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S-wave γγ → ππ, f0(980)→ ππ, scalar glueball



There is no Born term as π0 is neutral

Final state interactions are enhanced
The final state is a two body hadronic state

Good reaction to study the I = 0 ππ S-wave

1. Introduction
L. Roca, C. Schat and J.A.O., PLB659,201(2008); Forthcoming



• One loop χPT is the leading contribution: Bijnens, Cornet NPB296,557(1988);
PRD37,2423(1988)

• No counterterms, pure χPT quantum prediction (the agreement with data
was not satisfactory)

• Two loop calculation in χPT was performed: Bellucci, Gasser, Sainio
NPB423,80 (1994), revised in Gasser,Ivanov, Sainio NPB728,31 (2005).

• Better agreement with data. The three counterterms were fixed according
to the resonance saturation hypothesis.

Silver mode for χPT

Data points:
σ(γγ → π0π0) was measured
for | cos θ| < 0.8 by Crystal Ball Collaboration,
H. Marsiske et al. PRD41,3324 (1990)



E.Oset,J.A.O, NPA629,739(1998): Γ(f0(980)→ γγ)=0.2 KeV

New accurate data on γγ → π+π− | cos θ| < 0.6
T. Mori et al. [Belle Coll.] PRD75,051101 (2007)
Remarkable resolution of the f0(980) resonance.

M = 985.6+1.2−1.6(stat)
+1.1
−1.6(sys) MeV , Γπ+π− = 34.2

+13.9
−11.8(stat)

+8.8
−2.5(sys) MeV

Γ(f0(980)→ γγ) = 205+95−83(stat)
+147
−117(sys) eV



Recently:

Pennington, PRL97,011601(2006) employs a dispersive method to calculate
the S-wave γγ → ππ for low energies.
This approach was settled in Pennington,Morgan PLB272,134(1991), revised
in Pennington DAFNE Physics Handbook, Vol.1

Explodes at 
around 1 GeV

It is also the case for
Donoghue and Holstein, PRD48,137(1993)

Large ambiguity because of the phase of the γγ → ππ I = 0 S-wave for s > 4m2
K√

s = 0.5, 0.55, 0.6, 0.65 GeV one has 20, 45, 92 and 200% error, respectively

Γ(σ → γγ) = 4.09± 0.29 KeV only a 7% error.



• Is it possible to reduce such large uncertainty for √s & 0.5 GeV?

• How to extend the dispersive formalism to study more resonances apart from
the σ, e.g. the f0(980)?

FI(s) is the S-wave γγ → ππ with isospin I, I = 0, 2

LI(s) is the left hand cut contribution of FI(s)

FI(s)− LI(s) has no left hand cut

On the complex s-plane FI(s) is an analytic function
except for two cuts along the real axis:
Unitarity cut: s ≥ 4m2

π

Left hand cut: s ≤ 0.

2. Dispersive approach

• Revise the value and given error for the Γ(σ → γγ) width



s ≤ 0

Right Hand Cut s ≥ 4m2
π

ππ 4π 6π

s-plane
FI(s)

Left Hand Cut, LI(s)

KK



wI(s) = exp
s
π

∞
4m2

π

φI(s
0)

s0(s0−s)ds
0

φI(s) is the phase of FI(s), modulo π.
It must be continuous and φI(4m

2
π) = 0

FI(s)/ωI(s) has no right hand cut

1) Build the auxiliary function wI(s)

First, we consider the approach of
Pennington, Morgan PLB272,134 (1991)



Low’s theorem FI(s)→ BI(s) +O(s) for s→ 0 then aI = 0.

FI(s) = LI(s) + aI ωI(s) + cIsωI(s) +
s2

π ωI(s)
R∞
4m2

π

LI(s
0) sinφI(s

0)
s02(s0−s)|ωI(s0)|ds

0

2) Take a twice subtracted dispersion relation for (FI(s)− LI(s))/ωI(s)

BI(s) is the Born term, included in LI(s)



Watson final state theorem

• Elastic case, only ππ. Above threshold,

ImF (t) = F (t)ρ(t)T ∗ππ(t)

Corolary:

For the coupled channel case, this theorem can also be applied if η ' 1

Since the left hand side is real then the phases of
F (t) (φ(s)) and Tππ(t) (ϕ(s)) are equal (modulo π)

φ(s) = δ(s) for s ≤ 4m2
K

tππ = ρTππ = sin δπ e
iδπ , δπ(4m

2
π) = 0, δπ is continuous and

at most differs by modulo π from the phase of Tππ
This happens when δπ crosses π (sin δπ < 0)

Above KK̄ threshold η 6= 1, it suddenly decreases



The rapid increase for
√
s & 0.5 GeV is due

to the phase used to calculate ω0(s)

|w
0
(s
)/
w
0
(0
)|



A rapid increase in the phase used in the Omnès implies
a maximum, while a rapid decrease implies a minimum.

This can be achieved e.g. by employing φ0(s) = ϕ(s)
in the transition δπ(sK)→ π from below to above π.

sK is the Kaon threshold

With s1 ' sK the point at which φ0(s1) = πThis factor gives a zero at s1

For a rapid increasing φ0(s) above sK use:

Ω(s) =
³
1− s

s1

´
exp

h
s
π

R∞
4m2

π

φ0(s
0)

s0(s0−s)ds
0
i

This makes |w0(s)| to pass from 0 to +∞ when
evolving continuously from one scenario to the other.

How to build a continuous ω(s) was shown in
L. Roca and J.A.O. PLB651 (2007)139



For I = 2 Watson’s final state theorem applies to good approximation in the
whole energy range and w2(s) is smooth and well behaved.
φ2(s) = δπ(s)2

We perform a twice subtracted dispersion relation for (F0(s)− L0(s))/Ω0(s)

F0(s) = L0(s) + c0sΩ0(s) +
s2

π
Ω0(s)

Z ∞

4m2
π

L0(s
0) sinφ0(s

0)

s02(s0 − s)|Ω0(s0)|
ds0

+ θ(z)
ω0(s)

ω0(s1)

s2

s21
(F0(s1)− L0(s1)) .

φ0(s) is the phase of Ω0(s).
For s > s1 and z = +1 φ0(s) = φ0(s)− πc0, c2 and F0(s1)− L0(s1) have to be fixed

Ω0(s) =
³
1− θ(z) ss1

´
ω0(s)

Our approach to γγ → (ππ)I



Our equation is equivalent to a three times
subtracted dispersion relation for (F0(s)− L0(s))/ω0(s)

We have taken two subtractions at s = 0 and one at s1

We could have taken them also at s = 0

In the other form the more physical (continuous) Omnès function Ω0(s) is used

In this way the the f0(980) can be also very easily handled
because Ω0(s1) = 0, it is isolated.



More on the phase φ0(s)

• Watons’s theorem: φ0(s) = δπ(s) for s ≤ sK

• For 1.1 . √
s . 1.5 GeV, η ' 1 and Watson’s final state theorem approxi-

mately applies.
Then φ0(s) ' δ(+)(s) modulo π F.J. Ynduráin, PLB578 (2004) 99

In order to fix the integer factor in front of π one needs to follow the track
of φ0(s) in the narrow region 1 . √

s . 1.1 GeV (so that continuity can be
invoked)

Two main physical effects:



For 1.05<
√
s <1.1 GeV there are no further narrow structures.

Observables evolve smoothly with energy.

Two Options:

z = +1

z = −1

E.g. ϕ(s) for δπ(sK)0 ≥ π

E.g. ϕ(s) for δπ(sK)0 < π

• The appearance of the f0(980) on top of the KK̄ threshold.
• The cusp effect of the latter

A.- φ0(s) keeps increasing with energy for s > sK .
Then matches smoothly with ' δπ(s)0 for

√
s & 1.05 GeV.

B.- The cusp effect makes the deriative of φ0(s) discontinuous.
φ0(s) decreases rapidly with energy for s > sK .
Then matches smoothly with ' δπ(s)0 − π for

√
s & 1.05 GeV



An ambiguity of π is left for φ0(s) and s > sK

F0(s) = L0(s) + c0sΩ0(s) +
s2

π
Ω0(s)

Z ∞

4m2
π

L0(s
0) sinφ0(s

0)

s02(s0 − s)|Ω0(s0)|
ds0

+ θ(z)
ω0(s)

ω0(s1)

s2

s21
(F0(s1)− L0(s1)) .

A) If z = −1 (φ0 decreases for s ≥ sK) then |F0(s)| has a minimum
B) If z = +1 (φ0 increases for s ≥ sK) then |F0(s)| has a maximum

T. Mori et al. [Belle Coll.] PRD75, 051101 (2007)

PEAK B) is the physical case (z = +1)



The size of the peak is controlled by F0(s1)− L0(s1)
This constant is fixed such that Γ(f0(980)→ γγ) is compatible
with

Γ(f0(980)→ γγ) = 205+95−83(stat)
+147
−117(sys) eV

From T. Mori et al. [Belle Coll.] PRD75, 051101 (2007)

FN (s) = − 1√
3
F0 +

r
2

3
F2

FC(s) = − 1√
3
F0 −

r
1

6
F2γγ → π+π−

γγ → π0π0

c0 and c2 are fixed by Low’s theorem and χPT:

1. FC(s)−BC(s) vanishes linearly in s for s→ 0
2. FN (s) vanishes linearly in s for s→ 0

The coefficients are calculated from one loop χPT
We use either f2π or f

2 in the expressions ∝ 1/f2
Estimate for higher orders, ∼ 12% of uncertainty
(taken into account in the error analysis)

c0 and c2 are fixed by Low’s theorem and χPT:



LI(s) is due to the γπ → γπ dynamics

At s = 0 it is given by the Born Term by Low’s theorem
This exchange of pions gives rise to the left hand cut for s < 0
The main contribution for low energies.

Vector JPC = 1−− and Axial-Vector 1++, 1+− exchanges

The axial-vector 1++ exchanges are the most important
They give rise to L9 + L10 the O(p4) counterterm in γγ → π+π−

s < −M2
R +m

2
π/2



Parameterizations for δπ(s)0

Above those energies up to
√
s = 1.5 GeV

Energy dependent analysis (K-matrix) of data Hyams et al. NPB64,134 (1973).

Light Blue: Colangelo, Gasser, Leutwyler, NPB603,125 (2001)√
s < 0.8 GeV (Parameterization I)

Dark Green: Yndurain, Pelaez, PRD68,074005 (2003)
Similar phase shifts to Unitary χPT results√
s < 0.9 GeV (Parameterization II)

No axial vector 
exchanges



To improve the precision in the f0(980) region we need to work
out γγ → π+π− as well



Error bands include:
Uncertainties in the parameterizations CGL, PY and Hyams et al.
The uncertainties in φ0(s) above sK
The bound σ(γγ → π0π0) ≤ 40 nb at s1
c0 and c2 calculation employing either f

2
π or f

2.

Calculation of the coupling:

Analytical extrapolation to the second Riemann sheet where the σ pole locates, sσ
Unitarity 4m2

π ≤ s ≤ 4m2
K

F0(s+ i²)− F0(s− i²) = −2iF0(s+ i²)ρ(s+ i²)T 0II(s− i²)

eF0(s) = F0(s) ¡1 + 2iρ(s)T I=0II (s)
¢
.

Continuity in the change of sheets: F0(s− i²) = eF0(s+ i²), TI(s− i²) = TII(s+ i²)

4. Γ(σ → γγ)

On the second sheet: eF0(s) and T I=0II (s)



Around sσ
T I=0II = − g2σππ

sσ−s
eF0(s) = √2 gσγγgσππsσ−s

Caprini,Colangelo,Leutwyler PRL96,132001 (2006)
sσ = (441

+16
−8 − i 272+9−13)2 MeV2 (CCL)

g2σγγ
g2σππ

= −1
2F0(sσ)

2
³
β(sσ)

2

8π

´2
M.Albaladejo, J.A.O. arXiv:0801.4929 [hep-ph] (talk of M. Albaladejo, Friday 15.05h)
sσ = (456± 6− i 241± 7) MeV2 (AO)

Ratio independent of the strong coupling used
This is not used in our dispersive approach.

| gσγγgσππ
| = (2.53± 0.09) · 10−3 CCL

M. Pennington, PRL97 (2006) 011601,
it is a 20% Bigger

Pennington does not include axial-vector
exchanges (1++ and 1+−)→ 10%
The other 10% comes from the improvement
in our approach.

| gσγγgσππ
| = (1.85± 0.13) · 10−3 AO| gσγγgσππ

| = (2.02± 0.15) · 10−3 CCL



Γ(σ → γγ) =
|gσγγ |2
16πMσ

It requires to know |gσππ |

AO: |gσππ| = (3.17± 0.03) GeV

All is given in terms of sσ. dg/ds is a known and fixed function.

|gCCLσππ | = |gAOσππ |1.003, they are the “same”

Around a factor of 2 too large

Albaladejo, Piqueras and J.A.O., forthcoming

g2σππ = −(sσ −m2
π/2)

2/f2/
³
1− dg

ds
(sσ−m2

π/2)
2

f2

´

Pennington for CCL: Γ(σ → γγ) = 4.09± 0.3 KeV
40% difference due to the difference in the ratio |gσγγ/gσππ |2
Different value for |gσππ| = 3.86 GeV when squared → 50%.

Γ(σ → γγ)AO = (1.50± 0.21) KeV Γ(σ → γγ)CCL = 1.85± 0.28 KeV

Γ(σ → γγ) = 1.6± 0.2 KeV



Γ(σ → γγ) ' (1.4− 3.2) KeV
Recently Mennessier,Minkowski,Narison,Ochs arXiv:0707.4511 [hep-ph]

5. Conclusions I

• Drastic reduction in the uncertainty of σ(γγ → π0π0) for
√
s & 0.5 GeV

due to the uncertainty in φ0(s) above sK .

• The method is also adequate to study the f0(980) resonance.
L. Roca, C. Schat and J.A.O. , to appear soon.

• One can discern between different I = 0 S-wave ππ parameterizations
when new and more precise data become available.

• We have introduced three subtractions constants (more precisision)
instead of the two used previously in the literature.

• Γ(σ → γγ) = 1.6± 0.2 KeV



Maini, Polosa in PRL93,212002 (2004) have a four-quark model
where the OZI rule requires that the f0(980) has an almost van-
ishing coupling to ππ.
Is there really a suppression of the coupling of the f0(980)
to ππ due to the OZI rule (large Nc)?

With only one free parameter
the a0(980), f0(980), σ are generated
and the S-wave scattering data
in I=0 and I=1 are reproduced

6. The ratio f0(980)→ ππ/f0(980)→ KK̄

In E. Oset and J.A.O. NPA620,438(’97) by unitarizing CHPT one
obtains simultaneously the σ, f0(980) and a0(980). The f0(980)
appears as a pole below the KK̄ threshold that develops an imag-
inary part because of the coupling to ππ

Chiral Symmetry+ Unitarity+Analyticity



At the f0(980) pole position:
T (ππ→KK̄)
T (KK̄→KK̄) =

γ(f0→ππ)

γ(f0→KK̄) =
1/
√
3

1+g13s/4f2

Γi =
|γi|2βi
16πMf0

gi =
1

16π2

³
αi + βi(s) log

βi(s)−1
βi(s)+1

´
αi = − log(1 +

q
1 +m2

i /Λ
2
χ)
2 − log m

2
i

Λ2χ
,

m1 = mπ, m2 = mK , Λχ 'Mρ ' 0.8 GeV
G is O(N0c ) by its definition
T = V + V GT implies that at the pole position sR
V ∝ sR/f2 scales as N0c ,
Otherwise there is a mismatch between the running in

Nc of T on the left and right



The ratio γ(f0(980)→ππ
γ(f0(980)→KK̄

=
1/
√
3

1+3sRg1/4f
2 = O(N0c )

does not run with the number of colours,

This ratio ' 1/3

The ratio of couplings is O(N0
c )

No OZI rule is involved
(This rule is a requirement of the large Nc limit)

Thus, Unitary CHPT and its phenomenologycal success
(strong interactions, J/Ψ decays, φ decays, D decays, etc...)
show that the semiquantitative four quark picture
(one of the many four quark pictures)
of Maiani et al PRL93,212002 (2004) is not adequate.



7. Scalar Glueball
M. Albaladejo, J.A.O., arXiv: 0801.4929 [hep-ph]

Data are fitted up to . 2 GeV. (370 data points for 12 free parameters).

Talk by M. Albaladejo (much nicer format!), Friday, 15.05 h

I=0, 1/2 S-wave

I=0: ππ, KK̄, σσ, ηη, ηη0, η0η0, ρρ, ωω, K∗K̄∗, ωφ, φφ, a1π, π∗π: 13−channels!

I=1/2: Kπ, Kη, Kη0

One tree level octet at 1.3 GeV. Fixed from the previous study to
K−π+ → K−π+ of Pich, Jamin and J.A.O. NPB587,331 (00).
Another octet at 1.9 GeV, the mass is fixed from the same ref.



ππ I=0 S-wave

ππ → KK̄

ππ → ηη, ηη0

K−π+ → K−π+



Poles MeV
σ (456± 6− i 241± 7)
f0(980) (983± 4− i 25± 4)
f0(1370) (1466± 15− i 158± 12)
f0(1500) (1602± 15− i 44)
f0(1710) (1690± 20− i 110± 20)
f0(1790) (1810± 15− i 190± 20)
κ (708± 6− i 142± 8)
K∗
0 (1430) (1435± 6− i 142± 8)

K∗
0 (1950) (1750± 20− i 150± 20)

f0(1370), K
∗
0 (1430) are pure octet members

The first octet (K∗
0 (1430), f0(1370), a0(1450)) is not mixed, pure octet.

f0(1370): Physical(bare) couplings
|γπ+π− | = 3.6(3.9), |γK0K̄0 | = 2.2(2.3), |γηη| = 1.7(1.4), |γηη0 | = 4.0(3.7), |γη0η0 | = 3.7(3.8)
K∗
0 (1430): Physical(bare) couplings

|γKπ| = 4.8(5.0), |γKη| = 0.9(0.7), |γηη| = 3.8(3.4)

a0(1450): with a less developed chiral approach see Oset, J.A.O. PRD60,074023(1999)



f0(1500) and f0(1710) have similar couplings
They are the same pole but seen on different Riemann sheets
These poles connect continuously

GeV f0(1370) f0(1500) f0(1710)
|gπ+π− | 3.59± 0.16 1.31± 0.22 1.24± 0.16
|gK0K̄0 | 2.23± 0.18 2.06± 0.17 2.0± 0.3
|gηη | 1.7± 0.3 3.78± 0.26 3.3± 0.8
|gηη0 | 4.0± 0.3 4.99± 0.24 5.1± 0.8
|gη0η0 | 3.7± 0.4 8.3± 0.6 11.7± 1.6

The f0(1500) appears at 1.5 GeV because of the opening of the
ηη0 treshold that cuts the 1.6 GeV pole. The sheet that connects
with the physical one is another.
Because of this its effective width is larger than the one from the
pole position → 105 MeV.

Their couplings to pseudoscalar-pseudoscalar nicely match
with the predicted supression of G0 → q̄q ∝ mq

Chanowitz PRL95,172001 (05)
(G0 → s̄s)/(G0 → n̄n) ∝ ms/2m̂ ' m2

K/m
2
π



With a pseudoscalar mixing angle sin β = −1/3
η = −ηs/

√
3 + ηu

p
2/3

η0 = ηs
p
2/3 + ηu/

√
3

ηs = s̄s and ηu = (ūu+ d̄d)/
√
2.

gss is the production of ηsηs, gsn that of ηsηu and gnn for ηuηu,

gη0η0 =
2

3
gss +

1

3
gnn +

2
√
2

3
gns ,

gηη0 = −
√
2

3
gss +

√
2

3
gnn +

1

3
gns ,

gηη =
1

3
gss +

2

3
gnn −

2
√
2

3
gns .

If the chiral suppression of M. Chanowitz, PRL95,172001(2005)
operates one expects that |gss| >> |gnn|. On the other hand, the
OZI rule suppresses the coupling gns. Taking the couplings of
the f0(1500) pole one obtains gss = 11.5 ± 0.5, gns = −0.2 and
gnn = −1.4 GeV. For the f0(1710) pole one has gss = 13.0± 1.0,
gns = 2.1 and gnn = 1.2 GeV.

ηs = s̄s and ηu = (ūu+ d̄d)/
√
2.



KK̄. From the colour wave function of a kaon s̄iu
i/
√
3

in order to get a colour singlet s̄s ūu a factor 1/3 of suppression appears.
There is an additional 1/2 factor because ηsηs is s̄ss̄s with two s̄s
We then have gK0K̄0 = gss/6 ' 2.0 GeV in very good agreement with the table

• f0(1370) is not mixed, pure octet
• f0(1500), f0(1710) are scalar glueballs
The same glueball but seen on different Riemann sheets
• σ, f0(980), a0(980) and κ constitute the lightest scalar nonet.

The chiral suppression mechanism is also seen in quenched lattice
QCD prediction for the pseudoscalar-pseudoscalar couplings of
Sexton, Vaccarino, Weingarten PRL75, 4563 (1995) for the scalar
glueball around 1.7 GeV





Different LI(s) contributions

Pennington overlooked the 1++ and 1+− axial vector exchanges altogether



Regarding the f0(980)

c0 is fixed from the position of the Adler zero in FN (s) at m
2
π, m

2
π/2 or 2M

2
π

Then φ0(s) must be precisely given such that this cancellation occurs
But φ0(s) is not precisely known for s > sK

With the original approach of Pennington and Morgan it is a metter of fine tuning

F0(s) = L0(s) + c0sω0(s) +
s2

π

∞
4m2

π

L0(s
0) sinφ0(s

0)
s02(s0−s)|ω0(s0)|ds

0

In our approach one does not need to impose such specific knowledge of φ0(s) for s > sK
The f0(980) is isolated in the last term and its size controlled by F0(s1)− L0(s1)



We follow here Y2 and diagonalize the 2× 2 S-matrix.
We also apply it to calculate inelasticity errors.
We give the expressions directly in terms of observables.

T =

µ
1
2i (ηe

2iδπ − 1) 1
2

p
1− η2ei(δπ+δK)

1
2

p
1− η2ei(δπ+δK) 1

2i (ηe
2iδK − 1)

¶
Orthogonal Matrix C C =

µ
cos θ sin θ
− sin θ cos θ

¶
Diagonalization

cos θ =

£
(1− η2)/2

¤1/2h
1− η2 cos2∆− η| sin∆|

p
1− η2 cos2∆

i1/2 ,
sin θ = − sin∆√

2

η −
p
1 + (1− η2) cot2∆h

1− η2 cos2∆− η| sin∆|
p
1− η2 cos2∆

i1/2 ,
sin θ → 0 as

p
(1− η)/2 for η → 1



If δπ(sK) ≥ π one has the zero at s
1/2
1 < 2mK , this introduces a minus sign

due to the prefactor s1 − t.

Eigenvalues

λ = (−1)θ(δπ(sK)−π)

e2iδ(+) = S11
1 + e2i∆

2

·
1− i

η
tan∆

q
1 + (1− η2) cot2∆

¸
e2iδ(−) = S22

1 + e−2i∆

2

·
1 +

i

η
tan∆

q
1 + (1− η2) cot2∆

¸
One has then two channels diagonalized that are elastic

Notice that Γ02 is 0 at sK , this is why we cannot fix the ± in front of |Γ02|

Γ0 ≡
µ
Γ01
Γ02

¶
= CTQ1/2F = CTQ1/2

µ
Fπ
FK

¶
Fπ = q−1/2π

¡
λ cos θ |Γ01|eiδ(+) ± sin θ |Γ02|eiδ(−)

¢
FK = q

−1/2
K

¡
± cos θ |Γ02|eiδ(−) − λ sin θ |Γ01|eiδ(+)

¢

δ(+) follows rather closely ϕ(s)



Shift in δ(+) because of inelasticity

Fπ = λ cos θ |Γ01|eiδ(+)(1 + ² cos θ)
³
1 + i ² sin ρ

1+² cos ρ

´
With ² = ± tan θ

¯̄̄
Γ02
Γ01

¯̄̄
tan θ → 0 when η → 1. First order correction to δ(+)

|Γ02/Γ01| . |et11 tan θ/et22| ' | tan θ| < 1

δ(+) → δ(+) +
² sin ρ

1+² cos ρ

ρ = δ− − δ+

1 + i ² sin ρ
1+² cos ρ = exp

³
i ² sin ρ
1+² cos ρ

´
+O(²2)

δπ(sK) < π

δ(+) ≥ 3π/4

Correction: 6%×2→ 12%

δπ(sK) ≥ π

δ(+) ≥ 3π/2

12%× 2→ 25%

• 1.1 ≤ s1/2 ≤ 1.5 GeV, η ' 1 experimentally (Hyams, Grayer).
Typically η & 0.8 Then ² ' 0.3.



ω(t) = ω(0) + ω(0)0t+ t2

π

+∞
4m2

π

Im[ω(s)]
s2(s−t−i²)ds

Fixing s1

Both ω(0) and ω(0)0 are real
The only points where ω(t) can vanish are those
for which φ0(s) = 0. Otherwise the integral
develops an imaginary part that cannot be cancelled.

Around sK the only point is s1


