Lectures on Nuclear and Hadron Physics

J. A. Oller
Departamento de Física Universidad de Murcia

July 27, 2011

Outline Lecture III

(1) Introduction
(2) On the σ Resonance
(3) On the ρ Resonance
(4) Algebraic N/D
(5) IAM
(0) Mixing of Scalar Resonances
(7) Large N_{C}
(8) Lightest Glueball

Introduction

(1) The mesonic scalar sector has the vacuum quantum numbers $J^{P C}=0^{++}$. Essential for the study of Spontaneous Breaking of Chiral Symmetry
(2) The interactions with these quantum numbers are also essential for the masses of the lightest hadrons, the pseudo-Goldstone bosons (π, K, η), and ratio of light quark masses
L. Roca, J.A.O. Eur. Phys. J. A 34 (2007) 371
(3) In this sector meson interactions are really strong

- Large unitarity loops (infrared enhancements and dynamical generation of resonances)
- Channels that couple very strongly, e.g. $\pi \pi-K \bar{K}, \pi \eta-K \bar{K}$
- Resonances with large widths and in coupled channels: NO Breit-Wigner form, NO Vector-Meson-Dominance, NO narrow-resonance approximation, etc
(4) Okubo-Zweig-Izuka rule (large N_{C} QCD) has large corrections:
- NO ideal mixing multiplets
- Simple quark model fails
- Large unitarity loops

σ Resonance

- The "lightest" hadronic resonance in QCD

$\sqrt{s}_{\sigma}(\mathrm{MeV})$	Reference
$469-i 203$	Oller, J.A.O. NPA620(1997)438; (E)NPA652(1999)307
$441_{-8}^{+16}-i 271_{-12}^{+9}$	Caprini,Colangelo,Leutwyler PRL96(2006)132001
$484 \pm 14-i 255 \pm 10$	Garćía-Martín, Peláez, Ynduráin PRD76(2007)074034
$456 \pm 6-i 241 \pm 7$	Albaladejo,J.A.O. PRL101(2008)252002
$440_{-3}^{+3}-i 258_{-3}^{+2}$	Z.-H.Guo, J.A.O., PRD in press

Connection of the σ with chiral symmetry

The lowest order chiral perturbation theory Lagrangian

$$
\begin{gathered}
\mathcal{L}_{2}=\frac{F_{\pi}^{2}}{4} \operatorname{Tr}\left(\partial_{\mu} U \partial^{\mu} U^{\dagger}+U^{\dagger} \chi+\chi^{\dagger} U\right) \\
\chi=2 B_{0}(s+i p) \\
U=\exp \left\{i \sqrt{2} \Phi / F_{\pi}\right\} \\
\Phi=\left(\begin{array}{lll}
\frac{1}{\sqrt{2}} \pi^{0}+\frac{1}{\sqrt{6}} \eta_{8} & \pi^{+} & K^{+} \\
\pi^{-} & -\frac{1}{\sqrt{2}} \pi^{0}+\frac{1}{\sqrt{6}} \eta_{8} & K^{0} \\
K^{-} & K^{0} & -\frac{2}{\sqrt{6}} \eta_{8}
\end{array}\right)
\end{gathered}
$$

The lowest order $J^{P C}=0^{++} \pi \pi$ scattering amplitude $\pi\left(p_{1}\right) \pi\left(p_{2}\right) \rightarrow \pi\left(p_{3}\right) \pi\left(p_{4}\right)$
Mandelstam variables: $s=\left(p_{1}+p_{2}\right)^{2}, t=\left(p_{1}-p_{3}\right)^{2}$ and $u=\left(p_{1}-p_{4}\right)^{2}$

$$
T_{2}=\frac{s-m_{\pi}^{2} / 2}{F_{\pi}^{2}}
$$

It has a zero at $s=m_{\pi}^{2} / 2$ (Adler zero)
For higher partial waves $\ell \geq 1$ the Adler zero is trivial. It is located at threshold.

Coming back to the N/D method without LHC:

$$
T=\left[\sum_{i} \frac{\gamma_{i}}{s-s_{i}}+g(s)\right]^{-1}
$$

To reproduce the Adler zero ONE CDD is needed

$$
\begin{aligned}
& \gamma_{1}=F_{\pi}^{2} \\
& s_{1}=m_{\pi}^{2} / 2
\end{aligned}
$$

$g(s)$ is the unitarity loop function

$$
\begin{aligned}
g(s) & =g\left(s_{0}\right)-\int_{4 m_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\rho\left(s^{\prime}\right)}{\left(s^{\prime}-s_{0}\right)\left(s^{\prime}-s-i \epsilon\right)} \\
& =\frac{1}{(4 \pi)^{2}}\left[a(\mu)+\log \frac{m_{\pi}^{2}}{\mu^{2}}+\sigma(s) \log \frac{\sigma(s)+1}{\sigma(s)-1}\right]
\end{aligned}
$$

Fitting $\pi \pi$ phase shifts

$$
a\left(M_{\rho}\right)=-0.79
$$

$$
T=\left[\frac{1}{T_{2}}+g(s)\right]^{-1}=\frac{T_{2}}{1+T_{2} g(s)}=T_{2}-T_{2} g(s) T_{2}+\ldots
$$

On the natural size for $a(\mu)$: First Unitarity Correction

$$
\frac{T_{2}^{2} g(s)}{T_{2}} \sim \frac{a}{16 \pi^{2}} \frac{s-m_{\pi}^{2} / 2}{F_{\pi}^{2}} \sim a \frac{s}{16 \pi^{2} F_{\pi}^{2}}
$$

$|a|$ must be $\mathcal{O}(1)$. Dynamical Generated Resonance

Pole position of the σ

- Physical amplitudes have no pole positions in the complex s plane with imaginary part because hermiticity would be violated The eigenvalues of a Hermitian operator like the Hamiltonian must be real.
The pole positions for physical amplitudes should be real (bound states)
K. Gottfried, Quantum Mechanics, W.A. Benjamin
- Scattering amplitudes can be extended to unphysical Riemann sheets.
There one can find poles corresponding to resonances or antibound states

Multi-valued function:

$$
p=\sqrt{\frac{s}{4}-m_{\pi}^{2}}
$$

Physical sheet:

$$
\Im|\mathbf{p}(s)| \geq 0
$$

Second Riemann sheet: $\quad \Im|p(s)| \leq 0$
I-SHEET

I-SHEET

$$
\Im g(s)=-\frac{|\mathbf{p}|(s)}{8 \pi \sqrt{s}} \rightarrow \Im g_{I I}(s)=\frac{|\mathbf{p}|(s)}{8 \pi \sqrt{s}}
$$

Schwartz's reflection principle:

$$
\begin{aligned}
g(s+i \epsilon)-g(s-i \epsilon) & =2 i \Im g(s+i \epsilon)=-i \frac{|\mathbf{p}|}{4 \pi \sqrt{s}} \\
g(s+i \epsilon)-g_{I I}(s+i \epsilon) & =-i \frac{|\mathbf{p}|}{4 \pi \sqrt{s}} \\
g_{I \prime}(s) & =g(s)+i \frac{|\mathbf{p}|}{4 \pi \sqrt{s}} \\
T_{I I}(s) & =\left[T_{2}^{-1}+g_{I \prime}(s)\right]^{-1} \\
T_{I I}(s)^{-1} & =T(s)^{-1}+i \frac{|\mathbf{p}|}{4 \pi \sqrt{s}}
\end{aligned}
$$

The σ pole position is located in $T_{I I}(s)$
Because $T_{I I}\left(s^{*}\right)=T_{I I}(s)^{*}$ there are indeed two poles at s_{σ} and s_{σ}^{*}

Laurent series

Physical sheet, s variable

Because $T_{I /}(s-i \epsilon)=T(s+i \epsilon)$ the pole P (with negative imaginary part) is effectively much closer to the physical region than the pole P^{\prime} (with positive imaginary part)

$$
T_{I I}(s)=\underbrace{\frac{\gamma_{0}^{2}}{s-s_{P}}}_{\text {pole }}+\underbrace{\gamma_{1}+\gamma_{2}\left(s-s_{P}\right)}_{\text {non-resonant terms }}+\ldots
$$

The reason why the σ has been traditionally hard to establish experimentally is due to the large contribution of non-resonant terms. Due to the need of cancellation for having the Adler zero.

$$
\begin{aligned}
s_{\sigma} & =(0.466-i 0.224)^{2} \mathrm{GeV}^{2} \\
\gamma_{0}^{2} & =5.3+i 7.7 \mathrm{GeV}^{2} \\
\gamma_{1} & =-8.1+i 36.9 \\
\gamma_{2} & =1.1+i 0.1 \mathrm{GeV}^{2}
\end{aligned}
$$

Breit Wigner formula

$$
T \propto e^{i \delta} \sin \delta=\frac{\sin \delta}{\cos \delta-i \sin \delta}=\frac{1}{\cot \delta-i}
$$

The partial wave T has a maximum at the resonance position, so that $\sin \delta= \pm 1 \rightarrow \cot \delta=0$

$$
\begin{aligned}
\cot \delta & =\cot \delta\left(E_{R}\right)+\left.\left(E-E_{R}\right)(d \cot \delta / d E)\right|_{E=E_{R}} \\
\left.(d \cot \delta / d E)\right|_{E=E_{R}} & =-2 / \Gamma
\end{aligned}
$$

$$
\frac{1}{\cot \delta-i}=\frac{1}{-2\left(E-E_{R}\right) / \Gamma-i}=\frac{-\Gamma / 2}{E-E_{R}+i \Gamma / 2}
$$

If $\Gamma \ll E_{R}$ then it is a good approximation

$$
\begin{gathered}
E+E_{R} \simeq 2 E_{R}, \quad s-s_{R} \simeq\left(E-E_{R}\right) 2 E_{R} \\
\frac{-\Gamma / 2}{E-E_{R}+i \Gamma / 2} \simeq \frac{-\Gamma E_{R}}{s-s_{R}+i \Gamma E_{R}} \quad s_{R}=E_{R}^{2}
\end{gathered}
$$

This is a Breit-Wigner (BW) formula for the amplitude
It is applied in many phenomenological studies to reproduce data
BW formula does not work well when typically the resonance is very wide (like the σ) or it is located just on top of a threshold, even more when several channels couple

BW works very bad for the σ indeed.

The lightest preexisting resonance $\rho(770)$

$M_{\rho}=770 \mathrm{MeV}, \Gamma_{\rho}=150 \mathrm{MeV}$
N/D method without LHC:

$$
T=\left[\sum_{i} \frac{\gamma_{i}}{s-s_{i}}+g(s)\right]^{-1}
$$

To reproduce the (Adler) zero at threshold ONE CDD is needed

$$
\begin{aligned}
\gamma_{1} & =6 F_{\pi}^{2} \\
s_{1} & =4 m_{\pi}^{2} \\
a & =-\frac{6 F_{\pi}^{2}}{M_{\rho}^{2}} 16 \pi^{2} \simeq-14.2
\end{aligned}
$$

$|a| \gg 1$ Preexisting Resonance ($q \bar{q}$ resonance)
Another argument to appreciate the difference:

$$
a+\log \frac{m_{\pi}^{2}}{\mu^{2}}=\frac{m_{\pi}^{2}}{\bar{\mu}^{2}} \rightarrow \bar{\mu}=\mu \exp (-a / 2)
$$

with $\mu \sim 800 \mathrm{MeV}$

$$
\begin{aligned}
\bar{\mu}_{\sigma} & =1.76 \mathrm{GeV} \\
\bar{\mu}_{\rho} & =970 \mathrm{GeV} \sim 1 \mathrm{TeV}
\end{aligned}
$$

To be compared with the natural scale $\Lambda_{\chi P T}=4 \pi F_{\pi} \sim 1.2 \mathrm{GeV}$

- The ρ pole dominates over the background in the Laurent expansion
- The BW formula for the ρ compares very well with the full result

Pole:
Its square root gives the coupling

$$
\frac{\gamma_{R}^{2}}{s-s_{R}}
$$

$$
\begin{aligned}
& \left|g_{\sigma \rightarrow \pi \pi}\right|=3.1 \mathrm{GeV} \\
& \left|g_{\rho \rightarrow \pi \pi}\right|=2.5 \mathrm{GeV}
\end{aligned}
$$

Width in terms of the coupling:

$$
T=-\frac{g^{2}}{s-M_{R}^{2}+i M_{R} \Gamma_{R}}
$$

Unitarity implies $\Im T^{-1}=-|\mathbf{p}| / 8 \pi \sqrt{s}$ at $s=M_{R}^{2}$

$$
\Gamma_{R}=\frac{g^{2}|\mathbf{p}|}{8 \pi M_{R}^{2}}
$$

Including other cuts in the algebraic N/D method

$$
T=\left[\sum_{i=1} \frac{\gamma_{i}}{s-s_{i}}+g(s)\right]^{-1} \equiv\left[\mathcal{R}^{-1}+g(s)\right]^{-1}
$$

A CDD at infinity corresponds to a constant

$$
\lim _{s_{i} \rightarrow \infty} \frac{\gamma_{i}}{s_{i}}=\text { constant }
$$

The crossed cuts (LHC for equal mass scattering) are included perturbatively in \mathcal{R}

This is accomplished by matching order by order with T calculated from the EFT, T_{χ}
U.-G. Meißner, J.A.O, Phys. Lett. B 500 (2001) 263

$$
T_{\chi}=T_{2}+T_{4}+\ldots=[1+\mathcal{R} g(s)]^{-1} \mathcal{R}=\mathcal{R}_{2}+\mathcal{R}_{4}-\mathcal{R}_{2} g \mathcal{R}_{2}+\ldots
$$

$$
\begin{aligned}
& \mathcal{R}_{2}=T_{2} \\
& \mathcal{R}_{4}=T_{4}+\mathcal{R}_{2} g \mathcal{R}_{2}
\end{aligned}
$$

and son on for higher orders
The resulting \mathcal{R} has no RHC (that arises form $g(s)$)

Production Process. E.g. Form factors

- Production vertex
- Full strong interaction vertex

Analogy with the scattering process

$$
T=[1+\mathcal{R} g]^{-1} \mathcal{R} \rightarrow F=[1+\mathcal{R} g]^{-1} \mathcal{F}
$$

Unitarity and analyticity can be used to obtain a more general derivation of this result
Oset, Palomar, J.A.O., Phys. Rev. D 63 (2001) 114009
(1) \mathcal{R} is known form the studies on the strong interactions
(2) \mathcal{F} is fixed by matching with F calculated up to a given order in the EFT
Pion and Kaon vector Form Factors
Strong amplitude: $J^{P C}=1^{--}$
Matching with EFT: $=$ CHPT+Resonances at Leading Order Ecker, Gasser, Pich, de Rafael, Nucl. Phys. B 321 (1989) 311

$$
\begin{aligned}
\mathcal{R}_{2} & =T_{E F T}^{L O} \\
\left.T_{E F T}^{L O}\right|_{11} & =\frac{2|\mathbf{p}|^{2}}{3 F_{\pi}^{2}}\left[1+\frac{2 G_{V}^{2}}{F_{\pi}^{2}} \frac{s}{M_{\rho}^{2}-s}\right]
\end{aligned}
$$

Form Factors:

Matching with NLO EFT result on Form Factors (CHPT+Resonances)

$$
\mathcal{F}_{1}=1+\frac{F_{V} G_{V}}{F_{\pi}^{2}} \frac{s}{M_{\rho}^{2}-s}
$$

High energy QCD constraints were also imposed so that the subtraction constants are determined (they are introduced from the strong interactions)

Pion and kaon Scalar Form Factors

U.-G. Meißner, J.A.O., Nucl. Phys. A 679 (2001) 671 Strong amplitude: $J^{P C}=0^{++}$ Matching with EFT:= CHPT at Leading Order Gasser, Leutwyler, Nucl. Phys. B 250 (1985) 465

$$
\begin{aligned}
\mathcal{R}_{2} & =T_{E F T}^{L O} \\
\mathcal{R}_{11} & =\frac{s-m_{\pi}^{2} / 2}{F_{\pi}^{2}}
\end{aligned}
$$

Form Factors

$$
\begin{aligned}
&\langle 0| \bar{s} s\left|M M^{\prime}\right\rangle, \quad\langle 0| \bar{n} n\left|M M^{\prime}\right\rangle \\
& \bar{n} n=\frac{1}{\sqrt{2}}(\bar{u} u+\bar{d} d)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{F}_{1}^{\bar{n} n} & =\sqrt{\frac{3}{2}}\left\{1+\frac{4\left(L_{5}+2 L_{4}\right)}{F_{\pi}^{2}} s+\frac{16\left(2 L_{8}-L_{5}\right)}{F_{\pi}^{2}} m_{\pi}^{2}\right. \\
& \left.+\frac{8\left(2 L_{6}-L_{4}\right)}{F_{\pi}^{2}}\left(2 m_{K}^{2}+3 m_{\pi}^{2}\right)-\frac{m_{\pi}^{2}}{32 \pi^{2} F_{\pi}^{2}}-\frac{1}{3} \mu_{n}\right\}
\end{aligned}
$$

$L_{i}:$ NLO CHPT Counterterms

$J / \Psi \rightarrow \phi(w) \pi \pi$

T.A. Lahde, U.-G. Meißner, Phys. Rev.

D 74 (2006) 034021
L. Roca, J.E. Palomar, E. Oset, Nucl. Phys. A 744 (2004) 127

The Inverse Amplitude Method (IAM) with Coupled Channels

Oset, Peláez, J.A.O., Phys. Rev. Lett. 80 (1998) 3452

- The IAM was introduced originally for the elastic case (only one channel) in
Truong, Phys. Rev. Lett. 61 (1998) 2526
Dobado, Herrero, Truong Phys. Lett. B 235 (1990) 129
Dobado, Peláez, Phys. Rev. D 56 (1997) 3057
- Its generalization to coupled channels was given in

Oset, Peláez, J.A.O., Phys. Rev. Lett. 95 (2005) 172502
Oset, Peláez, J.A.O., Phys. Rev. D 59 (1999) 074001

- From the CHPT expansion up to NLO of T we work out the expansion of T^{-1}
- It reminds us of the effective range approximation of Quantum Mechanics
- In this way if the amplitude has a pole its inverse has only a zero
- The number of free parameter is the same as in CHPT at NLO: $L_{1}, L_{2}, L_{3}, L_{4}, L_{5}, L_{7}, 2 L_{6}+L_{8}$ fitted to data for $\sqrt{s} \leq 1.2 \mathrm{GeV}$

Explicit matrix language: Coupled Channels $T_{i j}$ corresponds to $i \rightarrow j$

$$
\begin{gathered}
\Im T^{-1}=-\rho \\
\rho_{i}=\frac{|\mathbf{p}|_{i}}{8 \pi \sqrt{s}} \theta\left(s-s_{i}\right) \\
T^{-1}=\Re T^{-1}-i \rho_{i} \\
T^{-1}=\left[T_{2}+T_{4}\right]^{-1}=T_{2}^{-1} \cdot\left[I+T_{4} \cdot T_{2}^{-1}\right]^{-1} \\
=T_{2}^{-1} \cdot\left[I-T_{4} \cdot T_{2}^{-1}\right]=T_{2}^{-1} \cdot\left[T_{2}-T_{4}\right] \cdot T_{2}^{-1}
\end{gathered}
$$

Figure: $L=0, I=0$

Figure: $L=0, I=1 / 2$
Figure: $L=1, I=1$

Figure: $L=0, I=2$

Figure: $L=1, I=0$

Resonances

Table III. Masses and partial widths in MeV

Channel (I, J)	Resonance	Mass from pole	Width from pole	Mass effective	Width effective	Partial Widths
$(0,0)$	σ	442	454	≈ 600	very large	$\pi \pi-100 \%$
$(0,0)$	$f_{0}(980)$	994	28	≈ 980	≈ 30	$\pi \pi-65 \%$
$(0,1)$	$\phi(1020)$	980	0	980	0	0.35%

Figure: $\sigma, f_{0}(980)$

Figure: $\sigma, f_{0}(980)$

Figure: $\rho(770)$

The gradient is oriented towards higher values of the mass than the pole position

Mixing angle of the lightest scalar nonet

SU(3) analysis

1961 Gell-Mann and Ne'eman introduced a classification of hadrons based on $\mathrm{SU}(3)$ symmetry
$\mathrm{SU}(3)$ is the set of unitary transformations with determinant 1 in three dimensions acting on the quark flavors or species

$$
q(x)=\left(\begin{array}{l}
u \\
d \\
s
\end{array}\right)
$$

For standard rotations one has multiplets like scalars, vectors, axials, etc

The QCD Lagrangian is invariant under $\operatorname{SU}(3)$ for equal quark masses

Different quark masses break $\operatorname{SU}(3)$ explicitly

$$
\bar{q}(x)\left(\begin{array}{ccc}
m_{u} & 0 & 0 \\
0 & m_{d} & 0 \\
0 & 0 & m_{s}
\end{array}\right) q(x)
$$

$m_{s} \gg m_{u, d}$
As a result $\mathrm{SU}(3)$ multiplets or irreducible representation mix

Well established octet+singlet of vector resonances. $I=0$ resonances mix.

Ideal Mixing:

$$
\phi=\bar{s} s, \quad \omega=\frac{1}{\sqrt{2}}(\bar{u} u+\bar{d} d)
$$

Well established octet+singlet of lightest pseudoscalars. $I=0$ states mix.

η and η^{\prime} mix

$$
\begin{aligned}
\eta & =\cos \theta_{P} \eta_{8}-\sin \theta_{P} \eta_{1} \\
\eta^{\prime} & =\sin \theta_{P} \eta_{8}+\cos \theta_{P} s \eta_{1}
\end{aligned}
$$

$\theta_{p} \sim-(15-20)^{\circ}$

What about the scalar resonances?

Mixing of the σ and $f_{0}(980)$ J.A.O. Nucl. Phys. A 727 (2003) 353

Continuous movement from an $\operatorname{SU}(3)$ symmetric point with equal masses $m_{0}: m_{i}(\lambda)=m_{i}+\lambda\left(m_{0}-m_{i}\right)$ with $\lambda \in[0,1]$

$a_{0}(980), \kappa$: Pure octet states

Clebsch-Gordan decomposition:

$$
\begin{gathered}
g\left(a_{0} \rightarrow[K \bar{K}]_{l=1}\right)=-\sqrt{\frac{3}{10}} g_{8} \quad, \quad g\left(a_{0} \rightarrow \pi \eta\right)=\frac{1}{\sqrt{5}} g_{8} \\
g(\kappa \rightarrow K \pi)=\frac{3}{\sqrt{20}} g_{8}, \quad g(\kappa \rightarrow K \eta)=\frac{1}{\sqrt{20}} g_{8}
\end{gathered}
$$

$$
\begin{gathered}
\frac{g\left(\kappa \rightarrow[K \pi]_{1 / 2}\right)}{g(\kappa \rightarrow K \eta)} \quad 3 \quad 2.5 \pm 0.3 \\
\left|g_{8}\right|=8.7 \pm 1.3 \mathrm{GeV}
\end{gathered}
$$

$\sigma, f_{0}(980)$ isosinglet states: Mixing

$$
\begin{aligned}
\sigma & =\cos \theta S_{1}+\sin \theta S_{8} \\
f_{0} & =-\sin \theta S_{1}+\cos \theta S_{8}
\end{aligned}
$$

Ideal Mixing: $\cos \theta^{2}=2 / 3=0.67$
No consensus in the literature

$$
\begin{aligned}
& g\left(\sigma \rightarrow(\pi \pi)_{0}\right)=-\frac{\sqrt{3}}{4} \cos \theta g_{1}-\sqrt{\frac{3}{10}} \sin \theta g_{8} \\
& g\left(\sigma \rightarrow(K \bar{K})_{0}\right)=-\frac{1}{2} \cos \theta g_{1}+\frac{1}{\sqrt{10}} \sin \theta g_{8} \\
& g\left(\sigma \rightarrow\left(\eta_{8} \eta_{8}\right)_{0}\right)=\frac{1}{4} \cos \theta g_{1}-\frac{1}{\sqrt{10}} \sin \theta g_{8} \\
& g\left(f_{0} \rightarrow(\pi \pi)_{0}\right)=\frac{\sqrt{3}}{4} \sin \theta g_{1}-\sqrt{\frac{3}{10}} \cos \theta g_{8} \\
& g\left(f_{0} \rightarrow(K \bar{K})_{0}\right)=\frac{1}{2} \sin \theta g_{1}+\frac{1}{\sqrt{10}} \cos \theta g_{8} \\
& g\left(f_{0} \rightarrow\left(\eta_{8} \eta_{8}\right)_{0}\right)=-\frac{1}{4} \sin \theta g_{1}-\frac{1}{\sqrt{10}} \cos \theta g_{8}
\end{aligned}
$$

$$
\frac{g_{1}}{g_{8}}=\sqrt{\frac{8}{5}} \tan \theta
$$

$$
\begin{aligned}
\theta & =(+19 \pm 5)^{\circ} \\
g_{8} & =(8.2 \pm 0.8) \mathrm{GeV} \\
g_{1} & =(3.9 \pm 0.8) \mathrm{GeV}
\end{aligned}
$$

The sign of θ can be fixed from the peak value at the $f_{0}(980)$ resonance of the scalar form factors

$$
\begin{aligned}
f_{n} & =\langle 0| \frac{1}{\sqrt{2}}(\bar{u} u+\bar{d} d)|K \bar{K}\rangle_{0} \\
f_{s} & =\langle 0| \bar{s} s|K \bar{K}\rangle_{0} \\
\left|f_{s} / f_{n}\right| & \gg 1
\end{aligned}
$$

Large N_{C} insight on the σ

QCD is a non-Abelian gauge QFT under SU(3)-color N_{C} In real life $N_{C}=3, q(x)_{i}, \quad i=1, \ldots, 3$

$$
\begin{aligned}
D_{\mu} & =\partial_{\mu}+i \frac{g}{\sqrt{N_{C}}} A_{\mu} \\
F_{\mu \nu} & =\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+i \frac{g}{\sqrt{N_{C}}}\left[A_{\mu}, A_{\nu}\right]
\end{aligned}
$$

$$
\mathcal{L}_{Q C D}=-\frac{1}{2} \operatorname{Tr} F_{\mu \nu} F^{\mu \nu}+\sum_{k=1}^{N_{F}} \bar{\psi}_{k}\left(i \not D-m_{k}\right) \psi_{k}
$$

A non-trivial $N_{C} \rightarrow \infty$ limit exists:
G.'t Hooft, Nucl. Phys. B 72 (1974) 461; B 75 (1974) 461
E. Witten, Nucl. Phys. B 160 (1979) 57

The planar diagrams of QCD survive the large N_{C} limit. All the others are suppressed in large N_{C}
β-function of QCD

$$
\mu \frac{d g}{d \mu}=-\left(\frac{11}{3}-\frac{2}{3} \frac{N_{F}}{N_{C}}\right) \frac{g^{3}}{16 \pi^{2}}+\mathcal{O}\left(g^{5}\right)
$$

It has a well defined limit for $N_{C} \rightarrow \infty$
Quark loops do not contribute $N_{F} / N_{C} \rightarrow 0$ because insertion of quark lines are suppressed in large N_{C}

$$
F_{\pi} \propto \sqrt{N_{c}}
$$

$$
\langle 0| \sum_{i}^{N_{c}} \bar{q}_{i} \gamma^{\mu} \gamma_{5} \lambda^{a} q_{i}\left|\pi^{b}(p)\right\rangle=i \delta^{a b} F_{\pi} p^{\mu}
$$

The operator has N_{c} terms
A pion has the factor $1 / \sqrt{N_{c}}$ because of normalization $\sum_{i=1}^{N_{c}} \bar{q}_{i} q_{i} / \sqrt{N_{c}}$
σ from LO Unitarized CHPT Oset,J.A.O. Phys. Rev. D 60 (1999) 074023

$$
\begin{aligned}
& \frac{F_{\pi}^{2}}{M_{\sigma}^{2}}+g_{\Perp}\left(M_{\sigma}^{2}\right)=0 \\
& M_{\sigma}^{2} \propto F_{\pi}^{2} / g_{\Perp}\left(M_{\sigma}^{2}\right) \sim N_{c}
\end{aligned}
$$

According to the large N_{C} rules for a $\bar{q} q$ meson:

$$
M \sim \mathcal{O}\left(N_{C}^{0}\right) \quad, \quad \Gamma \sim 1 / N_{C}
$$

which is not fulfilled by the $\sigma\left(a_{0}(980), \kappa\right)$ resonance.

Employing NLO CHPT

IAM results J.R.Peláez PRL 92(2004)102001

IAM results J.R.Peláez PRL 92(2004)102001

σ does not correspond to such behavior

The QCD Lagrangian is invariant under $U(3)_{L} \otimes U(3)_{R}$ of quark flavors

If $U_{A}(1)$ were spontaneously broken (like $\left.S U(3)_{A}\right)$ then there should be an η_{0} with a mass $<\sqrt{3} m_{\pi}$ Weinberg PRD'75 but the η is much heavier

The ninth axial singlet current has an anomalous divergence Adler PR'69 Fujikawa PRD'80

$$
\begin{aligned}
J_{5}^{\mu(0)} & =\bar{q} \gamma_{\mu} \gamma_{5} q \\
\partial_{\mu} J_{5}^{\mu(0)} & =\frac{g^{2}}{16 \pi^{2}} \frac{1}{N_{c}} \operatorname{Tr}_{c}\left(G_{\mu \nu} \widetilde{G}^{\mu \nu}\right)
\end{aligned}
$$

Large N_{c} QCD \rightarrow nonet of pseudoscalars (Goldstone theorem)

The previous studies are based on SU(3) CHPT which does not have the right number of degrees of freedom in large N_{C}

It has only 8 Goldstone bosons $\left(\pi, K, \eta_{8}\right)$ but not 9 (including the η_{1}) as large $N_{C} \mathrm{U}(3)$ symmetry requires

Evolution of pseudoscalar masses with N_{C} Z.-H. Guo, J.A.O., PRD(2011) in press

We make use $U(3)$ CHPT
Combined power expansion in light quark masses, soft external momenta and $1 / N_{C}$

Di Vecchia, Veneziano, NPB'80
Rosenzweig, Schechter, Trahern, PRD'80
Witten, Ann.Phys.' 80 Herrera-Siklody, Latorre, Pascual, Taron, NPB'97
δ-counting: $\delta \sim \mathcal{O}\left(p^{2}\right) \sim m_{q} \sim 1 / N_{C}$
σ-Pole Trajectory

Oller, Oset PRD'99 $M_{S}^{2} \propto f^{2} \propto N_{c}$
Peláez et al '04,'06,....'10 σ Mass always increases with N_{c} At the two-loop order it moves to a pole with zero width at 1 GeV .

We also obtain such a pole but it comes from the bare scalar singlet $M_{S_{1}} \simeq 1 \mathrm{GeV}$ (At $N_{c}=3$ it contributes to the $f_{0}(980)$.)

$$
\frac{1}{M_{V}^{2}-t} \rightarrow \frac{1}{M_{V}^{2}}
$$

NLO local terms in $\chi \mathrm{PT}$. Vector Reduced case (Blue Triangles)
The σ-pole trajectory is then more similar to that of the IAM one-loop study Peláez PRL'04
Sensitivity to higher order local terms.
When full vector propagators are kept their crossed exchange contributions cancel mutually with those from crossed loops along the RHC ($\sqrt{s} \lesssim 1 \mathrm{GeV}$) Oller, Oset PRD'99

For increasing N_{c} loops are further suppressed and this cancellation is spoilt: More sensitivity to the LHC contributions.

The σ pole blows-up in the complex plane (not $q \bar{q}$). Dynamically generated resonance.

There is no influence on the σN_{C} pole trajectory by the large reduction of the η mass because the σ does couple very little to states with η and η^{\prime}

For the other scalar resonances this is not the case because they couple strongly with such states

We also obtain the standard $q \bar{q}$ behavior for the lightest octet of vector resonances $\rho, K^{*}(892)$ and $\phi(1020)$

The $f_{0}(980), f_{0}(1370), a_{0}(1450), K_{0}^{*}(1430)$ evolve at $N_{C} \rightarrow \infty$ to preexisting states.

Mimic $S U(3)$ case: Mixing is set to zero and η_{1} is kept in the loops. η_{8}, η_{1} masses are frozen. Differences highlight the role of η^{\prime}. Differences for the σ case are negligible.

$\rho(770), K^{*}(892)$

$q \bar{q}$ trajectories: Mass $\mathcal{O}\left(N_{c}^{0}\right)$ and Width $\mathcal{O}\left(1 / N_{c}\right)$ Peláez PRL'04
Above $N_{c}=13$ the $K \eta$ threshold becomes lighter than the $K^{*}(892)$ mass (kink in the residue to $K \eta$ at $N_{c}=14$).
For the $\phi(1020)$ the situation is the same. There is sensitivity to the slight movement of the nearby $K \bar{K}$ threshold with N_{c}.

On the lightest Glueball

M.Albaladejo, J.A.O., Phys. Rev. Lett. 101 (2008) 252002

A new state of matter made only of gluons
Due to the non-Abelian nature of QCD gluons interact between each other and can make hadrons without valence quarks

Predicted by quenched lattice QCD with $M=(1.66 \pm 0.05) \mathrm{GeV}$
Experimentally one finds the $f_{0}(1500)$ and $f_{0}(1710)$ near this predicted mass.

Multi-coupled-channel study:

- $I=0: \pi \pi, K \bar{K}, \eta \eta, \sigma \sigma, \eta \eta^{\prime}, \rho \rho, \omega \omega, \eta \eta^{\prime}, \omega \phi, \phi \phi, K^{*} \bar{K}^{*}$, $a_{1}(1260) \pi, \pi^{\star} \pi$
- $I=1 / 2, I=3 / 2: K \pi, K \eta$ and $K \eta^{\prime}$ Jamin, Pich, J.A.O., NPB 587 (2000) 331

$\sigma \sigma$ channel amplitudes. Pion rescattering

We want to obtain $\sigma \sigma$ amplitudes starting from chiral Lagrangians.
σ is S-wave $\pi \pi$ interaction, $|\sigma\rangle=|\pi \pi\rangle_{0}$, Oset, J.A.O., NPA620'97

- Pion rescattering is given by the factor $D^{-1}(s)=\left(1+t_{2} G(s)\right)^{-1}$, with:
- $t_{2}=\frac{s-m_{\pi}^{2} / 2}{f_{\pi}^{2}}$ basic $\pi \pi \rightarrow \pi \pi$ amplitude.
- $(4 \pi)^{2} G(s)=\alpha+\log \frac{m_{\pi}^{2}}{\mu^{2}}-\sigma(s) \log \frac{\sigma(s)-1}{\sigma(s)+1}$, two pion loop.
- Isolate the transition amplitude $N_{i \rightarrow \sigma \sigma}$:

$$
\lim _{s_{i} \rightarrow s_{\sigma}} \frac{T_{i \rightarrow(\pi \pi)_{0}(\pi \pi)_{0}}}{D_{I I}\left(s_{1}\right) D_{I I}\left(s_{2}\right)}=\frac{N_{i \rightarrow \sigma \sigma} g_{\sigma \pi \pi}^{2}}{\left(s_{1}-s_{\sigma}\right)\left(s_{2}-s_{\sigma}\right)}
$$

- Around the σ pole $D_{I I}(s)^{-1}=\left(1+t_{2} G(s)\right)^{-1} \approx \frac{\alpha_{0}}{s-s_{\sigma}}+\cdots$, then:

$$
N_{a \rightarrow(\sigma \sigma)_{0}}=T_{a \rightarrow(\pi \pi)_{0}(\pi \pi)_{0}}\left(\frac{\alpha_{0}}{g_{\sigma \pi \pi}}\right)^{2}
$$

- To calculate $\left(\alpha_{0} / g_{\sigma \pi \pi}\right)^{2}$, consider $\pi \pi$ elastic scattering,

$$
T=\frac{t_{2}(s)}{1+t_{2}(s) G(s)} \approx-\frac{g_{\sigma \pi \pi}^{2}}{s-s_{\sigma}}+\cdots
$$

So we can write, using that at the σ pole $g_{I I}\left(s_{\sigma}\right)=-1 / t_{2}\left(s_{\sigma}\right):$

$$
\left(\frac{\alpha_{0}}{g_{\sigma \pi \pi}}\right)^{2}=\frac{F_{\pi}^{2}}{1-G_{I I}^{\prime}\left(s_{\sigma}\right) F_{\pi}^{2} t_{2}\left(s_{\sigma}\right)^{2}} \approx 1.1 F_{\pi}^{2}
$$

- In conclusion, we follow a novel method to calculate amplitudes involving $\sigma \sigma$, through:

$$
N_{a \rightarrow(\sigma \sigma)_{0}}=T_{a \rightarrow(\pi \pi)_{0}(\pi \pi)_{0}}\left(\frac{\alpha_{0}}{g_{\sigma \pi \pi}}\right)^{2}
$$

$\pi \pi \rightarrow \pi \pi$: Although reaching energies of 2 GeV , description of low energy data is still quite good

$\pi \pi \rightarrow K \bar{K}$: Near threshold, Cohen data are favored.

$\pi \pi \rightarrow \eta \eta, \eta \eta^{\prime}$: In good agreement for a low weight on χ^{2}. In addition, the data are unnormalized.

$I=1 / 2 K^{-} \pi^{+} \rightarrow K^{-} \pi^{+}$ amplitude and phase from LASS.

No parameterization
We determine interaction kernels from Chiral Lagrangians, avoiding ad hoc parameterizations

Less free parameters
We have less free parameters, because of our chiral approach and our treatment of $\sigma \sigma$ amplitude

Higher energies
We have included enough channels to get at 2 GeV .

Compare with: Lindenbaum,Longacre PLB274'92; Kloet, Loiseau, ZPA353'95; Bugg, NPB471'96

Spectroscopy. Pole content: Summary

All the scalar resonances with mass up to 2 GeV are reproduced

Spectroscopy. Couplings

$f 0(1370)(I=0)$			$K_{0}^{*}(1430)(I=1 / 2)$		
Coupling	bare	final	Coupling	bare	final
$g_{\pi^{+} \pi^{-}}$	3.9	3.59 ± 0.18	$g_{K \pi}$	5.0	4.8
$g_{K^{0} \bar{K}^{0}}$	2.3	2.23 ± 0.18	$g_{K \eta}$	0.7	0.9
$g_{\eta \eta}$	1.4	1.70 ± 0.30	$g_{K \eta^{\prime}}$	3.4	3.8
$g_{\eta \eta^{\prime}}$	3.7	4.00 ± 0.30			
$g_{\eta^{\prime} \eta^{\prime}}$	3.8	3.70 ± 0.40			

- Bare coupling are those of $S_{8}^{(1)}$, with $M_{8}^{(1)}=1.3 \mathrm{GeV}$.
- The first preexisting scalar octet is a pure one, not mixed with the nearby $f_{0}(1500)$ and $f_{0}(1710)$

Spectroscopy. Couplings

Coupling (GeV)	$f 0(1500)$	$f_{0}(1710)$
$g_{\pi^{+} \pi^{-}}$	1.31 ± 0.22	1.24 ± 0.16
$g_{K^{0} \bar{K}^{0}}$	2.06 ± 0.17	2.00 ± 0.30
$g_{\eta \eta}$	3.78 ± 0.26	3.30 ± 0.80
$g_{\eta \eta^{\prime}}$	4.99 ± 0.24	5.10 ± 0.80
$g_{\eta^{\prime} \eta^{\prime}}$	8.30 ± 0.60	11.7 ± 1.60
Coupling (GeV)	$f 0(1500)$	$f_{0}(1710)$
$g_{s s}$	11.5 ± 0.5	13.0 ± 1.0
$g_{n s}$	-0.2	2.1
$g_{n n}$	-1.4	1.2
$g_{s s} / 6$	1.9 ± 0.1	2.1 ± 0.2

This pattern suggests a suppression in $u \bar{u}$ and $d \bar{d}$ production. With a pseudoscalar mixing angle $\sin \beta=-1 / 3$ for η and η^{\prime} :

$$
\begin{aligned}
g_{\eta^{\prime} \eta^{\prime}} & =\frac{2}{3} g_{s s}+\frac{1}{3} g_{n n}+\frac{2 \sqrt{2}}{3} g_{n s}, \\
g_{\eta \eta^{\prime}} & =-\frac{\sqrt{2}}{3} g_{s s}+\frac{\sqrt{2}}{3} g_{n n}+\frac{1}{3} g_{n s}, \\
g_{\eta \eta} & =\frac{1}{3} g_{s s}+\frac{2}{3} g_{n n}-\frac{2 \sqrt{2}}{3} g_{n s} .
\end{aligned}
$$

If chiral suppression M.S.Chanowitz, PRL95('05)172001; 98('07)149104 operates:
The coupling of the glueball to $\bar{q} q$ is proportional to m_{q} $\left|g_{s s}\right| \gg\left|g_{n n}\right|$
$\left|g_{n s}\right| \gg\left|g_{n n}\right|$ expected from OZI rule

Consider $K \bar{K}$ coupling

- Valence quarks: K^{0} corresponds to $\sum_{i=1}^{3} \bar{s}_{i} u^{j} / \sqrt{3}$, and analogously \bar{K}^{0}
- Production of color singlet $s \bar{s}$ requires combination of color wave functions of K^{0}, \bar{K}^{0}
- Decompose $\bar{s}_{i} s^{j}=\delta_{i}^{j} \bar{s} s / 3+\left(\bar{s}_{i} s^{j}-\delta_{i}^{j} \bar{s} s / 3\right)$ and similarly $\bar{u}_{i} u^{j}$
- Only $s \bar{s} u \bar{u}$ contributes (factor $1 / 3$) and $s \bar{s} s \bar{s}$ has an extra factor two compared to $s \bar{s} u \bar{u}$, so one expects $g_{K^{0} \bar{K}^{0}}=g_{s s} / 6$

The $f_{0}(1710)$ resonance corresponds to the lightest scalar glueball. We find a really good agreement with the mechanism of chiral suppression from QCD proposed by Chanowitz with our exhaustive multichannel hadronic calculation.

It is a pure glueball not mixed with any other resonance
$f_{0}(1370)$ is almost purely octet states
$f_{0}(1500)$ is made up of the sum of the poles that give rise to the $f_{0}(1370)$ and $f_{0}(1710)$ together with a strong cusp effect from the $\eta \eta^{\prime}$ threshold.

