Lectures on Nuclear and Hadron Physics

J. A. Oller

Departamento de Física Universidad de Murcia

July 28, 2011

Outline Lecture IV

- Introduction
- Chiral power counting
- Nuclear matter energy density
- Non-perturbative methods
- \bullet E/A. Nuclear matter energy per particle
- \bullet $\langle \bar{q}q \rangle$. In-medium chiral quark condensate
- Axial-vector couplings
- Pion self-energy
- Application to neutron stars
- Summary

Introduction

EFT with short- and long range few-nucleon interactions is quite advanced in vacuum

Pion-nucleon interactions in nuclear matter are already largely exploited, considering chiral Lagrangians

For a recent review: Epelbaum, Hammer, Meißner, Rev. Mod. Phys. 81 (2009) 1773

Commonly, free parameters are fixed to nuclear matter properties

Many important results and studies of nuclear processes have been accomplished.

Nonetheless the development of a Chiral EFT in nuclear matter is a left problem of foremost importance:

 \bullet Need of a in-medium power counting to include both short- and long-range multi- N interactions

Boson exchange models: Short range interactions are due to exchanges of heavier mesons like ρ , ω , etc

- The power counting has to take into account
- In reducible diagrams for NN-interactions N-propagators are enhanced, $\frac{1}{k^0-E_0+i\epsilon}\sim \mathcal{O}(p^{-2})$

S. Weinberg, Nucl. Phys. B363(1991)3

 \bullet In-medium multi-N interactions must be taken into account consistently with the vacuum Machleidt, Entem, J. Phys. G 37 (2010) 064041: stress that 3NF is one of the most important outstanding issues in chiral EFT approach to nuclear forces

• Any number of closed nucleon loops can be arranged in any way

 Pion-nucleon interactions have to be included with the same requirements

Chiral power counting

$$E_k = |\mathbf{k}|^2 / 2m$$

$$G_0(k)_{i_3} = \frac{\theta(|\mathbf{k}| - \xi_{i_3})}{k_0 - E_k + i\epsilon} + \frac{\theta(\xi_{i_3} - |\mathbf{k}|)}{k_0 - E_k - i\epsilon} = \frac{1}{k_0 - E_k + i\epsilon} + 2\pi i \,\delta(k_0 - E_k) \,\theta(\xi_{i_3} - k)$$

If
$$k_0 \sim \mathcal{O}(p)$$
: Standard counting \longrightarrow $G_0(k) \sim \mathcal{O}(p^{-1})$ 1/|p|

$$G_0(k) \sim \mathcal{O}(p^{-1}) \ 1/|\mathbf{p}|$$

If
$$k_0 \sim \mathcal{O}(p^2)$$
: Non-standard counting $\longrightarrow G_0(k) \sim \mathcal{O}(p^{-2})$ $1/|\mathbf{p}| \times 2m/|\mathbf{p}|$

$$G_0(k) \sim \mathcal{O}(p^{-2}) 1/|\mathbf{p}| \times 2m/|\mathbf{p}|$$

The NN reducible diagrams are very abundant in the nuclear medium

Every nucleon propagator $G_0(k)_{i_2} \sim \mathcal{O}(p^{-2})$

Despite this the chiral power counting is still bounded from below

Concept of in-medium generalized vertex (IGV): thick line: Fermi sea insertion, thin lines: full in-medium nucleon propagator, filled circles: bilinear nucleon vertices

JAO, Phys. Rev. C65(2002)025204; Meißner, JAO, Wirzba, Ann. Phys. 297(2002)27

Let ${f H}$ be an auxiliary field for heavy mesons responsible for short range $2N,\,3N,\ldots$ interactions, the ${f H}$ -"propagator" counts as ${\cal O}(p^0)^{[1]}$

Short-range interactions enter the counting via bilinear vertices of

$$\mathcal{O}(\geq p^{0})$$

$$\mathcal{L}_{eff} = \sum_{n=1}^{\infty} \mathcal{L}_{\pi\pi}^{(2n)} + \sum_{n=1}^{\infty} \mathcal{L}_{\pi N}^{(n)} + \sum_{n=0}^{\infty} \mathcal{L}_{NN}^{(2n)} + \dots$$

$$\mathcal{L}_{NN}^{(0)} = -\frac{1}{2} C_{S} (N^{\dagger} N)^{2} - \frac{1}{2} C_{T} (N^{\dagger} \vec{\sigma} N)^{2}$$

- $\xi_F \sim M_\pi \sim q_\pi \sim \mathcal{O}(p)$, $\Delta_\pi(k^2) \sim \mathcal{O}(k^{-2})$
- $G_0(k) \sim \mathcal{O}(p^{-2})$
- $m \sim 4\pi f_{\pi} \sim C \sim \pi \sim f_{\pi} \sim \mathcal{O}(p^0)$

$$\nu = 4L_H + 4L_{\pi} - 2I_{\pi} + \sum_{i=1}^{V} d_i - \sum_{i=1}^{V_{\rho}} 2m_i + \sum_{i=1}^{V_{\pi}} \ell_i + \sum_{i=1}^{V_{\rho}} 3$$

 V_{ρ} number of IGV.

 m_i number of nucleon propagators (minus one) in the i_{th} IGV.

 L_H , L_π number of heavy meson and pion loops.

 I_{π} number of internal pion lines.

V number of bilinear vertices.

 d_i chiral dimension of a bilinear vertex.

 V_{π} number of purely mesonic vertices.

 ℓ_i chiral dimension of a purely mesonic vertex.

A Cluster is a set of IGV joined by Hs. Its number is V_{Φ} .

$$\begin{split} L_H &= I_H - \sum_{i=1}^{V_\Phi} \left(V_{\rho,i} - 1 \right) = I_H - V_\rho + V_\Phi \ , \\ L_\pi &= I_\pi - V_\pi - V_\Phi + 1 \ , \\ L_H + L_\pi &= I_H + I_\pi - V_\pi - V_\rho + 1 \ . \end{split}$$

Figure: IGVs separated in two clusters. Here $V_{\rho}=5$, $V_{\Phi}=2$, $I_{\pi}=3$, $I_{H}=3$ and E=1. $L_{\pi}=2$ and $L_{H}=0$.

$$\xi_F \sim M_\pi \sim q_\pi \sim \mathcal{O}(p)$$

Order p^{ν} of a diagram:^[1]

$$\nu = 4 - E_{\pi} + \sum_{i=1}^{V_{\pi}} (n_i + l_i - 4) + \sum_{i=1}^{V_B} (d_i + v_i + \omega_i - 2) + \frac{V_{\rho}}{V_{\rho}}$$

ν is bounded from below (modulo external sources):

- Adding pions to pionic vertices: $n_i \geq 2$, $l_i \geq 2$
- 2 Nucleon mass renormalization terms: $d_i \geq 2$, $\omega_i = 0$, $v_i \geq 0$
- **3** Adding pions to pion-nucleon vertices: $d_i \geq 1$, $\omega_i = 0$, $v_i \geq 1$
- **4** Adding heavy mesons to bilinear vertices: $d_i \geq 0$, $\omega_i \geq 1$, $v_i \geq 1$

3 & 4 give rise to the resummation of certain types of diagrams!

IGV

Adding one extra IGV

$$\frac{2m}{k^2} \& \frac{2m}{k^2} \frac{k^3}{6\pi^2} \frac{2m}{k^2} \frac{g_A^2}{4f_\pi^2}$$

Relative factor (Extra factor of π^{-1}):

$$\frac{g_A^2 m k}{12 \pi^2 f_\pi^2} \sim \frac{k}{2.3 \pi f_\pi} = \frac{k}{\Lambda}$$

$$\Lambda = \nu \pi f_{\pi}, \ \nu \sim \mathcal{O}(1)$$

Twice iterated pion exchange:

$$\frac{m}{k^2} \& \frac{m}{k^2} \frac{k^3}{6\pi^2} \frac{2m}{k^2} \left(\frac{g_A^2}{4f_\pi^2}\right)^2 L_{10}$$

The same factor as before

$$\times -i\frac{g_A^2 m}{4\pi f_\pi} \frac{k}{4f_\pi} \lesssim 1$$

In the medium: imaginary part is suppressed (hole-hole part) and a real part $m\xi_F/4\pi^2$ stems

$$\times \frac{g_A^2 m}{4\pi f_\pi} \frac{\xi_F}{4\pi f_\pi} \sim \frac{\xi_F}{3\pi f_\pi}$$

 $k \sim M_\pi \sim \xi_F$ is the most important region for this physics

$$T_{NN} \sim rac{4\pi/m}{-rac{1}{a}+rac{1}{2}rk^2+\ldots-ip}$$
 $rk^2/2$ rapidly overcomes $-1/a$ ($|a|>>1$)

Sum over states below the Fermi seas: The measure $\int k^2 \, dk$ kills low three-momenta.

Augmenting the number of lines in a diagram without increasing the chiral power by adding:

- **①** Pionic lines attached to lowest order mesonic vertices, $\ell_i=n_i=2$
- $\textbf{ Pionic lines attached to lowest order meson-baryon vertices}, \\ d_i = v_i = 1$
- $\ensuremath{\mathbf{3}}$ Heavy mesonic lines attached to lowest order bilinear vertices, $d_i=0,~\omega_i=1.$

Source of **non-perturbative** physics. These rule give rise to infinite resummations.

Nuclear matter energy density - Contributions

 $V_{\rho} = 1$

 $\mathcal{O}(p^5)$

Leading Order

 $V_{\rho} = 1$

 $\mathcal{O}(p^6)$

Next-to-leading Order

2

$$V_{\rho} = 2$$

$$\mathcal{O}(p^6)$$

Next-to-leading Order

3.1

3.2

NN interactions:

LO in the chiral expansion:

$$\begin{array}{lll} d_i=1, \ v_i=1, \ \omega_i=0 \ \ \text{OPE} \\ d_i=0, \ v_i=1, \ \omega_i=1 \ \ \text{Local Terms} \end{array}$$

A NN Partial Wave has:

Left-Hand Cut (LHC)
$${f p}^2 < -m_\pi^2/4$$
 Right-Hand Cut (RHC) ${f p}^2 > 0$ Unitarity Cut

$$\mathbf{p}^2 < -m_{\pi}^2/4$$
$$\mathbf{p}^2 > 0$$

Elastic Case

$$\operatorname{Im} T_{JI}(\ell', \ell, S)^{-1} = -\frac{m|\mathbf{p}|}{4\pi} \text{ for } \mathbf{p}^2 > 0$$

Fixed by kinematics

Once Subtracted Dispersion Relations

$$T_{JI}(\ell',\ell,S) = \left[N_{JI}(\ell',\ell,S)^{-1} + g\right]^{-1}$$
$$= \left[I + N_{JI}(\ell',\ell,S) \cdot g\right]^{-1} \cdot N_{JI}(\ell',\ell,S)$$

$$g(A) = g(D) - \frac{m(A-D)}{4\pi^2} \int_0^\infty dk^2 \frac{k}{(k^2 - A - i\epsilon)(k^2 - D - i\epsilon)}$$

$$\equiv g_0 - i \frac{m\sqrt{A}}{4\pi} , \qquad D = 0$$

$$T_{JI}^{-1}(A) = T_{JI}^{-1}(D) - \frac{m(A-D)}{4\pi^2} \int_0^\infty dk^2 \frac{k}{(k^2 - A - i\epsilon)(k^2 - D)} - \frac{(A-D)}{\pi} \int_{-\infty}^{-m_\pi^2/4} dk^2 \frac{\text{Im}T_{JI}/|T_{JI}|^2}{(k^2 - A - i\epsilon)(k^2 - D)}$$

Subtraction constants

One for every S-wave. Determined from the scattering lengths. 0 for higher partial waves. $T_{JI}(A=0)=0$ for ℓ or $\ell'>0$

Integral equation for $N_{JI}(\ell', \ell, S)$:

Interaction kernel: $N_{JI}(\ell',\ell,S)$ Unitarity loop g:

$$T_{JI} = \left[N_{JI}^{-1} + g \right]^{-1} :$$

$$\operatorname{Im} N_{JI} = \frac{|N_{JI}|^2}{|T_{JI}|^2} \operatorname{Im} T_{JI} = |1 + gN_{JI}|^2 \operatorname{Im} T_{JI} \quad , \quad |\mathbf{p}|^2 < -\frac{m_\pi^2}{4} \ .$$

$$N_{JI}(A) = N_{JI}(D) + \frac{A - D}{\pi} \int_{-\infty}^{-m_{\pi}^2/4} dk^2 \frac{\text{Im}T_{JI}(k^2) |1 + g(k^2)N_{JI}(k^2)|^2}{(k^2 - A - i\epsilon)(k^2 - D)}$$

The LHC Input: ${\rm Im}T_{JI}({\bf p}^2)$, ${\bf p}^2<-m_\pi^2/4$

Intermediate states contain pionic lines. It can be calculated perturbatively in CHPT.

Crossed dynamics $N\bar{N} \to N\bar{N}$

$$t, u = m_{\pi}^2, > 4m_{\pi}^2, \dots$$

Two Subtraction Constants?: g(D) and $N_{JI}(D)$

There is only one independent subtraction constant, $T_{JI}(D)$ Analogy with Renormalization Theory:

D is like the "Renormalization Scale"

q(D) is like the "Renormalization Scheme"

 $N_{JI}(D)$ depends on g(D) but $T_{JI}(A)$ is g(D) Independent

$$D=0$$
 is taken

S-waves:
$$N_{JI}(0) = \frac{-1}{g_0 + \frac{m}{4\pi a}}$$

Higher partial waves:
$$N_{JI}(0) = 0$$

The convergence in the iterative solution for N_{JI} improves for $g_0 \simeq -\frac{mm_\pi}{4\pi}$ or $g(-\frac{m_\pi^2}{4\pi}) = 0$

$$\frac{1}{N_{JI}(A)}+g_0=F_{JI}(A)$$
 $\;$ is independent of $\;g_0$

It is enough to know $N_{JI}({\rm A})$ $N_{JI}(A) = \frac{1}{F(A)-g_0}$ for just one value of g_0

Algebraic Approximate Solution for $N_{JI}(A)$

It yields Unitary χ PT (UCHPT): Regulator Dependent Solutions

JAO, Oset, NPA620(1997)438; PRD60(1999)074023; JAO, Meißner, PLB500(2001)263.

$$\mathrm{Im} N_{JI} = \frac{|N_{JI}|^2}{|T_{JI}|^2} \mathrm{Im} T_{JI} = |1 + g N_{JI}|^2 \mathrm{Im} T_{JI} \quad , \quad |\mathbf{p}|^2 < -\frac{m_\pi^2}{4} \; .$$

$$N_{JI}(A) = N_{JI}(D) + \frac{A - D}{\pi} \int_{-\infty}^{-m_{\pi}^2/4} dk^2 \frac{|\text{Im}T_{JI}(k^2)| |1 + g(k^2)N_{JI}(k^2)|^2}{(k^2 - A - i\epsilon)(k^2 - D)}$$

We take g_0 such that $g({f p}^2)=0$ for ${f p}^2\simeq -m_\pi^2 \to |{f p}|\simeq im_\pi$

$$g(\mathbf{p}^2) = g_0 - i \frac{m|\mathbf{p}|}{4\pi} \approx 0 \longrightarrow \text{natural value: } g_0 \simeq -\frac{mm_\pi}{4\pi} = -0.54 \ m_\pi^2$$

 ${\it g}$ is treated as small along low-energy LHC, $\sim {\cal O}(p)$

An approximate algebraic solution for N_{JI} results in powers of g

Two expansions: The Chiral one and that in powers of g

We join them simultaneously, $g(\mathbf{p}^2) \simeq \mathcal{O}(p)$

LO:
$$|1+gN_{JI}|^2 \rightarrow 1$$

$$N_{JI}^{(0)}(A) = N_{JI}(D) + \frac{A - D}{\pi} \int_{-\infty}^{-m_{\pi}^2/4} dk^2 \frac{\text{Im}T_{JI}(k^2)}{(k^2 - A - i\epsilon)(k^2 - D)}$$

$$N_{JI} \doteq N_{JI}^{(0)} + N_{JI}^{(1)} + \mathcal{O}(p^2)$$

$$T_{JI} \doteq L_{JI}^{(0)} + L_{JI}^{(1)} + \mathcal{O}(p^2)$$

$$T_{JI} = N_{JI} - N_{JI} \cdot g \cdot N_{JI} + \dots$$

= $N_{JI}^{(0)} + N_{JI}^{(1)} - N_{JI}^{(0)} \cdot g \cdot N_{JI}^{(0)} + \mathcal{O}(p^2) + \dots$

$$N_{JI}^{(0)} = L_{JI}^{(0)} \;\;, \;\; N_{JI}^{(1)} = L_{JI}^{(1)} + N_{JI}^{(0)} \cdot g \cdot N_{JI}^{(0)}$$

We are providing approximate solutions to

$$T_{JI} = [N_{JI}^{-1} + g]^{-1} \leftrightarrow N_{JI} = T_{JI} |1 + gN_{JI}|^2 - |N_{JI}|^2 g^*$$

They coincide with those from the DR

- $N_{JI}(A)$ only has LHC
- With the same discontinuity along the cut

Algebraic approximation. Chiral counterterms enter directly in $N_{JI}\,$

$$C_S = \frac{m}{16\pi} \frac{16\pi g_0/m + 3/a_s + 1/a_t}{(g_0 + m/(4\pi a_s))(g_0 + m/(4\pi a_t))} ,$$

$$C_T = \frac{m}{16\pi} \frac{1/a_s - 1/a_t}{(g_0 + m/(4\pi a_s))(g_0 + m/(4\pi a_t))} .$$

$$|g_0|\gg 1/a_t, \ |1/as|\longrightarrow |C_S|\sim 1/|g_0|\gg |C_T|=\mathcal{O}(m/16\pi a_tg_0^2)$$

The $\mathcal{O}(p^0)$ counting for C_S , C_T is not spoiled by iterating them.

Green, Cyan, Magenta: LO Blue, Orange, Black: NLO Bursts: DR

Green, Cyan, Magenta: LO Blue, Orange, Black: NLO Bursts: DR

Green, Cyan, Magenta: LO Blue, Orange, Black: NLO Bursts: DR

This formalism can also be applied to production diagrams JAO, Oset NPA629(1998)739, JAO PRD71(2005)054030

$$T_{JI} = D_{JI}^{-1} N_{JI} \to F_{JI} = D_{JI}^{-1} \cdot \xi_{JI} , \quad D_{JI} = 1 + N_{JI}g ,$$

$$\xi_{JI} = \sum_{k=0}^{n} \xi_{JI}^{(k)}$$

$$\downarrow \text{exact} + \downarrow \text{fact exact} + \downarrow \text{exact fact}$$

$$\xi_{JI}^{(0)} + \xi_{JI}^{(1)} = DL_{JI}^{(1)} - \left\{ L_{JI}^{(1)} + N_{JI}^{(0)^2} \cdot L_{10}, N_{JI}^{(0)} \right\} \cdot DL_{10}$$

In-medium unitarity loop

$$g \doteq L_{10,f} \longrightarrow L_{10} = L_{10,f} + L_{10,m}(\xi_1) + L_{10,m}(\xi_2) + L_{10,d}(\xi_1, \xi_2)$$

= $L_{10,m}(\xi_1, \xi_2) + L_{10,bh}(\xi_1, \xi_2)$

Nuclear matter energy density - Contributions

 $V_{\rho} = 1$

 $\mathcal{O}(p^5)$

Leading Order

 $V_{\rho} = 1$

 $\mathcal{O}(p^6)$

Next-to-leading Order

$$V_{\rho} = 2$$

 $\mathcal{O}(p^6)$

Next-to-leading Order

3.1

3.2

 $A = 2ma^{0} - a^{2}$

Nuclear matter energy per particle

$$\mathcal{E}_{3} = \frac{1}{2} \sum_{\sigma_{1},\sigma_{2}} \sum_{\alpha_{1},\alpha_{2}} \int \frac{d^{4}k_{1}}{(2\pi)^{4}} \frac{d^{4}k_{2}}{(2\pi)^{4}} e^{ik_{1}^{0}\eta} e^{ik_{2}^{0}\eta} G_{0}(k_{1})_{\alpha_{1}} G_{0}(k_{2})_{\alpha_{2}}$$

$$\times T_{NN}(k_{1}\sigma_{1}\alpha_{1}, k_{2}\sigma_{2}\alpha_{2}|k_{1}\sigma_{1}\alpha_{1}, k_{2}\sigma_{2}\alpha_{2}) .$$

$$a = \frac{1}{2}(k_{1} + k_{2}) , \quad p = \frac{1}{2}(k_{1} - k_{2})$$

$$\int \frac{dp^{0}}{2\pi} G_{0}(a + p)_{\alpha_{1}} G_{0}(a - p)_{\alpha_{2}} = -i \left[\frac{\theta(|\mathbf{a} + \mathbf{p}| - \xi_{\alpha_{1}})\theta(|\mathbf{a} - \mathbf{p}| - \xi_{\alpha_{2}})}{2a^{0} - E(\mathbf{a} + \mathbf{p}) - E(\mathbf{a} - \mathbf{p}) + i\epsilon} \right] .$$

$$- \frac{\theta(\xi_{\alpha_{1}} - |\mathbf{a} + \mathbf{p}|)\theta(\xi_{\alpha_{2}} - |\mathbf{a} - \mathbf{p}|)}{2a^{0} - E(\mathbf{a} + \mathbf{p}) - E(\mathbf{a} - \mathbf{p}) - i\epsilon} \right] .$$

$$\begin{split} \mathcal{E}_3 &= -4i \sum_{\sigma_1,\sigma_2} \sum_{\alpha_1,\alpha_2} \int \frac{d^3a}{(2\pi)^3} \frac{d^3p}{(2\pi)^3} \frac{dA}{2\pi} e^{iA\eta} \, T_{\alpha_1\alpha_2}^{\sigma_1\sigma_2}(\mathbf{p},\mathbf{a};A) \bigg[\frac{1}{A-\mathbf{p}^2+i\epsilon} \\ &- \frac{\theta(\xi\alpha_1-|\mathbf{a}+\mathbf{p}|) + \theta(\xi\alpha_2-|\mathbf{a}-\mathbf{p}|)}{A-\mathbf{p}^2+i\epsilon} - 2\pi i \delta(A-\mathbf{p}^2) \theta(\xi\alpha_1-|\mathbf{a}+\mathbf{p}|) \theta(\xi\alpha_2-|\mathbf{a}-\mathbf{p}|) \bigg] \,. \end{split}$$

$$\begin{split} \int_{-\infty}^{+\infty dA} \frac{e^{iA\eta}}{A - \mathbf{p}^2 + i\epsilon} T_{\alpha \mathbf{1} \alpha \mathbf{2}}^{\sigma \mathbf{1} \sigma \mathbf{2}}(\mathbf{p}, \mathbf{a}; A) &= \oint_{C_{I} 2\pi} \frac{e^{iA\eta}}{A - \mathbf{p}^2 + i\epsilon} T_{\alpha \mathbf{1} \alpha \mathbf{2}}^{\sigma \mathbf{1} \sigma \mathbf{2}}(\mathbf{p}, \mathbf{a}; A) \\ &- \oint_{C_{I} 2\pi} \frac{dA}{A - \mathbf{p}^2 + i\epsilon} T_{\alpha \mathbf{1} \alpha \mathbf{2}}^{\sigma \mathbf{1} \sigma \mathbf{2}}(\mathbf{p}, \mathbf{a}; A) \\ &= \int_{A(\alpha)}^{B(\alpha)} \frac{dA}{2\pi} \frac{T_{\alpha \mathbf{1} \alpha \mathbf{2}}^{\sigma \mathbf{1} \sigma \mathbf{2}}(\mathbf{p}, \mathbf{a}; A) - T_{\alpha \mathbf{1} \alpha \mathbf{2}}^{\sigma \mathbf{1} \sigma \mathbf{2}}(\mathbf{p}, \mathbf{a}; A + 2i\epsilon)}{A - \mathbf{p}^2 + i\epsilon} \end{split}$$

$$\begin{split} L_{10}^{i3}(\mathbf{a}^2,A+2i\epsilon) - L_{10}^{i3}(\mathbf{a}^2,A) &= -m \int \frac{d^3q}{(2\pi)^3} \theta(\xi\alpha_1 - |\mathbf{a}+\mathbf{q}|) \theta(\xi\alpha_2 - |\mathbf{a}-\mathbf{q}|) \\ &\times \left(\frac{1}{A-\mathbf{q}^2+i\epsilon} - \frac{1}{A-\mathbf{q}^2-i\epsilon} \right) \\ &= i2\pi m \int \frac{d^3q}{(2\pi)^3} \theta(\xi\alpha_1 - |\mathbf{a}+\mathbf{q}|) \theta(\xi\alpha_2 - |\mathbf{a}-\mathbf{q}|) \delta(A-\mathbf{q}^2) \;. \end{split}$$

$$\mathcal{E}_{3} = -4 \sum_{I,J,\ell,S} \sum_{i_{3}=\alpha_{1}+\alpha_{2}} (2J+1)\chi(S\ell I)^{2} \int \frac{d^{3}P}{(2\pi)^{3}} \frac{d^{3}q}{(2\pi)^{3}} \theta(\xi_{\alpha_{1}} - |\mathbf{P} + \mathbf{q}|)$$

$$\times \theta(\xi_{\alpha_{2}} - |\mathbf{P} - \mathbf{q}|) \left[\frac{T_{JI}^{i_{3}}}{T_{JI}^{i_{3}}} \Big|_{(\mathbf{q}^{2},\mathbf{P}^{2},\mathbf{q}^{2})} \right]$$

$$+ m \int \frac{d^{3}p}{(2\pi)^{3}} \frac{1 - \theta(\xi_{\alpha_{1}} - |\mathbf{P} + \mathbf{p}|) - \theta(\xi_{\alpha_{2}} - |\mathbf{P} - \mathbf{p}|)}{\mathbf{p}^{2} - \mathbf{q}^{2} - i\epsilon} \left[T_{JI}^{i_{3}} \Big|_{(\mathbf{p}^{2},\mathbf{P}^{2},\mathbf{q}^{2})}^{2} \right]_{(\ell,\ell,S)}$$

It is real because of unitarity and Pauli-exclusion principle, involving both terms between the square brackets.

$$m \int \frac{d^3p}{(2\pi)^3} \frac{1}{{\bf p}^2 - {\bf q}^2 - i\epsilon} \big| T_{JI}^{i_3} \big|_{({\bf p}^2,{\bf P}^2,{\bf q}^2)}^2$$

is divergent.

Expansion around $\mathbf{p}^2 \to \infty$.

$$T^{i_3}_{JI(\mathbf{p}^2,\mathbf{P}^2,\mathbf{q}^2)} = T^{i_3}_{JI(+\infty,\mathbf{P}^2,\mathbf{q}^2)} + \mathcal{O}(|\mathbf{p}|^{-2})$$

$$m \int \frac{d^3p}{(2\pi)^3} \frac{1}{\mathbf{p}^2 - \mathbf{q}^2 - i\epsilon} \left\{ \left| T_{JI}^{i_3} \right|_{(\mathbf{p}^2, \mathbf{P}^2, \mathbf{q}^2)}^2 - \left| T_{JI}^{i_3} \right|_{(+\infty, \mathbf{P}^2, \mathbf{q}^2)}^2 \right\} - g(\mathbf{q}^2) \left| T_{JI}^{i_3} \right|_{(+\infty, \mathbf{P}^2, \mathbf{q}^2)}^2$$

More stable for pure neutron matter (less dependent on g_0).

$$\begin{split} \mathcal{E}_{3} &= 4 \sum_{I,J,\ell,S} \sum_{i_{3} = \alpha_{1} + \alpha_{2}} (2J+1) \chi(S\ell I)^{2} \int \frac{d^{3}P}{(2\pi)^{3}} \frac{d^{3}q}{(2\pi)^{3}} \theta(\xi_{\alpha_{1}} - |\mathbf{P} + \mathbf{q}|) \\ &\times \theta(\xi_{\alpha_{2}} - |\mathbf{P} - \mathbf{q}|) \left[-T_{JI}^{i_{3}}|_{(\mathbf{q}^{2},\mathbf{P}^{2},\mathbf{q}^{2})} \right. \\ &+ m \int \frac{d^{3}p}{(2\pi)^{3}} \frac{\theta(\xi_{\alpha_{1}} - |\mathbf{P} + \mathbf{p}|) + \theta(\xi_{\alpha_{2}} - |\mathbf{P} - \mathbf{p}|)}{\mathbf{p}^{2} - \mathbf{q}^{2} - i\epsilon} |T_{JI}^{i_{3}}|_{(\mathbf{p}^{2},\mathbf{P}^{2},\mathbf{q}^{2})}^{2} \\ &- m \int \frac{d^{3}p}{(2\pi)^{3}} \left\{ \frac{1}{\mathbf{p}^{2} - \mathbf{q}^{2} - i\epsilon} |T_{JI}^{i_{3}}|_{(\mathbf{p}^{2},\mathbf{P}^{2},\mathbf{q}^{2})}^{2} - \frac{1}{\mathbf{p}^{2}} |T_{JI}^{i_{3}}|_{\mathbf{p}^{2} \to \infty}^{2} \right\} + \tilde{g}_{0} |T_{JI}^{i_{3}}|_{\mathbf{p}^{2} \to \infty}^{2} \end{split}$$

 g_0 in NN scattering

 \tilde{g}_0 , particle-particle intermediate state

Akmal, Pandharipande, Ravenhall, PRC 58 (1998) 1804

PNM:
$$g_0 = \tilde{g}_0 \simeq -0.6 \ m_\pi^2$$

SNM: $(g_0, \tilde{g}_0) \simeq (-1.0, -0.5) \ m_\pi^2$

$$K=\left.\xi^2\frac{\partial^2\mathcal{E}/\rho}{\partial\xi^2}\right|_{\xi_0}=240-260~\mathrm{MeV}$$

$$\exp.250\pm25~\mathrm{MeV}$$

In-medium chiral quark condensate - Contributions

$$V_
ho=1$$
 $\mathcal{O}(p^5)$ Leading Order

$$V_
ho = 1$$
 $\mathcal{O}(p^6)$ Next-to-leading Order

$$V_
ho=2$$
 $\mathcal{O}(p^6)$ Next-to-leading Order

$$m_q \langle \Omega | \bar{q}_i q_j | \Omega \rangle = m_q \langle 0 | \bar{q}_i q_j | 0 \rangle - m_q (\Xi_1 + \Xi_6)$$

$$\Xi_{5}^{L} = -\frac{1}{2} \sum_{\alpha_{1},\alpha_{2}} \sum_{\sigma_{1},\sigma_{2}} \int \frac{d^{4}k_{1}}{(2\pi)^{4}} \frac{d^{4}k_{2}}{(2\pi)^{4}} e^{ik_{1}^{0}\eta} e^{ik_{2}^{0}\eta} G_{0}(k_{1})_{\alpha_{1}} G_{0}(k_{2})_{\alpha_{2}} \frac{\partial}{\partial k_{1}^{0}} \left[i \sum_{\alpha'_{1},\alpha'_{2}} \int \frac{d^{4}k}{(2\pi)^{4}} e^{ik_{1}^{0}\eta} e^{ik_{2}^{0}\eta} G_{0}(k_{1})_{\alpha_{1}} G_{0}(k_{2})_{\alpha_{2}} \frac{\partial}{\partial k_{1}^{0}} \left[i \sum_{\alpha'_{1},\alpha'_{2}} \int \frac{d^{4}k}{(2\pi)^{4}} e^{ik_{1}^{0}\eta} e^{ik_{2}^{0}\eta} G_{0}(k_{1})_{\alpha_{1}} G_{0}(k_{2})_{\alpha_{2}} \frac{\partial}{\partial k_{1}^{0}} \left[i \sum_{\alpha'_{1},\alpha'_{2}} \int \frac{d^{4}k}{(2\pi)^{4}} e^{ik_{1}^{0}\eta} e^{ik_{2}^{0}\eta} G_{0}(k_{1})_{\alpha_{1}} G_{0}(k_{2})_{\alpha_{2}} \frac{\partial}{\partial k_{1}^{0}} \left[i \sum_{\alpha'_{1},\alpha'_{2}} \int \frac{d^{4}k}{(2\pi)^{4}} e^{ik_{1}^{0}\eta} e^{ik_{2}^{0}\eta} G_{0}(k_{1})_{\alpha_{1}} 2B \left[2c_{1}\delta_{ij} + c_{5}\tau_{ij}^{3}\tau_{\alpha_{1}\alpha_{1}}^{3} \right] G_{0}(k_{2})_{\alpha_{2}} \right]$$

 $\times \frac{\partial}{\partial k_1^0} \left[\frac{i}{2} \sum_{I - I} \int \frac{d^4k}{(2\pi)^4} V_{\alpha_1 \alpha_2; \alpha_1' \alpha_2'}(k) G_0(k_1 - q)_{\alpha_1'} G_0(k_2 + q)_{\alpha_2'} V_{\alpha_1' \alpha_2'; \alpha_1 \alpha_2}(-k) \right]$

For Ξ_5 the derivative acts directly in the scattering amplitude. For Ξ_4 there is an integration by parts (extra sign).

This is a general argument following from the power counting

Cancellations happen explicitly for all orders in $U\chi PT^{[3]}$.

Feynman-Hellman theorem:

$$\begin{split} m_q \langle \, \Omega | \bar{q}_i q_j | \Omega \, \rangle - m_q \langle \, 0 | \bar{q}_i q_j | 0 \, \rangle &= \frac{m_q}{2} \left(\delta_{ij} \frac{d}{d\hat{m}} + (\tau_3)_{ij} \frac{d}{d\bar{m}} \right) (\rho \, m + \mathcal{E}) \,\,, \\ \frac{\langle \Omega | \bar{q}_i q_j | \Omega \rangle}{\langle 0 | \bar{q}_i q_j | 0 \rangle} &= 1 - \frac{\rho \, \sigma_N}{m_\pi^2 f_\pi^2} + \frac{2 c_5 (\tau_3)_{ij}}{f_\pi^2} (\rho_P - \rho_n) - \frac{1}{f_\pi^2} \frac{\partial \mathcal{E}(\rho, m_\pi)}{\partial m_\pi^2} \end{split}$$

Long-range NN interactions dominate in the quark condensate calculation.

Kaiser, Homont, Weise PRC77(2008)025204; Plohl, Fuchs NPA798(2008)75

We offered an explanation for this observed fact:

The quark mass dependence of nucleon propagators cancels

$$\Xi_4 + \Xi_5 = 0$$

ullet The short distance part $|\mathbf{p}|^2 o \infty$ cancels when taking the derivative

$$\frac{\partial \mathcal{E}(\rho, m_{\pi})}{\partial m_{\pi}^2}$$

Left: $\langle \Omega | \bar{u}u | \Omega \rangle$ LO, NLO $(g_0 = -0.6m_\pi^2)$; $\langle \Omega | \bar{d}d | \Omega \rangle$ LO, NLO $(g_0 = -0.6m_\pi^2)$.

Right: $\langle \Omega | \bar{q}q | \Omega \rangle$ LO, NLO $(g_0=-1.0m_\pi^2)$, NLO $(g_0=-0.5m_\pi^2)$. The quark condensate is independent of \tilde{g}_0

Contributions to the in-medium pion axial couplings

 $V_0 = 2$ $\mathcal{O}(p^5)$

$$\begin{array}{c} V_{\rho}=1\\ \mathcal{O}(p^4)\\ \text{Leading Order} \end{array} \qquad \qquad \begin{array}{c} \dots \\ 1\\ \\ V_{\rho}=1\\ \mathcal{O}(p^5)\\ \text{Next-to-Leading Order} \end{array} \qquad \begin{array}{c} \dots \\ 2a \\ 2b \\ 3\\ \end{array}$$

$$V_{
ho}=2$$
 $\mathcal{O}(p^5)$ Next-to-Leading Order

Diagrams 1–3 discussed in Meißner, Oller, Wirzba ANP297(2002)27

Diagram with π -WFR also discussed there (NN interaction contributions cancel as shown in [1])

Diagram 4 is one order too high

Diagrams 5-6 mutually cancel

$$f_t = f_\pi \left\{ 1 - \frac{\rho}{\rho_0} (0.26 \pm 0.04) \right\}$$
$$f_s = f_\pi \left\{ 1 - \frac{\rho}{\rho_0} (1.23 \pm 0.07) \right\}$$

Contributions to the in-medium pion self-energy

NN-interactions cancel at $\mathcal{O}(p^5)$. Linear density approximation holds up to NLO

Application to neutron stars

Dobado, Llanes-Estrada, J.A.O., sent for publication to Phys. Rev. D Spherical symmetry inside the star

Equation of Tolman-Oppenheimer-Vokoff for the hydrostatic equilibrium inside the star

Tolman, Phys. Rev. 55 (1939) 364 Oppenheimer, Volkoff, Phys. Rev. 55 (1939) 374

$$\frac{dP}{dr} = -\frac{G_N}{r^2} \frac{(\varepsilon(r) + P(r))(M(r) + 4\pi r^3 P(r))}{1 - \frac{2G_N M(r)}{r}}.$$

M(r) is the mass accumulated at distance r $\varepsilon(r)$ is the mass-energy density

Boundary conditions: P(0), input ; P(R)=0 , with R the radius of the star

An equation of state is needed to relate P(r) with $\varepsilon(r)$ This is provided by the chiral nuclear EFT.

Our study was triggered by the recent discovery of a neutron star with 1.97(4) solar masses.

Demorest et al. Nature 467 (2011) 1081

which is the new experimental upper bound for the mass of a neutron star

Does the chiral EFT support such a high mass for a neutron star?

Upper limit on G in strong gravitational fields

We use the chiral EOS and the stiffest equation of state compatible with causality above $k_F \geq 600~{\rm MeV}$

$$\partial P/\partial \rho = c$$

$$P = c^{2}(\rho - \rho_{max}) + P_{max}$$

The gravitational constant remains (so far) a constant. Newton-Cavendish constant normalized by its accepted value $6.6738(8)N(m/kg)^2$.

Left point: laboratory on Earth.

Middle: orbital determinations of binary pulsars.

Right: existence of a neutron star with mass 1.97(4) solar masses.

At the intense gravitational field in such neutron star, the gravitational constant cannot exceed 8% of its value on Earth at 95% confidence level.

Summary & Outlook

Summary

- It is developed a power counting scheme for nmEFT combining short- and long-range multi-N interactions
- ullet LO Regulator independent NN partial-waves $T_{JIS}.$
- Nuclear matter energy density (up to NLO)
- In-medium chiral quark condensate (up to NLO)
- In-medium f_t , f_s (up to NLO)
- In-medium pion self-energy (up to NLO)
- EOS for neutron matter supports large mass for neutron star
- Quite good results at just NLO by applying non-perturbative methods of U_X PT to NN-interactions

Outlook

- Exact solution of $N_{JI}(A)$
- $V_{\rho} = 3$ contributions, 3 nucleon force (N²LO)
- Irreducible two-pion exchange (N³LO)
- "Genuine" 3-nucleon force (N⁴LO)

 $d_2+v_2+w_2-2=2$ and $V_{\rho}=3$ (instead of 0 and 1, respectively)

- ullet Clarify the dependence on \widetilde{g}_0
- Neutron stars, supernovas, finite temperature, other N-point Green functions, adding strangeness...

Future perspectives? Personal view:

- Follow a chiral power counting in nuclear medium systematically (this power counting should be valid also in vacuum).
- Do not regularize integrals with finite cut-offs (e.g. for the particle-particle parts in two-nucleon intermediate states.)
- This cut-off dependence should be replaced by subtraction constants (counterterms) of natural size for the low-energy regime at hand. $\Lambda \to m_\pi$.
- This is against standard "arguments" for particle-hole expansions.

Series of paper of the Munich group:

Kaiser, Mühlbauer, Weise EPJA 31(2007)53 Fritsch, Kaiser, Weise NPA 750(2005)259 Kaiser, Fritsch, Weise NPA 724(2003)47 Kaiser, Fritsch, Weise NPA 697(2002)255 . . .

- Expansion in the number of loops (perturbative calculations).
- There is no chiral power counting.
- They always take the standard counting for the nucleon propagators $\sim \mathcal{O}(p^{-1})$. Infrared enhancements are not accounted for properly (They know and point out this in some of their works).
- No connection with vacuum NN scattering. Ad hoc cut-off parameter fitted to nucler matter properties.