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Introduction

In the chiral limit my, = mg = ms = 0 the QCD Lagrangian is
invariant under U;(3) ® Ug(3) symmetry in the quark flavours or
types.

SU(3) ® SUR(3) — SUy(3) is Spontaneously Broken.

Goldstone bosons appear 7, K, 1
Mass gap:

M, ~ 140 MeV < M, ~ 770 MeV
My ~ 496 MeV

M, ~ 550 MeV

Conservation of axial-vector current: 9, (gy*ysA%q) =0,
(0@y"5A%q|m°(p)) = i 6°°F, p*
9u(0[av"15A°q|w°(p)) = i §%°Fr p* = 0
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pPP=0— M:=0

L 4+ R corresponds to gy*q
Uy (1) = U+ r Conserved Baryon Number.

L — R corresponds to gy*vs5q
Ua(1) = U;_g Neither Conserved nor Goldstone Boson.

Puzzle:
Goldstone mode: There should be an 79 with a mass < V3m,
but 7 is much heavier Weinberg PRD'75
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QCD Anomaly

The ninth axial singlet current has an anomalous divergence Adler
PR'69 Fujikawa PRD'80

0 _
O = Gv,75q

2
1
9, ® = ‘é'ZN Tre( G G™)

Large N QCD 't Hooft NPB'74, Witten NPB'79 Ne — o0,
g?>N. — constant

Ur(Ng) @ Ur(Ng) — Ur1r(Ng) Coleman, Witten PRL'80
Entire Nonet of Goldstone bosons results.
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Dispersion Relations

Causality conditions — Dispersion Relations

@ Analytical properties of transient amplitudes

H. A. Kramers, Atti Cong. Intern. Fisica, Como, 2 (1927) 545;
R. Kronig, Opt. Soc. Amer. 12 (1926) 547.

Scattering of light by a dispersive medium.
The name 'dispersion relation’ derives from this first application.

CAUSAL STATEMENT: Polarization P(t)
P(t)=0for t<0

Fourier Transform E(v) = n(v) — 1:

+oo .
E(v) = 4r dtP(t)e* .

—0o0
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Dispersion Relation:

Proof: Essential point

v=wv1+ivy, 1p >0,
+o0o
E(v)= 47'('/ dtP(t) exp[ivit — vat] .
—0oQ
It converges because P(—o0) = 0.
e Cauchy’s theorem: (Assume E(v) — 0 for v — o0)

E(v + i) = 1/ du’UE(y)
C

27 I — v — e

)
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Complex
1 E / . 1 E* /
0— / dy//(iy). Conjugate 0= / dV/L)_ ()
2ri Jo VI —v+ie — 2ri Je VI —v—ie

e Subtracting Egs.(1), (2):

E(v) = lim 1/+OO dV’L(Z/) (3)

vV —v— e
Adding Eqgs.(1), (2):

g +o0o /
E(v)= lim — d/—REW)

TR
0 vV —v—ie

Taking into account

/+Oo a8 _ P/+oo ax £ £ i)

oo X —XxpgEie oo X — Xp
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From Egs. (3) and (4), respectively:

1 [t SEW
RE(v) = Pw/ dv/ ;/ (VV) , (5)
“+o00 /
SE(w) = PE / dy’gz,E(”V) . (6)
T ) _ oo —

Eq. (5) is by far much more useful.
It expresses the Dispersive part (RE(v)) in terms of the Absorptive
part (3E(v)), once it is known for all frequencies.

The same results are obtained directly from
1 E(V)
E )= — [ d/—"1
(v+ie) 27Ti/c YU e

Applying

1
.—>P/ dx + imé(x — xo) -
X —xg— i€ X — Xo
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Let's relax the assumption E(v) — 0 for v — oo
e Now:

=0 (7)

E(W) E() }

vVi—v—ie UV —uyg—ie

— /
_ v VO/ dv/ E(V) .
2ri Jo (W —v—ie)(v — vy — ie)

In the same way as before:

RE(v) — RE(v0) = P~ / v’ [
™ —0o0
:V_VOP/+OOd1/ SE(V)

= ) = )

One Subtraction

1
E(v+ie)— E(vo+ie) = 27“/ dv/' [
C

—+00

vV —v vV — 1y

SE(W) 35(1/)]




Lectures on Nuclear and Hadron Physics
LDispersion Relations

The addition of further subtractions is iterative. Assume:

lim E(v)

V—00 1/2

=0.

Two subtractions: One considers

VvV —

E(v) — E(vo) — ;; {E(v1) — E(v0)}

V1 —

At v =1y — E(p). At v =17 — E(11).
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e (RE(v) ~ REG0))
B (v —wo)(v—11) y SE(V)
= P/c i oY

7'(' vV —uo)(V — 1)

RE(v) — RE(vo) —
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Dispersion relations were applied to particle physics following a
suggestion by R. Kronig, Physica 12 (1946) 543:

Causality requirements should be added to the usual conditions on
the S-matrix, namely, Lorentz invariance and unitarity

M. Gell-Mann, M. L. Goldberger and W. E. Thirring, Phys. Rev.
95 (1954) 1612

The causality requirement: “the commutator of two
Heisenberg operators for the field in question shall vanish if
the operators are taken at space-like points.”

[#(x1), d(x2)] = 0 for (x1 — x2) space-like

They demonstrated that the amplitude for the forward scattering
of photons by nucleons satisfies:

RA(v) = - / g SAY)

/
T J_ oo vV —v
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Collision Area

|[W*) are eigenstates of the full Hamiltonian H in Heisenberg

picture.

VI) = lim U, 0)]és)

With the |¢,) free states. U(ty, t1) is the evolution operator in the
interaction picture.
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Spa = (W, |VF) = lim  (¢p|U(t2, t1)|a)

t; — —o0
tr — +o0

S-matrix is a Unitary Operator
S-St=5T5=1

T-matrix: S=1+iT

Unitarity: ST-S=1

(66l TIo) = (96l 110w =i 3 [ dQe( 60T 6 )0l TI6)

In the sum only those states which are open contribute!
Phase space

35
aQ. =ne, | [2;33(;)3] (27)*3(Py — P;) = da(2m)*6(Pa — Pa)
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Forward scattering

Very useful case: a= b

1
STea=3 3 [ 40l oelTion
It provides the imaginary part for positive energy above threshold

Unitarity: S-ST=1

1
:2;/dgcr<¢am¢c>|2

Important result:

Z/dQc Bel Tl ) 2 Z/dgc 0al Tl )P
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Rate of all reactions produced by an initial state «
1
— Z/ng[TgaF
Ca
B
From unitarity we then obtain

Z/dﬁa 04—>ﬁ Z/dﬁc,@ ﬁ—>04)

P.da Probability to find the system within volume da

Z/dﬁpﬁ PZ/dﬁ (o= 5)
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Boltzmann H-theorem

Entropy: — [ daPyIn(Pa/ca)
It follows also from forward scattering unitarity
S. Weinberg, The Quantum Field Theory of Fields. Vol. Il

d
—dt/daPaln(Pa/ca) >0
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Partial waves

Unitarity is most simply expressed in terms of Partial Waves
Lacour, MeiBner, J.A.O, Ann. Phys. 326 (2011) 241

\p, 0102 > =Var Z (010253‘51525)(17753,%%5./) Yg’"(f))*]J,uE S 51 5 >
J,,S.m

Two-particle scattering

a(p1) + b(p2) — c(p3) + d(pa)

Spinless case

+1

1
Ti(s) = 2/, d cosf Py(cos ) T(s,cos®)

* ‘p’3
SITy(s)r = Tu(s)aT,
STe(s)s ; (8)ia f(s)fa87rﬁ
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Crossing

With unitarity alone we do not posses enough information for the
standard dispersion relation (¢/ > 0)

RA(v) = - / gy SAW)

T J_o v —v

since v/ < 0 is also required.

Relativistic quantum field theory — Crossing Symmetry.
Another condition that together with unitarity and dispersion
relations allows dynamical calculations

A4+ B — C+ D s-channel
A+ C — B+ D t-channel
A+ D — B+ C u-channel

s=(pa+pg)’ ., t=(pa—pc),
u= (pa—pp)?
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Mandelstam Variables: Only two are independent
5+t+u:m§\+m23+m2c+m2D

A(pa) + B(ps) — C(pc) + D(pp) s-channel
A(pa) + C(—pc) — B(—pg) + D(pp) t-channel
A(pa) + D(—pp) — B(—ps) + C(pc) u-channel

Particle—Antiparticle and reverse four-momentum

The amplitudes for the three reactions are given by the same
analytic function

Physical processes correspond to certain values of s, t
(disconnected physical regions)
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Se — U
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Eg.
N7% — N7°

s- and u-channel processes are the same
For forward scattering:

_ — “+o00 SA /
RA(—v) = RA(v) RA(v) :/ 4 \s/ (V)

SA(—v) = —SA(v) o vV —v
We have the needed information to apply the dispersion relation
V' €] — 0o, —my| and [mg, +00]

Additionally one also has the one-nucleon pole

g? 1

2my v —m2/(2my)
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The application of crossing is not always so straightforward for
obtaining the input in the dispersion relation.

Typical example is fixed t dispersion relations

t = —2¢*(1 — cosf)

= (s" = (mn + mz)*)(s' — (my — mx)?)
45’

As s’ moves as integration variable cos 6 will be less than —1 for
q?> — 0 (near threshold)

The extension to unphysical values of cosf can be done making
use of the partial wave expansion.

However, its convergence its restricted to the Lehmann ellipse
H. Lehmann, Nuovo Cim. Suppl. 14 (1959) 153
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7N scattering 0< _t< 322my +mr 5 32 5
3 2my — my
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The principle of Maximum Analyticity

S. Mandelstam, Rep. Prog. Phys. 25 (1962) 99

“The scattering amplitude is analytic in all its variables
except at those points where singularities arise as a
consequence of the unitarity condition.” (including the
crossed channels.)

This is fulfilled to all orders in perturbation theory.

H
T

Direct Crossed
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Scalar Form Factor of the Pion

L. Roca and J.A.O., Phys. Lett. B 651 (2007) 139

Mx(t) = /d4X e T (7(q")| (mut(x)u(x) + mgd(x)d(x)) |r(q)) ,

t=(q —q)?

Quadratic scalar radius of the pion (r?)7

M(t) = (0) {1 + %t( r’)T 4 O(t2)}

e (r?)T contributes 10% to the a8 and a3 scattering lengths from
Roy equations+CHPT to two loops (2% of precision). It is a big

contribution.

G. Colangelo, J. Gasser, H. Leutwyler, Nucl. Phys. B 603 (2001)
125 (CGL)
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e It gives /4 that controls the departure of F, from its value in the
chiral limit

e Controversy between:

The ‘canonical’ value: (r?)T = 0.61 + 0.04 fm?

Donoghue, Gasser, Leutwyler, Nucl. Phys. B 343 (1990) 341
Based on solving the two-channel Muskhelishvili-Omnés equations

F. Yndurdin's approach based on the Omnés representation of
I+(t) and high energy QCD behavior
(r?)T =0.75 £ 0.07 fm?
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e Change in the 7m scattering lengths:
§ay = +0.027A,2 6a3 = —0.004A% (r?)T = 0.61(1 + A?) fm?

A =+40.23
§aJ = +0.006 da3 = —0.001
CGL:
ad = 0.220 £ 0.005 a3 = —0.0444 =+ 0.0010 fm

precision 2%
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LT LT
scaar ,-” Ra R
[AYAVAV) Ko
source A RN
\\7'[' \\’ﬂ'
Unitarity Cut

I(t) only has RHC or Unitarity cut
00 >t > 4m2
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Dispersion relation:

-
2muuy:chk<H@+JOFAs—k»

m2 s+ie—t s—ie—t

Schwartz’s reflection principle:
If f(z) is real along an interval of the real axis and is analytic then:
f(z") = f(2)*

szllmﬁmug

T Jam2 s—t



Lectures on Nuclear and Hadron Physics

LScalar Form Factor of the Pion

One hard
<— gluon; 1/t

Brodsky-Farrar QCD
counting rules

The dispersion integral is
convergent
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Omnes representation
Let F(t) an analytic function except for the presence of the RHC

© Remove the zeroes and poles in F(t) in the complex plane

g(t) = ,ng
P = 2 (s e ) o0 )
@ Perform a dispersion relation of
(1) = log )
F(t+ i) — F(t — ic) = Iogl__(;(—’;)ie) _ |ogF(;(‘t)"€)
=21 arg T F(e o) = (e~ io)

P(t)



Lectures on Nuclear and Hadron Physics
LScalar Form Factor of the Pion

6(t) = arg ()

® ¢(t) is continuous
o p(4m2) =0
F(t) _ 3 ¢(s)
log P(r) ~ ° T Am% R —

F(t) = P(t) exp:r/OO ds&

am2 S(s—t—ie)
With n the degree of P(t) then

F(t) — (_1)nei¢(+oo) $n—o(+00)/m

¢(+00) — (n+ 1)7 to guarantee that F(t) — 1/t (QCD)
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Watson final state theorem

S=1+i2p(F+T)
sst =1

e Elastic case (only 77 intermediate state)
e Keep only linear terms in F. There is only one source!

ST (t) = Ta(t)p(t) Trr(2)

Since the T, (t) is real the phase of F(t) (¢(t)) and of Tr(t)
(6(t)) are the same (modulo 7)
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Corolary

ter = pTar = sin 6y €07 | 5+(4m2) = 0, &, is continuous and at
most differs by modulo 7 from the phase of T,
This happens when 0, crosses 7 (sind, < 0)

F(t) = P(t) exp% / g2l

4m2 5(5 - t)
B(s) = d(s) s < amx
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Yndurain's method: F. Yndurdin, Phys. Lett. B 578 (2004) 99
The form factor is assumed to be free of zeroes:

Fa(t) = Tx(0) exp [1 / - ds¢<5>]

T Jamz  S(s—1)

~_ 6 % o)
<r2>s—/4 dss—2

T Jam2

However, this result is very unstable and depends on the exact
value of 0,(4m?%) whether is larger or smaller than 7

Actual values of &,(4m?%) are very close to
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SF | —— 380> PO=T 405, O,
c—— ByfS)PTL P()=T £0) | ! 1
c— o= Te [7] (B5)>T) / '

1
1
— - B8 )<T i
1
1
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Continuity is restored by including a zero in the form factor at s; if
5(SK) >

= 1 F L 57¢(5)
ra(t) = T2(0) ™ p[WA d ]

m2 S(s—1)

<r2>”:—g+9 Oo@ds
s S1 m 4m2 S

(5(51) =m 5 < 4mf<
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2dm,
Pos X (” = log(s/m>

dm=12/(33 —2nf) ~1/2
N\ is the scale QCD parameter
n=1,2for §;(4m%) <m, >

(r*)T =0.63+0.05 fm?

Compatible with CGL { r?)T = 0.61 4 0.04 fm?
Both methods are compatible
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0_0

Yy — o

0.0

YY — T

L.Roca, J.A.O., Phys. Lett. B 659 (2008) 201

Similar problems appear in the literature for this reaction due to
the use of the Omnés function with its critical behavior depending

of §(4m%) >mor <

00
0T a2 yy— Tir K
2% |- sfs)>me22)

»-
N S o o® K
L L B L B L B B B B

¥
8
s
8
8
g
g
g
8
g
8

Pennington, Phys. Rev. Lett. 97
(2006) 011601

Morgan,Pennington, Phys. Lett. B 272
(1991) 134

Donoghue,Holstein, Phys. Rev. D 48
(1993) 137
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0_0

— a9

The amplitude F(s) has RHC and LHC. The latter is given by L(s)

F(s) — L(s)
has only RHC

S s [% ¢0( /) /

Q(s)=(1-0(s1)— d

0= (sl)sl)exp[ I
Twice-subtracted dispersion relation for

(F(s) = L(s))/Q(s)

> Lo(s')sin go(s') o
o 25— ) ()]

— (Fo(s1) — Lo(s1)) -

F(s) = L(s) + cosQ(s) + S—Q(s)

Qo(s) 52
Qo(sl)

+ 9(51 — 4m? )
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T

Low's theorem allows to fix ¢
F.E. Low, Phys. Rev. 96 (1954) 1428
The vy — 7w amplitudes tend linearly to the Born term for s — 0

TN
s

P+ PN
PN Y
/\

e

Other sources for L(s) are Axial vector (a1) and vector (p, w)
resonances
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YY = T

F 00 4
20~ YY— T u

16—

. \ ChPT at two loops

T chPT at oneloop

L L
300 350 400 450 500 550 600 650 700
s*2 (MeV)

The strong interactions affect the output
CGL: Colangelo, Gasser, Leutwyler Nucl. Phys. B 603 (2001) 125
PY: Peldez, Yndurdin, Phys. Rev. D 71 (2005) 074016

This reaction can be used to favor one or other strong amplitude
for meson-meson S-wave

Projected precise experiments on vy — 7%7%, — 7t 7~ for the
near future (BELLE, Frascatti)
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