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1. Introducion

F (t) = hπ(q0)|muūu+mdd̄d|π(q)i t = (q0 − q)2
The non-strange I=0 pion scalar form factor:

Quadratic scalar radius of the pion, hr2iπs

F (t) = F (0)
©
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• hr2iπs contributes 10% to the a00 and a
2
0 scattering lengths from Roy equa-

tions+CHPT to two loops (2% of precision). It is a big contribution.
Colangelo, Gasser and Leutwyler, NPB603, 125(2001). (CGL)

• It gives ¯̀4 which controls the departure of Fπ from its value in the chiral
limit
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• One loop CHPT, Gasser and Leutwyler PLB125,325 (1983)
hr2iπs = 0.55± 0.15fm2

• Donoghue, Gasser, Leutwyler NPB343,341(1990) from the solution of the
Muskhelishvili-Omnès (MO) equations, updated value in CGL.
hr2iπs = 0.61± 0.04 fm2

• Mousallam EPJC14,11(200) allowed for two different T−matrices in MO
and obtained the same values.

The scalar radius of the pion is noticeably larger than the charged one,
hr2πi = 0.432± 0.006 fm2
This is due to the pionic cloud (strong final state interactions)

MO equations have systematic uncertainties like their dependence on
values of strong amplitudes for non-physical values of energy.
Assumptions on which are the channels that matter.
Multipion states are neglcted.
Other approaches are then most welcome.



a00 = 0.220± 0.005 fm , a20 = −0.0444± 0.0010 fm , precision 2%

This value is much larger than 0.61± 0.04 fm2 and both are incompatible
(less than 3%)

Consequences in the scattering lengths of CGL

Yall

• Elastic Omnès representation and numerical-CHPT to two loops
Gasser, Meissner NPB357,90(1991)

• Two-loop CHPT, Bijnens, Colangelo and Talavera JHEP 9805, 014 (1998)
• One loop UCHPT, Meißner, JAO, NPA679, 671 (2001); Meißner, Lahde,
PRD74, 034021(2006)

• Ynduráin’s approach based on the Omnès representation of F (t)
Ynduráin, PLB578, 99 (2004); (E)-ibid B586, 439 (2004) (Y1)
Ynduráin, PLB612, 245 (2005) (Y2)
Ynduráin, arXiv: hep-ph/0510317 (Y3)
hr2iπs = 0.75 ± 0.07 fm2 “robust” lower bound: hr2iπs = 0.70 ± 0.06 fm2

Meißner



δa00 = +0.027∆r2 δa20 = −0.004∆r2 hr2iπs = 0.61(1 +∆r2) fm2

∆r2 = +0.23 between Yall and CGL
δa00 = +0.006 and δa20 = −0.001
(in I=2 S-wave final state interactions are much smaller, exotic channel)
The shift in the central value is one sigma of CGL

a00 = 0.220± 0.005 fm , a20 = −0.0444± 0.0010 fm , precision 2%



2. Disperson Relations

The pion non-strange scalar form factor 

F (t) = hπ(q0)|muūu+mdd̄d|π(q)i t = (q0 − q)2

It is an analytic function having only a right hand cut (or unitarity cut) for
t ≥ 4m2

π due to the intermediate Isospin 0 J=0 states ππ, 4π, ..., KK̄, ηη, etc.



For “physical” values of t (t ≥ 4m2
π) one should take t+ i², ²→ 0+

Dispersion Relation F (t) = 1
π

R∞
4m2

π

ImF (s)
s−t

t

For the scalar form factor F(z) vanishes as 1/z because of QCD. 
(Brodsky-Farrar counting rules).

Hard gluon 1/tt
π

π



Omnès representation

It is valid for a function with the same analytic properties as F (t) (analytic
except for the right hand cut).

One must first remove the zeroes (also the poles for the general case, not in the 
present one) of F(t) and consider the function 

g(t) = F (t)
P (t)

P (t) = F (0)
s1···sn (s1 − t) · · · (sn − t)

Then one performs a dispersion relation of

f(t) = log F (t)P (t)

log z = log |z|+ iargz

f(s+)− f(s−) = log F (s+iη)P (s) − log F (s−iη)P (s) = 2iargF (s)P (s)

s1, s2, . . ., zeroes of F (s)



argF (s)/P (s) = φ(s), and this phase must be continuous (log g(s) is analytic
in D). So it can be larger than 2π, if necessary.
Another requirement: φ(4m2

π) = 0.

A simple exercise:

F (t)→ (−1)neiφ(+∞) tn−φ(+∞)/π for t→ +∞.

So φ(+∞)→ (n+ 1)π in order that F (t)→ −1/(t− i0+), as required by QCD

F (t) = P (t) exp t
π

R +∞
4m2

π

φ(s)
s−t−i²

log F (t)P (t) = γ0 +
t
π

+∞
4m2

π

φ(s)
s−t−i²

Note that exp γ = F (0) and then it is absorbed in P (t)



Watson final state theorem

• Elastic case, only ππ. Above threshold,

ImF (t) = F (t)ρ(t)T ∗ππ(t)

Corolary:

For the coupled channel case, this theorem can also be applied if η ' 1

tππ = ρTππ = sin δπ e
iδπ , δπ(4m

2
π) = 0, δπ is continuous and

at most differs by modulo π from the phase of Tππ
This happens when δπ crosses π (sin δπ < 0)

F (t) = P (t) exp t
π

R +∞
4m2

π

φ(s)
s(s−t) φ(s) = δπ(s) for s ≤ 4m2

K .

Since the left hand side is real then the phases of
F (t) (δ(s)) and Tππ(t) (ϕ(s)) are equal (modulo π)



3. Ynduráin’s method

Analytical extrapolation (e.g. taking the circle at infinity)
with δ(t) = 0 for t < 0
QCD requires δ(+∞) = π.

III) Omnès representation

F (t) = F (0) exp t
π

R +∞
4m2

π

δ(s)
s(s−t) P (t) = F (0) because δ(+∞) = π

II) At large t, QCD implies (Brodsky-Farrar counting rules), Y3
F (t)→ C 1

−t logν(−t/Λ2) t < 0 C > 0

We follow Y1.
MO equations neglect multipion contributions that
for the electromagnetic form factor account a 6% of the result.

I) Let us call by δ(t) the continuous phase of F (t), δ(4m2
π) = 0.

Weak point of the argument

Not always compatible



V) Watson’s final state theorem

•δ(s) = δπ(s) for s < 4m
2
K .

•Again inelasticity is “zero” for 1.1 ≤ s1/2 ≤ 1.5 GeV as
follows from experimental data on ππ scattering
Hyams et al. NPB64, 134(1973); Grayer et al. NPB75, 189 (1974).

δ(s) = δπ(s) for 1.1 ≤ s1/2 ≤ 1.42 GeV.

•The region where inelasticity is not zero (for 4mK < s
1/2 < 1.1 GeV) is

very narrow and has little numerical impact.
Inelastic effects are estimated at around 10% (although this is not shown,
just an statement).

IV) Taking the derivative at t = 0

hr2iπs = 6
π

R +∞
4m2

π

δ(s)
s2

VI) δef (s) = π + [δπ(s0)− π] s0s for s > s0 = 1.42
2 GeV2



From F.J.Ynduráin, PLB578,99(2004)

hr2iπs = 0.75± 0.07 fm2

δeff

π

Rapid motion, not shown in the figure, δπ(s) ≥ 2π for s slightly
above 1.4 GeV Kaminski, Lesniak, Rybicki, ZPC74, 79(1997)

hr2iπs = 6
π

R +∞
4m2

π

δ(s)
s2

Problem: δπ(s) keeps rising up to around 400
0, then it seems to stabilize and

slight decreasing. I do not see a very natural matching to π, somewhat forced.



This approach was critized by                                   
Ananthanarayan, Caprini, Leutwyler, IJMP A21,954 (2006) (ACGL).

The main objection to the previous method is the way that
the Watson’s final state theorem is applied in the region
above the KK threshold.

It fixes the phase modulo π, how can one know whether a flip in π
has not occured in the region between 2mK ≤ s1/2 ≤ 1.1 GeV
where inelasticity is not zero?

ACGL concludes that the ±π ambiguity in the Watson’s theorem can be resolved
only by explicit inclusion of inelastic channels in MO equations.

The point is that 6
π

R δπ(s)−π
s2 ds above the KK threshold gives again

hr2iπs ' 0.61 fm2.

They also mention other studies in which the pion scalar form factor
has a minimum just below the KK̄ threshold and not the strong maximum that
Y1 gives. (More later)



4. Extended Y’s method
L. Roca and J.A.O.  Phys. Lett. B651,139(2007)    arXiv:0704.0039 [hep-ph]

Yall

[8] Meißner, Oller NPA679,671(2001) s1 is the energy where δπ(s1) = π
√
s MeV



•We start with δπ(sK) < π (this corresponds to the analysis of CGL)
tππ =

1
2
η sin 2δπ +

i
2
(1− η cos 2δπ)

Imtππ >0 (η < 0) above the KK threshold but the real part changes sign
when crossing δπ = π. This occurs very quickly.

This rapid motion, from π− to π−

2 , produces a strong minimum in |F (t)|
F (t) = F (0) exp

n
t
π

R +∞
4m2

π

φ(s)
s(s−t)

o

•We show first that continuity arguments require that F (t) has a zero and its
phase also jumps by −π at s1 for δπ(sK) > π. Ynduráin’s first step is not always
true.

•We follow Ynduráin’s generalized hypothesis: Above the KK threshold one
can approximately apply Watson’s final state theorem

The explicit calculations of Donoghue, Gasser and Leutwyler NPB343,341(1990)
as well as those from UχPT, Meißner, Oller NPA679,671(2001) agree on this.

tππ
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The motion in ϕ(s) is more and more dramatic as δπ(sK)→ π−

Exactly in this limit it becomes discontinuous with a jump of −π
This makes the Omnès for F (t) to develop a zero at s1 = 4m

2
K .

Demonstration

δπ(s1) = π with s1 > 4m
2
K . Close to and above s1, ϕ(s) ∈ [0,π/2].

Now s1 → s+K . In this limit ϕ(s
−
K) = π (left) ϕ(s+K) < π/2 (right)

(indeed is 0 because of unitarity, but for simplicity let’s go on).

This discontinuity at s = sK implies a logarithmic singularity in the Omnès as
φ(s−

K
)−φ(s+

K
)

π log δ
sK
with δ → 0+.

Exponentiating: F (t)→ (δ/sK)
ν , ν = (φ(s−K)− φ(sK)

+)/π = 1 > 0

tππ = sinδπ e
iδπ , s < sK



F (t) = F (0) s1−ts1
exp

h
t
π

R +∞
4m2

π

φ(s)
s(s−t)ds

i
hr2iπs = − 6

s1
+ 6

π

R +∞
4m2

π

φ(s)
s2 ds

Determination of s1

F (t) = F (0) + 1
6 hr2iπs + t2

π

R +∞
4m2

π

ImF (s)
s2(s−t) ds

F (t) = F (0) exp
h
t
π

R +∞
4m2

π

φ(s)
s(s−t)

i
δπ(sK) < π

δπ(sK) ≥ π

hr2iπs = 6
π

R +∞
4m2

π

φ(s)
s2

δπ(sK)→ π+ now one
obtains continuous results

Because of Watson’s theorem |ImF (t)| = |F (t)|| sin δπ| and is zero
at s1 < sK , δπ(s1) = π.
This is the only point where F (t) = 0 can be zero for s < sK , otherwise
the dispersion relation has an imaginary part that cannot be cancelled since
t, F (0), hr2iπs are all real.



5. Numerical Analysis

QH = − 6
s1
θ(sK − s1) + 6

π

R sH
4m2

π

φ(s)
s2 ds

QA =
6
π

R +∞
sH

φ(s)
s2

hr2iπs = − 6
s1
θ(sK − s1) + 6

π

R +∞
4m2

π

φ(s)
s2 ds hr2iπs = QH +QA

sH = 1.5
2 = 2.25 GeV2

φ(s)2/s

sK ≥ s1

sK < s1

CGL

PY



We use:
•CGL below 0.8 GeV (upper limit of their analysis)

•Pelez, Ynduráin, PRD68,074005(2003) below 0.9 GeV (PY)
The difference between both parameterization spans well the
experimental uncertainties in ππ scattering

• The K-matrix of the energy dependent fit of Hyams et al. NPB64,134(1973)
Simple to pass from δπ(sK) < π(60% events)↔ δπ(sK) ≥ π(30% events)
above 0.8 GeV when CGL (Parameterization I)
above 0.9 GeV when PY (Parameterization II)

Above the KK threshold the application of Watson final state theorem is not
straightforward.
Above s1/2 & 1.1 GeV η ' 1 from ππ data up to s1/2 .1.5 GeV.

Error estimate of inelastic effects. (Which is not explicitely shown in Y1).

How to get ride of the ±π jump due to the non-elastic zone 2mK . s1/2 . 1.1
GeV (η < 1) following the generalized Ynduráin’s hypothesis.?



• 2mK ≤ s1/2 ≤ 1.1 GeV, inelasticity can be substancial.
η = 0.6− 0.7 at its minimum value
(more clearly from ππ → KK experiments or from explicit calculations)
Taking typically η & 0.6 then ² . 0.5

δπ(sK) < π δπ(sK) ≥ π

Correction: 30%

δ(+) ≥ π

15%

δ(+) ≥ π/2

On top of these uncertainties due to inelasticity we also add in quadrature
the noise due to the errors in the parameterizations of tππ.

F (t)→ (−1)neiφ(+∞) tn−φ(+∞)/π for t→ +∞.

So φ(+∞)→ (n+ 1)π in order that F (t)→ −1/(t− i0+), as required by QCD

δπ(sK) < π we have n = 0 then φ(+∞) = π

δπ(sK) ≥ π we have n = 1 then φ(+∞) = 2π



s > sH = 2.25 GeV
2 we use the asymptotic φ(s).

•However, from QCD it is not clear how the phase of F (t) approaches π
There is a controversy between Y3; Espriu, Ynduráin PLB132,187(1983)
and Caprini,Colangelo,Leutwyler IJMA21,954(2006)
wether l.t. or twist3 dominate.

•The phase can approach nπ from above (l.t), from below (t.3.)
(or maybe can even oscillate?)

•This was relevant before our work since CGL tends to π from below,
while Yall tend to π from above. Ynduráin states (Y3) that
the way to distinguish between the two solutions was to fixed
this asymptotic behaviour. This was also taken seriously by Berna group.

•From our work, one sees now that this is not relevant for hr2iπs .
The same value within rather small uncertainties results.
Only the error from the asymptotic region could be reduced in a factor 2.



φas(s) ' π n± 2dm
log(s/Λ2)

n = 2 for δπ(sK) ≥ π
n = 1 for δπ(sK) < π

0.1 < Λ2 < 0.35 GeV2 as suggested in Y1.

We are pretty much conservative for φas
In this way we avoid to enter into hadronic details for s1/2 > 1.5 GeV
where η < 1, the f0(1500) appears.

hr2iπs = − 6
s1
θ(sK − s1) + 6

π

R +∞
4m2

π

φ(s)
s2 ds

hr2iπs = QH +QA

I2 =
6
π

R 1.12
sK

ϕ(s)
s2
ds I3 =

6
π

R sH
1.12

ϕ(s)
s2 dsI1 =

6
π

R sK
4m2

π

ϕ(s)
s2 ds

QH = − 6
s1
θ(sK − s1) + I1 + I2 + I3

QA =
6
π

R +∞
sH

φas(s)
s2

± from QCD one cannot fix now how it approaches to π

n = 1

n = 2



Note that we use ϕ(s) in the integrals I2 and I3.
We could have used δ(+) instead. But when η . 1 then δ(+) ' ϕ(s)
The difference is taken into account in the error analysis.
But consistency of our approach, so that the same value
is obtained for δπ(sK) = π − ² and δπ(sK) = π + ², ²→ 0+,
requires to use ϕ(s) because ϕ+(s) = ϕ−(s) + π

φ(s) I I II II
δπ(sK) ≥ π < π ≥ π < π
I1 0.435± 0.013 0.435± 0.013 0.483± 0.013 0.483± 0.013
I2 0.063± 0.010 0.020± 0.006 0.063± 0.010 0.020± 0.006
I3 0.143± 0.017 0.053± 0.013 0.143± 0.017 0.053± 0.013
QH 0.403± 0.024 0.508± 0.019 0.452± 0.024 0.554± 0.019
QA 0.21± 0.03 0.10± 0.03 0.21 ± 0.03 0.10± 0.03
hr2iπs 0.61± 0.04 0.61± 0.04 0.66 ± 0.04 0.66± 0.04

Our final value: hr2iπs = 0.63± 0.05 fm2



The latest two points were sustained in Y2 and Y3 as the way to disentangle
between Y1 and CGL solutions. We see now that this is superfluous.

Our value is in good agreement with CGL hr2iπs = 0.61± 0.04 fm2.
Our final value: hr2iπs = 0.63± 0.05 fm2

• We reconcile Ynduráin’s method and MO equations
Conclusions I

• The same is obtained now, with Y extended method,
independently of whether δπ(sK) = π − ² or δπ(sK) = π + ².

Y1: hr2iπs = 0.75± 0.07 fm2

• More straightforward matching with φas(s)

• Independently of whether δ(+∞) = π+ or δ(+∞) = π−

(or even if there are oscillations)

We have also calculated the value of UCHPT paper
Meißner,JAO NPA679,671(2001) hr2iπs = 0.64± 0.06 fm2



6. γγ → π0π0

There is no Born term as π0 is neutral

Final state interactions are enhanced
The final state is a two body hadronic state

Good reaction to study the I = 0 ππ S-wave

L. Roca, C. Schat and J.A.O., arXiv:hep-ph/0708.1659



• One loop χPT is the leading contribution: Bijnens, Cornet NPB296,557(1988);
PRD37,2423(1988)

• No counterterms, pure χPT quantum prediction (the agreement with data
was not satisfactory)

• Two loop calculation in χPT was performed: Bellucci, Gasser, Sainio
NPB423,80 (1994), revised in Gasser,Ivanov, Sainio NPB728,31 (2005).

• Better agreement with data. The three counterterms were fixed according
to the resonance saturation hypothesis.

Silver mode for χPT

σ(γγ → π0π0) was measured for | cos θ| < 0.8 by Crystal Ball Collaboration, H.
Marsiske et al. PRD41,3324 (1990)

New accurate data on γγ → π+π− | cos θ| < 0.6
T. Mori et al. [Belle Coll.] PRD75,051101 (2007)
Remarkable resolution of the f0(980) resonance.



Recent activity:

Pennington, PRL97,011601(2006) employs a dispersive method to calculate
the S-wave γγ → ππ for low energies.
This approach was settled in Pennington,Morgan PLB272,134(1991), revised
in Pennington DAFNE Physics Handbook, Vol.1

Explodes at 
around 1 GeV

It is also the case for
Donoghue and Holstein, PRD48,137(1993)

Large ambiguity because of the phase of the γγ → ππ I = 0 S-wave for s > 4m2
K√

s = 0.5, 0.55, 0.6, 0.65 GeV one has 20, 45, 92 and 200% error, respectively

Γ(σ → γγ) = 4.09± 0.29 KeV only a 7% error. He applies a narrow resonance
formula for the σ without discussion about its large width, ∼ 550 MeV



• Is it possible to reduce such large uncertainty for √s & 0.5 GeV?

In a recent paper Mennessier, Minkowski, Narison and Ochs, arXiv:hep-ph/0707.4511
they calculate Γ(σ → π0π0) = 1.4− 3.2 KeV. Lower values are then favoured.

• Revise the given error for the Γ(σ → γγ) width

• How to extend the dispersive formalism to study more resonances apart from
the σ, e.g. the f0(980)?

FI(s) is the S-wave γγ → ππ with isospin I, I = 0, 2

LI(s) is the left hand cut contribution of FI(s)

FI(s)− LI(s) has no left hand cut

On the complex s-plane it is an analytic function except for two cuts along the
real axis:
Unitarity cut: s ≥ 4m2

π

Left hand cut: s ≤ 0.

Pennington, Morgan approach, PLB272,134 (1991)



wI(s) = exp
s
π

∞
4m2

π

φI(s
0)

s0(s0−s)ds
0

φI(s) is the phase of FI(s), modulo π.
It must be continuous and φI(4m

2
π) = 0

FI(s)/ωI(s) has no right hand cut

Twice subtracted dispersion relation for (FI(s)− LI(s))/ωI(s)

FI(s) = LI(s) + aI ωI(s) + cIsωI(s) +
s2

π ωI(s)
∞
4m2

π

LI(s
0) sinφI(s

0)
s02(s0−s)|ωI(s0)|ds

0

Low’s theorem FI(s)→ BI(s) +O(s) for s→ 0 then aI = 0.



Lower line φ0(s) ' δπ(s)− π

Upper line φ(s) ' δπ(s)0

The dramatic increased referred above corresponds to the use of ω0(s)

Similarly as already commented for the scalar form factor of the pion when
φ(t) = δπ(s)0, without the zero at s1





The same problem arises here about the discontinuity of ω0(s) by employing an
increasing(maximum) φ0(s) above sK = 4m

2
K or a decreasing(minimum) one.

For I = 2 Watson’s final state theorem applies to good approximation in the
whole energy range and w2(s) is smooth and well behaved.
φ2(s) = δπ(s)2

On the phase φ0(s)

• Watons’s theorem: φ0(s) = δπ(s) for s ≤ sK

• For 1.1 . √
s . 1.5 GeV, η ' 1 and Watson’s final state theorem approxi-

mately applies.
Then φ0(s) ' δ(+)(s) modulo π

We now how to solve that. One has to use for an increasing φ0(s) above sK :³
1− s

s1

´
exp

h
s
π

R∞
4m2

π

φ0(s
0)

s0(s0−s)ds
0
i



• In order to fix the integer factor in front of π one needs to follow the track
of φ0(s) in the narrow region 1 . √

s . 1.1 GeV (so that continuity can be
invoked)

For 1.05<
√
s <1.1 GeV there are no further narrow structures.

Observables evolve smoothly with energy.

Two Options:

z = +1

z = −1

E.g. ϕ(s) for δπ(sK)0 ≥ π

E.g. ϕ(s) for δπ(sK)0 < π

• The appearance of the f0(980) on top of the KK̄ threshold.
• The cusp effect of the latter

A.- φ0(s) keeps increasing with energy for s > sK .
Then matches smoothly with ' δπ(s)0 for

√
s & 1.05 GeV.

B.- The cusp effect makes the deriative of φ0(s) discontinuous.
φ0(s) decreases rapidly with energy for s > sK .
Then matches smoothly with ' δπ(s)0 − π for

√
s & 1.05 GeV



We perform the twice subtracted dispersion relation for (F0(s)− L0(s))/Ω0(s)
F0(s) = L0(s) + c0sΩ0(s) +

s2

π
Ω0(s)

Z ∞

4m2
π

L0(s
0) sinφ0(s

0)

s02(s0 − s)|Ω0(s0)|
ds0

+ θ(z)
ω0(s)

ω0(s1)

s2

s21
(F0(s1)− L0(s1)) .

Ω0(s) =
³
1− θ(z) ss1

´
ω0(s)

φ0(s) is the phase of Ω0(s).
For s > s1 and z = +1 φ0(s) = φ0(s)− π

An ambiguity of π is left for φ0(s) and s > sK

c0, c2 and F0(s1)− L0(s1) to be fixed



Our equation is equivalent to a three times
subtracted dispersion relation for (F0(s)− L0(s))/ω0(s)

We have taken two subtractions at s = 0 and one at s1

We could have taken them also at s = 0

In this form the role of the f0(980) is not so easy to indentify

In the other form the more physical (continuous) Omnès function Ω0(s) is used



FN (s) = − 1√
3
F0 +

r
2

3
F2

FC(s) = − 1√
3
F0 −

r
1

6
F2 γγ → π+π−

γγ → π0π0

c0 and c2 are fixed by Low’s theorem and χPT:

1. FC(s)−BC(s) vanishes linearly in s for s→ 0
2. FN (s) vanishes linearly in s for s→ 0

The coefficients are calculated from one loop χPT
We use either f2π or f

2 in the expressions ∝ 1/f2
Estimate for higher orders, ∼ 12% of uncertainty
(taken into account in the error analysis)

BC is the γγ → π+π− Born term



Fixing F0(s1)− L0(s1) for z = +1

f2(1270) peak

f0(980)

From Unitary χPT:
J.A.O., NPA727,353(2003): M=988 MeV, Γ=28 MeV,
E.Oset,J.A.O, NPA629,739(1998): Γ(f0(980)→ γγ)=0.2 KeV

3. This constant controls the size of the f0(980) peak.
It has been clearly seen in γγ → π+π−

T. Mori et al. [Belle Coll.] PRD75, 051101 (2007)

M = 985.6+1.2−1.6(stat)
+1.1
−1.6(sys) MeV , Γ = 34.2

+13.9
−11.8(stat)

+8.8
−2.5(sys) MeV

Γ(f0(980)→ γγ) = 205+95−83(stat)
+147
−117(sys) eV



F0(s) = L0(s) + c0sΩ0(s) +
s2

π
Ω0(s)

Z ∞

4m2
π

L0(s
0) sinφ0(s

0)

s02(s0 − s)|Ω0(s0)|
ds0

+ θ(z)
ω0(s)

ω0(s1)

s2

s21
(F0(s1)− L0(s1)) .

Ω(s1) = 0, only the last term gives contribution at s1
It is proportional to F0(s1)− L0(s1) which is small

LI(s) is due to the γπ → γπ dynamics
At s = 0 it is given by the Born Term by Low’s theorem
This exchange of pions gives rise to the left hand cut for s < 0
The main contribution for low energies.

Vector JPC = 1−− and Axial-Vector 1++, 1+− exchanges

• We require σ(γγ → π0π0) < 400 nb at s1, experiment is ' 40 nb

The axial-vector 1++ exchanges are the most important
They give rise to L9 + L10 the O(p4) counterterm in γγ → π+π−

s < M2
R −m2

π/2



Influence of the uncertainty in the phases above 1 GeV
and in the bound σ(γγ → π0π0) < 400 nb at s1

We pass from the difference between the dot-dasshed and dashed lines

To that between the solid and dashed line

z = +1

z = +1

z = −1

The gray band is the effect of the bound



Parameterizations for δπ(s)0

Above those energies up to
√
s = 1.5 GeV

Energy dependent analysis (K-matrix) of data Hyams et al. NPB64,134 (1973).

Light Blue: Colangelo, Gasser, Leutwyler, NPB603,125 (2001)√
s < 0.8 GeV (Parameterization I)

Dark Green: Yndurain, Pelaez, PRD68,074005 (2003)
Similar phase shifts to Unitary χPT results√
s < 0.9 GeV (Parameterization II)

No axial vector 
exchanges



Error bands include:
Uncertainties in the parameterizations CGL, PY and Hyams et al.
The large uncertainties in φ0(s) above sK
The bound σ(γγ → π0π0) < 400 nb at s1
c0 and c2 calculation employing either f

2
π or f

2.

Γ(σ → γγ)
Calculation of the coupling:

Analytical extrapolation to the second Riemann sheet where the σ pole locates, sσ

Unitarity 4m2
π ≤ s ≤ 4m2

K

F0(s+ i²)− F0(s− i²) = −2iF0(s+ i²)ρ(s+ i²)T 0II(s− i²)

eF0(s) = F0(s) ¡1 + 2iρ(s)T I=0II (s)
¢
.

Continuity in the change of sheets: F0(s− i²) = eF0(s+ i²), TI(s− i²) = TII(s+ i²)
On the second sheet: F0(s) and T

I=0
II (s)



Around sσ
T I=0II = − g2σππ

sσ−s
eF0(s) = √2 gσγγgσππsσ−s

g2σγγ = −1
2F0(sσ)

2g2σππ

³
β(sσ)

2

8π

´2
β =

p
1− 4m2

π/s

Γ(σ → γγ) =
|gσγγ |2
16πMσ

Finite Width: We use for Mσ in the formula for the width either:
Real(

√
sσ) or

p
Real(sσ) =

p
M2

σ − Γ2σ/4

UχPT: sσ ' (469− i 203)2 MeV2, gσππ ' 3 GeV UχPT 5%

CCL 10%

Caprini,Colangelo,Leutwyler PRL96,132001 (2006) (CCL)
sσ = (441

+16
−8 − i 272+9−13)2 MeV2

|gCCLσππ | = |gUχPTσππ |( Γ
CCL(σ→ππ)

ΓUχPT (σ→ππ)
)1/2 = 1.18|gUχPTσππ |



Γ(σ → γγ) = 1.24± 0.06 KeV with sσ, gσππ from UχPT
Γ(σ → γγ) = 1.7± 0.2 KeV with sσ, gσππ from CCL

Average:
Γ(σ → γγ) = 1.5± 0.3 KeV

Removing the axial exchanges gives an increase of 10% in our width

Pennington PRL97, 011601 (2006) Γ(σ → ππ) = 4.09± 0.29 KeV
He uses CCL σ

Our conclusion: There is a difference by a factor 2 with respect to Pennington’s value
We reproduce his calculated σ(γγ → π0π0) (once the axial exchanges are removed)

Pennington in his recent paper does not include:
Axial vector exchange contributions 1++, 1+−: 10%
Finite width effects: 10%

His error should be multiplied by a factor
∼ 2 if added in quadrature, ∼ 3 if added linearly



Our value is smaller than for a qq̄

Γ(f2(1270)→ γγ) = 2.6± 0.2 KeV 5 < Γ(0++ → γγ) < 10 KeV

Γ(σ → γγ) = 1.5± 0.3 KeV

It is more appropriate for a meson-meson resonance, glueball, 4 quark state

Γ(σ → γγ) ' (1.4− 3.2) KeV
Recently Mennessier,Minkowski,Narison,Ochs arXiv:0707.4511 [hep-ph]
They favour a glueball naure.

In J.A. Oller NPA727, 353 (2003) it is established that the σ is 0.92% a SU(3) singlet
Natural explanation if it were a strong dressed (”meson-meson resonance”) glueball.
Singlet: Implies both large σ couplings to ππ and KK̄.
This is also seen phenomenologically (D. Bugg).



7. Conclusions II

• One can discern among different I = 0 S-wave ππ parameterizations
when new and more precise data become available.

• Γ(σ → ππ) = 1.5 ± 0.3 KeV
Non qq̄ resonance.

• The method is also adequate to study the f0(980) resonance.
L. Roca, C. Schat and J.A.O. , to appear soon.

• We have handled with three subtractions constants (more precisision)
instead of the two used previously in the literature.

• Drastic reduction in the uncertainty of σ(γγ → π0π0) for
√
s & 0.5 GeV

due to the uncertainty in φ0(s) above sK .



6. Multipion states
tππ =

1
2η sin 2δπ +

i
2 (1− 2η cos 2δπ)

Then Imtππ > 0 and the phase does not cross π

Extremely small

tππ

The “true” phase of tππ

“Academic” (solutions II and Id of Y2)

As we approach the f0(980) (below the KK threshold)
η < 1 as it strengthens the transitions among channels 2π, 4π, 6π.



Is there φ(s) for F (t) following the upper ϕ(s)?

|F (t)|eiφ(s)
tππ

Almost zero

F (t) ' G(t)tππ

Almost zero

upper
ϕ(s)

lower
ϕ(s)

Maybe, Yes

zero

What we learned when considering
only the two channels ππ and KK̄

Multipion states could i)change the sign of ImF (t),
as it is so small, and ii)displace the point where
the phase of F (t) crosses π. There would be no zero.
In principle,this would resemble to Ynduráin’s solutions



Note that ImF (t) can change sign
This is not the case for tππ because of unitarity
Imtππ ≥ 0
However, F (t) would then develop almost a pole (strong maximum)
and then we pass to an unacceptable situation from the
point of view of the starting hypothesis of the perturbative
effect of multipion states.

This is remedied if one introduces a zero at s1 and then,
one comes back again to the OR solution with a zero.



Differences with the strange scalar form factor
ImFi =

P2
j=1 Fjρjθ(t− s0j)t∗ji , Unitarity

A general solution to the previous equations is given by

F = T G , F =

µ
F1
F2

¶
, G =

µ
G1
G2

¶
G1 corresponds to “Pion production” and G2 to “Kaon production”

Gs are free of right hand cut If |G1| >> |G2| then F1(t) = Gπtππ

If |G2| >> |G1| (OZI rule for s̄s and after diagnolazing
Fπ(t) = − cos θ sin θ ρ−1/22 ρ

−1/2
1 G2(et11 − et22)

This invalidates our arguments above since for s1 → s+K

boht et11 and et22 tend to zero and φ(s)
is then not given then by δ(+).



Also for |G2| >> |G1| then |Γ02/Γ01| ' |et11 tan θ/et22|
For typical values |et11/et22| ' 1 then
|Γ02/Γ01| ' | tan θ| < 1



Different LI(s) contributions

Pennington overlooked the 1++ and 1+− axial vector exchanges altogether



Regarding the f0(980)

c0 is fixed from the position of the Adler zero in FN (s) at m
2
π, m

2
π/2 or 2M

2
π

Then φ0(s) must be precisely given such that this cancellation occurs
But φ0(s) is not precisely known for s > sK

With the original approach of Pennington and Morgan it is a metter of fine tuning

F0(s) = L0(s) + c0sω0(s) +
s2

π

∞
4m2

π

L0(s
0) sinφ0(s

0)
s02(s0−s)|ω0(s0)|ds

0

In our approach one does not need to impose such specific knowledge of φ0(s) for s > sK
The f0(980) is isolated in the last term and its size controlled by F0(s1)− L0(s1)



• CHPT to one loop, hr2iKπ
s = 0.20± 0.05 fm2

• Y1 ignored the recent theoretical advances in the Kπ scalar form factor
Jamin,JAO,Pich NPB622,279(2002); JHEP02,047(2006);
(Kπ, Kη, Kη0 MO+CHPT) hr2iKπ

s = 0.192± 0.012 fm2

• Recent experiments in K`3 corroborate our value:
Charged kaons, Yushchenko et al, PLB581,31(2004).

hr2iK±π
s = 0.235± 0.014± 0.007 fm2

Neutral kaons, Alexopoulos et al [KTeV Coll.] PRD70, 092007 (2004)

hr2iK±π
s = 0.165± 0.016 fm2

Our value (isospin limit) lies in the middle

The last remarks were pointed out in Ananthanarayan, Caprini, Colangelo,
Gasser and Leutwyler, PLB602,218(2004).

The controversy about hr2iKπ
s is over.

Y1 hr2iKπ
s = 0.31± 0.06 fm2



We follow here Y2 and diagonalize the 2× 2 S-matrix.
We also apply it to calculate inelasticity errors.
We give the expressions directly in terms of observables.

T =

µ
1
2i (ηe

2iδπ − 1) 1
2

p
1− η2ei(δπ+δK)

1
2

p
1− η2ei(δπ+δK) 1

2i (ηe
2iδK − 1)

¶
Orthogonal Matrix C C =

µ
cos θ sin θ
− sin θ cos θ

¶
Diagonalization

cos θ =

£
(1− η2)/2

¤1/2h
1− η2 cos2∆− η| sin∆|

p
1− η2 cos2∆

i1/2 ,
sin θ = − sin∆√

2

η −
p
1 + (1− η2) cot2∆h

1− η2 cos2∆− η| sin∆|
p
1− η2 cos2∆

i1/2 ,
sin θ → 0 as

p
(1− η)/2 for η → 1



If δπ(sK) ≥ π one has the zero at s
1/2
1 < 2mK , this introduces a minus sign

due to the prefactor s1 − t.

Eigenvalues

λ = (−1)θ(δπ(sK)−π)

e2iδ(+) = S11
1 + e2i∆

2

·
1− i

η
tan∆

q
1 + (1− η2) cot2∆

¸
e2iδ(−) = S22

1 + e−2i∆

2

·
1 +

i

η
tan∆

q
1 + (1− η2) cot2∆

¸
One has then two channels diagonalized that are elastic

Notice that Γ02 is 0 at sK , this is why we cannot fix the ± in front of |Γ02|

Γ0 ≡
µ
Γ01
Γ02

¶
= CTQ1/2F = CTQ1/2

µ
Fπ
FK

¶
Fπ = q−1/2π

¡
λ cos θ |Γ01|eiδ(+) ± sin θ |Γ02|eiδ(−)

¢
FK = q

−1/2
K

¡
± cos θ |Γ02|eiδ(−) − λ sin θ |Γ01|eiδ(+)

¢

δ(+) follows rather closely ϕ(s)



Shift in δ(+) because of inelasticity

Fπ = λ cos θ |Γ01|eiδ(+)(1 + ² cos θ)
³
1 + i ² sin ρ

1+² cos ρ

´
With ² = ± tan θ

¯̄̄
Γ02
Γ01

¯̄̄
tan θ → 0 when η → 1. First order correction to δ(+)

|Γ02/Γ01| . |et11 tan θ/et22| ' | tan θ| < 1

δ(+) → δ(+) +
² sin ρ

1+² cos ρ

ρ = δ− − δ+

1 + i ² sin ρ
1+² cos ρ = exp

³
i ² sin ρ
1+² cos ρ

´
+O(²2)

δπ(sK) < π

δ(+) ≥ 3π/4

Correction: 6%×2→ 12%

δπ(sK) ≥ π

δ(+) ≥ 3π/2

12%× 2→ 25%

• 1.1 ≤ s1/2 ≤ 1.5 GeV, η ' 1 experimentally (Hyams, Grayer).
Typically η & 0.8 Then ² ' 0.3.



Coupling ¯̀4 hr2iπs = 3
8π2f2π

³
¯̀
4 − 13

12 +∆r
M2

π

(4πfπ)2

´
two loops

With our value for hr2iπs = 0.63± 0.05
¯̀
4 = 4.7± 0.3 one loop
¯̀
4 = 4.5± 0.3 two loops (taking for ¯̀1, ¯̀2 and ¯̀3 values of CGL)
and solving for ¯̀4
CGL: ¯̀4 = 4.4± 0.2

We have employed the two loop relation above
with ¯̀1,¯̀2 and ¯̀3 from CGL. Then Y1 values reduces to
¯̀
4 = 5.0± 0.4
There is agreement at the level of one sigma

Y1: ¯̀4 = 5.4± 0.5 (One loop hr2iπs (¯̀4))
(Y3 took ¯̀4 = 5± 1 because of the spurious reasons given above)


