB)p'- p] : (H.104)

employing the results of section G.1.2. The last integral in eq.(H.103) has not been calculated yet. One
has,

ok d3k p-ko,(d—k) 1 Bk 0,,(@ —k)
02’m_/( m)* [(k + p)? +mZ] [(k + p)? + m7] _5/(%)3 (k+p')? +m32
p +m d3k 6. (ad — k) 1 d*k k?0(a — k)
/ [(k +p')? +m3r][(k+p)2+m3r]_5/(2W)3[(k+p) +m2][(k+ p)? +mz]
p? +m2 1

= §L01,m(cﬁ/) - Logm — §L3’5,m ; (H.105)

2
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with Lo1,m, Lo2,m and L02m given in eqs.(G.35), (H.53) and (H.75), respectively. Taking together
eqs.(H.103), (H.104) and (H 105) we can write the new equation

L p +m +A k 1 o
aps, = R A L o)a 4y e o)
m
—Z{Lm,m(cﬁ') (p* +m2)Loz,m — L%’S,m}
T T a Tap' o -
=5 (@-p)° + 12m|P|4+€12m(P p')? +£12p¢fb2p p-p +lon2p’d-p+Lyn2d-pp-p .

(H.106)

’a /b

The contraction with p , given the symmetry between p and p’ in eq.(G.59), can be directly worked
out from the previous equatlon resulting

2p'k p?+mi+A
T e {fnm(CB)a P +511m(06)p-p’}
m
-7 {Lm,m(Cﬁ) (p? 4+ m2)Log.m — LOQm}
=05 m(@ P )+ 512 (PP )2+ 013 m’p‘4 + €1T2p,lr)n2p2 p-p + 5{20,%21) pa-p+ 5?2?%2113\2 a-p,

(H.107)

with Kzf/fm given in eq.(H.54).

We are then provided with 6 equations that are used to determine the coefficients functions that
appear in the tensor decomposition of 612 ms €d- (H.90). This system of equations can be written in more
compact form

o? Ip|? Ip|? 2p-p/ 207-p 2d - p'
at (@-p)? (@-p')? 2a-pa-p 20%d - p 20%a - p’
o’d-p [|pfa-p a-p'p-p (@-pp-p'+d-p'pY) (’p?+(d-p?)  (a’p-p +p-dd-p)
2 - / — / 2 = / — 2 — /AN — 2.2 ! 2
a’d-p’ a-pp'-p |pl*d-p’ (@-pp°+a-p'p-p) (ap p+p aa-p) (a’p”+(p'-a))
(@-p)z2 Ip|* ; (pé-lp’)2 2p§p-p' 2p?a-p/ 2p-2p'&-p’
(@-p')? (p-p) p| 2p°p-p’ 2p-p'd-p 2lpl*a-p’
E%Ofm f%ém
as, a5
12 m
ET;;;} = | vk | - (H.108)
12,m %?)km
T
g fu?
Tap’ 2
Ciom %’m

Inverting the previous matrix one obtains the required functions. In terms of which we have

L% 0 = (05 (€ms B, 0 + €151 (€0, 0B, ~cB)) aa® + (€, (€ms B, 0) + 613, (€, B, ~cB) ) pp"
+ (018 (Ems 0B, ¢8) + 013, (60, B, —8) ) P
(127 (Em 0B, ¢8) + 0187 (60, —cB, ) ) ("0 + 2'D'")
+ (£33 mr B,c8) = L1530, (€0, B, ) ) (a9 + o)
+ (057 s, c8') — 55 (€0, B, —c8)) (9" + alp'") . (H.109)
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H.6.3 Two-medium insertions, L‘fg d

Lab —im\V/A 0 - kvVA — d))0(& — |kVA + dl)
1247 Tgpz Kk+ﬁP+WﬂKk+pP+mﬂ
LTa L b L ra_ b LTPP a tb b 1a LTOép a. b b _a
= daa + 12dpp + 12dp p o+ 12,d(pp +p’p") + 12@(0419 +a’p®)
+ Lg% (0% + abp'?) . (H.110)

kKb

We proceed similarly as for the calculation of L4} .m above but taking into account that k? = A. First,
the contraction with 6% gives

Tpp' T
ALypg = Lig o + LY 5apl* + L? 3d " Ip[? + 017 op - pl + ({5724  p +£1;§ 2d-p’, (H.111)
We now take the contraction with aab.

we can write in short

The angular integrations are the same as for E%S"fn so that

Ligh = —in ik (VA) . (H.112)

Here, f%‘fffrb(\/Z) has to be evaluated according to eq.(H.94) but with the integration limits given according
to eq.(G.21), for two medium insertions and &; < . We then have the equation,

T — =
L%% _L12d +L12 d( ) +L12 d( ,)2+L12p§ 20-pa-p "‘11120{520‘2 p"‘leag 20°d-p’ .

(H.113)
The contraction with a®p® can be readily worked out following the steps above for flg ];L
apk __ A+ p + m
Liyg = 5L d(CO g - — 5 TLY d (H.114)
with L‘f‘f 4 €valuated in eq.(G.48) and L‘f‘f 4 in eq.(H.63). The resulting equation is then
k T = T
L = Ligy0*a-p+ L pl*d p+ L1}, d-p'p-p + L1}, (@ -pp-p +d-p'p?)
+ L% (0*p? + (3 p)?) + L34 (o®p P +p-dd-p) . (H.115)
Contracting with a%p/® gives
2 A+p*+m
Lisa = lqld( cos }) — ————"Li%g (H.116)
and the equation
'k - .
Ly = Lig0®a p' + LT, @ - pp - p+ LT fpla - p' + L{3% (@ - pp® +d-p'p - p)
T -
+Liy%(0?p - p+p - Gd-p)+ LY (o p2+(p’-a) ). (H.117)
The contraction with p®p? can also be readily worked out from eq.(H.106)
opk p>+m2+ A
Lipg=~— 5 s dats {Ln a(cB)a - p+ LY 4(cB)p-p }
T
= LIgy(@ p)? + LiZ ol + Li¥y(p - p')? + L5 20% p - P/ + Li3%2p? @ p+ L13% 26 - pp - p' -
(H.118)
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And similarly for contracting with p'*p’ b

2,2
29k P +mz+A pr 1 .
Ligg=-— 5 Lisg+ 5 {Lﬁd(cﬁ)a P+ LY y(cB)p - p/}
= T Tp' Tpp' T - Tap' R
= Li3y(@ P + L3y (p- D)’ + LyJlp|* + L1350 20 p-p + Ly h2p - p'd-p' + Ly 2p* @ - p'

(H.119)

We can then write a similar system of equations as in the case of E‘fgm to calculate the coefficients

functions in eq.(H.110),

a? p|? p|? 2p - p/ 23 -p 24 - p/
at (@-p)? (@-p')? 2a-pa-p 2023 - p 2a%a - p’
o’d-p pl’a-p a-p'p-p (@-pp:p'+d-p'p?) (a’p’+(d-p)?) (a®p-p'+p-dd-p)
o’a-p' @ pp-p |pPd-p’  (@-pp’+a-p'p-p) (’p-p+p-dd-p) (a®p’+(p'-d)?)
@-p)? [Ip/* (p-p)*  2p°p-p 2p’a-p 2p-p'a-p’
@-p)” (@-p)>? |p 2p°p - p/ 2p-p'a-p’ 2p|2@ - p’

Lisy AL12q

Ly Ligy

Ly, ity

o | = e’ |- (H.120)

12,d 12,d
g || o
Ly Lifa

For the case {5 > & one performs the change of variable k — —k in eq.(H.110) which implies the
exchange of the roles of &1 and &, as well as the changes p — —p and p’ — —p’. Then one has

/ b
L?g,d = L{chd(éé? 517 _Cﬁ7 _cﬁ/)aaab + Lz;p’d(ééa 517 _0/37 _C/Bl)papb + L,{;d(éé’ 517 _Cﬁ7 _Cﬁ/)p/apl
/ b
+ L1T2pfl (&2,&,—cB,—cB)(p"p" + p"p'") — L1T2a,g(52, &1, —cB, —cB)(a"p" + a’p®)
— LIS (62, €1, —cB, —cB)(a"p” + abp?) . (H.121)
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