Number-operator interpretation of the compositeness of bound and resonant states

J. A. Oller

Departamento de Física
Universidad de Murcia ${ }^{1}$
Murcia, Spain

To be published in AOP
Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller

Basic set-up

Number-operator interpretation

[^0]
Outline

(1) Basic set-up
(2) Number-operator interpretation
(3) The σ and ρ
(4) QFT calculation
(5) Explicit formulas
(6) Relativistic case
(7) On-shell methods
(8) Resonances
(9) Phase redefinition
(10) Miscellaneous of methods
(11) Conclusions

Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller

Basic set-up

Number-anerater interpretation

Composite

"Elementary"

Building Blocks

Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller

Basic set-up

Number-operator interpretation

The σ and ρ
QFT calculation
Explicit formulas
Relativistic case
On-shell methods

Resonances

Phase redefinition
Miscellaneous of methods

Conclusions

Composite

"Elementary"

Building Blocks

Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller

Basic set-up
Number-operator interpretation

The σ and ρ
QFT calculation
Explicit formulas
Relativistic case
On-shell methods

Resonances

Phase redefinition
Miscellaneous of methods

Conclusions

At a more microscopic level they are all composite of concrete

1. Basic set-up

Bound state near a two-body threshold. Non-Relativistic Dynamics

S. Weinberg, PR130,776(1963); PR131,440(1963); PR137,B672(1964)

Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller

$$
H=H_{0}+V
$$

$H_{0}=\sum p_{\alpha}^{2} / 2 m_{\alpha}$: Kinetic energy term
Spectrum:

$$
\begin{aligned}
H\left|\psi_{\alpha}\right\rangle & =E_{\alpha}\left|\psi_{\alpha}\right\rangle, \quad \text { Continuum spectrum } \\
H\left|\psi_{B_{i}}\right\rangle & =E_{B_{i}}\left|\psi_{B_{i}}\right\rangle, E_{B_{i}}<0, \quad \text { Discrete Spectrum }
\end{aligned}
$$

Bare spectrum:

$$
\begin{aligned}
& H_{0}\left|\varphi_{\alpha}\right\rangle=E_{\alpha}\left|\varphi_{\alpha}\right\rangle, \\
& H_{0}\left|\varphi_{n}\right\rangle=E_{n}\left|\varphi_{n}\right\rangle, \\
& \text { Continuum } \\
& \text { Discrete }
\end{aligned}
$$

$\left|\varphi_{\alpha}\right\rangle$ is made up of several free particles in the continuum
$\left|\varphi_{n}\right\rangle$ One-particle bare elementary states

Elementariness: Z
Compositeness: X

$$
\begin{aligned}
&\left\langle\psi_{B} \mid \psi_{B}\right\rangle=1=\underbrace{\sum_{n}\left|\left\langle\varphi_{n} \mid \psi_{B}\right\rangle\right|^{2}}_{Z}+\underbrace{\int d \alpha\left|\left\langle\varphi_{\alpha} \mid \psi_{B}\right\rangle\right|^{2}}_{X} \\
& 1=Z+X \\
& X=1-Z=\int d \alpha \frac{\left.\left|\left\langle\varphi_{\alpha}\right| V\right| \psi_{B}\right\rangle\left.\right|^{2}}{\left(E_{\alpha}-E_{B}\right)^{2}} \\
& H\left|\psi_{B}\right\rangle=E_{B}\left|\psi_{B}\right\rangle=\left(H_{0}+V\right)\left|\psi_{B}\right\rangle \\
& E_{B}\left\langle\varphi_{\alpha} \mid \psi_{B}\right\rangle=E_{\alpha}\left\langle\varphi_{\alpha} \mid \psi_{B}\right\rangle+\left\langle\varphi_{\alpha}\right| V\left|\psi_{B}\right\rangle \\
&\left\langle\varphi_{\alpha} \mid \psi_{B}\right\rangle=\frac{\left\langle\varphi_{\alpha}\right| V\left|\psi_{B}\right\rangle}{E_{B}-E_{\alpha}}
\end{aligned}
$$

Wave Function Renormalization: $Z^{1 / 2}$
If there is only one "elementary" bare state around E_{B}

$$
\left\langle\varphi_{1} \mid \psi_{B}\right\rangle=Z^{1 / 2}
$$

It can be also calculated from the residue of the complete propagator of the bare elementary state:

$$
\Delta(E)=\frac{1}{E-E_{0}-\Pi(E)} \xrightarrow[E \rightarrow E_{B}]{ } \frac{Z}{E-E_{B}}
$$

$\Pi(E)=\left\langle\varphi_{1}\right| T_{1}\left|\varphi_{1}\right\rangle$
Weinberg, PR130,776(1963)

$$
\begin{aligned}
\widetilde{g}_{\alpha}\left(k_{\alpha}\right) & =\left\langle k_{\alpha}, \alpha\right| T_{1}\left(E_{B}\right)\left|\varphi_{1}\right\rangle \\
& =Z^{-1 / 2} g_{\alpha}\left(k_{\alpha}\right)
\end{aligned}
$$

Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller

$$
\begin{aligned}
& \Pi(E)=-\sum_{\beta} \frac{m_{\beta}}{\pi^{2}} \int_{0}^{\infty} d k \frac{k^{2}}{k^{2}+\gamma_{\beta}^{2}} \widetilde{g}_{\beta}^{2}\left(k_{\beta}^{2}\right) \quad \\
& T_{P}=\widetilde{g}_{\alpha}\left(k_{\alpha}\right) \widetilde{g}_{\beta}\left(k_{\beta}^{\prime}\right) \Delta(E) \\
& X_{\alpha}=\frac{1}{1+\sum_{\beta} \frac{2 m_{\beta}^{2}}{\pi^{2}} \int_{0}^{\infty} d k \frac{k^{2}}{\left(k^{2}+\gamma_{\beta}^{2}\right)^{2}} \widetilde{g}_{\beta}^{2}\left(k_{\beta}^{2}\right)} \frac{2 m_{\alpha}^{2}}{\pi^{2}} \int_{0}^{\infty} d k \frac{k^{2}}{\left(k^{2}+\gamma_{\alpha}^{2}\right)^{2}} \mathscr{g}_{\alpha}^{2}\left(k^{2}\right) \\
& X=\sum_{\alpha} x_{\alpha}=1-Z
\end{aligned}
$$

2. Number-operator interpretation

No need of bare-elementary states as an intermediate step

We focus our attention on the continuum spectrum The continuum spectrum is common to H and H_{0}

Let there be two free particles of types A and B, $H_{0}\left|A B_{\gamma}\right\rangle=E_{\gamma}\left|A B_{\gamma}\right\rangle$
Creation, annihilation operators: $a_{\alpha}^{\dagger} a_{\alpha}, b_{\beta}^{\dagger} b_{\beta}$
Number Operators:

$$
\begin{aligned}
N_{D} & =\int d \alpha a_{\alpha}^{\dagger} a_{\alpha}+\int d \beta b_{\beta}^{\dagger} b_{\beta}=N_{D}^{A}+N_{D}^{B} \\
& =\int d^{3} x\left[\psi_{A}^{\dagger}(x) \psi_{A}(x)+\psi_{B}^{\dagger}(x) \psi_{B}(x)\right] \\
{\left[H_{0}, N_{D}\right] } & =0 \longrightarrow N_{D}(t)=N_{D}(0) \\
H_{0} & =\int d \alpha E_{\alpha} a_{\alpha}^{\dagger} a_{\alpha}+\int d \beta E_{\beta} b_{\beta}^{\dagger} b_{\beta}+\sum_{n} E_{n}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|
\end{aligned}
$$

Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller

Number-operator interpretation

New definition of X

$$
\begin{aligned}
& H\left|\psi_{B}\right\rangle=E_{B}\left|\psi_{B}\right\rangle \\
& X=\frac{1}{2}\left\langle\psi_{B}\right| N_{D}\left|\psi_{B}\right\rangle
\end{aligned}
$$

Equivalence to the previous definition

$$
\begin{aligned}
\left|\psi_{B}\right\rangle & =\int d \gamma C_{\gamma}\left|A B_{\gamma}\right\rangle+\sum_{n} C_{n}\left|\varphi_{n}\right\rangle \\
X & =\frac{1}{2}\left\langle\psi_{B}\right| N_{D}^{A}+N_{D}^{B}\left|\psi_{B}\right\rangle=\int d \gamma\left|C_{\gamma}\right|^{2} .
\end{aligned}
$$

X is an observable because it is the expectation value of N_{D}, a self-adjoint operator

Specially suitable when using perturbative EFT (e.g. ChPT) with nonperturbative techniques No bare elementary states
3. Generation of the σ and ρ

Lowest order χ PT Lagrangian implies

$$
\begin{gathered}
\mathscr{L}_{4 \pi}=\frac{1}{12 f^{2}} \operatorname{Tr}\left[\left(\partial_{\mu} \Phi \cdot \Phi-\Phi \partial_{\mu} \Phi\right)^{2}+M \Phi^{4}\right] \\
\Phi=\left(\begin{array}{cc}
\frac{\pi^{0}}{\sqrt{2}} & \pi^{+} \\
\pi^{-} & -\frac{\pi^{0}}{\sqrt{2}}
\end{array}\right) \\
I=0, J=0 J^{P C}=0^{++} \\
V(s)=\frac{s-m_{\pi}^{2} / 2}{f^{2}} \\
I=1, J=1,1^{--} \\
V(s)=\frac{s-4 m_{\pi}^{2}}{6 f^{2}}
\end{gathered}
$$

Unitarization employing $\mathrm{U} \chi \mathrm{PT}$

Oller,Oset,NPA620,438(1997);PRD60,074023(1999)

$$
\begin{aligned}
T(s) & =\frac{V(s)}{1+V(s) G(s)}=\frac{1}{V(s)^{-1}+G(s)} \\
G(s) & =i \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{1}{\left((P-p)^{2}-m^{2}+i \varepsilon\right)\left(p^{2}-m^{2}+i \varepsilon\right)} \\
& =\frac{1}{(4 \pi)^{2}}\left[a+\log \frac{m_{\pi}^{2}}{\mu^{2}}+\sigma(s) \log \frac{\sigma(s)+1}{\sigma(s)-1}\right], \quad \sigma(s)=\sqrt{1-\frac{4 m_{\pi}^{2}}{s}}
\end{aligned}
$$

$$
a_{\sigma} \simeq \log \frac{\mu_{1}^{2}}{\mu_{2}^{2}}=-1 \quad a_{\rho} \simeq-\frac{6(4 \pi f)^{2}}{M_{\rho}^{2}}
$$

This signals a very different nature for the σ and ρ resonances
$\sigma: \quad \mu_{2} \simeq \mu_{1}$
ρ :

$$
-\frac{6\left(4 \pi f_{\pi}\right)^{2}}{M_{\rho}^{2}}=\log \frac{\mu_{1}^{2}}{\mu_{2}^{2}} \rightarrow \mu_{2} \simeq 9 \cdot 10^{2} \mu_{1} \sim 1 \mathrm{TeV}
$$

$\sqrt{s_{\sigma}}=0.46+i 0.25 \mathrm{GeV}, \sqrt{s_{\rho}}=0.77+i 0.071 \mathrm{GeV}$

Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller

Basic set-up

Number-anerater interpretation

The σ and ρ
QFT calculation
Explicit formulas
Relativistic case
On-shell methods

Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller

There is no bare elementary state in the Lagrangian No way to calculate Z in a direct manner

Residue of the full propagator of the bare elementary state or by evaluating $\left|\left\langle\varphi_{n} \mid \psi_{B}\right\rangle\right|^{2}$.

Basic set-up

Number-operator interpretation

The σ and ρ
QFT calculation

4. QFT Calculation

This new definition is suitable for a QFT treatment

Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller Dirac or Interacting Image

$$
\begin{gathered}
V \rightarrow V e^{-\varepsilon|t|}, \quad \varepsilon \rightarrow 0^{+} \\
\left|\psi_{B}\right\rangle=\left|\varphi_{B}(0)\right\rangle=U_{D}(0,-\infty)\left|\varphi_{B}\right\rangle \\
X=\frac{1}{n}\left\langle\psi_{B}\right| N_{D}\left|\psi_{B}\right\rangle \\
=\frac{1}{n}\left\langle\varphi_{B} \mid U_{D}(0)\right\rangle=U_{D}(0,+\infty)\left|\varphi_{B}\right\rangle \\
=\frac{1}{n} \lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{+T / 2} d t\left\langle\varphi_{B}\right| U_{D}(+\infty, t) N_{D}(t) U_{D}(t,-\infty)\left|\varphi_{B}\right\rangle \\
U_{D}(t,-\infty)\left|\varphi_{B}\right\rangle=e^{i H_{0} t} e^{-i E_{B} t} U_{D}(0,-\infty)\left|\varphi_{B}\right\rangle \\
X=\frac{1}{n} \lim _{T \rightarrow+\infty} \frac{1}{T} \int d^{4} x\left\langle\varphi_{B}\right| P\left[e^{-i \int_{-\infty}^{+\infty} d t^{\prime} V_{D}\left(t^{\prime}\right)} \sum_{i} \psi_{A_{i}}^{\dagger}(x) \psi_{A_{i}}(x)\right]\left|\varphi_{B}\right\rangle
\end{gathered}
$$

$$
\begin{gathered}
X_{\ell S}=\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{g_{S S}^{2}\left(k^{2}\right)}{\left(k^{2} / 2 \mu-E_{B}\right)^{2}} \quad \begin{array}{l}
\ell=0: \text { one has the Weinberg's } \\
X=\sum_{\ell S} x_{\ell S} \\
\\
\quad g(k)=\frac{1}{2 \pi^{2}} \int_{0}^{\infty} k^{\prime 2} d k^{\prime} V\left(k, k^{\prime}\right) \frac{1}{k^{\prime 2} / 2 \mu-E_{B}} g\left(k^{\prime}\right)
\end{array},=\text { for } 1-Z
\end{gathered}
$$

Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller

Basic set-up

Number-operator interpretation

The σ and ρ
QFT calculation
Explicit formulas
Relativistic case
On-shell methods

Resonances

Phase redefinition
Miscellaneous of methods

$$
g_{\ell S}(-k)=(-1)^{\ell} g_{\ell S}(k) \quad[T=V+V G T]
$$

5. Explicit formulas

If the finite-range potential fulfills

$$
\int_{0}^{\infty} \int_{0}^{\infty} d k d p\left|v_{\alpha \beta}(k, p)\right|^{2}<\infty
$$

$$
\int_{0}^{\infty} d p\left|v_{\alpha \beta}(k, p)\right|^{2}<M
$$

If this is not fulfilled (singular potential)
Introduce some cut-off method to regularize V, e.g.
$\omega_{\alpha \beta}(k, p)=v_{\alpha \beta}(k, p) \theta(\Lambda-k) \theta(\Lambda-p)$
Expansion in a complete set of orthonormal linearly independent real functions $\left\{f_{s}(k)\right\}$ in $[0, \infty)$:

$$
\begin{aligned}
\omega_{\alpha \beta}^{(N)}\left(k_{\alpha}, p_{\beta}\right) & =\sum_{s, s^{\prime}=1}^{N} f_{s}\left(k_{\alpha}\right) \omega_{\alpha \beta ; s s^{\prime}} f_{s^{\prime}}\left(p_{\beta}\right) \\
\omega_{\alpha \beta ; s s^{\prime}} & =\int_{0}^{\infty} \int_{0}^{\infty} d k d p f_{s}(k) \omega_{\alpha \beta}(k, p) f_{s^{\prime}}(p) \\
\omega_{\alpha \beta}\left(k_{\alpha}, p_{\beta}\right) & =\lim _{N \rightarrow \infty} \omega_{\alpha \beta}^{(N)}\left(k_{\alpha}, p_{\beta}\right)
\end{aligned}
$$

Regular potential

$$
\begin{aligned}
& t_{\alpha \beta}^{(N)}(k, p ; E)=\omega_{\alpha \beta}^{(N)}(k, p)+\sum_{\gamma} \frac{m_{\gamma}}{\pi^{2}} \int_{0}^{\infty} d q \frac{q^{2}}{q^{2}-2 m_{\gamma}} \omega_{\alpha \gamma}^{(N)}(k, q) t_{\gamma \beta}^{(N)}(\\
& t_{\alpha \beta ; s^{\prime}}(E)=\int_{0}^{\infty} \int_{0}^{\infty} d k d p f_{s}(k) t_{\alpha \beta}(k, p ; E) f_{s^{\prime}}(p) . \\
& {[\omega]=\left(\begin{array}{cccc}
{\left[\omega_{11}\right]} & {\left[\omega_{12}\right]} & \ldots & {\left[\omega_{1 n}\right]} \\
{\left[\omega_{21}\right]} & {\left[\omega_{22}\right]} & \cdots & {\left[\omega_{2 n}\right]} \\
\ldots & \ldots & \cdots & \ldots \\
{\left[\omega_{n 1}\right]} & {\left[\omega_{n 2}\right]} & \cdots & {\left[\omega_{n n}\right]}
\end{array}\right) .} \\
& {\left[f\left(k_{\alpha}\right)\right]^{T}=(\underbrace{0, \ldots, 0}_{N(\alpha-1) \text { places }}, f_{1}\left(k_{\alpha}\right), f_{2}\left(k_{\alpha}\right), \ldots, f_{N}\left(k_{\alpha}\right), 0, \ldots, 0)} \\
& \omega_{\alpha \beta}\left(k_{\alpha}, p_{\beta}\right)=\left[f\left(k_{\alpha}\right)\right]^{T} \cdot[\omega] \cdot\left[f\left(p_{\beta}\right)\right] \\
& t_{\alpha \beta}\left(k_{\alpha}, p_{\beta} ; E\right)=\left[f\left(k_{\alpha}\right)\right]^{T} \cdot[t(E)] \cdot\left[f\left(p_{\beta}\right)\right] \\
& {[G(E)]=\sum_{\alpha=1}^{n}\left[G_{\alpha}(E)\right], \quad\left[G_{\alpha}(E)\right]=\frac{m_{\alpha}}{\pi^{2}} \int_{0}^{\infty} d q \frac{q^{2}}{q^{2}-2 m_{\alpha} E}\left[f_{\alpha}(q)\right] \cdot\left[f_{\alpha}(q)\right]^{T}} \\
& \text { J. A. Oller }
\end{aligned}
$$

$$
\begin{aligned}
{[t(E)] } & =[\omega(E)]-[\omega(E)] \cdot[G(E)] \cdot[t(E)] \\
{[t(E)] } & =[D(E)]^{-1} \\
{[D(E)] } & =[\omega(E)]^{-1}+[G(E)]
\end{aligned}
$$

- For $\partial[\omega] / \partial E=0$ then

$$
\begin{gathered}
\frac{\partial[D]}{\partial E}=\frac{\partial[G]}{\partial E} \\
1=\sum_{\alpha=1}^{n} x_{\alpha}
\end{gathered}
$$

Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller

$$
X_{\alpha}=\frac{m_{\alpha} / \pi^{2}}{\left[f\left(p_{\alpha}\right)\right]^{T} \cdot[d] \cdot \frac{[D]}{\partial E} \cdot[d] \cdot\left[f\left(p_{\alpha}\right)\right]} \frac{\partial}{\partial E} \int_{0}^{\infty} d k \frac{k^{2}}{k^{2}-2 m_{\alpha} E}
$$

$$
\times\left[f\left(p_{\alpha}\right)\right]^{T} \cdot[d] \cdot\left[f\left(k_{\alpha}\right)\right]\left[f\left(k_{\alpha}\right)\right]^{T} \cdot[d] \cdot\left[f\left(p_{\alpha}\right)\right] \mid
$$

$$
\left.\right|_{E=E_{B}, p_{\alpha}=i \gamma_{\alpha}}
$$

Energy-independent contact interactions

$$
v_{\alpha \beta}\left(k_{\alpha}, p_{\beta}\right)=k_{\alpha}^{\ell_{\alpha}} p_{\beta}^{\ell_{\beta}} \sum_{i, j}^{N} v_{\alpha \beta ; i j} k_{\alpha}^{2 i} p_{\beta}^{2 j}
$$

Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller

Convergent factor $\mathbf{e}^{\mathbf{i} \epsilon \mathbf{k}}, \epsilon \rightarrow 0^{+}$(like in many-body) Analogous to Dimensional Regularization

$$
\begin{aligned}
V\left(k^{\prime}, k\right) & \rightarrow V\left(k^{\prime}, k\right) e^{i \epsilon\left(k+k^{\prime}\right)} \\
g(k) & \rightarrow g(k) e^{i \epsilon k}
\end{aligned}
$$

We rewrite symmetrically the integration in k for X

$$
X=\left(\frac{\mu}{\pi}\right)^{2} \int_{-\infty}^{+\infty} d k k^{2} \frac{g^{2}\left(k^{2}\right) \mathrm{e}^{\mathrm{i} \epsilon \mathrm{k}}}{\left(k^{2}-2 \mu E_{B}\right)^{2}}
$$

Notation: $\varkappa=i \gamma=\sqrt{2 \mu E_{B}}$

$$
\begin{aligned}
X & =\frac{2 i \mu^{2}}{\pi} \frac{\partial}{\partial k}\left[\frac{k^{2} g^{2}\left(k^{2}\right)}{(k+\varkappa)^{2}}\right]_{k=\varkappa} \\
& =g^{2}\left(\varkappa^{2}\right) \frac{\mu^{2}}{2 \pi \gamma}+\left.\frac{\mu^{2}}{2 \pi} \frac{\partial g^{2}\left(-\bar{\gamma}^{2}\right)}{\partial \bar{\gamma}}\right|_{\bar{\gamma}=\gamma} \\
& =1
\end{aligned}
$$

The 1st term gives the leading Weinberg contribution $\left(E_{B} \rightarrow 0\right)$ for S-wave scattering

The 2nd term is the new one.
E.g. it takes into account that $g_{\ell S}^{2}\left(k^{2}\right) \propto k^{2 \ell}$ for $k \rightarrow 0$

The 2nd term depends on V

$$
g(k)=\frac{1}{2 \pi^{2}} \int_{0}^{\infty} k^{\prime 2} d k^{\prime} V\left(k, k^{\prime}\right) \frac{1}{k^{\prime 2} / 2 \mu-E_{B}} g\left(k^{\prime}\right)
$$

Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller

- 1st Example. S wave.

$$
\begin{aligned}
V\left(k^{\prime}, k\right) & =\left[v_{0}+v_{2}\left(k^{2}+k^{\prime 2}\right)\right] e^{i \epsilon\left(k+k^{\prime}\right)} \\
g^{2}\left(\varkappa^{2}\right) \frac{\mu^{2}}{2 \pi \gamma} & =\frac{1-2 \gamma^{2} v_{2} / v_{0}}{1-6 \gamma^{2} v_{2} / v_{0}} \\
\left.\frac{\mu^{2}}{2 \pi} \frac{\partial g^{2}\left(-\bar{\gamma}^{2}\right)}{\partial \bar{\gamma}}\right|_{\bar{\gamma}=\gamma} & =-\frac{4 \gamma^{2} v_{2} / v_{0}}{1-6 \gamma^{2} v_{2} / v_{0}} \\
X & =1
\end{aligned}
$$

Shallow case $\gamma^{2} v_{2} / v_{0} \simeq \gamma r_{s} / 4\left(\gamma r_{s} \rightarrow 0\right)$

- 2nd Example. Angular momentum ℓ.

$$
\begin{aligned}
V\left(k^{\prime}, k\right) & =v_{\ell} k^{\prime \ell} k^{\ell} e^{i \epsilon\left(k+k^{\prime}\right)} \\
g^{2}\left(k^{2}\right) & =\frac{\left(-k^{2}\right)^{\ell} 2 \pi}{\mu^{2}(2 \ell+1) \gamma^{2 \ell-1}} \\
X=1 & =\frac{1}{2 \ell+1}+\frac{2 \ell}{2 \ell+1}
\end{aligned}
$$

Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller

Explicit formulas
Relativistic case
On-shell methods Resonances

- 3rd example. Energy dependence in V :

$$
[v]=\frac{1}{E-E_{0}}\left(\begin{array}{cc}
0 & v_{12} \\
v_{12} & 0
\end{array}\right)
$$

Cut-off regularization:

$$
\begin{aligned}
L_{n+1} & =\int_{0}^{\infty} d q q^{n}=\theta_{n} \Lambda^{n+1} \\
E_{0} & =v_{12}\left(L_{3}+\epsilon \sqrt{L_{5}\left(L_{1}-\alpha\right)}\right. \\
v_{12} & =\frac{2 \epsilon \sqrt{L_{5}\left(L_{1}-\alpha\right)}}{m\left(r L_{5}-2 L_{3}\left(L_{1}-\alpha\right)-4 \epsilon \sqrt{L_{5}}\left(L_{1}-\alpha\right)^{3 / 2}\right)}
\end{aligned}
$$

$\Lambda \rightarrow \infty$ limit:

$$
\begin{aligned}
T(k, k) & =\frac{1}{\alpha+\frac{1}{2} r k^{2}+i \frac{m k}{2 \pi}} \\
\frac{T(k, p)}{T(k, k)} & =1+\left(k^{2}-p^{2}\right) \frac{\rho_{\Lambda}}{\Lambda^{2}}+\mathscr{O}\left(\Lambda^{-3}\right) \\
X & =\frac{1}{\sqrt{1-2 r_{s} / a_{s}}} \leq 1, r_{s} \leq 0, a_{s}>0
\end{aligned}
$$

Recall: $r_{s} \geq 0$ cannot be in pure contact-interaction theory Phillips, Beane, Cohen, et al., AOP263(1998) DR cannot be applied

6. Relativistic case

Traditionally:

1.- The attention is focused on the wave function renormalization Z
2.- There is a lack of a general applicable results
3.- Partial results are available:
$0 \leq Z \leq 1$: Lee model Vaughn, Aaron, Amado PRC124,1258(1961);
Yukawa-type interactions Houard,Jouvet,Nuovo Cim. 18,466(1960);
Salam,Nuovo Cim.25,224(1962); Lurié, Macfarlane, PR136,B816(1964)
$Z=0$ equivalence between 4-Fermi theories and Yukawa theories

Examples in the recent literature
Hyodo,Jido,Hosaka,PRC85,015201(2012)
Agadjanov,Guo,Rios,Rusetsky,JHEP2015,01,118

Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller

Yukawa-like model

Scalar fields: $\phi_{1}(x), \phi_{2}(x)$
A bare elementary scalar field: $\Phi(x)$, bare mass M_{0}

$$
\mathscr{L}_{\text {int }}=g_{0} \phi_{1}(x) \phi_{2}(x) \Phi(x)
$$

$$
\begin{gathered}
>\ll \\
T=\frac{g_{0}^{2}}{s-M_{0}^{2}-g_{0}^{2} G(s)} \quad T \xrightarrow[s \rightarrow M^{2}]{\longrightarrow} \frac{g^{2}}{s-M^{2}}=\frac{Z g_{0}^{2}}{s-M^{2}} \\
0 \leq Z=\frac{1}{1-g_{0}^{2} G^{\prime}\left(M^{2}\right)} \leq 1 \quad Z=1+g^{2} G^{\prime}\left(M^{2}\right)
\end{gathered}
$$

Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller

Lurié,Macfarlane,PR136,B816(1964): $Z=0$ composite state Hyodo et al PRC85,015201(2012): $1-Z$ is the compositeness Agadjanov et al.,JHEP2015,01,118: Shallow states, $Z=\left|\left\langle\varphi_{1} \mid \psi_{B}\right\rangle\right|^{2}$

The Källen-Lehmann Representation

Weinberg, QFTI, $\S 10.7$

$$
\Delta_{F}(p)=\int_{0}^{\infty} d \mu^{2} \frac{\rho\left(\mu^{2}\right)}{p^{2}-\mu^{2}-i \varepsilon}
$$

Imposing (anti)commutation relations at equal time

$$
\left[\frac{\partial \Phi(\mathbf{x}, t)}{\partial t}, \Phi^{\dagger}(\mathbf{y}, t)\right]=-i \delta(\mathbf{x}-\mathbf{y})
$$

Sum rule: $1=\int_{0}^{\infty} d \mu^{2} \rho\left(\mu^{2}\right)$
Coupling with a one-particle asymptotic state

$$
\begin{aligned}
\rho\left(\mu^{2}\right) & =Z \delta\left(\mu^{2}-M^{2}\right)+\sigma\left(\mu^{2}\right) \\
1 & =Z+\int_{0}^{\infty} d \mu^{2} \underbrace{\sigma\left(\mu^{2}\right)}_{\text {Multi-Part.States }}
\end{aligned}
$$

$$
0 \leq Z \leq 1
$$

Weinberg: "The limit $Z=0$ has an interesting interpretation as a condition for a particle to be composite rather than elementary"

Not applicable if there is no bare elementary fields in the Lagrangian

The examples of the σ and ρ above.
To keep in mind: In the relativistic case we can also have different number of particles in the continuum states. E.g. $\pi \pi, 4 \pi, \ldots$

This is why a specific contribution, like the "two-body" contribution in NRQM, is not isolated in the multiparticle contribution

- $\left[H_{0}, N_{D}\right]=0$

Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller

Non-Relativistic formalism:

$$
\left|\psi_{B}\right\rangle=\int d \gamma C_{\gamma}\left|A B_{\gamma}\right\rangle+\sum_{n} C_{n}\left|\varphi_{n}\right\rangle
$$

J. A. Oller

Relativistic formalism:

$$
\begin{aligned}
& \left|\psi_{B}\right\rangle=\int d \gamma C_{\gamma}\left|A B_{\gamma}\right\rangle+\int d \eta D_{\eta}\left|A A B_{\eta}\right\rangle+\int d \mu \delta_{\mu}\left|A B B_{\mu}\right\rangle+\ldots \\
& +\int d \eta_{\nu} F_{\nu}\left|C D_{\nu}\right\rangle+\ldots+\sum_{n} C_{n}\left|\varphi_{n}\right\rangle+\sum_{n} \int d \alpha C_{n \alpha}\left|A_{\alpha} \varphi_{n}\right\rangle+\text { Expliciflation }
\end{aligned}
$$

Number operator for each species of particle

$$
\begin{gathered}
N_{D}^{A}=\int d \alpha a_{\alpha}^{\dagger} a_{\alpha} \\
\left\langle\psi_{B}\right| N_{D}^{A}\left|\psi_{B}\right\rangle=\int d \alpha\left|C_{\gamma}\right|^{2}+2 \int d \eta\left|D_{\eta}\right|^{2}+\int d \mu\left|\delta_{\mu}\right|^{2}+\ldots \\
+\sum_{n} \int d \alpha\left|C_{n \alpha}\right|^{2}+\ldots
\end{gathered}
$$

$$
\begin{aligned}
N_{D} & =\sum_{A} N_{D}^{A}+\sum_{E} N_{D}^{E} \\
\left|\psi_{B}\right\rangle & =\sum_{n, i} C_{n i}|n, i\rangle \\
\left\langle\psi_{B} \mid \psi_{B}\right\rangle & =1=\sum_{n, i}\left|C_{n i}\right|^{2} \\
\left\langle\psi_{B}\right| N_{D}\left|\psi_{B}\right\rangle & =\sum_{n, i}\left|C_{n i}\right|^{2} n
\end{aligned}
$$

Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller

Basic set-up

Number-operator interpretation

The σ and ρ

QFT calculation

Relativistic case

$$
\left\langle\psi_{B}\right| N_{D}^{A}\left|\psi_{B}\right\rangle=0, \forall A
$$

If $\left\langle\psi_{B}\right| N_{D}\left|\psi_{B}\right\rangle>1$ we would have multi-particle state contributions

Pure Composite state

- Necessary Condition $\left\langle\psi_{B}\right| N_{D}\left|\psi_{B}\right\rangle \geq 2$
- Sufficient Condition $\left\langle\psi_{B}\right| N_{D}^{E}\left|\psi_{B}\right\rangle=0, \quad \forall E$

It is not necessary because one can have $C_{1 E}=0$ but
$C_{n E} \neq 0$
$\left|A \varphi_{n}\right\rangle,\left|\varphi_{n} \varphi_{m}\right\rangle, \ldots$

Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller

Basic set-up

Number-operator interpretation

QFT calculation

Other consequences

- If $\left\langle\psi_{B}\right| N_{D}\left|\psi_{B}\right\rangle \geq 2+m$

The multiparticle components with $2+m$ and more particles are important.
Other similar exclusive conditional conclusions can be also established

- Sum Rule for the type of particles:

Probability •• ?

$$
\begin{aligned}
N_{D} & =\sum_{i=1}^{n_{f}} N_{D}^{i}, i \in\{A, E\} \\
1 & =\sum_{i=1}^{n_{f}} \frac{\left\langle\psi_{B}\right| N_{D}^{i}\left|\psi_{B}\right\rangle}{\left\langle\psi_{B}\right| N_{D}\left|\psi_{B}\right\rangle}
\end{aligned}
$$

E.g. for the Deuteron, 50% for $p(i=1), 50 \%$ for n ($i=2$)

We can calculate $\left\langle\psi_{B}\right| N_{D}^{i}\left|\psi_{B}\right\rangle$ within QFT too

$$
\begin{aligned}
& V \rightarrow V e^{-\varepsilon|t|} \\
& \left|\psi_{B}\right\rangle=\left|\varphi_{B}(0)\right\rangle=U_{D}(0,-\infty)\left|\varphi_{B}\right\rangle \\
& \left|\psi_{B}\right\rangle=\left|\varphi_{B}(0)\right\rangle=U_{D}(0,+\infty)\left|\varphi_{B}\right\rangle \\
& \left\langle N_{D}^{A}\right\rangle=\left\langle\psi_{B}\right| N_{D}^{A}\left|\psi_{B}\right\rangle \\
& =\left\langle\varphi_{B}\right| U_{D}(+\infty, 0) N_{D}^{A} U_{D}(0,-\infty)\left|\varphi_{B}\right\rangle \\
& =\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{+T / 2} d t\left\langle\varphi_{B}\right| U_{D}(+\infty, t) N_{D}^{A}(t) U_{D}(t,-\infty)\left|\varphi_{B}\right\rangle \\
& U_{D}(t,-\infty)\left|\varphi_{B}\right\rangle=e^{i H_{0} t} e^{-i E_{B} t} U_{D}(0,-\infty)\left|\varphi_{B}\right\rangle
\end{aligned}
$$

Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller

Basic set-up
 Number-operator interpretation The σ and ρ

\triangleright Technicalities

In general there are many more diagrams now apart from those in the NR case

- If there are good reasons for dominance of two-body channels

$$
X_{A B}=\frac{1}{2}\left(\left\langle N_{D}^{A}\right\rangle+\left\langle N_{D}^{B}\right\rangle\right) \approx \int d \gamma\left|C_{\gamma}\right|^{2}
$$

- In the case in which we are close to a two-body threshold $(A B)$ we come back to the NR case for evaluating $X_{A B}$

7. On-shell methods

General unitarization formula (U χ PT) for the on-shell T matrix

$$
T(s)=\left[V(s)^{-1}+G(s)\right]^{-1}
$$

In general $V(s)$ has dynamical cuts, e.g. left-hand cut for $\pi \pi$ scattering
For simplicity let us consider the uncoupled case
Take the limit $s \rightarrow s_{B}, T \rightarrow-g^{2} /\left(s-s_{B}\right)$

$$
\begin{aligned}
-g^{2} & =\frac{1}{-V^{\prime}\left(s_{B}\right) / V\left(s_{B}\right)^{2}+G^{\prime}\left(s_{B}\right)} \\
1 & =-g^{2} G^{\prime}\left(s_{B}\right)+g^{2} V^{\prime}\left(s_{B}\right) / V\left(s_{B}\right)^{2} \\
& =\underbrace{-g^{2} G^{\prime}\left(s_{B}\right)}_{x}+\underbrace{g^{2} V^{\prime}\left(s_{B}\right) G\left(s_{B}\right)^{2}}_{Z}
\end{aligned}
$$

J. A. Oller

Pure energy-dependent (partial-wave projected) interaction: $V(s)$
From Lippmann-Schwinger or Bethe-Salpeter equation:

$$
\begin{aligned}
& T(s)=V(s)-V(s) G(s) T(s) \\
& T(s)=\left[V(s)^{-1}+G(s)\right]^{-1}
\end{aligned}
$$

Moving to the pole position $g\left(s_{P}\right)$ is just a constant

$$
\begin{aligned}
X_{A B} & =\frac{1}{2}\left(\left\langle\psi_{B}\right| N_{D}^{A}\left|\psi_{B}\right\rangle+\left\langle\psi_{B}\right| N_{D}^{B}\left|\psi_{B}\right\rangle\right) \\
X & =-g^{2} G^{\prime}\left(s_{P}\right)
\end{aligned}
$$

Thus, our formalism with $V(s)$ gives rise to these results too

$$
\begin{aligned}
T(s) & \rightarrow \widetilde{T}(s)=T(s) / N(s) \\
\widetilde{T}(s) & =\left[N(s) V(s)^{-1}+N(s) G(s)\right]^{-1}=\left[\widetilde{V}(s)^{-1}+\widetilde{G}(s)\right]^{-1} \\
\widetilde{X} & =-\widetilde{g}^{2} \widetilde{G}^{\prime}\left(s_{P}\right)=X-g^{2} G\left(s_{P}\right) N^{\prime}\left(s_{P}\right) / N\left(s_{P}\right)
\end{aligned}
$$

Conclusions have to be taken with a grain of salt

A priori there should be some good reason to change the normalization

For higher partial wave remove the threshold behavior $p^{2 \ell}=N(s)$ Aceti, Oset,PRD86,014012(2012)
J. A. Oller

$$
\widetilde{T}(s) \rightarrow T(s)=\widetilde{T}(s) N(s)
$$

- For the $\rho \quad X \simeq x_{\rho} /\left(1+x_{\rho}\right) \ll 1$

$$
x_{\rho}=\frac{1}{6}\left(\frac{M_{\rho}}{4 \pi f_{\pi}}\right)^{2}=-\frac{1}{a_{\rho}}=0.073 \ll 1
$$

The ρ is a " $q \bar{q}$ " resonance. Large N_{c} running of its pole position Peláez,PRL92,102001(2004): $M_{\rho}=\mathscr{O}\left(N_{c}^{0}\right)$ and $\Gamma_{\rho}=\mathscr{O}\left(1 / N_{c}\right)$
Compact object, $\sqrt{\left\langle r_{V}^{2}\right\rangle} \simeq 1 / M_{\rho} \simeq 0.25 \mathrm{fm}$ LQCD, simple quark models.

Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller

Resonances

Phase redefinition

- For the $\sigma,|X|=0.38$

There is a strong dependence on m_{π} of the pole position

	$E_{P}(\mathrm{MeV})$
Resonance	$250 \gtrsim m_{\pi} \geq 0 \mathrm{MeV}$
$\|X\|$ decreases	$1 \geq\|X\| \geq 0.20$
Virtual state	$340 \gtrsim m_{\pi} \geq 250 \mathrm{MeV}$
No meaningful $\|X\|$	
Bound state	$m_{\pi} \geq 340 \mathrm{MeV}$
X decreases	$X \leq 1$

Chiral limit $\left(m_{\pi} \rightarrow 0\right)$

$$
\begin{aligned}
& X=\left|\frac{x_{\sigma}}{1+x_{\sigma}}\right| \simeq 0.2 \\
& x_{\sigma}=s_{\sigma} /\left(4 \pi f_{\pi}\right)^{2}
\end{aligned}
$$

Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller

Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller

Indications of the σ as a compact hadronic state for actual m_{π} :

Calculation of $\left\langle r^{2}\right\rangle_{s}^{\sigma} \simeq 0.20 \mathrm{fm}^{2}$ Oller,Albaladejo,PRD86(2012) We interpret it as a kind of fusion of 2 pions in $q q \bar{q} \bar{q}$

Unusual Regge trajectory of the σ.
As a low-energy resonance produced by a short-range Yukawa potential, $a \simeq 0.4 \mathrm{fm}$, between pions Londergan et al. PLB729(2014)

8. Resonances. Number-operator-number

 interpretationIn my developments a resonance follows by analytical continuation from the physical axis

- Let $\left|\psi_{\alpha}^{+}\right\rangle$be a two-body in-state

$$
\begin{aligned}
\left|\psi_{\alpha}^{+}\right\rangle & =U_{D}(0,-\infty)\left|\varphi_{\alpha}\right\rangle \\
& =\left|\varphi_{\alpha}\right\rangle+\int d \gamma \frac{T_{\gamma \alpha}(E+i \varepsilon)}{E-E_{\gamma}+i \varepsilon}\left|\varphi_{\gamma}\right\rangle+\sum_{n} \frac{T_{n \alpha}(E)}{E-E_{n}}\left|\varphi_{n}\right\rangle
\end{aligned}
$$

$$
\left\langle\psi_{\alpha}^{+}\right| \underbrace{\int d \gamma a_{\gamma}^{\dagger} a_{\gamma}}_{N_{D}^{A}}+\underbrace{\int d \eta b_{\eta}^{\dagger} b_{\eta}}_{N_{D}^{B}}\left|\psi_{\alpha}^{+}\right\rangle=2\left\langle\varphi_{\alpha} \mid \varphi_{\alpha}\right\rangle \text { Fine! }
$$

Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller

Basic set-up

Number-operator interpretation

The σ and ρ
QFT caiculation
Explicit formulas
Relativistic case
On-shell methods
Resonances
Phase redefinition
Miscellaneous of methods

Conclusions

Problem: This expectation value cannot be analytically continued to the resonance pole

$$
\left\langle\psi_{\alpha}^{+}\right|=\left\langle\varphi_{\alpha}\right|+\int d \gamma \frac{T_{\gamma \alpha}(E-i \varepsilon)}{E-i \varepsilon-E_{\gamma}}\left\langle\varphi_{\gamma}\right|+\sum_{n} \frac{T_{n \alpha}(E-i \varepsilon)}{E-i \varepsilon-E_{n}}\left\langle\varphi_{n}\right|
$$

$T(E \pm i \varepsilon)^{\dagger}=T(E \mp i \varepsilon)$
The analytical continuation to $E=M_{R}-i \Gamma / 2$ remains in the 1st or physical Riemann Sheet (RS)
No resonance pole there

The analytical continuation must be done as in the calculation of the S-matrix: out state $\left|\psi_{\alpha}^{-}\right\rangle, E-i \varepsilon$

$$
\left\langle\psi_{\alpha}^{-}\right| N_{D}^{A}+N_{D}^{B}\left|\psi_{\alpha}^{+}\right\rangle
$$

$$
\left\langle\psi_{\alpha}^{-}\right|=\left\langle\varphi_{\alpha}\right|+\int d \gamma \frac{T_{\gamma \alpha}(E+i \varepsilon)}{E+i \varepsilon-E_{\gamma}}\left\langle\varphi_{\gamma}\right|+\sum_{n} \frac{T_{n \alpha}(E+i \varepsilon)}{E+i \varepsilon-E_{n}}\left\langle\varphi_{n}\right|
$$

When crossing the real positive energy axis

$$
T(E+i \varepsilon) \rightarrow T^{\prime \prime}(E-i \varepsilon)
$$

E

The resonance pole is now reached both for the ket and the bra

9. QFT calculation

Dirac or Interacting Image

Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller

$$
\begin{aligned}
& V \rightarrow V e^{-\varepsilon|t|} \\
& \left|\psi_{R}^{+}\right\rangle=U_{D}(0,-\infty)\left|\varphi_{R}^{+}\right\rangle \\
& \left\langle\psi_{R}^{-}\right|=\left\langle\varphi_{R}^{-}\right| U_{D}(+\infty, 0)
\end{aligned}
$$

$$
\left\langle\psi_{R}^{-}\right| N_{D}\left|\psi_{R}^{+}\right\rangle=\left\langle\varphi_{R}^{-}\right| U_{D}(+\infty, 0) N_{D} U_{D}(0,-\infty)\left|\varphi_{R}^{+}\right\rangle
$$

$$
=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{+T / 2} d t\left\langle\varphi_{R}^{-}\right| U_{D}(+\infty, t) N_{D}(t) U_{D}(t,-\infty)\left|\varphi_{R}^{+}\right\rangle
$$

Basic set-up

Number-operator interpretation
$U_{D}(t,-\infty)\left|\varphi_{R}^{+}\right\rangle=e^{i H_{0} t} e^{-i H t}\left|\psi_{R}^{+}\right\rangle=e^{-\left(i M_{R}+\frac{\Gamma}{2}\right) t} e^{i H_{0} t} U_{D}(0,-\infty)\left|\varphi_{R}^{+}\right\rangle$ $\left\langle\varphi_{R}^{-}\right| U_{D}(+\infty, t)=\left\langle\psi_{R}^{-}\right| e^{i H t} e^{-i H_{0} t}=\left\langle\varphi_{R}^{-}\right| U_{D}(+\infty, 0) e^{-i H_{0} t} e^{\left(i M_{R}+\frac{\Gamma}{2}\right) t}$

10. NR case

2nd Riemann Sheet: $E_{R}=\varkappa^{2} / 2 \mu$

$$
\begin{aligned}
X_{\ell S} & =\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{g_{\ell S}^{2}\left(k^{2}\right)}{\left(k^{2} / 2 \mu-E_{R}\right)^{2}}+\frac{i \mu^{2}}{\pi \varkappa} \frac{\partial}{\partial k}\left[k g_{\ell S}^{2}\left(k^{2}\right)\right]_{k=\varkappa} \\
X & =\sum_{\ell S} X_{\ell S} \\
g(k) & =\frac{\mu}{\pi^{2}} \int_{0}^{\infty} d k^{\prime} k^{\prime 2} \frac{V\left(k, k^{\prime}\right) g\left(k^{\prime}\right)}{k^{\prime 2}-\varkappa^{2}} \\
& +\frac{i \mu \varkappa V(k, \varkappa) / \pi}{1-i \mu \varkappa V(\varkappa, \varkappa) / \pi} \frac{\mu}{\pi^{2}} \int_{0}^{\infty} d k^{\prime} k^{\prime 2} \frac{V\left(\varkappa, k^{\prime}\right) g\left(k^{\prime}\right)}{k^{\prime 2}-\varkappa^{2}} \\
g_{\ell S}(-k) & =(-1)^{\ell} g_{\ell S}(k)
\end{aligned}
$$

Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller

interpretation

QFT calculation
Explicit formulas
Relativistic case
On-shell methods

Explicit formulas. Resonance case.

Expansion in a complete set of orthonormal linearly independent real functions $\left\{f_{s}(k)\right\}$ in $[0, \infty)$:

$$
\begin{aligned}
\omega_{\alpha \beta ; s s^{\prime}} & =\int_{0}^{\infty} \int_{0}^{\infty} d k d p f_{s}(k) \omega_{\alpha \beta}(k, p) f_{s^{\prime}}(p) \\
\omega_{\alpha \beta}\left(k_{\alpha}, p_{\beta} ; E\right) & =\left[f_{\alpha}\left(k_{\alpha}\right)\right]^{T} \cdot[\omega] \cdot\left[f_{\beta}\left(p_{\beta}\right)\right] \\
t_{\alpha \beta}^{\prime \prime}\left(k_{\alpha}, p_{\beta} ; E\right) & =\left[f_{\alpha}\left(k_{\alpha}\right)\right]^{T} \cdot\left[t^{\prime \prime}(E)\right] \cdot\left[f_{\beta}\left(p_{\beta}\right)\right] \\
{\left[G_{\alpha}^{\prime \prime}(E)\right] } & =\frac{m_{\alpha}}{\pi^{2}} \int_{0}^{\infty} d q \frac{q^{2}}{q^{2}-2 m_{\alpha}}\left[f_{\alpha}\left(q_{\alpha}\right)\right] \cdot\left[f_{\alpha}\left(q_{\alpha}\right)\right]^{T} \\
+ & \frac{i m_{\alpha}}{\pi} \sqrt[1 \prime]{2 m_{\alpha} E}\left[f _ { \alpha } \left(\sqrt[\prime \prime]{\left.\left.2 m_{\alpha} E\right)\right] \cdot\left[f_{\alpha}\left(\sqrt[1 \prime]{2 m_{\alpha} E}\right)\right]^{T}}\right.\right. \\
{\left[t^{\prime \prime}(E)\right] } & =\left[D^{\prime \prime}(E)\right]^{-1} \\
{\left[D^{\prime \prime}(E)\right] } & =[\omega(E)]^{-1}+\left[G^{\prime \prime}(E)\right]
\end{aligned}
$$

$$
\begin{aligned}
& x_{\alpha}=\left(\left[p_{\alpha}\right]^{\top} \cdot\left[d^{\prime \prime}\right] \cdot \frac{\partial\left[D^{\prime \prime}\right]}{\partial E} \cdot\left[d^{\prime \prime}\right] \cdot\left[p_{\alpha}\right]\right)^{-1} \\
& \times \frac{\partial}{\partial E}\left(\frac{m_{\alpha}}{\pi^{2}} \int_{0}^{\infty} d k \frac{k^{2}}{k^{2}-2 m_{\alpha} E}\left[k_{\alpha}\right]^{\top} \cdot\left[d^{\prime \prime}\right] \cdot\left[p_{\alpha}\right]\left[k_{\alpha}\right]^{\top} \cdot\left[d^{\prime \prime}\right] \cdot\left[p_{\alpha}\right]\right. \\
& +i \frac{m_{\alpha}}{\pi} \sqrt[\|]{2 m_{\alpha} E}\left[\sqrt[\mu]{\left.2 m_{\alpha} E\right]\left.^{\top} \cdot\left[d^{\prime \prime}\right] \cdot\left[p_{\alpha}\right]\left[\sqrt[\mu]{\left.2 m_{\alpha} E\right]^{\top}} \cdot\left[d^{\prime \prime}\right] \cdot\left[p_{\alpha}\right]\right)\right|_{E=E_{R}, p_{\alpha}=\varkappa_{\alpha}} \text { QFT calualion }}\right. \\
& \text { J. A. Oller } \\
& \text { Number-operator } \\
& \text { interpretation } \\
& \text { The } \sigma \text { and } \rho
\end{aligned}
$$

Number-operator interpretation of the compositeness of bound and resonant states

- For $\partial[\omega] / \partial E=0$ then

$$
1=X=\sum_{\alpha=1}^{n} X_{\alpha}
$$

Relativistic case
On-shell methods

Phase redefinition
Miscellaneous of methods

Energy-independent contact potential

We include the convergent factor for the 2nd RS calculation

$$
\begin{aligned}
v_{\alpha \beta}\left(k_{\alpha}, p_{\beta}\right) & =k_{\alpha}^{\ell_{\alpha}} p_{\beta}^{\ell_{\beta}} \sum_{i, j}^{N} v_{\alpha \beta ; i j} k_{\alpha}^{2 i} p_{\beta}^{2 j} \\
V\left(k^{\prime}, k\right) & \rightarrow V\left(k^{\prime}, k\right) e^{-i \epsilon\left(k+k^{\prime}\right)}
\end{aligned}
$$

$$
\begin{gathered}
X_{\ell S}=\frac{1}{4 \pi^{2}} \int_{-\infty}^{\infty} d k k^{2} \frac{g_{\ell S}^{2}\left(k^{2}\right) e^{-i \epsilon k}}{\left(k^{2} / 2 \mu-E_{R}\right)^{2}}+\left.\frac{i \mu^{2}}{\pi \varkappa} \frac{\partial k g_{\ell S}^{2}\left(k^{2}\right)}{\partial k}\right|_{k=\varkappa} \\
=g^{2}\left(\varkappa^{2}\right) \frac{i \mu^{2}}{2 \pi \varkappa}+\left.\frac{i \mu^{2} \varkappa}{\pi} \frac{\partial g^{2}\left(k^{2}\right)}{\partial k^{2}}\right|_{k=\varkappa} \\
X_{\ell S}=\frac{2 \mu^{2}}{\pi^{2}} \int_{0}^{\infty} d k^{2} \sqrt{k^{2}+i \varepsilon} \frac{g_{\ell S}^{2}\left(k^{2}\right)}{\left(k^{2}-\varkappa^{2}\right)^{2}}
\end{gathered}
$$

J. A. Oller

$$
X=1=\sum_{\ell S} X_{\ell S}
$$

For a regular energy-independent potential $X=1$
Hernández,Mondragón, PRC29,722(1984)
Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller
X is in general complex for a resonance

$$
\begin{gathered}
V\left(k, k^{\prime}\right)=f\left(k^{2}\right) f\left(k^{\prime 2}\right) \mathrm{V}(\mathrm{E}) \\
g\left(k^{2}\right)=\mathrm{V}^{\frac{1}{2}} f\left(k^{2}\right)\left[\frac{\partial\left(\mathrm{V} \widetilde{G}^{\mathrm{II}}\right)}{\partial E_{R}}\right]^{-1} \\
X=\left[\frac{\partial\left(\mathrm{V} \widetilde{G}^{\mathrm{II}}\right)}{\partial E_{R}}\right]^{-1} \frac{-1}{(2 \pi)^{2}} \int_{0}^{\infty} d k k^{2} \frac{\mathrm{~V} f\left(k^{2}\right)^{2}}{\left(E_{R}-k^{2} / 2 \mu\right)^{2}} \\
\\
=\left[\frac{\partial\left(\mathrm{V} \widetilde{G}^{\mathrm{II}}\right)}{\partial E_{R}}\right]^{-1}\left\{\mathrm{~V} \frac{\partial \widetilde{G}^{\mathrm{II}}}{\partial E_{R}}+\widetilde{G}^{\mathrm{II}}\left(E_{R}\right) \frac{\partial \mathrm{V}\left(E_{R}\right)}{\partial E_{R}}\right\}
\end{gathered}
$$

11. Redefinition of "phases"

in-,out-states:
$\eta(E)$ is a complex function with RHC: $\eta\left(E^{*}\right)=\eta(E)^{*}$

$$
\begin{aligned}
\left|\psi_{\alpha}^{+}\right\rangle & \longrightarrow e^{\eta\left(E_{\alpha}+i \varepsilon\right)}\left|\psi_{\alpha}^{+}\right\rangle \\
\left\langle\psi_{\alpha}^{-}\right| & \longrightarrow\left\langle\psi_{\alpha}^{-}\right| e^{\eta\left(E_{\alpha}-i \varepsilon\right)^{*}} \\
& =\left\langle\psi_{\alpha}^{-}\right| e^{\eta\left(E_{\alpha}+i \varepsilon\right)}
\end{aligned}
$$

Analytical continuation $E_{\alpha} \rightarrow E_{R}=M_{R}-i \Gamma / 2$

$$
\eta\left(E_{\alpha}+i \varepsilon\right) \rightarrow \eta^{\mathrm{II}}\left(E_{\alpha}-i \varepsilon\right) \rightarrow \eta^{\mathrm{II}}\left(M_{R}-i \Gamma / 2\right)
$$

Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller

An specific fact of resonances; no analogue for bound states.

These phase factors make $X_{A B}$ be positive definite There could be dependence on the channel, $\eta_{A B}(E)$

$$
\begin{aligned}
& g_{A B}^{2}\left(k^{2}\right) \rightarrow g_{A B}^{2}\left(k^{2}\right) e^{2 \eta_{A B}^{\mathrm{II}}\left(E_{R}\right)} \\
& \left\langle\psi_{R}^{-}\right| N_{D}^{A B}\left|\psi_{R}^{+}\right\rangle e^{2 \eta_{A B}^{\mathrm{II}}\left(E_{R}\right)} \in \mathbb{R}^{+}
\end{aligned}
$$

Plausible dispersion relation for $\eta(E)$ Narrow-Resonance Case:

$$
\begin{aligned}
& \eta(E)=\frac{1}{\pi} \int_{0}^{\infty} d E^{\prime} \frac{\operatorname{Im} \eta\left(E^{\prime}\right)}{E^{\prime}-M_{R}-i \varepsilon} \\
& =\frac{1}{\pi} f_{0}^{\infty} d E^{\prime} \frac{\operatorname{Im} \eta\left(E^{\prime}\right)}{E^{\prime}-M_{R}}+i \operatorname{Im} \eta\left(E^{\prime}\right)
\end{aligned}
$$

Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller
12. S-matrix transformations

Introduced in z.H.Guo, Oller, PRD93,096001(2016)

Example: Narrow resonance case

Laurent series around the resonance pole:

$s_{P}=\left(M_{R}-i \Gamma / 2\right)^{2}$

$$
\begin{aligned}
& S(s)=\frac{R}{s-s_{P}}+S_{0}(s) \\
& S(s) S(s)^{\dagger}=I
\end{aligned}
$$

Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller
$S_{0}(s) \rightarrow S_{0}$, constant

$$
\left(s-s_{P}\right)\left(s-s_{P}^{*}\right) S_{0} S_{0}^{\dagger}+\left(s-s_{P}\right) S_{0} R^{\dagger}+\left(s-s_{P}^{*}\right) R S_{0}^{\dagger}+R R^{\dagger}=\left(s-s_{P}\right)\binom{\text { Phase redefinition }}{s_{*}^{*}}
$$

$$
\begin{aligned}
& S_{0} S_{0}^{\dagger}=I \\
& S_{0} R^{\dagger}+R S_{0}^{\dagger}=0 \\
& -s_{P} S_{0} R^{\dagger}-s_{P}^{*} R S_{0}^{\dagger}+R R^{\dagger}=0
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& S_{0}=\mathscr{O} \mathscr{O}^{T} \\
& \mathscr{O} \mathscr{O}^{\dagger}=1
\end{aligned}
$$

Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller

Rank 1 Symmetric Projection Operator \mathscr{A} :

$$
\begin{aligned}
R & =i \lambda \mathscr{O} \mathscr{A} \mathscr{O}^{T}, \lambda \in \mathbb{R} \\
\mathscr{A}^{\dagger} & =\mathscr{A} \\
\mathscr{A}^{2} & =\mathscr{A} \\
\lambda & =2 \operatorname{Im} s_{P}=-2 M_{R} \Gamma_{R}
\end{aligned}
$$

Resonant S-matrix $S_{R}(s)$:

$$
S(s)=\mathscr{O} \underbrace{\left(1+\frac{i \lambda \mathscr{A}}{s-s_{R}}\right)}_{s_{R}(s)} \mathscr{O}^{T}
$$

Origin of phases: Smooth non-resonant terms, \mathscr{O} E.g. Coulomb phases in nuclear physics

In general, do not take the real part in $\left\langle\psi_{R}^{-}\right| N_{D}^{A}\left|\psi_{R}^{+}\right\rangle$to make it real!!

The right procedure is doing the phase or S-matrix transformations

$$
\begin{aligned}
S_{\mathscr{O}}(s) & \equiv \mathscr{O} S(s) \mathscr{O}^{T} \\
\mathscr{O} & =\operatorname{diag}\left(e^{i \phi_{1}}, \ldots, e^{i \phi_{n}}\right) \\
g_{i}^{2} & \rightarrow g_{i}^{2} e^{2 i \phi_{i}}
\end{aligned}
$$

There is an associated $T_{\mathscr{O}}(s)$
E.g. for the case of only one channel:

$$
\left.g^{2} \rightarrow g^{2} e^{2 i \phi} \quad\left\langle\psi_{R}^{-}\right| N_{D}^{A}\left|\psi_{R}^{+}\right\rangle \rightarrow\left|\left\langle\psi_{R}^{-}\right| N_{D}^{A}\right| \psi_{R}^{+}\right\rangle \mid
$$

NR: Criterion for elementariness of a narrow resonance with respect to the open channels

$$
\left.\left\langle N_{D}^{A}\right\rangle=\left\langle\psi_{R}^{-}\right| N_{D}^{A}\left|\psi_{R}^{+}\right\rangle e^{2 i \operatorname{Im} \eta_{\mathrm{A}}^{\mathrm{II}}\left(E_{R}\right)}=\left|\left\langle\psi_{R}^{-}\right| N_{D}^{A}\right| \psi_{R}^{+}\right\rangle \mid=0
$$

Relativistic case

Necessary condition for a resonance to be qualified as elementary

$$
\left\langle N_{D}^{A}\right\rangle=0 \quad, \quad \forall A
$$

Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller

Finite width resonances

Necessary Condition for still interpreting $\left.\left|\left\langle\psi_{R}^{-}\right| N_{D}^{A}\right| \psi_{R}^{+}\right\rangle \mid$as an average number of particles Z.H.Guo, Oller, PRD93,096001(2016) The transformations

$$
\begin{aligned}
S_{\mathscr{O}}(s) & \equiv \mathscr{O} S(s) \mathscr{O}^{T} \\
\mathscr{O} \mathscr{O}^{\dagger} & =I \\
g_{i}^{2} & \rightarrow g_{i}^{2} \mathscr{O}_{i i}^{2}
\end{aligned}
$$

make sense only if:
\triangleright The Laurent expansion around s_{P} is valid in some interval of physical (real values above threshold) for s_{\uparrow}

$$
S(s) S(s)^{\dagger}=1 \text { is meaningful }
$$

Condition A: $s_{n}<\operatorname{Res}_{p}<s_{n+1}$
s_{n} is the threshold of channel n

Physical idea

- If this condition is fulfilled one can think of a physical process with a clear resonance contribution. E.g. the σ and E791 data on D^{+}and D_{s}^{+}decays
- The resonance phenomenon is physically manifest in the open channels
- We preserve $\left|g_{i}\right|$ to the open channels

A resonance is then very different

$$
\frac{g^{2}}{s-s_{R}}+\frac{g^{2^{*}}}{s-s_{R}^{*}}=2 \operatorname{Re} \frac{g^{2}}{\mathrm{~s}-\mathrm{sR}}
$$

Double-pole like virtual state

This could well be the case for the $X(3872)$, at least as a double-like pole. It could also be triple-like, etc.
X.-W.Kang, Oller,EPJC77,399(2017)
$\bar{D}^{0} D^{* 0}$ threshold. Tiny width

Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller

13. S-wave Effective Range Expansion

$$
\begin{aligned}
& \text { X.W.Kang,Z.H.Guo,OUler,PRD94,014012(2016) } \\
& T(k)=\frac{1}{-\frac{1}{a}+\frac{1}{2} r k^{2}-i k} \\
& G(k)=-i k \\
& E_{R}=M_{R}-i \Gamma / 2 \\
& a=-\frac{2 k_{i}}{\left|k_{R}\right|^{2}} \\
& r=-\frac{1}{k_{i}}, \quad a / 2>r \\
& X=-\gamma^{2} \frac{d G}{d s}=-\gamma_{k}^{2} \frac{d G}{d k}=i \frac{k_{i}}{k_{r}}=i \tan \frac{\phi}{2} \\
& |X| \leq 1 \leftrightarrow k_{r} \geq k_{i} \leftrightarrow M_{R} \geq 0 \\
& \left(|X|=1 \text { for } M_{R}=0 \text { and } \Gamma>0\right)
\end{aligned}
$$

If the real part is taken then ALWAYS $X=0$!

Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller

Basic set-up

Number-aparato interpretation

The σ and ρ
QFT calculation
Explicit formulas
Relativistic case
On-shell methods

Resonances

Phase redefinition
Miscellaneous of methods

Conclusions

$$
\tan \phi=\frac{\Gamma}{2 M_{R}} \longrightarrow \phi \in\left[0, \frac{\pi}{2}\right] \text { for } M_{R} \geq 0
$$

$$
k_{R}=k_{r}-i k_{i}=\sqrt{2 \mu\left(M_{R}-i \Gamma / 2\right)}=\left|k_{R}\right|(\cos \phi / 2-i \sin \phi / 2)
$$

$$
X=\left(\frac{2 r}{a}-1\right)^{-1}
$$

$Z_{b}(10610)$ and $Z_{b}(10650)$ or Z_{b} and Z_{b}^{\prime}
$B^{(*)} \bar{B}^{*}$ system with $I^{G}\left(J^{P}\right)=1^{+}\left(1^{+}\right)$

$$
\begin{aligned}
& E_{Z_{b}}=10607.2 \pm 2.0-i(9.2 \pm 1.2) \mathrm{MeV} \\
& E_{Z_{b}^{\prime}}=10652.2 \pm 1.5-i(5.5 \pm 1.1) \mathrm{MeV}
\end{aligned}
$$

M_{R} is around 3 MeV below $B^{(*)} \bar{B}^{*}$ threshold

	$Z_{b}(10610)$	$Z_{b}(10650)$
$a(\mathrm{fm})$	-1.03 ± 0.17	-1.18 ± 0.26
$r(\mathrm{fm})$	-1.49 ± 0.20	-2.03 ± 0.38
$X=\gamma_{k}^{2}$	0.75 ± 0.15	0.67 ± 0.16

Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller

Determining X by making use of the width of the resonance

Meißner,Oller,PLB751(2015)

$$
\begin{aligned}
& \Gamma_{i}^{(1)}=\frac{2 X_{i}}{\mu} k\left(M_{R}\right)\left|k_{R}\right| \\
& \Gamma_{i}^{(2)}=\frac{X_{i}\left|k_{R}\right| M_{R}^{2}}{\pi \mu} \int_{M_{\mathrm{th}}}^{+\infty} d W \frac{k(W)}{W^{2}} \frac{\Gamma}{\left(M_{R}-W\right)^{2}+\Gamma^{2} / 4}
\end{aligned}
$$

For the $Z_{b}^{(1)}$ it gave consistent results with the ERE-based method

Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller

Basic set-up

Number-operator interpretation

The σ and ρ
QFT calculation
Explicit formulas
Relativistic case
On-shell methods
Resonances
Phase redefinition
Miscellaneous of methods

Conclusions
14. Spectral density function. NR Resonance Bogdanova, Hale, Markushin, PRC44,1289(1991);
Baru,Haidenbauer,Hanhart,Kalashnikova,Kudryavtsev, PLB586,53(2004)
Spectral density of the bare state $\left|\psi_{0}\right\rangle: \omega(E)$

$$
\begin{aligned}
\left|\psi_{0}\right\rangle & =\int d \mathbf{k} c_{0}(k)|\mathbf{k}\rangle \\
\omega(E) & =4 \pi \mu k\left|c_{0}(E)\right|^{2} \theta(E) \\
\int_{0}^{\infty} d E \omega(E) & = \begin{cases}1 & \text { No bound states } \\
1-Z & \text { With bound states }\end{cases}
\end{aligned}
$$

How to implement it? Select the resonant region around threshold

$$
W=\int_{E_{-}}^{E_{+}} d E \omega(E)
$$

Conceptually, it is not fully settled as a quantitative estimate of compositeness for resonances

Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller

It provides a nice smooth transition from the clear bound states and narrow resonances

It has a clear connection with the pole-counting rule of Morgan NPA543,632(1992), with the presence of nearby CDD poles Kang,Oller, EPJC77,399(2017)

The spectral density method compares well with the on-shell method to get X

15. Scattering Amplitude $t(E)$

Dispersion Relation for the inverse of $t(E)$

$$
\operatorname{Imt}(E)^{-1}=-i k
$$

One subtraction is needed

$$
\oint d z \frac{t(z)^{-1}}{(z-E)(z-C)}
$$

The only other structure apart from the threshold that can give rise to a strong distortion in $t(E)^{-1}$ is a pole at M_{Z}

CDD pole Castillejo,Dalitz,Dyson,

$$
t(E)=\frac{1}{\frac{\lambda}{E-M_{z}}+\beta-i k}
$$

 PR,101,453(1956)

Miscellaneous of methods

The ERE or a Flatté parametrization break down for $|k| \gtrsim \sqrt{2 \mu\left|M_{Z}\right|}$

The general formula for a partial-wave without crossed-channel dynamics was deduced in: Oller, Oset PRD60,074023 (1999)

Contact interaction plus s-channel exchange of bare resonances

Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller

Kang,Oller, EPJC77,399(2017) study of the $X(3872)$

Contact

s-channel exchange
bare state
[BHKKN] Baru,Hanhart, Kalashnikova,Kudryavtsev,
EPJA,44,93(2010) Interplay of quark and meson degrees of freedom in a near-threshold resonance
[ABK] Artoisenet, Braaten, Kang, PRD,82,014013(2010) Using line shapes to discriminate between binding mechanisms for the X (3872)

[BHKKN]

$$
\begin{aligned}
& D_{F}(E)=E-E_{f}-\frac{\left(E-E_{f}\right)^{2}}{\left(E-M_{z}\right)^{2}}+\frac{i}{2} g_{f}^{2} k \\
& t(E)=\frac{g_{f}^{2}}{8 \pi^{2} \mu D_{F}(E)} \\
& t(E)=\frac{1}{4 \pi^{2} \mu} \frac{E-E_{f}+\frac{1}{2} g_{f}^{2} \gamma_{V}}{\left(E-E_{f}\right)\left(\gamma_{V}+i k\right)+\frac{i}{2} g_{f}^{2} \gamma_{V} k} \\
& g_{f}^{2}=\frac{2 \lambda}{\beta^{2}} \\
& E_{f}=M_{Z}-\frac{\lambda}{\beta} \\
& \gamma v=-\beta
\end{aligned}
$$

$\gamma_{V}=1 / a_{V}, a_{V}$ scattering length in pure contact-interaction theory.

For $\left|M_{Z}\right| \gg\left|E_{f}\right|$ one recovers the standard Flatté approximation

Limitation of $[\mathrm{BHKKN}]$ and $[\mathrm{ABK}]$

- They predict only $\lambda \geq 0$

[BHKKN] [ABK]

$$
\lambda=\frac{\gamma_{V}^{2}}{2} g_{f}^{2} \quad \lambda=\frac{2 g^{2} \gamma_{0}^{2}\left(\gamma_{1}-\kappa_{2}\right)^{2}}{\left(\gamma_{0}+\gamma_{1}-2 \kappa_{2}\right)^{2}}
$$

- Positive effective range r, v_{3}, v_{5}, etc, cannot be reproduced with $\lambda \geq 0$:

$$
\begin{aligned}
r & =-\frac{\lambda}{\mu M_{Z}^{2}}<0 \\
v_{3} & =-\frac{\lambda}{8 \mu^{3} M_{Z}^{4}}<0
\end{aligned}
$$

Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller

- $\omega(E) \geq 0 \rightarrow \lambda \geq 0$:

$$
\omega(E)=\theta(E) \frac{\lambda k / \pi}{\left|\lambda+(\beta-i k)\left(E-M_{Z}\right)\right|^{2}}
$$

Constant contact term plus one s-channel bare-pole exchange picture collapses for $\lambda<0$
$X(3872)$ Kang, Oller, EPJC77,399(2017)
PDG: $M_{X}=3871.69 \pm 0.17 \mathrm{MeV}, \Gamma_{X}<1.2 \mathrm{MeV}$
$D^{0} \bar{D}^{* 0}$ threshold: $3871.81 \pm 0.07 \mathrm{MeV}$ $D^{+} D^{*-}$ threshold is $\Delta=+8.1 \mathrm{MeV}$ higher

We have a scenario with only one-free parameter and having:

- A virtual-state pole $(-i \kappa, \kappa>0)$
- A bound-state pole $(+i \varkappa, \varkappa>0)$

$$
3.1
$$

$$
E_{V}=-0.68 \pm 0.05 \mathrm{MeV}
$$

$$
E_{V}-1.06 \pm 0.05 \mathrm{MeV}
$$

$$
E_{B}=-0.50 \pm 0.04 \mathrm{MeV}
$$

$$
E_{B}=-0.51 \pm 0.03 \mathrm{MeV}
$$

$$
X=0.061
$$

$$
X=0.158
$$

$$
W=0.06
$$

$$
W=0.16
$$

$$
M_{Z}=0.25 \pm 0.04 \mathrm{MeV}
$$

$M_{Z}=3.21 \pm 0.05 \mathrm{MeV}$

16.- Conclusions

- A new perspective on compositeness based on the number operators
- Amenable to calculations employing QFT
- The formalism can be extended to relativistic systems
- Universal criterion for a relativistic or non-relativistic bound state to be qualified as elementary
- Generalization to resonances
- Phase-factor transformations, S-matrix transformations
- Necessary condition for a resonance to be elementary
- On-shell methods
- CDD \& including bare state explicitly
- Full calculations!: LQCD, EFT+NP methods,...

Other methods to study the nature of resonances

- Study of form factors and determination of the corresponding quadratic radius Sekihara,Hyodo,Jido,PRC83,055202(2011); Albaladejo,Oller,PRD86,034003(2012)
- Pole counting rule Morgan NPA543,632(1992). Presence/absence of nearby CDD poles Kang,Oller, EPJC77,399(2017)
- Evolution of the pole positions with the increase in the number of color of QCD. E.g. for a $q \bar{q} M=\mathscr{O}\left(N_{C}^{0}\right)$ and $\Gamma=\mathscr{O}\left(N_{c}^{-1}\right)$. Pioneer works Oset,OIler,PRD60,074023(1999); Peláez,PRL92,102001(2004); Hyodo,Jido,Hosaka, PRL97,192002(2006)
- Dependence on the mass under quark mass variations. Lattice QCD. Ruiz de
Elvira,Meißner,Rusetsky,Schierholz,arXiv:1706.09015
- Regge trajectories

Londergan,Nebreda,Peláez,Szczepaniak,PLB729,9(2014)

- Compare predictions within specific models with experiment,e.g. spectrum, decay properties, etc

Number-operator interpretation of the compositeness of bound and resonant states
J. A. Oller

Name	$\sqrt{{ }^{S_{P}}}[\mathrm{MeV}]$	$X_{\pi \pi}^{R}$	$X_{\bar{K} K}^{R}$	$X_{\eta \eta}^{R}$	$X_{\eta \eta^{\prime}}^{R}$	Number-operator intexpretation of the compositeness
$f_{0}(500)$	$442_{-4}^{+4}-i 246_{-5}^{+7}$	$0.40_{-0.01}^{+0.01}$	K	\cdots	-	0 co 9 boorrod and
$f_{0}(980)$	$978_{-11}^{+17}-i 29_{-11}^{+9}$	${ }^{0.02}+{ }_{-0.01}^{+0.01}$	$0.65{ }_{-0.16}^{+0.10}$	0 ¢sønd ${ }^{\text {a }}$ +1 1^{1} trates
$f_{0}(1710)$	$1690_{-20}^{+20}-i 110_{-20}^{+20}$	$0.00_{-0.00}^{+0.00}$	$0.03{ }_{-0.02}^{+0.02}$	$0.02_{-0.03}^{+0.03}$	$0.25_{-0.16}^{+0.16}$	$0.30{ }^{\text {A }}$ A 0.17 .0LLER
$\rho(770)$	$760_{-5}^{+7}-i 71_{-5}^{+4}$	$0.08{ }_{-0.01}^{+0.01}$.		. . ${ }^{\text {a }}$	$0.08_{-0.01}^{+0.01}$
		$\chi_{K \pi}^{R}$	Basic ${ }^{\text {s }}$
$K_{0}^{*}(800)$	$643_{-30}^{+75}-i 303_{-75}^{+25}$	$0.94{ }_{-0.39}^{+0.19}$. .	. \cdot	. \cdot	$0.94{ }_{-0.39}^{+0.19}$
$K^{*}(892)$	$892_{-7}^{+5}-i 25_{-2}^{+2}$	$0.05{ }_{-0.01}^{+0.01}$	R	${ }^{R}$. .	$0.05-0.01 \text { erator }$
		$X_{\pi \eta}^{R}$	$X_{\bar{K} K}^{R}$	$X_{\pi \eta^{\prime}}^{R}$		
$a_{0}(1450)$	$1459_{-95}^{+70}-i 174_{-100}^{+110}$	$0.09{ }_{-0}^{+0.02}$	$0.02_{-0.02}^{+0.12}$	$0.12_{-0.08}^{+0.21}$	\cdots	${ }^{T} 0.23_{-0.17}^{+0.35}$
		$X_{\rho \pi}^{R}$				QFT calculation
$a_{1}(1260)$	1260 - i250	0.45				0.45
Hyperon with $I=0$		$X_{\pi \Sigma}^{R}$	$X_{\bar{K} N}^{R}$	\ldots	\ldots	Explicit.formulas
$\Lambda(1405)$ broad	$1388_{-9}^{+9}-i 114_{-25}^{+24}$	$0.73{ }_{-0.07}^{+0.16}$	N	$\mathrm{R} 0.73^{+0.16}$
$\Lambda(1405)$ narrow	$1421{ }_{-2}^{+3}-i 19_{-5}^{+8}$	$0.18{ }_{-0.06}^{+0.15}$	$0.81{ }_{-0.08}^{+0.18}$	\cdots	. .	$0.99+0.33$
Hyperon with $I=1$		$\chi_{\pi \wedge}^{R}$	$X_{\pi \Sigma}^{R}$	$X{ }_{\bar{K} N}^{R}$		On-she.. ${ }^{-0.14}$. ${ }^{\text {a }}$
	$1376{ }_{-3}^{+3}-i 33_{-5}^{+5}$	$0.04{ }_{-0.00}^{+0.01}$	$0.0_{-0.0}^{+0.0}$	N		$R 0.04+0.01$
	$1414_{-3}^{+2}-i 12_{-2}^{+1}$	$0.03{ }_{-0.00}^{+0.00}$	$0.01_{-0.00}^{+0.00}$	$0.13{ }^{+0.03}$		$\text { Phase- } 0.17+0.03 \text { nition }$
		$X_{D K}^{R}$	$\chi_{D_{s} \eta}^{R}$	$X_{D_{s} \eta^{\prime}}^{R}$		
$D_{s 0}^{*}(2317)$	$2321{ }_{-3}^{+6}$	$0.57{ }_{-0.01}^{+0.01}$	${ }_{0.12^{+0.01}}^{-0.01}$	0.02 ${ }_{\text {-0.01 }}^{\text {+0.01 }}$		Mis $0.71+0.03$ us of
		$\chi_{J / \psi f_{0}(500)}^{R}$	$X_{J / \psi f_{0}(980)}^{R}$	$X_{Z_{C}(3900) \pi}^{R}$	$X_{\omega \chi}^{R}$	methođs. ${ }^{\text {a }}$
$Y(4260)$	4232.8 - i36.3	0.00	0.02	${ }^{2} .02$	0.17	Concturgions
		$X_{\Sigma_{c}^{+} \pi^{0}}^{R}$	$X_{\Sigma_{C}^{++}}^{R}-$	$X_{\Sigma_{c}^{0} \pi^{+}}^{R}$. .	
$\Lambda_{c}(2595)$	$2592.25-i 1.3$	$0.11_{-0.02}^{+0.02}$				$0.11_{-0.02}^{+0.02}$

Table: Z.H.Guo, Oller, PRD93,096001(2016)

[^0]: ${ }^{1}$ Partially funded by MINECO (Spain) and EU, project FPA2016-77313-P

