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Introduction

Introduction

EFT with short- and long range few-nucleon interactions is quite
advanced in vacuum

Pion-nucleon interactions in nuclear matter are already largely exploited,
considering chiral Lagrangians

For a recent review: Epelbaum,Hammer,MeiBner, Rev.Mod.Phys.81(2009)1773
Commonly, free parameters are fixed to nuclear matter properties

Many important results and studies of nuclear processes have been
accomplished.
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Introduction

Nonetheless the development of a Chiral EFT in nuclear matter is a left
problem of foremost importance:

@ Need of a in-medium power counting to include both short- and
long-range multi-/V interactions

@ The power counting has to take into account
@ In reducible diagrams for N N-interactions N-propagators are
1 -2
enhanced, WO —Entic ~ O(p )
S. Weinberg, Nucl.Phys.B363(1991)3

@ In-medium multi-/V interactions must be taken into account
consistently with the vacuum Machleidt, Entem, J. Phys. G 37 (2010)
064041: stress that 3NF is one of the most important outstanding issues in
chiral EFT approach to nuclear forces
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Introduction

@ Any number of closed nucleon loops can be arranged in any way

@ Pion-nucleon interactions have to be included with the same
requirements
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= Power Coun.
Chiral Power Counting

Chiral power counting

By = [k|?/2m

Ok — &s) | (& — k) 1 ,
iz — ] — = — 42 —F ia—
Go(k’) 3 ko—Ek+Z€+k0—Ek — 1€ ko—Ek+Ze+ 7TZ(5(]€0 k) 0(53 k)

If ko ~ O(p): Standard counting — Go(k) ~O(p~1) 1/|p|
If ko ~ O(p?): Non-standard counting —  Go(k) ~ O(p~2) 1/Ip| x 2m/|p|

% + + + ... where z :>< +

The NN reducible diagrams are

very abundant in the nuclear

medium

Every nucleon propagator Go(k);, ~ O(p~2)

Despite this the chiral power counting is still bounded from below
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Power Coun.

Chiral Power Counting

Concept of in-medium generalized vertex (IGV):
thick line: Fermi sea insertion, thin lines: full in-medium
nucleon propagator, filled circles: bilinear nucleon vertices

JAO,Phys.Rev.C65(2002)025204; MeiBner,JAO,Wirzba,Ann.Phys.297(2002)27

Let H be an auxiliary field for heavy mesons responsible for short range
2N, 3N, ... interactions, the H-"propagator” counts as O(p°)!]

=X A

Short-range interactions enter the counting via bilinear vertices of

H

O(Z po) %) ) %) (e} )
Lopp=> L +3" 200 +37 250+
n=1 n=1 n=0
Lo, = —%CS(NTN)Q - %CT(NT&'N)2
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Power Coun.
LChira\ Power Counting

o §F ~ MTI' ~ qr ~ O(p) 9 Aﬂ'(kZ) ~ O(k72)
o Go(k) ~O(p~?)
? m~47rf7TNCN7TwaNO(pO)

1% V, Ve vV,
v=ALy + 4L, — 2L+ Y di— > 2mi+ Y L+ 3
=1 =1 =1 =1

V, number of IGV.

m; number of nucleon propagators (minus one) in the i;, IGV.
Ly, Ly number of heavy meson and pion loops.

I number of internal pion lines.

V' number of bilinear vertices.

d; chiral dimension of a bilinear vertex.

V= number of purely mesonic vertices.

¢; chiral dimension of a purely mesonic vertex.
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Power Coun.

Chiral Power Counting

A Cluster is a set of IGV joined by Hs. Its number is V.

Vo
Lp=Ig—=Y (Vi—=1)=Ig-V,+ Vs,
i=1
Ly=IL~V,=Va+1,
L+ Le=Ig+I—Ve=V,+1.

Cluster 1 Cluster 2

Figure: 1GVs separated in two clusters. Here V, =5, Vo =2, I =3, Iz = 3
and E=1. Ly =2and Ly = 0.
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Power Coun.

Chiral Power Counting
51’4‘ ~ ]\[ﬂ ~ qr ~ O(IJ)

Order p” of a diagram:!!l

5 VB
v=4—Ec+y (ni+li—4)+) (dit+vi+twi-2)+V,
i=1 i=1

v is bounded from below (modulo external sources):

@ Adding pions to pionic vertices: n; > 2, [; > 2

@ Nucleon mass renormalization terms: d; > 2, w; =0, v; > 0

© Adding pions to pion-nucleon vertices: d; > 1, w; =0, v; > 1

@ Adding heavy mesons to bilinear vertices: d; > 0, w; > 1, v; > 1 IGV
© V, = adding 1 IGV rises the counting at least by 1

The actual order of a diagram may be higher, due to O(p~") nucleon
propagators from standard-yxPT.

3 & 4 give rise to the resummation of certain types of diagrams!
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Power Coun
hiral Power Counting
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Power Coun.
L= GhirailPower Counting

Adding one extra IGV

2m . 2m k> 2m g
K2 % k2 6n2 k2 4f2
Relative factor (Extra factor of 71)
gimk k- k
1272f2  23wf. A

A=vrf, v~0(Q1)
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Power Coun.
L= GhirailPower Counting

Twice iterated pion exchange:

m m k3 7% N2
— s 2 L
k2 k2 62 ( 1,/;{) 10
The same factor as before
_,9am Kk
A frdfr ™

In the medium: imaginary part is suppressed (hole-hole part) and a real
part mép /4m? stems

gam &p _&r
Anfrdnfe  3mfx

k ~ M, ~ &g is the most important region for this physics

dr/m rk?/2 rapidly overcomes —1/a
(Ja] >>1)

T ~
MV I e —ip

Sum over states below the Fermi seas: The measure fk2 dk kills low
three-momenta.
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Power Coun.
L= GhirailPower Counting

The power counting equation is applied increasing step by step V,.

Augmenting the number of lines in a diagram without increasing the
chiral power by adding:
© Pionic lines attached to lowest order mesonic vertices, ¢; = n; = 2

@ Pionic lines attached to lowest order meson-baryon vertices,

dl‘ =V; = 1
© Heavy mesonic lines attached to lowest order bilinear vertices,
di = 0, w; = 1.

Source of non-perturbative physics. These rule give rise to infinite
resummations.
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Chiral Power Counting

Nuclear matter energy density - Contributions

v, =1 v, =1
o(p°) o®°)

Leading Order Next-to-leading Order

vV, =2

6
o) 31
Next-to-leading Order
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Non-Perturbative methods

NN interactions:

LO in the chiral expansion: d; =1, v; =1, w; =0 OPE
d; =0, v; =1, w; =1 Local Terms

T-X-T IENEE

A NN Partial Wave has:  Left-Hand Cut (LHC) p? < -m2/4
Right-Hand Cut (RHC) p? >0
Unitarity Cut

// % Elastic Case
“m2 ImTy (¢, 0,8)"" = —M for p2>0
1 47
Fixed by kinematics
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Non-Perturbative methods

Once Subtracted Dispersion Relations

Tyr(€,0,8) = [Nos(€,0,8) ™" +-g]

= [[+ Ny (€,£,8)-g] ™" Nur(€,¢,5)

_opy D) [ e ‘ A
9(4) = (D) 47?2 A d (k? — A —ie)(k®? — D —ie)
0
A
= go — Zm4ﬂ_ ) =0
e mA—D) [, k
Ty (A) =Ty, (D)*T 0 dk (k2 — A —ie)(k? — D)

E

(A—D) /'W: J”l»_w ImTy /T 4
J. Y E—A—io(k2 - D)

™
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Non-Perturbative methods

Subtraction constants

One for every S-wave. Determined from the scattering lengths.
0 for higher partial waves. T;;(A =0) =0 for £ or ' > 0

Integral equation for N (¢, ¢,5):

Interaction kernel: N, (/. 7, 5) Unitarity loop ¢: @
Tyr =[Ny +9]

ImNJ] =

<77

Nyz)? m2
||TjII||2 ImT;; = |1 + gNJ[|2|mTJ] s |p‘2

Nji(A) = Nyi(D) +

A—D /mi“ I ImTy1(k2) |1 + g(k*) Ny (k%)
. (k2 — A —ie)(k2 — D)

s
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Non-Perturbative methods

The LHC Input: ImT;;(p?), p? < —m2/4 NN

Intermediate states contain pionic lines.

It can be calculated perturbatively in CHPT.
Crossed dynamics NN — NN N ~
t, u:mi, >4m,2T,...

Two Subtraction Constants?: g(D) and N;;(D)

There is only one independent subtraction constant, T;7(D)
Analogy with Renormalization Theory:

D is like the “Renormalization Scale”

g(D) is like the “Renormalization Scheme”

Ny1(D) depends on g(D) but T;;(A) is g(D) Independent

S-waves: Nyi(0) = ——

D =0 is tak )
0 is taken Higher partial waves: N;;(0) =0
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Non-Perturbative methods

The convergence in the iterative solution for N ;; improves for

MM m_. ) =0

go = I or (/(7 i

m + g0 = Fj1(A) is independent of g

It is enough to know N, (A) Ny(A) =
for just one value of gg

1
F(A)—go
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L= Non-Perturbative methods

Algebraic Approximate Solution for N;;(A)

It yields Unitary xPT (UCHPT): Regulator Dependent Solutions

JAO,Oset,NPA620(1997)438; PRD60(1999)074023; JAO,MeiBner,PLB500(2001)263.

Nyr m2
ImN;; = ||T || ImTy |1+gNJI|2ImTJ] s |p‘ <_T .

A-D / L Im T (k )1+ g(k* )N (k)2

Nyr(A) =Ny (D) + (k2 — A —ie)(k? — D)

T

We take go such that g(p?) = 0 for p> ~ —m2 — |p| ~ im

g(p2) =go — l% ~0 —— natural value: go ~ —WZ:”

= —0.54 m2

g is treated as small along low-energy LHC, ~ O(p)

An approximate algebraic solution for N results in powers of g
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Non-Perturbative methods

Two expansions: The Chiral one and that in powers of g

We join them simultaneously, g(p?) ~ O(p)

LOZ |1+gN]]|2 — ]. 1=>< + :

A\v_‘/';‘(i) = NJ](D) —+

A—D [~m:/4 ImT; 7 (k2)
/ dk* — . 5
. (k2 — A —ie)(k? — D)

NJ[ = Ny? + Ngll) + O(p2)
Tyr = L) + Ly} + O(")
TJ]ZNJ]—NJI'Q'NJI+---

=NQ+NY NP g ND 400 +

0) _ 7(0) (1) (1) (0) (0)
Ny =Ly , Ny =Ly +N;-g-Nyy
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Non-Perturbative methods

We are providing approximate solutions to
_ —1 2 2
Tyr=[Nj' +9] < Ny =Tu|l+gNy| —|Ny|g*

They coincide with those from the DR
® Nj(A) only has LHC
® With the same discontinuity along the cut

Algebraic approximation. Chiral counterterms enter directly in Ny

Co ™ 16mgo/m + 3/as + 1/ay
¥ 167 (go + m/(4may)) (g0 + m/(4may)) ’
m l/as—l/at

T 167 (g0 + m/(4ma.))(go + m/(4may))

90| > 1/ay, [L/as| — |Cs| ~1/|go| > |C7| = O(m/16ma.g5)
The O(p°) counting for C's, Cr is not spoiled by iterating them.
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Non-Perturbative methods

This formalism can also be applied to production diagrams
JAO, Oset NPA629(1998)739 , JAO PRD71(2005)054030

Trr = D;}NJI — Fyr = D;} -&51, Dyr=14+Nyig,

Eor="y_ &
k=0

o«

4 ¥

exact + fact / exact + exact) fact

0 1 1 1 0)2 0
f]? +§Sl) = DL(JI) - {LS} +N§1) 'L107N§I)} DLy

In-medium unitarity loop Q:

9= L1,y — Lio= Lio,y + Lio,m(&1) + L10,m(&2) + L1o,a(&1,E2)
= Lio,pp(&1,€2) + Lio,nn(é1,€2)
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L E/a

L= Nuciear matter energy per particle

Nuclear matter energy density - Contributions

V,=1 V,=1
o(p°) ow°)
Leading Order Next-to-leading Order

1 2
v, =2
or°) 31

Next-to-leading Order
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E/A

L= Nuciear matter energy per particle

Nuclear matter energy per particle

Z Z / d kl dk? lklneikgnGO(kl)alGO(kQ)aQ

Ul 02 1,02

X TNN(klalal, k202a2|k101a1, k202a2) .

=3(ki+ke) , p=3(ki— ko)

0(|a+p‘_£a1) |a—p| §a2
2a° — E(a+p) — E(a—p) +ie

d 0
/%dep)alao(a—p)az -

_ 0(8a — a2+ PDO(€as — |2 —pl)
2a° — E(a+p) — E(a—p) —ie

A =2ma® — a®
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LNucIear matter energy per particle

3 3
£g = —4i / @o d7p dA ian TS132 (b, a; A)[;
01,09 at,an’ (2m)3 (2m)3 27 A — p2 + ie
0 - 0 —la—
- oy ZlatPDF ey Z 12T PD oy risca — p?)0(6a — Ia+ PDO(Eay — \a—pn} :
A — p2 +ie

2id

A(lalyy  B(laD)

i S Y TN [ Y TN
i —— p,a; = _ p,a;
—oo2m A —p2 4ie 192 Cpr A —p2 4ie 192

ciAn
g102
- — T (p,a; A)
%Izzw A —p2 4ie F192
010 o
B /B(a) dA TG133(p a5 A) — Ta123 (P, & A+2i0)
JA(a) 2= A — p2? + ie
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E/A
LNucIear matter energy per particle

; d3q
L% A+ 200 - L% a) = —m [ (a3 (6a1 ~ la+aD0(Eay — la—a)

1 1
x _
A —q2 + ie A —q2 — ie

d3
= izxm [ (27r;139(5(11 —la+aD0(Eay — la —al)s(A —a?) .

3
E=-43 3 @I+ (SW/” 29 gic., — P +al)

1,J,4,Si3=aj+asz (2 ) (271')

0(§a; — [P —dl) |:T;31|(q2’1:>2’q2)

dsp 1- 9(5041 — |P +p|) - (éaz lP p|) i3 |2
+m/ (2m)3 p? —q2 —ic T3 e 2 )

(£,¢,9)
It is real because of unitarity and Pauli-exclusion principle, involving both terms
between the square brackets.
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E/A
= Nuclear matter energy per particle

d3p 1 is |2
m/ (27)3 p? — q2 — i€ ‘TJI’(PQ,Pz,qz)
is divergent.

Expansion around p? — oo.

}31(p2,P2,q2) = Tﬁ(+oo,P2,q2) +0O(lp|™?)

d*p 1 . o
m/ (271-)3 2 _ q2 _ i€{|TJ‘5I‘(p27p27q2) — |TJ3I’(+OO,P2,q2)

_g( ‘T}I’ (+00,P2,q2)




/A
L Nuclear matter e

gy per particle

Symmetric Nuclear Matter

£/p MeV]

E/A=

p [fm=3]

£/p Mev]

E/A=

Pure Neutron Matter

60

50

40

30

20

10

T T
Urbana

LO
NLO (g0=-0.50)

NLO (g0=-0.62)
NLO (g0=-0.75)

p [fm—3]

More stable for pure neutron matter (less dependent on go).
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E/A

= Nuclear matter energy per particle

&3

ap &
=43 > (@J+1x Su)/ q39(£a1—IP+qD

3
1,J,0,S i3=a1+as (27’[’) (27")

016 = 1P = a) |~ .0

ddp 0(€ay — ‘P+p|) +9(§042 P —pl) iz |2
+of s SR o
d’p 1 is
[ ot I |<p2 o2y~ el T o | + 01T

o

go in NN scattering Jo, particle-particle |ntermed|ate state
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E/A
LNucIear matter energy per particle

Pure Neutron Matter Symmetric Nuclear Matter
60 T T T T T 25 T T T T T T T
20 -
50 -
15
40 | 10
g g °f
2 3 2
< <
n} a o
20 q 5 q
10 ]
10 - 4
15 - N ]
0 1 1 1 1 1 1 ol
0 005 01 015 02 025 03 035 0 005 0.10.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-3 -3
p [fm™"] p [fm™]
Akmal,Pandharipande,Ravenhall, PRC 58(1998)1804
PNM: go = o ~ —0.6 m? 20°€/p
©go=go = —0.6 mx K=& —-—| =240— 260 MeV

SNM: (g0, §o) ~ (—1.0, —0.5) m2 9 ¢,
exp.250 £+ 25 MeV
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(dq)

In-medium chiral quark condensate

In-medium chiral quark condensate - Contributions

V=1
o®°)
Leading Order

V,=1

o(»°)
Next-to-leading Order

wa

K & OO

V,=2
o@®°)
Next-to-leading Order
<S5 N~
> =<
5 6

mq(Qqiq; Q) = mq(0]giq;]0) — mq(E1 + Zo)
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(aq)
L In-medium chiral quark condensate

d*ky d*ks

(1

L 1 ik ikn 2]
5T 73 > 2 /(%)4 (2m)i Golkr)ay Golkz)as dko[ Z /(27@4

@1,x2 01,92

X

alaz;a/lu;(k)QB[ch(sU + ('r‘l'” 'ra/ o 1Go(k1 — q), . Go(k2 + (1)(1/2 VUL/1 /2,0(1&2( k)}
_ d*ky d*ka 10, k0
:‘f Z Z / (2m)4 (27r)4e 121 Go (k1) ay 2B [2c10:5 + C5TLJTH1Q1}GD(I€2)“2

ay,03 01,02 "

dko[ Z /(%)4 vy (G0 (k1 = 0)ag Golka + D)oy Vot g (=)

Fo
Fo

=5 the derivative acts directly in the scattering amplitude.
=4 there is an integration by parts (extra sign).

= =
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(aq)
L In-medium chiral quark condensate

This is a general argument following from the power counting

GUG)
EH®

Cancellations happen explicitly for all orders in UxP Tl
Feynman-Hellman theorem:

_ _ mq d d
mq(Qqig;[2) —mq(01diq;10) = == { 8ij 7= + (13)ij 75— | (pm + ),
(Qqg5(2) pPON QCs(TS)z‘j( ) — 1 9&(p, mx)

POz om2

(Ol@igsl0) — ~ m2 f2 [z
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(dq)
L In-medium chiral quark condensate

Long-range NN interactions dominate in the quark condensate

calculation.
Kaiser, Homont, Weise PRC77(2008)025204; Plohl, Fuchs NPA798(2008)75

We offered an explanation for this observed fact:
@ The quark mass dependence of nucleon propagators cancels
Z4+Z25=0
@ The short distance part |p|?> — oo cancels when taking the derivative

9E(p, mx)

2
om2
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In-medium chiral quark condensate

Pure Neutron Matter Symmetric Nuclear Matter
1 T T T T T 1 T T T T T T
08 b 08 —
v,
Y,
Q

~| ~| N
sle Ele %
oS 0.6 |- B o> 0.6 |- ‘\ 1
I I I I )
sk sk \

04 F A 04 F R i

02 — 02 -

N
N
Y N
0 L L L L L L 0 L L L L L L L3 N
0 005 01 015 02 025 03 0 0.050.10.150.2 0.25 0.3 0.35 0.4 0.45 0.5
-3 -3
p [fm™] p [fm™]

Right: (Q|gq|Q?) LO, NLO(go = —1.0m2),
NLO(go = —0.5m2).
The quark condensate is independent of gg

Left: (Q]au|Q) LO, NLO(go = —0.6m2);
(Q]dd|Q) LO, NLO(go = —0.6m2).
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LAxia\ Coup.

Axial-vector couplings

Contributions to the in-medium pion axial couplings

Vp =1

oot O

Leading Order

1
Vp =1
o> U/
Next-to—-Leading Order 2a 2b 3
7-WFR

vV, =2
o(p®)
Next-to—-Leading Order

""" SOt 3K

5 6



Lectures on Nuclear and Hadron Physics

Axial Coup.
LAxTal—vector couplings

szl

o) Oy

Leading Order

Diagrams 1-3 discussed in MeiBner,

V, =1 e Oller, Wirzba ANP297(2002)27
o) O O~ O (2002
2a 2b 3

Next-to-Leading Order

Diagram with 7m-WFR also discussed
@‘M O there (NN interaction contributions
mWFR cancel as shown in [1])

2
Vp, =2 R

oS LD . . .
Nex‘ﬁoieadmgomer @ Diagram 4 is one order too high

Diagrams 5—-6 mutually cancel

g
Il
I
—

1- pﬁo(o.% + 0.04)}
}

fo=fai1- L123+007)
po
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== 7 Self-Energy

Contributions to the in-medium pion self-energy

Contributions to the in-medium pion self-energy

a q .
Vp =1 A . 1,‘1\
\ i DAY
0w o O O
Leading Order
1 2a 2b

Vp :5 1
O(p?)
Next-to-Leading Order

Vo :r 2
O(p?)
Next-to-Leading Order

B B=gq

9 10

NN-interactions cancel at O(p®). Linear density approximation holds up to NLO
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I*App\icatior\ to Neutron Stars

Application to neutron stars

Dobado, Llanes-Estrada, J.A.O., sent for publication to Phys. Rev. D
Spherical symmetry inside the star

Equation of Tolman-Oppenheimer-Vokoff for the hydrostatic equilibrium
inside the star

Tolman, Phys. Rev. 55 (1939) 364

Oppenheimer, Volkoff, Phys. Rev. 55 (1939) 374

dP _ Gy (e(r) + P(r))(M(r) + 47r°P(r))

dr — 2 1 — 2GNM(r)

M (r) is the mass accumulated at distance r
e(r) is the mass-energy density

Boundary conditions: P(0), input ; P(R) =0, with R the radius of
the star
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Application to Neutron Stars

An equation of state is needed to relate P(r) with &(r)
This is provided by the chiral nuclear EFT.

Our study was triggered by the recent discovery of a neutron star with
1.97(4) solar masses.

Demorest et al. Nature 467 (2011) 1081

which is the new experimental upper bound for the mass of a neutron star

Does the chiral EFT support such a high mass for a neutron star?

- - - Free neutron gas
<<<<<<< ChEfT, no constraint
25— | — Causal ChEfT
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Application to Neutron Stars

Upper limit on G in strong gravitational fields

We use the chiral EOS and the stiffest equation of state compatible with
causality above kr > 600 MeV

OP/0p=c
P = 02(/) - pmaz) + Praa
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Application to Neutron Stars

The gravitational constant remains (so far) a constant.
Newton-Cavendish constant normalized by its accepted value
6.6738(8)N(m/kg)?.

NI i

g (mi)

Left point: laboratory on Earth.
Middle: orbital determinations of binary pulsars.
Right: existence of a neutron star with mass 1.97(4) solar masses.

At the intense gravitational field in such neutron star, the gravitational
constant cannot exceed 8% of its value on Earth at 95% confidence level.
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Summary & Outlook

"]

¢ € © ¢ ¢ ¢ ¢

It is developed a power counting scheme for nmEFT combining
short- and long-range multi-N interactions

LO Regulator independent NN partial-waves T s.

Nuclear matter energy density (up to NLO)

In-medium chiral quark condensate (up to NLO)

In-medium f;, fs (up to NLO)

In-medium pion self-energy (up to NLO)

EOS for neutron matter supports large mass for neutron star

Quite good results at just NLO by applying non-perturbative
methods of UxPT to N N-interactions
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Outlook

@ Exact solution of N(A)
e V, = 3 contributions, 3 nucleon force (N?LO)
@ Irreducible two-pion exchange (N3LO)

@ “Genuine” 3-nucleon force (N*LO)

do +v2 +ws —2=2 and Vp=3
’ """ } """ | } """ H W (instead of 0 and 1, respectively)

o Clarify the dependence on g

@ Neutron stars, supernovas, finite temperature, other N-point Green
functions, adding strangeness...
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Summary

Future perspectives?
Personal view:

@ Follow a chiral power counting in nuclear medium systematically
(this power counting should be valid also in vacuum).

@ Do not regularize integrals with finite cut-offs (e.g. for the
particle-particle parts in two-nucleon intermediate states.)

@ This cut-off dependence should be replaced by subtraction constants
(counterterms) of natural size for the low-energy regime at hand.
A — m,.

@ This is against standard “arguments” for particle-hole expansions.
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Summary

Series of paper of the Munich group:

@ Expansion in the number of loops (perturbative calculations).
@ There is no chiral power counting.

@ They always take the standard counting for the nucleon propagators
~O(p).
Infrared enhancements are not accounted for properly (They know
and point out this in some of their works).

@ No connection with vacuum NN scattering. Ad hoc cut-off
parameter fitted to nucler matter properties.
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