Introduction/Comment to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

Departamento de Física Universidad de Murcia¹ Murcia, Spain

Dep. Física Teórica UCM, Madrid, April 23rd, 2019

¹Partially funded by MINECO (Spain) and EU, project FPA2016-77313-P

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

General Remarks

decomposition

Partial-wave expansion

ehmann-ellipse in $\pi\pi \to \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

Outline

Introduction

- 2 General Remarks
- 3 Isospin decomposition
- 4 Partial-wave expansion
- **5** Lehmann-ellipse in $\pi\pi \to \pi\pi$
- 6 Elastic unitarity
- 🕖 KT Formalism
- 8 Coupled-channel case
- ${f 9}$ Lehmann ellipse and separation of RHC–LHC in $\eta o 3\pi$

Introduction/Comm to the Khuri-Treiman Formalism $(n \rightarrow 3\pi)$ J A OLLER

> Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

Introduction

I have written a review for PPNP on coupled-channel dynamics

Contents

1	Introduction			
2	\boldsymbol{S} and \boldsymbol{T} matrices. Unitarity, crossing and partial-wave amplitudes	3		
3	Introduction to DRs, the N/D method and the CDD poles 3.1 Some mathematical preliminaries 3.2 The N/D method. Structure of a PWA without explicit LHC 3.3 Another DR representation for PWAs. 3.4 The subtraction constants of g _i (s) in the SU(3) limit 3.5 Meson-meson scattering in the light-quark sector.	14 15 20 24 27 28		
4	Near-threshold scattering 4.1 Potential scattering 4.2 LS-based parameterizations in non-relativistic scattering 4.3 Near-threshold parameterization: bare, elastic and inelastic contributions	36 40 45 49		
5	Perturbative treatment of crossed-channel cuts within several approaches 5.1 Solving the N/D equations with $\Delta(p^2)$ calculated perturbatively	56 59 62		
6	Final(Initial)-state interactions 6.1 The Omnès solution 6.2 The Muschelishvill-Onnès problem 6.3 The extended Khuri-Treiman formalism for $\eta \rightarrow 3\pi$ decays 6.3.1 The elastic case: $\pi\pi$ final-state interactions 6.3.2 The coupled case: $\pi\eta$ initial- and $\pi\pi$, KK final-state interactions	65 68 75 79 80 89		
А	Determination of the physical regions for the t-, u- and decay-channels of $n \rightarrow 3\pi$	92		

I am going to review on the Khuri-Treiman formalism **(KT)** for $\eta \rightarrow 3\pi$ *A comment is also made*

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

Introduction
Lehmann-ellipse in $\pi\pi o\pi\pi$
Elastic unitarity
KT Formalism
Coupled-channel case
Lehmann ellipse and separation of RHC–LHC in

- Final-, Initial-state interactions
- Two-body unitarity
- Three-body scattering
- Lehmann ellipse
- Overlap between right- and left-hand cuts
- Anomalous threshold

Introduction/Comm to the Khuri-Treiman Formalism $(\eta
ightarrow 3\pi)$

J. A. Oller

Introduction

General Remarks

lsospin decomposition

Partial-wave expansion

ehmann-ellipse in $\pi\pi \to \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

KT, Khuri, Treiman, PR119(1960), S-wave $\pi\pi$ final-state interactions (FSI) in $K \rightarrow 3\pi$

Three-particle scattering from two-particle scattering

Further studied and advances in the 60's:

Gribov, V.V.Anisovich,Anselm Sov.Phys.JETP 15(1962) Bonnevay, Nuovo Cimento 30(1963) Bronzan,Kacser, PR132(1963) Kacser, PR132(1963) Bronzan, PR134(1964) Aitchison, PR133(1963), PR137(1965) R.Pasquier,J.Y.Pasquier, PR170(1968), PR177(1969) Neveu, Scherk, Ann.Phys.57(1970)

The KT approach was "brought to life" in the half 90's:

S- and P-waves two-body FSI

 η decays + Chiral Perturbation Theory (ChPT) + new experiments:

A.V.Anisovich, Phys.Atom.Nucl.58(1995) Anisovich, Leutwyler, PLB375(1996) Kambor,Wiesendanger,Wyler,NPB465(1996) Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

Introduction

General Remarks

lsospin decomposition

Partial-wave expansion

ehmann-ellipse in $\pi\pi \to \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

Very-recent studies:

P.Guo et al. [JPAC], PLB771(2017) Gasser, Rusetsky, EPJC78(2018) Colangelo et al., EPJC78(2018)

Extension of KT to coupled channels

Albaladejo, Moussallam, EPJC77(2017) (AM)

$$\pi\pi$$
 ($I=0,1,2$), $\eta\pi$ ($I=1$), $Kar{K}$ ($I=0,1$)

 $f_0(500)$, $\rho(770)$, $f_0(980)$: Final-State Interactions (FSI) $a_0(980)$: Initial-State Interactions (HSI)

Application of KT to other processes:

Niecknig, Kubis, Consistent Dalitz plot analysis of Cabibbo-favored $D^+ \rightarrow \bar{K}\pi\pi^+$ decays, PLB780(2018)

Isken, Kubis, Schneider, Stoffer, Dispersion relations for $\eta' \rightarrow \eta \pi \pi$, EPJC77(2017)

Albaladejo et al. [JPAC Collaboration], Khuri-Treiman equations for $\pi\pi$ scattering, EPJC78(2018) ETC Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

Introduction

General Remarks

lsospin decomposition

Partial-wave expansion

Lehmann-ellipse in $\pi\pi o \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$ J. A. OLLER

Introduction

General Remarks

lsospin decomposition

Partial-wave expansion

ehmann-ellipse in $\pi\pi \to \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

$\eta \to 3\pi$ is an interesting history

$$\Gamma_c = \Gamma(\eta o \pi^+ \pi^- \pi^0)$$
; $\Gamma_n = \Gamma(\eta o 3\pi^0)$; $r = \Gamma_n / \Gamma_c$

Th. Calculation Current Algebra Weinberg(1975),Raby(1976) $\Gamma_c \simeq 65 \text{ eV}, r = 1.5$ Unitarization Roiesnel,Truong,NPB(1981) $\Gamma_c = 200 \text{ eV}, r = 1.6$ NLO ChPT Gasser,Leutwyler,NPB(1985) $\Gamma_c = 160 \pm 50 \text{ eV}, r = 1.43$

 $r = 1.44 \pm 0.04$ Colangelo *et al.*,EPJC(2018) $r = 1.45 \pm 0.02$ AM $Q = 21.7 \pm 0.2$ Experiment Strong disagreement $\Gamma_c = 200 \pm 30 \text{ eV}$ $r = 1.34 \pm 0.05$ Better agreement

Changed PDG: $\Gamma_c = 300 \pm 4 \text{ eV}$ $r = 1.426 \pm 0.026(\text{Fit})$ $r = 1.48 \pm 0.05(\text{Ave})$ Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

Introduction

General Remarks

lsospin decomposition

Partial-wave expansion

Lehmann-ellipse in $\pi\pi \to \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta\,
ightarrow\,3\pi$

Parameters of the Dalitz plot for $\eta \rightarrow 3\pi^0$

 $\begin{array}{rl} \mbox{Th. Calculation} & \mbox{PDG} \\ \mbox{NLO ChPT, Gasser,Leutwyler,NPB(1985)} \\ & \alpha = +0.0142 & \alpha = -0.0318(15)(\mbox{Ave}) \\ \mbox{Colangelo et al.(2018)} & \alpha = -0.0307(17) \\ & \mbox{AM(2017)} & \alpha = -0.0337(12) \end{array}$

Tension between the two KT calculations

NNLO ChPT Bijnens, Ghorbani, JHEP(2007) is not predictive **too many LECs**

Final(Initial)-State Interactions FSI(HSI) are essential

Precise experimental results on Dalitz plot data KLOE-2 (2016),BESIII(2015),WASA,TAPS,A2 Collaborations $\eta - \eta'$ decays from unitarized *U*(3) ChPT Borasoy,Nissler,NPA716(2003),EPJA26(2005) Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

Introduction

General Remarks

lsospin decomposition

Partial-wave expansion

ehmann-ellipse in $\pi\pi \to \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC-LHC in $\eta \rightarrow 3\pi$

2. General Remarks

- $\eta \rightarrow 3\pi$ violates isospin: G-parity of η is +1, π is -1
- QCD isospin-breaking operator I = 1, $t_3 = 0$

$$\frac{m_u - m_d}{2} (u^{\dagger} d^{\dagger}) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} u \\ d \end{pmatrix} = \frac{m_u - m_d}{2} (u^{\dagger} u - d^{\dagger} d)$$

• $\mathcal{O}(e^2)$ QED contributions, $I = 1, t_3 = 0$

$$\hat{q}^2 e^2 = e^2 \left(egin{array}{cc} rac{4}{9} & 0 \ 0 & rac{1}{9} \end{array}
ight) = rac{5e^2}{18} \mathbb{I} + rac{e^2}{6} \left(egin{array}{cc} 1 & 0 \ 0 & -1 \end{array}
ight)$$

QED corrections are further suppressed $\mathcal{O}(e^2 m_{u,d})$

They vanish in the SU(2) chiral limit Sutherland, PL23(1966)

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

ntroduction

General Remarks

Isospin decomposition

Partial-wave expansion

Lehmann-ellipse in $\pi\pi o \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

Terms of order $e^2 m_u$ and $e^2 m_d$ are calculated in Ditsche, Kubis, Meißner, EPJC60(2009)

 $\mathscr{O}(e^2(m_u-m_d))$ is only suppression by a factor $\sim (m_u-m_d)/(m_u+m_d)pprox 1/3$

The QED corrections remain very small (\lesssim %) through the $\eta \to 3\pi$ physical region

Pure QCD: amplitudes are proportional to Q^{-2}

Long standing aim: Accurate determination of $Q^2 = \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2} \qquad \hat{m} = \frac{m_u + m_d}{2}$

Object of desire: $T(\eta \rightarrow \pi^+\pi^-\pi^0) = A(s, t, u)$

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

ntroduction

General Remarks

Isospin decomposition

Partial-wave expansion

Lehmann-ellipse in $\pi\pi \to \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

Mandelstam variables: $\eta(p_0) \rightarrow \pi^+(p_1)\pi^-(p_2)\pi^0(p_3)$

$$s = (p_0 - p_3)^2 = (p_1 + p_2)^2$$

$$t = (p_0 - p_1)^2 = (p_2 + p_3)^2$$

$$u = (p_0 - p_2)^2 = (p_1 + p_3)^2$$

$$s + t + u = 3s_0 \equiv m_\eta + 3m_\pi^2$$

Crossing Symmetry

$$T(\eta \rightarrow \pi^{+}\pi^{-}\pi^{0}) = A(s, t, u)$$
$$T(\eta\pi^{0} \rightarrow \pi^{+}\pi^{-}) = A(s, t, u)$$
$$T(\eta\pi^{-} \rightarrow \pi^{-}\pi^{0}) = A(t, s, u)$$
$$T(\eta\pi^{+} \rightarrow \pi^{+}\pi^{0}) = A(u, t, s)$$

$$T(\eta
ightarrow \pi^0 \pi^0 \pi^0) = B(s, t, u)$$

 $T(\eta \pi^0
ightarrow \pi^0 \pi^0) = B(s, t, u)$

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

ntroduction

General Remarks

lsospin decomposition

Partial-wave expansion

Lehmann-ellipse in $\pi\pi o \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

Summary

Bose-Einstein symmetry: B(s, t, u) = B(t, s, u) = B(u, t, s)

. .

Physical regions: Mandelstam plane (s, t - u)

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

Introduction

General Remarks

lsospin decomposition

Partial-wave expansion

Lehmann-ellipse in $\pi\pi o \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

• *s*-channel: $m_{\eta\pi} \equiv m_{\eta} + m_{\pi}$

$$\partial D_{s- ext{channel}} = \left\{ (s, \pm \sqrt{\lambda(s)\sigma(s)}) \ , \ s \ge m_{\eta\pi}^2 \right\}$$

• Decay-channel

$$\partial D_{
m decay-channel} = \left\{ (s, \pm \sqrt{\lambda(s)\sigma(s)}) \ , \ (m_\eta - m_\pi)^2 \ge s \ge 4m_\pi^2
ight\}_{
m looplin}^{
m General Remark}$$

• *u*-channel

$$\partial D_{u-\text{channel}} = \begin{cases} \left(\frac{1}{2} \left(m_{\eta}^{2} + 3m_{\pi}^{2} - u \mp \sqrt{\lambda(u)\sigma(u)}\right) \\ , \frac{1}{2} \left(m_{\eta}^{2} + 3m_{\pi}^{2} - 3u \pm \sqrt{\lambda(u)\sigma(u)}\right)\right), & u \ge m_{\eta\pi}^{2} \end{cases}$$

$$t, s(u, \cos \theta_u) = \frac{1}{2} \left(m_\eta^2 + 3m_\pi^2 - u \pm \cos \theta_u \sqrt{\lambda(u)\sigma(u)} \right) ,$$

• *t*-channel

Mirror image across the s axis of the u-channel physical region

'ks

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$ J. A. OLLER

3. Isospin decomposition of $\eta \pi \to \pi \pi$

Wigner-Eckart theorem is applied: the isospin-breaking transition operator has I = 1, $t_3 = 0$

 $C(11I'|m_10m_1)\langle I'||T_V||1\rangle$

$$\begin{aligned} &A(\eta\pi^{0}\to\pi^{+}\pi^{-})=A(s,t,u)=-\frac{1}{3}M^{2}(s,t,u)+\frac{1}{3}M^{0}(s,t,u)\\ &A(\eta\pi^{+}\to\pi^{+}\pi^{0})=A(u,t,s)=+\frac{1}{2}M^{2}(s,t,u)+\frac{1}{2}M^{1}(s,t,u)\\ &A(\eta\pi^{-}\to\pi^{0}\pi^{-})=A(t,s,u)=+\frac{1}{2}M^{2}(s,t,u)-\frac{1}{2}M^{1}(s,t,u) \end{aligned}$$

$$M^{0}(s, t, u) = 3A(s, t, u) + A(u, t, s) + A(t, s, u)$$
$$M^{1}(s, t, u) = A(u, t, s) - A(t, s, u)$$
$$M^{2}(s, t, u) = A(u, t, s) + A(t, s, u)$$

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

ntroduction

General Remarks

Isospin decomposition

Partial-wave expansion

ehmann-ellipse in $\pi \to \pi \pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

4. Partial-wave expansion

Isospin decomposition of $\eta \pi^0 \rightarrow \pi^0 \pi^0$

$$B(s, t, u) = \frac{2}{3}M^{2}(s, t, u) + \frac{1}{3}M^{0}(s, t, u)$$
$$= A(s, t, u) + A(t, s, u) + A(u, t, s)$$

Partial-wave amplitudes (PWA) $M^{(IJ)}(s)$

$$M^{(IJ)}(s) = \frac{1}{2} \int_{-1}^{+1} d\cos\theta P_J(\cos\theta) M'(s, t, u)$$

t, u(s, cos θ)

$$M^{I}(s, t, u) = \sum_{J=0}^{\infty} (2J+1) P_{J}(\cos \theta) M^{(IJ)}(s)$$

$$|\mathbf{p},\sigma_{1}\sigma_{2},\alpha_{1}\alpha_{2}\rangle = \sqrt{4\pi}\sum_{\ell,m}Y_{\ell}^{m}(\hat{\mathbf{p}})^{*}|\ell m,\sigma_{1}\sigma_{2},\alpha_{1}\alpha_{2}\rangle$$

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

ntroduction

General Remarks

lsospin decomposition

Partial-wave expansion

ehmann-ellipse in $\pi o \pi \pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

Convergence of the Legendre expansion, $\cos \theta \in \mathbb{C}$

Lehman ellipse Lehmann, Nuovo CimentoX(1958)

The region of convergence of a Legendre polynomial expansion is the largest ellipse which can be drawn with ± 1 as foci so that the function represented is analytic within the ellipse

$$\mathscr{E}_{\rho} = \left\{ z = \frac{1}{2} (u + u^{-1}), \ u = \rho e^{i\theta}, \ \rho > 1, \theta \in [-\pi, \pi] \right\}$$

If $\rho=1$ the ellipse collapses to a line

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

ntroduction

General Remarks

Isospin decomposition

Partial-wave expansion

ehmann-ellipse in $\pi \to \pi \pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

Real variable: $\cos \theta \in [-1, 1]$

Let f(z) be a finite piecewise continuous function, $z \in [-1, 1]$. It can be expanded in series of Legendre polynomials such that

$$S_n(z) = \sum_{k=0}^n c_k P_k(z)$$

 $c_k = (\ell + \frac{1}{2}) \int_{-1}^1 f(z) P_k(z) dz$

• It converges in the L^2 sense (minimal mean square error).

$$\lim_{n \to \infty} \int_{-1}^{1} dz |f(z) - S_n(z)|^2 = 0$$

Not necessarily everywhere

• Gibbs phenomenon in the discontinuity points Sommerfeld,

Partial Differential Equations in Physics, AP, 1949

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

ntroduction

General Remarks

lsospin decomposition

Partial-wave expansion

ehmann-ellipse in $\pi\pi \to \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC-LHC in $\eta \rightarrow 3\pi$

In the singular points it is a poor numerical expansion Take a *t*-channel $\pi\pi$ branch-point singularity

Simpler kinematics: $K\bar{K} \rightarrow K\bar{K}$ $t = -2\mathbf{p}^2(1 - \cos\theta)$

$$egin{aligned} &\sqrt{rac{t(s,z)}{4}-m_{\pi}^2} = \left\{ \left(rac{s}{4}-m_K^2
ight)(z-z_0)
ight\}^{rac{1}{2}} \ &z_0(s) = 1+rac{2m_{\pi}^2}{s/4-m_K^2} \end{aligned}$$

LHC

 $|z_0(s)| \le 1$: $s \in]-\infty, 4(m_K^2 - m_\pi^2)]$

LHC and RHC overlap each other

Left-Hand Cut (LHC) Right-Hand Cut (RHC) $s > 4m_{\pi}^2$ Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

Introduction General Remarks

lsospin decomposition

Partial-wave expansion

ehmann-ellipse in $\pi o \pi \pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

$$z_0(-\infty) = 1 \ , \ z_0(4(m_K^2 - 2m_\pi^2)) = 0 \ , \ z_0(4(m_K^2 - m_\pi^2)) = -1$$

$$f(z) = \sqrt{(z - z_0)}$$
$$f'(z_0) = \infty$$
$$S'_n(z_0) = \sum_{k=0}^n c_k P'_k(z_0)$$

Numerical enhancements affecting error estimates

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

ntroduction

General Remarks

Isospin decomposition

Partial-wave expansion

ehmann-ellipse in $\pi\pi \to \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC-LHC in $\eta \rightarrow 3\pi$

s-channel
$$j_{k}+k_{r} + k_{r} + channel \\ k_{k}+k_{r} + k_{r} + k_{r$$

This can be improved by using the KT formalism

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

Introduction

General Remarks

lsospin decomposition

Partial-wave expansion

Lehmann-ellipse in $\pi\pi o \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC-LHC in $\eta \rightarrow 3\pi$

5. Lehmann ellipse in $\pi\pi \to \pi\pi$ Scattering

VIOLATION OF THE LEHMANN ELLIPSE

A comment on Albaladejo et al. [JPAC], EPJC78(2018)

Equal mass case $m_K^2 \to m_\pi^2$ From the *t*-, *u*-channel dynamics, there is a Tension between

• $\cos \theta_t$ value to reproduce s

$$egin{aligned} s(t,\cos heta_t) &= -2(t/4-m_\pi^2)(1-\cos heta_t)\ z &\equiv \cos heta_t = 1+rac{s/2}{t/4-m_\pi^2} \end{aligned}$$

• Lehmann ellipse: limited by the *s*-channel branch-point at threshold $(s = 4m_{\pi}^2)$

$$z_0(t) = 1 + rac{2m_\pi^2}{t/4 - m_\pi^2}$$

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

ntroduction

General Remarks

lsospin decomposition

Partial-wave expansion

Lehmann-ellipse in $\pi\pi \to \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC-LHC in $\eta \rightarrow 3\pi$

GIVEN

$$t=-2(s/4-m_{\pi}^2)(1-\cos heta)~~,~~x=\cos heta$$

$$egin{aligned} z &= 1 - rac{s}{(s/4 - m_\pi^2)(1 - x) + 2m_\pi^2} \ z_0 &= 1 - rac{4m_\pi^2}{(s/4 - m_\pi^2)(1 - x) + 2m_\pi^2} \end{aligned}$$

IF $z_0^2 - z^2 < 0 \rightarrow$ NO ANALYTICAL EXTRAPOLATION IN $\cos \theta_t$ CAN REACH zIt is outside Lehmann ellipse ($|z_0| > 1$) or the latter does not exist ($|z_0| \le 1$) Introduction/Comm to the Khuri-Treiman Formalism $(\eta
ightarrow 3\pi)$

J. A. Oller

ntroduction

General Remarks

lsospin decomposition

Partial-wave expansion

Lehmann-ellipse in $\pi\pi\to\pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

$$egin{split} z_0^2-z^2&=-8(1+x)rac{(s-s_1)(s-s_2)}{\left[s(1-x)+4m_\pi^2(1+x)
ight]^2}\ s_2&=-4m_\pi^2rac{1-x}{1+x}< s_1=4m_\pi^2 \end{split}$$

It is negative for ${\it s} > {\it s}_1$

The PWA expansion in the t- and $u\text{-}\mathrm{Channels}$ cannot be applied in the $s\text{-}\mathrm{Channel}$, $s>4m_\pi^2$

For x = 1

$$z = 1 - rac{s}{2m_\pi^2}
ightarrow z < -1 ~{
m for}~ s > 4m_\pi^2$$

 $z_0 = -1$

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

Introduction

General Remarks

lsospin decomposition

Partial-wave expansion

Lehmann-ellipse in $\pi\pi \to \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

For $s \gg m_\pi^2$ and $x \neq 1$

$$z
ightarrow 1 - rac{4}{1-x} < -3$$

 $z_0
ightarrow 1 - rac{16m_\pi^2}{s(1-x)}
ightarrow 1 - \epsilon$

For studying the dynamics along the *s*-channel Albaladejo *et al* [JPAC] EPJC78(2018) proposes

$$egin{aligned} \mathcal{A}(s,t,u) &= \sum_{\ell=0}^{\ell_{\max}} (2\ell+1) \mathcal{P}_\ell(\cos heta_s) p_s^{2\ell} a_\ell(s) \ &+ \sum_{\ell=0}^{\ell_{\max}} (2\ell+1) \mathcal{P}_\ell(\cos heta_t) p_t^{2\ell} a_\ell(t) \ &+ \sum_{\ell=0}^{\ell_{\max}} (2\ell+1) \mathcal{P}_\ell(\cos heta_u) p_u^{2\ell} a_\ell(u) \end{aligned}$$

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

ntroduction

General Remarks

lsospin decomposition

Partial-wave expansion

Lehmann-ellipse in $\pi\pi \to \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

Box and more involved contributions

Its Legendre expansion is Meaningless $s \ge 16m_{\pi}^2$

For
$$x = 1$$

 $z = 1 - \frac{s}{2m_{\pi}^2}$
 $z < -7$ for $s > 16m_{\pi}^2$
 $z_0 = -7$
For $s \gg m_{\pi}^2$ and $x \neq 1$
 $z \to 1 - \frac{4}{1-x} < -3$
 $z \to 1 - \frac{64m_{\pi}^2}{5(1-x)} \to 1 - \epsilon$

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

ntroduction

General Remarks

lsospin decomposition

Partial-wave expansion

Lehmann-ellipse in $\pi\pi \to \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

This is also used for large s within DRs

This is **not** the same as neglecting the 4π , etc, intermediate contributions in Dispersion Relations

Here the KT approach drives to an undermined framework for DRs & e.g. Roy Equations

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

ntroduction

General Remarks

Isospin decomposition

Partial-wave expansion

Lehmann-ellipse in $\pi\pi \to \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

Separation of the RHC from LHC

Complex mass Mandelstam, PRL4(1960)

$$m_K^2 o m_K^2 + i\epsilon$$

$$t=-2(rac{s}{4}-m_{K}^{2}-i\epsilon)(1-\cos heta)
ightarrow t+2i\epsilon(1-\cos heta)$$

It acquires a positive imaginary part [physical Riemann sheet in the *t*-channel] $\Im t > 0$ for $t > 4m_{\pi}^2$ and this is the adequate way to approach a unitarity cut (perpendicularly from above)

 $\Im t = 0 \leftrightarrow t = 0$ LHC implies $t \ge 4m_{\pi}^2$

$$s = 4m_K^2 - \frac{8m_\pi^2}{(1 - \cos\theta)} + i\epsilon$$

One can give meaning by analytical continuation to integrals along the LHC

$$\int_{4m_{\pi}^2}^{\infty} dt' \int_{-1}^{+1} d\cos heta rac{1}{t(s,\cos heta) - t'} \ , \ t' \geq 4m_{\pi}^2$$

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

Introduction

General Remarks

Isospin decomposition

Partial-wave expansion

Lehmann-ellipse in $\pi\pi \to \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

6. Elastic unitarity

Unitarity

$$T - T^{\dagger} = iT^{\dagger}T$$

Taking this relation between states of well-define I and J (PWA) gives **unitarity in partial waves**

$$2i\Im M^{(IJ)}(s+i\varepsilon) = i\frac{\sigma(s)^{1/2}}{8\pi}M^{(IJ)}(s+i\varepsilon)T^{(IJ)}(s+i\varepsilon)^*$$
$$= 2ie^{-i\delta^{(IJ)}(s)}\sin\delta^{(IJ)}(s)M^{(IJ)}(s+i\varepsilon)$$

 $\delta^{(IJ)}$ are the $\pi\pi$ phase shifts in PWA (IJ) This is not true for $m_{\eta} > 3m_{\pi}$ Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

Introduction

Les este

decomposition

Partial-wave expansion

ehmann-ellipse in $\pi\pi \to \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

One has to proceed by analytical continuation in the external mass $m_\eta^2 + i\epsilon$ Mandelstam(1959) To separate the LHC and RHC

The place of the situation is more involved
$$4m_{\pi}^{2}(s < m_{\eta}^{2} - 5m_{\pi}^{2})$$

Conclusion prime is some involved $4m_{\pi}^{2}(s < m_{\eta}^{2} - 5m_{\pi}^{2})$
Conclusion prime is a substance involved $4m_{\pi}^{2}(s < m_{\eta}^{2} - 5m_{\pi}^{2})$
Anomalous Christian is more involved $4m_{\pi}^{2}(s < m_{\eta}^{2} - 5m_{\pi}^{2})$
 $\Delta M^{(IJ)}(s) = M^{(IJ)}(s + i\varepsilon) - M^{(IJ)}(s - i\varepsilon) , \quad s \geq 4m_{\pi}^{2}$

$$\Delta M^{(IJ)}(s) = 2ie^{-i\delta^{(IJ)}(s)} \sin \delta^{(IJ)}(s) M^{(IJ)}(s+i\varepsilon) .$$

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

Introduction General Remarks

Isospin decomposition

Partial-wave expansion

ehmann-ellipse in $\pi\pi \to \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

7. Kurhi-Treiman formalism $\eta \rightarrow \pi^+ \pi^- \pi^0$, $s \leftrightarrow t$ symmetry (Charge conjugation)

$$A(s,t,u) = M_0(s) - \frac{2}{3}M_2(s) + M_2(t) + M_2(u) + (s-u)M_1(t) + (s-t)M_1(u)$$

• t-,u-channels : J = 0, I = 2 ; J = 1, I = 1

•
$$\cos heta_t \propto s-u$$
 , $\cos heta_u \propto s-t$

This is valid in ChPT up to 𝒪(𝑔⁶). [D-wave intermediate states, 𝒪(𝑔⁸)] Bijnens, Ghorbani, JHEP(2007)

 $\mathcal{O}(p^8)$ in ChPT

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

ntroduction

General Remarks

lsospin decomposition

Partial-wave expansion

ehmann-ellipse in $\pi\pi \to \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

Introduction

lsospin decomposition

Partial-wave expansion

ehmann-ellipse in $\pi\pi \to \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta\,
ightarrow\,3\pi$

Summary

$$\begin{aligned} & \mathcal{A}(\eta\pi^{0} \to \pi^{+}\pi^{-}) = \mathcal{A}(s,t,u) = \frac{1}{3}\mathcal{M}^{0}(s,t,u) - \frac{1}{3}\mathcal{M}^{2}(s,t,u) \\ & \mathcal{A}(\eta\pi^{+} \to \pi^{+}\pi^{0}) = \mathcal{A}(u,t,s) = +\frac{1}{2}\mathcal{M}^{2}(s,t,u) + \frac{1}{2}\mathcal{M}^{1}(s,t,u) \\ & \mathcal{A}(\eta\pi^{-} \to \pi^{0}\pi^{-}) = \mathcal{A}(t,s,u) = +\frac{1}{2}\mathcal{M}^{2}(s,t,u) - \frac{1}{2}\mathcal{M}^{1}(s,t,u) \end{aligned}$$

Sum of the s-, t-,u-channel amplitudes

$$\begin{aligned} &\frac{1}{3}\hat{M}_{0}(s) - \frac{1}{3}\hat{M}_{2}(s) \\ &+ \frac{1}{2}\hat{M}_{2}(t) + \frac{1}{2}(s-u)\hat{M}_{1}(t) \\ &+ \frac{1}{2}\hat{M}_{2}(u) - \frac{1}{2}(t-s)\hat{M}_{1}(u) \end{aligned}$$

 $\eta
ightarrow 3\pi^0$

$$B(s, t, u) = \frac{1}{3} [M_n(s) + M_n(t) + M_n(u)]$$
$$M_n(s) = M_0(s) + 4M_2(s) .$$

+ $M_0(t) + M_0(u) + \frac{10}{3} [M_2(t) + M_2(u)]$

 $+ 2(s - u)M_1(t) + 2(s - t)M_1(u)$ crossed cuts

 $M^0(s, t, u) = 3M_0(s)$ RHC

 $M^{1}(s, t, u) = 2(u - t)M_{1}(s)$

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

ntroduction

General Remarks

lsospin decomposition

Partial-wave expansion

crossed cuts

ehmann-ellipse in $\pi \to \pi \pi$

Elastic unitarity

KT Formalism

Coupled-channel

$$\begin{array}{l} + (u-s)M_{1}(t) - (t-s)M_{1}(u) + M_{0}(u) - M_{0}(t) + \frac{5}{3} \left[M_{2} \begin{pmatrix} t \\ t \end{pmatrix}_{\text{mman ellipse}}^{\text{case}} - M_{2}(u) \right] \\ M^{2}(s,t,u) &= 2M_{2}(s) \\ &+ \frac{1}{3} \left[M_{2}(t) + M_{2}(u) \right] + M_{0}(t) + M_{0}(u) - (s-u)M_{1}(t) - (s-u)M_{1}(t) - (s-u)M_{1}(u) \right] \end{array}$$

To isolate the *s*-dependence one projects in PWA

$$\langle z^n M_l \rangle(s) = \frac{1}{2} \int_{-1}^{+1} dz z^n M_l(t(s,z))$$

$$egin{aligned} & \mathcal{M}^{00}(s)\equiv 3ig[\mathcal{M}_{0}(s)+\hat{\mathcal{M}}_{0}(s)ig] \ & \mathcal{M}^{11}(s)\equiv -rac{2}{3}\kappaig[\mathcal{M}_{1}(s)+\hat{\mathcal{M}}_{1}(s)ig] \ & \mathcal{M}^{20}(s)\equiv 2ig[\mathcal{M}_{2}(s)+\hat{\mathcal{M}}_{2}ig] \end{aligned}$$

$$\hat{M}_0(s) = rac{2}{3} \langle M_0
angle + rac{20}{9} \langle M_2
angle + 2(s - s_0) \langle M_1
angle rac{2}{3} \kappa \langle M_1
angle$$

 $\kappa(s) = \sqrt{\lambda(s)\sigma(s)}$

Unitarity relations

$$\Delta M_I(s) = 2ie^{-i\delta^{(IJ)}} \sin \delta^{(IJ)} [M_I(s) + \hat{M}_I(s)]$$

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

General Remarks Isospin decomposition

Partial-wave expansion

Lehmann-ellipse in $\pi\pi o \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

DRs for the $M_l(s)$

$$egin{aligned} M_0(s) &= \widetilde{lpha}_0 + \widetilde{eta}_0 s + rac{s^2}{\pi} \int_{4m_\pi^2}^\infty ds' rac{\Delta M_0(s')}{(s')^2(s'-s)} \;, \ M_1(s) &= rac{s}{\pi} \int_{4m_\pi^2}^\infty ds' rac{\Delta M_1(s')}{(s')(s'-s)} \;, \ M_2(s) &= rac{s^2}{\pi} \int_{4m_\pi^2}^\infty ds' rac{\Delta M_2(s')}{(s')^2(s'-s)} \;. \end{aligned}$$

 $\begin{array}{l} A(s,t,u) \text{ grows at most linearly in all directions } s,t,u \to \infty \\ M_{0,2}(s) \xrightarrow[s \to \infty]{} s, M_1(s) \xrightarrow[s \to \infty]{} const. \text{ Anisovich,Leutwyler(1996)} \end{array}$

Reshuffling invariance:

$$egin{aligned} &M_1(s) o M_1(s) + a_1 \;, \ &M_2(s) o M_2(s) + a_2 + b_2 s \ &M_0(s) o M_0(s) + a_0 + b_0 s \ &a_0 = -rac{4}{3}a_2 + 3s_0(a_1 - b_1) \ &b_0 = -3a_1 + rac{5}{3}b_2 \end{aligned}$$

$$egin{aligned} M_1(0) &= 0 \ , \ M_2(0) &= 0 \ , \ M_2'(0) &= 0 \ , \end{aligned}$$

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

ntroduction

General Remarks

lsospin decomposition

Partial-wave expansion

ehmann-ellipse in $\pi\pi \to \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

Rewrite the unitarity relation

$$M_{I}(s+i\varepsilon) = M_{I}(s-i\varepsilon)e^{2i\delta^{(IJ)}} + 2i\hat{M}_{I}(s)e^{i\delta^{IJ}}\sin\delta^{(IJ)} , \ s \ge 4m_{\pi}^{2}$$

Divide by the Omnés function $\Omega^{(IJ)}(s)$

$$\frac{M_{I}(s+i\varepsilon)}{\Omega^{(IJ)}(s+i\varepsilon)} = \frac{M_{I}(s-i\varepsilon)}{\Omega^{(IJ)}(s-i\varepsilon)} + 2i\frac{\hat{M}_{I}(s)\sin\delta^{(IJ)}}{|\Omega^{(IJ)}(s)|} , \ s \ge 4m_{\pi}^{2}$$

$$\Omega^{(JI)}(s) = \exp\left[rac{s}{\pi}\int_{4m_{\pi}^2}^{\infty} ds' rac{\delta^{(IJ)}(s')}{(s'-s)s'}
ight]$$

$$M_{I}(s) = \Omega^{(IJ)}(s) \Big[P_{I}^{(m)}(s) + \frac{s^{n}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} ds' \frac{\hat{M}_{I}(s') \sin \delta^{(IJ)}}{|\Omega^{(IJ)}(s')|(s')^{n}(s'-s)} \Big]$$

 $m \ge n-1$

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$ J. A. OLLER

Introduction

General Remarks

lsospin decomposition

Partial-wave expansion

Lehmann-ellipse in $\pi\pi o \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

How to fix $P_l^{(m)}(s)$?

Matching with NLO ChPT

$$\begin{split} M_{0,2}(s) \text{ up to } \mathscr{O}(s^2) &\to P_{0,2}(s) = \alpha_I + \beta_I s + \gamma_I s^2, \text{ 6 param.} \\ M_1(s) \text{ up to } \mathscr{O}(s) &\to P_1(s) = \alpha_I + \beta_I s, \text{ 2 param.} \\ 8 - 3 = 5 \text{ parameters in total} \\ \mathscr{O}(p^4) \ A(s,t,u) \text{ by expanding } M_I(s) \text{ up to } \mathscr{O}(s^{2+I(I-2)}) \\ u = 3s_0 - s - t \\ s, t, s^2, t^2, st \text{ and independent term} \\ \hline \text{Only 4 equations} \end{split}$$

Asymptotic behavior of $\Omega^{(IJ)}(s)$

$$\lim_{s\to\infty}\Omega^{(IJ)}(s)\to s^{-\delta^{(IJ)}(\infty)/\pi}$$

$$\begin{split} I &= 2, \ J = 0: \ \text{Exotic channel} \\ \delta^{(20)}(\infty) &= 0 \rightarrow \Omega^{(20)}(s) \rightarrow s^{0} \\ P_{2}^{(1)}(s) &= 0 \rightarrow \textbf{4 parameters} \\ I &= J = 0, 1; \ \Omega^{(IJ)}(s) \rightarrow s^{-1} \\ \text{It is enough } \delta^{(IJ)}(\infty) \rightarrow \pi \end{split}$$

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

Introduction General Remarks

Isospin decomposition

Partial-wave expansion

Lehmann-ellipse in $\pi\pi o \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

Omnès solution

$$F(s)=rac{P^{(p)}(s)}{Q^{(q)}(s)}\Omega^{(IJ)}(s)$$

 $P^{(p)}(s)$ and $Q^{(q)}(s)$ are polynomials of degree p and q

Asymptotic behavior $s \to \infty$

$$F(s) \xrightarrow[s \to \infty]{} s^{p-q-\delta^{(IJ)}(\infty)/\pi}$$

Changes in the parameters \rightarrow changes in $\delta^{(IJ)}(\infty)$ Stability of the results $\rightarrow p - q - \varphi(\infty)/\pi = \text{fixed}$

Introduced in Oller, *A Brief Introduction to Dispersion Relations, with modern applications*, SpringerBriefs in Physics, Springer, 2019

Controversy: The scalar radius, scalar form factor of the π Oller,Roca, PLB651(2007); Ynduráin, PLB612,578(2004,5); Leutwyler *et al*, NPB343(1990),603(2001),PLB125(1983)

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

ntroduction

General Remarks

Isospin decomposition

Partial-wave expansion

ehmann-ellipse in $\pi\pi \to \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

KT Integral Equations

$$\begin{split} M_{0}(s) &= \Omega^{(00)}(s) \Big[\alpha_{0} + \beta_{0}s + \gamma_{0}s^{2} + \frac{s^{2}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} ds' \frac{\hat{M}_{0}(s')\sin\delta^{(00)}(s')}{|\Omega^{(00)}(s')|(s')^{2}(s'-s)} \Big] \\ M_{1}(s) &= \Omega^{(11)}(s) \Big[\beta_{1}s + \frac{s}{\pi} \int_{4m_{\pi}^{2}}^{\infty} ds' \frac{\hat{M}_{1}(s')\sin\delta^{(11)}(s')}{|\Omega^{(11)}(s')|(s')(s'-s)} \Big] \\ M_{2}(s) &= \Omega^{(20)}(s) \Big[\frac{s^{2}}{\pi} \int_{4m_{\pi}^{2}}^{\infty} ds' \frac{\hat{M}_{2}(s')\sin\delta^{(20)}(s')}{|\Omega^{(20)}(s')|(s')^{2}(s'-s)} \Big] \\ \end{split}$$

 $\bar{M}_{I}(s)$ are calculated at NLO ChPT

$$\begin{aligned} \alpha_0 &= \bar{M}_0(0) + \frac{4}{3}\bar{M}_2(0) + 3s_0 \Big[\bar{M}_2'(0) - \bar{M}_1(0)\Big] + 9s_0^2\bar{M}_2^r \\ \beta_0 &= \bar{M}_0'(0) + 3\bar{M}_1(0) - \frac{5}{3}\bar{M}_2'(0) - 9s_0\bar{M}_2^r - \Omega^{(00)'}(0)\alpha_0 \\ \beta_1 &= \bar{M}_1'(0) - \mathscr{I}_1(0) + \bar{M}_2^r \\ \gamma_0 &= \frac{1}{2}\bar{M}_0''(0) - \mathscr{I}_0(0) + \frac{4}{3}\bar{M}_2^r - \frac{\Omega^{(00)''}(0)}{2}\alpha_0 - \Omega^{(00)'}(0)\beta_0 \end{aligned}$$

Flastic unitarity

Introduction/Comm

to the Khuri-Treiman Formalism

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

$$\mathscr{I}_{I}(s) = \frac{1}{\pi} \int_{4m_{\pi}^{2}}^{\infty} ds' \frac{\hat{M}_{I}(s') \sin \delta^{(IJ)}(s')}{|\Omega^{(IJ)}(s')|(s')^{2-2J}(s'-s)}$$

Iterative Method for solving the IEs

Input:

•
$$\delta^{(IJ)}(s)
ightarrow \Omega^{(IJ)}(s)$$

• NLO ChPT \rightarrow subtraction constants $c_0 = \{\alpha_0, \beta_0, \gamma_0, \beta_1\}$

$$egin{aligned} & \hat{M}^{(IJ)}(s)_0 = 0 o c_0 \cup M^{(IJ)}(s)_0 o \hat{M}^{(IJ)}(s)_1 \ & 1_{ ext{st}} \ \ \hat{M}^{(IJ)}(s)_1 \to c_1 \cup M^{(IJ)}(s)_1 \to \hat{M}^{(IJ)}(s)_2 \ & 2_{ ext{nd}} \ \ \hat{M}^{(IJ)}(s)_2 \to c_2 \cup M^{(IJ)}(s)_2 \to \hat{M}^{(IJ)}(s)_2 \ & ext{ots} \end{aligned}$$

etc

AM $\lesssim 10$ iterations; numerical uncertainty $\sim 10^{-5}$

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

ntroduction

General Remarks

Isospin decomposition

Partial-wave expansion

ehmann-ellipse in $\pi\pi \to \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

Another strategy: Fit $\eta \rightarrow \pi^+ \pi^- \pi^0$

AM(2017), Colangelo et al.(2018)

Take advantage of the accurate experimental determination by KLOE-2(2016), BESIII(2015), of

$$\left|\frac{A(s,t,u)}{A(s_r,t_r,t_r)}\right|^2$$

all over the Dalitz plot

$$s_r = t_r = u_r = s_0$$

This allows to fit 3 of the 4 free parameters

 α_0 is fixed by the matching with NLO ChPT The others are fitted Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

ntroduction

General Remarks

lsospin decomposition

Partial-wave expansion

ehmann-ellipse in $\pi\pi \to \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

8. Coupled-channel case

Developed by Albaladejo, Moussallam, EPJC77(2017) (AM)

I = 1 J = 0, $\eta \pi$ - $K\bar{K}$ initial-state interactions (HSI)

 $I=J=0,\ 1,\ \pi\pi,\ Kar{K}$ FSI

 $I = 2, J = 0 \pi \pi$ FSI

At the end AM employes elastic I = J = 1 FSI $(\pi\pi)$

I give here a much more compact notation

- Explicit account of the S-wave $a_0(980)$ (I = 1)and $f_0(980)$ (I = 0) resonances in HSI,FSI
- These resonances couple strongly with the $K\bar{K}$ channels
- The threshold of $\eta\pi$ is not so far $(m_\eta+m_\pi)^2$

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

Introduction

Isospin decomposition

Partial-wave expansion

Lehmann-ellipse in $\pi\pi o \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

(I,J)	HSI	FSI
(1,0)	$\eta\pi(1),~Kar{K}(2)$	
(0,0)		$\pi\pi(1), K\bar{K}(2)$
(2,0)		$\pi\pi(1)$
(1,1)	$\pi\eta(1)$	$\pi\pi(1),~Kar{K}(2)$

Unitarity

$$\Im T_{fi}^{(J)} = \sum_{h} \frac{|\mathbf{q}_{h}|}{8\pi\sqrt{s}} T_{fh}^{(J)}(s)^{*} T_{hi}^{(J)}(s) ,$$

- Keeping first-order isospin-breaking effects
- T_S (STRONG) and T_W (ISOSPIN-BREAKING)
- Mixing $a_0(980) f_0(980)$: Different masses of K^{\pm} and K^0

$$\Im T_{W;fi}^{(J)} = \sum_{h} \frac{|\mathbf{q}_{h}|}{8\pi\sqrt{s}} \Big[T_{S;fh}^{(J)}(s)^{*} T_{W;hi}^{(J)}(s) + T_{W;fh}^{(J)}(s)^{*} T_{S;hi}^{(1J)}(s) \Big] \\ + \delta_{I0} T_{S;f2}^{(00)}(s)^{*} \Sigma_{K}|_{22} T_{S;2i}^{(10)}$$

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

ntroduction

General Remarks

lsospin decomposition

Partial-wave expansion

ehmann-ellipse in $\pi\pi \to \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

$$\Sigma_{\mathcal{K}} = \left(egin{array}{cc} 0 & 0 \ 0 & rac{\sigma_{\mathcal{K}^+}^{1/2}(s) - \sigma_{\mathcal{K}^0}^{1/2}(s)}{16\pi\sqrt{s}} \end{array}
ight) \;, \; \sigma_{\mathcal{P}}(s) = s/4 - m_{\mathcal{P}}^2 \;.$$

Separation between RHC–LHC

$$m_{\eta}^2 + i\epsilon = m_K^2 + i\epsilon$$

 $T_{W;fi}^{IJ}(s) = M_{fi}^{(IJ)}(s) + \hat{M}_{fi}^{(IJ)}(s)$

$$\begin{split} \Delta M_{fi}^{(IJ)} &= \sum_{h} \frac{|\mathbf{q}_{h}|}{8\pi\sqrt{s}} \Big(T_{S;fh}^{(IJ)}(s)^{*} \big[M_{hi}^{(IJ)}(s+i\varepsilon) + \hat{M}_{hi}^{(IJ)}(s) \big] \\ &+ \big[M_{fh}^{(IJ)}(s-i\varepsilon) + \hat{M}_{fh}^{(IJ)}(s) \big] T_{S;hi}^{(1J)}(s) \Big) \\ &+ \delta_{I0} T_{S;f2}^{(00)}(s)^{*} \Sigma_{K}|_{22} T_{S;2i}^{(10)} \end{split}$$

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

ntroduction

General Remarks

lsospin decomposition

Partial-wave expansion

ehmann-ellipse in $\pi \to \pi \pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

Isolating the RHC and LHC effects

$$\kappa^J X^{(IJ)}(s) = \mathscr{D}^{(IJ)}(s) \mathcal{M}^{(IJ)}(s) \mathscr{D}^{(1J)}_0(s)^T$$

 $\mathcal{D}_{(0)}^{(J)}(s)^{-1}$ are holomorppic solutions of the Muskhelishvili-Omnès problem

Coupled-channel generalization of the single-channel $\Omega^{(IJ)}(s)$

$$S^{(IJ)}(s) = \mathbb{I} + 2iT^{(IJ)}_{S}(s)\rho(s)$$

 $S^{(IJ)}(s) = e^{2i\delta^{(IJ)}(s)}$

$$\mathscr{D}^{(IJ)}(s)^{-1} = S^{(IJ)}(s)\mathscr{D}^{(IJ)}(s^*)^{-1}$$

5

$$\mathscr{D}^{(IJ)}(s)^* = \mathscr{D}^{(IJ)}(s)S^{(IJ)}(s)$$

$$rac{1}{\Omega^{(IJ)}(s)^*} = rac{1}{\Omega^{(IJ)}(s)}e^{2i\delta^{(IJ)}(s)}$$

 $\Omega^{(IJ)}(s) = e^{2i\delta^{(IJ)}(s)}\Omega^{(IJ)}(s)^*$

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

Introduction

lsospin decomposition

Partial-wave expansion

ehmann-ellipse in $\pi\pi \to \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

$$T(s) = D^{-1}(s)N \rightarrow N = D(s)T(s)$$

Integral Equations

$$\kappa^{J} \Delta X^{(IJ)}(s) = -\Delta \left[\mathscr{D}^{(IJ)}(s) \widehat{\mathcal{M}}^{(IJ)}(s) \mathscr{D}_{0}^{(1J)}(s)^{T} \right] \\ + \delta_{I0} \mathscr{D}^{(00)}(s)^{*} T_{S}^{(00)}(s)^{*} \Sigma_{K} T_{S}^{(10)}(s) \mathscr{D}_{0}^{(10)}(s)^{T}$$

$$M^{(IJ)}(s) = \kappa^{J} \mathscr{D}^{(IJ)}(s)^{-1} \left[P^{(IJ)}(s) + s^{2-J} \mathscr{I}^{(IJ)}(s) \right] \mathscr{D}_{0}^{(1J)}(s)^{-1} T^{P_{ab}}$$
$$\mathscr{I}^{(IJ)}(s) = \frac{1}{\pi} \int_{4m_{\pi}^{2}}^{\infty} ds' \frac{\Delta X^{(IJ)}(s')}{(s')^{2-J}(s'-s)}$$

Polynomial	Matrix	Degree
$P^{(00)}(s)$	(2,2)	2nd
$P^{(11)}(s)$	(1, 1)	1st, $\beta_1 s$
$P^{(20)}(s)$	(1,2)	$P_{11}^{(20)} = 0$
		P ₁₂ ⁽²⁰⁾ 2nd

16 subtraction constants

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

General Remarks

.

decomposition

Partial-wave expansion

ehmann-ellipse in $\pi \to \pi \pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

- $\mathscr{D}^{(11)}(s)^{-1} = \Omega^{(11)}(s)$ and $\mathscr{D}^{(20)}(s)^{-1} = \Omega^{(20)}(s)$
- D⁽⁰⁰⁾(s)⁻¹, D⁽¹⁰⁾(s)⁻¹ vanish as 1/s. AM uses Moussallam et al,EPJC14(2000);EPJC70(2010);EPJC75(2015)
- Chiral Expansion of $M^{(IJ)}/\kappa(s)^J$ in powers of s
- A(s, t, u) is matched at NLO ChPT
- AM approximates $\hat{M}_{i2}^{(IJ)}(s) = \hat{M}_{2i}^{(IJ)}(s) = 0$ $M_{i2}^{(IJ)}$, $M_{2i}^{(IJ)}$ are calculated without LHC
- *M*^(IJ)_{i2}(s), *M*^(IJ)_{2i}(s) are matched with LO ChPT (1st degree polynomials in s)

•
$$M_{11}^{(11)}(0) = M_{11}^{(20)}(0) = 0$$

•
$$M_{11}^{(00)}(s) \xrightarrow[s \to \infty]{} \text{const.}$$

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

ntroduction

General Remarks

lsospin decomposition

Partial-wave expansion

ehmann-ellipse in $\pi\pi \to \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

The numerical procedure is analogous to the elastic KT case

- The numerical solution is done by iteration
- The subtraction constants fixed by matching with ChPT
- One can also fit the Dalitz plot data on $\eta \to \pi^+\pi^-\pi^0$

$\eta \rightarrow \pi^+ \pi^- \pi^0$	$O(p^4)$	Single-ch.	Coupled-ch.	KLOE	BESIII
a	-1.328	-1.156	-1.142	-1.095(4)	-1.128(15)
b	0.429	0.200	0.172	0.145(6)	0.153(17)
d	0.090	0.095	0.097	0.081(7)	0.085(16)
f	0.017	0.109	0.122	0.141(10)	0.173(28)
g	-0.081	-0.088	-0.089	-0.044(16)	-
$\eta \rightarrow \pi^0 \pi^0 \pi^0$				PDG	
α	+0.0142	-0.0268	-0.0319	-0.0318(15)	
β	-0.0007	-0.0046	-0.0056	-	

Dalitz plot parameters. Table from AM(2017)

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

ntroduction

General Remarks

lsospin decomposition

Partial-wave expansion

Lehmann-ellipse in $\pi\pi o \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

Figure: α parameter for $\eta \rightarrow 3\pi^0$. Table from Colangelo *et al.* EPJC78(2018)

9. Lehmann ellipse and separation of RHC–LHC in $\eta\to 3\pi$

Notation

$$\Sigma_0^2 = 4m_\pi^2$$
, $\Sigma_{\pm}^2 = (m_\eta \pm m_\pi)^2$
 $s_{1,2} = \frac{1}{2}(m_\eta^2 - m_\pi^2)$, $m_\pi(m_\eta + m_\pi)$
The branch-point singularities: $t_0 = \Sigma_0^2, \Sigma_-^2$

$$z=\frac{2t_0-3s_0+s}{\kappa(s)}$$

|z| > 1 for $s \in [\Sigma_0^2, \Sigma_-^2]$ and $s \neq s_{1,2}$ BUT FOR $s = s_{1,2}$ THEN $z = \pm 1$ No Lehmann ellipse at $s_{1,2}$

Many Legendre polynomials would be needed around $s_{1,2}$

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

General Remarks Isospin decomposition

Partial-wave expansion

Lehmann-ellipse in $\pi\pi o \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

Given the symmetry in the Mandelstam variables \rightarrow the same for $t, u = s_{1,2}$

The pathology extends to $\forall s \in [\Sigma_0^2, \Sigma_-^2]$

Figure: Physical region of $\eta \rightarrow 3\pi$ in the *s*, *t* plane

By taking $m_{\eta}^2 + i\epsilon$ the Lehmann ellipse is restored We come back to the poor convergence of the Legendre series: E.g. $\sqrt{1-x} \rightarrow \sqrt{1+\epsilon-x}$ Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

Introduction General Remarks Isospin decomposition Partial-wave expansion Lehmann-ellipse ir

 $\pi \pi \to \pi \pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

Separation RHC–LHC, complex mass squared

$m_{\pi}=0$

$$t, u = (m_{\eta}^2 + i\epsilon - s)\frac{1 \pm z}{2}$$
$$s = \nu + i\epsilon , \nu \in [0, m_{\eta}^2]$$

Physical m_{π}

$$\begin{split} t, & u = \frac{1}{2} \left(m_{\eta}^{2} + i\epsilon + 3m_{\pi}^{2} - s \pm \cos \theta \sqrt{\lambda(s)\sigma(s)} \right) \\ \lambda(s) &= \lambda(s, m_{\eta}^{2} + i\epsilon, m_{\pi}^{2}) \\ t, & u = \frac{1}{2} \left(m_{\eta}^{2} + 3m_{\pi}^{2} - s \pm z \left[\sqrt{\sigma(s)(s - \Sigma_{-}^{2})(s - \Sigma_{+}^{2})} \right. \right. \\ & \left. + \epsilon^{2} \sigma(s)^{\frac{1}{2}} \frac{(s - \Sigma_{-}\Sigma_{+})^{2} + 4sm_{\pi}^{2}}{4\sqrt{(s - \Sigma_{-}^{2})(s - \Sigma_{+}^{2})}} \right] \right) \\ & \left. + \frac{i\epsilon}{2} \left(1 + z \frac{(m_{\eta}^{2} - m_{\pi}^{2} - s)\sigma(s)^{\frac{1}{2}}}{\sqrt{(s - \Sigma_{-}^{2})(s - \Sigma_{+}^{2})}} \right) , \quad \Sigma_{0}^{2} < s < \Sigma_{-}^{2} \end{split}$$

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

Introduction

Isospin decomposition

Partial-wave expansion

Lehmann-ellipse in $\pi\pi o \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC-LHC in $\eta \rightarrow 3\pi$

Imaginary part of t, u

$$s_{\varphi} < s \leq 2$$

•
$$s_2 = (m_\eta^2 - m_\pi^2)/2$$

• Analytical extrapolation is possible, e.g
$$\sqrt{(s - \Sigma_{-}^2)(s - \Sigma_{+}^2)}$$
 (2nd RS of three-momentum)

• Avoid branch-point singularity at *s* = *s*₂ Anomalous Threshold Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

ntroduction

General Remarks

lsospin decomposition

Partial-wave expansion

Lehmann-ellipse in $\pi\pi o \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

Imaginary part of t, u

- $\Im t > 0$ for $z \ge 0$ because $m_\eta^2 m_\pi^2 > \Sigma_-^2$
- $\Im t$ is minimum for z = -1
- It only vanishes for $s_2 \leq s \leq \Sigma_-^2$
- Vanishing of the imaginary part at $z_+(s)$:

$$z_+(s) = \mp rac{\sqrt{(s-\Sigma_-^2)(s-\Sigma_-^2)}}{(m_\eta^2-m_\pi^2-s)\sqrt{1-4m_\pi^2/s}} \; ,$$

- $\Im t \le 0$, $z \in [-1, z_+(s)]$ for $s_2 \le s \le \Sigma_-^2 \to$ Crossing of RHC with LHC
- Analytical extrapolation is possible, e.g $\sqrt{(s \Sigma_{-}^2)(s \Sigma_{+}^2)}$ (2nd RS of three-momentum)

• Avoid branch-point singularity at $s = s_2$

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

ntroduction

General Remarks

lsospin decomposition

Partial-wave expansion

Lehmann-ellipse in $\pi\pi o \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC-LHC in $\eta \rightarrow 3\pi$

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

General Remarks

decomposition

Partial-wave expansion

ehmann-ellipse in $\pi\pi \to \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC–LHC in $\eta \rightarrow 3\pi$

Calculation of PWAs

$$egin{aligned} M_{I}(t) &= -rac{1}{\pi} \int_{4m_{\pi}^{2}}^{\infty} dt' rac{\Delta M_{I}(t')}{t(s,z)-t'} + \mathrm{subtractions} \ L(t',s) &= rac{1}{2} \int_{-1}^{+1} rac{dz}{t(s,z)-t'} \;, \; t' \geq 4m_{\pi}^{2} \;, \end{aligned}$$

t(s,z) is calculated with $m_\eta^2+i\epsilon$

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

General Remarks Isospin decomposition

Partial-wave expansion

Lehmann-ellipse in $\pi\pi o \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC-LHC in $\eta \rightarrow 3\pi$

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

ntroduction

General Remarks

lsospin decomposition

Partial-wave expansion

ehmann-ellipse in $\pi\pi \to \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC-LHC in $\eta \rightarrow 3\pi$

10. Summary

We have reviewed some aspects of the KT formalism

We have motivated it from considerations from the Lehmann ellipse

We have made a criticism on it

We have developed a compact notation for the coupled-channel case

- Final-, Initial-state interactions
- Two-body unitarity
- Three-body scattering
- Lehmann ellipse
- Overlap between right- and left-hand cuts
- Anomalous threshold

Introduction/Comm to the Khuri-Treiman Formalism $(\eta \rightarrow 3\pi)$

J. A. Oller

ntroduction

General Remarks

lsospin decomposition

Partial-wave expansion

ehmann-ellipse in $\pi\pi o \pi\pi$

Elastic unitarity

KT Formalism

Coupled-channel case

Lehmann ellipse and separation of RHC-LHC in $\eta \rightarrow 3\pi$