Power Coun. 0000000000	Non-Perturbative	$E/A \langle \bar{q}q \rangle$	Axial Coup. 00	π Self-Energy 0	

Chiral effective field theory for nuclear matter

J. A. Oller

Departamento de Física, U. Murcia, Spain

FUSTIPEN Topical Meeting March 3rd, 2011, GANIL, Caen, France

J. A. Oller

Chiral effective field theory for nuclear matter

Departamento de Física, U. Murcia, Spain

Power Coun. 0000000000	Non-Perturbative	⟨ q q⟩ 000000	Axial Coup. 00	π Self-Energy 0	

Outline

- Introduction
- Power Counting
- Non-Perturbative Methods
- E/A
- Quark Condensate
- Axial Couplings
- π Self-Energy
- Summary

Lacour, JAO, Meißner, J. Phys. G 37(2010)015106 [1]; Ann. Phys. 326(2011)241 [2]; J. Phys. G37(2010)125002 [3]. M. Albaladejo, JAO, to appear soon.

Intr. ●○	Power Coun. 0000000000	Non-Perturbative	$E/A \langle \bar{q}q \rangle$	Axial Coup. 00	π Self-Energy 0	
Intr.						

Introduction

EFT with short- and long range few-nucleon interactions is quite advanced in vacuum

Pion-nucleon interactions in nuclear matter are already largely exploited, considering chiral Lagrangians

For a recent review: Epelbaum, Hammer, Meißner, Rev. Mod. Phys. 81(2009)1773

Commonly, free parameters are fixed to nuclear matter properties

Many important results and studies of nuclear processes have been accomplished.

Intr. 0●	Power Coun. 0000000000	Non-Perturbative	⟨ q q⟩ ∞∞∞∞∞	Axial Coup. 00	π Self-Energy 0	
Intr.						

Nonetheless it would be desirable to develop a Chiral EFT in nuclear matter.

- Need of a in-medium power counting to include both shortand long-range multi-N interactions
- The power counting has to take into account
 - any number of closed nucleon loops can be arranged in any way
 - in reducible diagrams for *NN*-interactions *N*-propagators are enhanced, $\frac{1}{k^0 E_k + i\epsilon} \sim \mathcal{O}(p^{-2})$

S. Weinberg, Nucl.Phys.B363(1991)3

- in-medium multi-*N* interactions must be taken into account consistent with the vacuum
- Pion-nucleon interactions have to be included with the same requirements

	Power Coun. ●000000000	Non-Perturbative	⟨ q q⟩ ∞∞∞∞∞	Axial Coup. 00	π Self-Energy 0	
Chiral Pov	ver Counting					

Chiral power counting

$$E_k = |\mathbf{k}|^2/2m$$

$$G_0(k)_{i_3} = \frac{\theta(|\mathbf{k}| - \xi_{i_3})}{k_0 - E_k + i\epsilon} + \frac{\theta(\xi_{i_3} - |\mathbf{k}|)}{k_0 - E_k - i\epsilon} = \frac{1}{k_0 - E_k + i\epsilon} + 2\pi i \,\delta(k_0 - E_k) \,\theta(\xi_{i_3} - k)$$

If $k_0 \sim \mathcal{O}(p)$: Standard counting \longrightarrow $G_0(k) \sim \mathcal{O}(p^{-1})$ If $k_0 \sim \mathcal{O}(p^2)$: Non-standard counting \longrightarrow $G_0(k) \sim \mathcal{O}(p^{-2})$

+ + + + + + ... where

The NN irreducible diagrams are very abundant in the nuclear medium

Every nucleon propagator $G_0(k)_{i_3} \sim \mathcal{O}(p^{-2})$ Despite this the chiral power counting is still bounded from below

= +

Concept of in-medium generalized vertex (IGV): thick line: Fermi sea insertion, thin lines: full in-medium nucleon propagator, filled circles: bilinear nucleon vertices

JAO, Phys. Rev. C65(2002)025204; Meißner, JAO, Wirzba, Ann. Phys. 297(2002)27

Let **H** be an auxiliary field for heavy mesons responsible for short range 2N, 3N,... interactions, the **H**-"propagator" counts as $\mathcal{O}(p^0)^{[1]}$

Short-range interactions enter the counting via bilinear vertices of $\mathcal{O}(\geq p^{0}) \qquad \qquad \mathcal{L}_{eff} = \sum_{n=1}^{\infty} \mathcal{L}_{\pi\pi}^{(2n)} + \sum_{n=1}^{\infty} \mathcal{L}_{\pi N}^{(n)} + \sum_{n=0}^{\infty} \mathcal{L}_{NN}^{(2n)} + \dots \\ \qquad \qquad \mathcal{L}_{NN}^{(0)} = -\frac{1}{2} C_{S} (N^{\dagger} N)^{2} - \frac{1}{2} C_{T} (N^{\dagger} \vec{\sigma} N)^{2}$

Chiral effective field theory for nuclear matter

J. A. Oller

	Power Coun. 00●0000000	Non-Perturbative	(<i>q̄q</i>)	Axial Coup. 00	π Self-Energy 0	
Chiral Pov	ver Counting					

•
$$\xi_F \sim M_\pi \sim q_\pi \sim \mathcal{O}(p)$$
 , $\Delta_\pi(k^2) \sim \mathcal{O}(k^{-2})$
• $G_0(k) \sim \mathcal{O}(p^{-2})$

•
$$m \sim 4\pi f_{\pi} \sim C \sim \pi \sim f_{\pi} \sim \mathcal{O}(p^0)$$

$$\nu = 4L_H + 4L_\pi - 2I_\pi + \sum_{i=1}^{V} d_i - \sum_{i=1}^{V_\rho} 2m_i + \sum_{i=1}^{V_\pi} \ell_i + \sum_{i=1}^{V_\rho} 3$$

 V_{ρ} number of IGV.

 m_i number of nucleon propagators (minus one) in the i_{th} IGV.

 L_H , L_π number of heavy meson and pion loops.

 I_{π} number of internal pion lines.

V number of bilinear vertices.

 d_i chiral dimension of a bilinear vertex.

 V_{π} number of purely mesonic vertices.

 ℓ_i chiral dimension of a purely mesonic vertex.

A Cluster is a set of IGV joined by *Hs*. Its number is V_{Φ} .

$$egin{aligned} & L_H = I_H - \sum_{i=1}^{V_{igodednotsymbol{\Phi}}} \left(V_{
ho,i} - 1
ight) = I_H - V_
ho + V_{igodednotsymbol{\Phi}} \; , \ & L_\pi = I_\pi - V_\pi - V_{igodednotsymbol{\Phi}} + 1 \; , \ & H + L_\pi = I_H + I_\pi - V_\pi - V_
ho + 1 \; . \end{aligned}$$

Figure: IGVs separated in two clusters. Here $V_{\rho} = 5$, $V_{\Phi} = 2$, $I_{\pi} = 3$, $I_{H} = 3$ and E = 1. $L_{\pi} = 2$ and $L_{H} = 0$.

Chiral effective field theory for nuclear matter

L

$$\xi_F \sim M_\pi \sim q_\pi \sim \mathcal{O}(p)$$

Order p^{ν} of a diagram:^[1]

$$\nu = 4 - E_{\pi} + \sum_{i=1}^{V_{\pi}} (n_i + l_i - 4) + \sum_{i=1}^{V_B} (d_i + v_i + \omega_i - 2) + \frac{V_{\rho}}{V_{\rho}}$$

- ν is bound from below (modulo external sources):
- **3** adding pions to pionic vertices: $n_i \ge 2$, $l_i \ge 2$
- 2 nucleon mass renormalization terms: $d_i \ge 2$, $\omega_i = 0$, $v_i \ge 0$
- 3 adding pions to pion-nucleon vertices: d_i ≥ 1, ω_i = 0, v_i ≥ 1
- 3 adding heavy mesons to bilinear vertices: $d_i \ge 0, \ \omega_i \ge 1, \ v_i \ge 1$
- ${igsin 0}~~{m V}_
 ho \Rightarrow {f adding}~{f 1}~{f IGV}$ rises counting at least by ${f 1}$

Chiral effective field theory for nuclear matter

J. A. Oller

	Power Coun. 00000●0000	Non-Perturbative	E/A 00000000	⟨ q q⟩ >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	Axial Coup. 00	π Self-Energy 0	
Chiral Pov	ver Counting						

$$\frac{m}{2k^2}$$
 & $\frac{m}{2k^2}\frac{k^3}{6\pi^2}\frac{2m}{k^2}\frac{g_A^2}{4f_\pi^2}$

Relative factor (Extra factor of π^{-1}):

$$\frac{g_A^2 m k}{12\pi^2 f_\pi^2} \sim \frac{k}{2.3\pi f_\pi} = \frac{k}{\Lambda}$$

$$\Lambda =
u \pi f_{\pi}, \ \nu \sim \mathcal{O}(1)$$

J. A. Oller

	Power Coun.	Non-Perturbative	$E/A \langle \bar{q}q \rangle$	Axial Coup.	π Self-Energy				
00	00000000000	000000000000000000000000000000000000000	000000000000000	00					
Chiral Pov	Chiral Power Counting								

Twice iterated pion exchange:

$$\frac{k^2}{m} \& \frac{k^2}{m} \frac{k^3}{6\pi^2} \frac{2m}{k^2} \left(\frac{g_A^2}{4f_\pi^2}\right)^2 L_{10}$$

The same factor as before

$$\times -i\frac{g_A^2m}{4\pi f_\pi}\frac{k}{4f_\pi} \lesssim 1$$

In the medium: imaginary part is suppressed (hole-hole part) and a real part $m\xi_F/4\pi^2$ stems

$$imes rac{g_A^2 m}{4\pi f_\pi} rac{\xi_F}{4\pi f_\pi} \sim rac{\xi_F}{3\pi f_\pi}$$

 $k \sim M_\pi \sim \xi_F$ is the most important region for this physics

$$T_{NN} \sim rac{4\pi/m}{-rac{1}{a} + rac{1}{2}rk^2 + \ldots - ip}$$
 $rk^2/2$ rapidly overcomes $-1/a$
($|a| >> 1$)
Sum over states below the Fermi seas: The measure $\int k^2 dk$ kills low three-momenta.

J. A. Oller

	Power Coun. 00000000000	Non-Perturbative	⟨ q q⟩ ⊃00000	Axial Coup. 00	π Self-Energy O	
Chiral Pov	ver Counting					

The power counting equation is applied increasing step by step V_{ρ} .

Augmenting the number of lines in a diagram **without increasing** the chiral power by adding:

• Pionic lines attached to lowest order mesonic vertices, $\ell_i = n_i = 2$

Pionic lines attached to lowest order meson-baryon vertices, d_i = v_i = 1

 Heavy mesonic lines attached to lowest order bilinear vertices, d_i = 0, ω_i = 1.

Source of **non-perturbative** physics. These rule give rise to infinite resummations.

2

 $\mathcal{O}(p^6)$

J. A. Oller

Next-to-leading Order

Departamento de Física, U. Murcia, Spain

	Power Coun. 0000000000	Non-Perturbative •000000000000000000000000000000000000	$E/A \langle \bar{q}q \rangle$	Axial Coup. 00	π Self-Energy O	
Non-pertu	rbative methods					

NN interactions: Regulator Independent Results

<u>A NN Partail Wave has</u>: Left-Hand Cut (LHC) $\mathbf{p}^2 < -m_\pi^2/4$ Right-Hand Cut (RHC) $\mathbf{p}^2 > 0$ Unitarity Cut

Elastic Case

$$\operatorname{Im} T_{JI}(\ell',\ell,S)^{-1} = -\frac{m|\mathbf{p}|}{4\pi} \quad \text{for} \quad \mathbf{p}^2 > 0$$

Fixed by kinematics

Chiral effective field theory for nuclear matter

J. A. Oller

Intr. 00	Power Coun. 0000000000	Non-Perturbative	E/A 00000000	⟨ q q⟩ 00000	Axial Coup. 00	π Self-Energy 0	
Non-pertu	rbative methods						

Once Subtracted Dispersion Relations

$$T_{JI}(\ell',\ell,S) = \left[N_{JI}(\ell',\ell,S)^{-1} + \cdot g\right]^{-1}$$
$$= \left[I + N_{JI}(\ell',\ell,S) \cdot g\right]^{-1} \cdot N_{JI}(\ell',\ell,S)$$

$$T_{JJ}^{-1}(A) = T_{JJ}^{-1}(D) - \frac{m(A-D)}{4\pi^2} \int_0^\infty dk^2 \frac{k}{(k^2 - A - i\epsilon)(k^2 - D)} - \frac{(A-D)}{\pi} \int_{-\infty}^{-m_\pi^2/4} dk^2 \frac{\mathrm{Im} T_{JJ}/|T_{JJ}|^2}{(k^2 - A - i\epsilon)(k^2 - D)}$$

J. A. Oller

Departamento de Física, U. Murcia, Spain

	Power Coun. 0000000000	Non-Perturbative	<i>E/A</i> $\langle \bar{q}q \rangle$	Axial Coup. 00	π Self-Energy 0	
Non-perturbative methods						

Subtraction constants

One for every S-wave. Determined from the scattering lengths. 0 for higher partial waves. $T_{II}^{-1}(A=0) = 0$ for ℓ or $\ell' > 0$

Integral equation for $N_{JI}(\ell', \ell, S)$:

Interaction kernel: $N_{JI}(\ell', \ell, S)$ Unitarity loop g:

$$T_{JI} = \left[N_{JI}^{-1} + g\right]^{-1}$$

$$\mathrm{Im} N_{JI} = \frac{|N_{JI}|^2}{|T_{JI}|^2} \mathrm{Im} T_{JI} = |1 + gN_{JI}|^2 \mathrm{Im} T_{JI} \quad , \quad |\mathbf{p}|^2 < -\frac{m_\pi^2}{4}$$

$$N_{JI}(A) = N_{JI}(D) + \frac{A - D}{\pi} \int_{-\infty}^{-m_{\pi}^2/4} dk^2 \frac{\mathrm{Im} T_{JI}(k^2) |1 + g(k^2) N_{JI}(k^2)|^2}{(k^2 - A - i\epsilon)(k^2 - D)}$$

Chiral effective field theory for nuclear matter

J. A. Oller

	Power Coun.	Non-Perturbative	$E/A \langle \bar{q}q \rangle$	Axial Coup.	π Self-Energy	
00	0000000000	000000000000000000000000000000000000000	0000000000000	00		
Non-pertu	rbative methods					

The LHC Input: Im ${\cal T}_{JI}({f p}^2)$, ${f p}^2 < -m_\pi^2/4$

Intermediate states contain pionic lines. It can be calculated perturbatively in CHPT. Crossed dynamics $N\bar{N} \rightarrow N\bar{N}$ $t, u = m_{\pi}^2, > 4m_{\pi}^2, \dots$

Two Subtraction Constants?: g(D) and $N_{JI}(D)$

There is only one independent subtraction constant, $T_{JI}(D)$ Analogy with Renormalization Theory: D is like the "Renormalization Scale" g(D) is like the "Renormalization Scheme" $N_{JI}(D)$ depends on g(D) but $T_{JI}(A)$ is g(D) Independent

D = 0 is taken Higher partial waves: $N_{JI}(0) = \frac{-1}{g_0 + \frac{m}{4\pi a_s}}$

J. A. Oller

	Power Coun. 0000000000	Non-Perturbative	E/A <\bar{q}q>	Axial Coup. 00	π Self-Energy 0	
Manual sector de la constante de						

<u>J. A. Oller</u> Chiral effective field theory for nuclear matter

	Power Coun. 0000000000	Non-Perturbative	E/A <\bar{q}q 000000000000000000000000000000000000	Axial Coup. 00	π Self-Energy 0	
Non-month	والاعطام ومعامد والمعادي					

<u>J. A. Oller</u> Chiral effective field theory for nuclear matter

	Power Coun. 0000000000	Non-Perturbative	E/A <\bar{q}q\	Axial Coup. 00	π Self-Energy 0	
NI	and and the second state of a					

Power Coun.	Non-Perturbative	$\langle \bar{q}q \rangle$	Axial Coup.	π Self-Energy	
	000000000000000000000000000000000000000				

Non-perturbative methods

	Power Coun.	Non-Perturbative	$E/A \langle \bar{q}q \rangle$	Axial Coup.	π Self-Energy	
00	0000000000	000000000000000000000000000000000000000	00000000000000	00		
Non-perturbative methods						

The convergence in the iterative solution for N_{JI} improves for $g_0 \simeq -\frac{mm_{\pi}}{4\pi}$ or $g(-\frac{m_{\pi}^2}{4}) = 0$

$$rac{1}{N_{JI}(A)} + g_0 = F_{JI}(A)$$
 is independent of g_0

It is enough to know $N_{JI}(A)$ $N_{JI}(A) = \frac{1}{F(A)-g_0}$ for just one value of g_0

Regulator independent results within chiral counting+Schrödinger eq.: Nogga, Timmermans and van Kolck, PRC72(2005)054006

Non-month	والرجيل محمد مراجع					
		000000000000000000000000000000000000000				
	Power Coun.	Non-Perturbative	$E/A \langle \bar{q}q \rangle$	Axial Coup.	π Self-Energy	

Algebraic Approximate Solution for $N_{JI}(A)$ It yields Unitary χ PT (UCHPT): Regulator Dependent Solutions

> JAO,Oset,NPA620(1997)438; PRD60(1999)074023; JAO,Meißner,PLB500(2001)263.

$$\operatorname{Im} N_{JI} = \frac{|N_{JI}|^2}{|T_{JI}|^2} \operatorname{Im} T_{JI} = |1 + gN_{JI}|^2 \operatorname{Im} T_{JI} \quad , \quad |\mathbf{p}|^2 < -\frac{m_\pi^2}{4} \; .$$
$$I_{JI}(A) = N_{JI}(D) + \frac{A - D}{\pi} \int_{-\infty}^{-m_\pi^2/4} dk^2 \frac{\operatorname{Im} T_{JI}(k^2) |1 + g(k^2)N_{JI}(k^2)|^2}{(k^2 - A - i\epsilon)(k^2 - D)}$$

We take g_0 such that $g({f p}^2)=0$ for ${f p}^2\simeq -m_\pi^2 o |{f p}|\simeq im_\pi$

 $g(\mathbf{p}^2) = g_0 - i \frac{m|\mathbf{p}|}{4\pi} \approx 0 \longrightarrow \text{natural value:} g_0 \simeq -\frac{mm_{\pi}}{4\pi} = -0.54 m_{\pi}^2$ g is treated as small along low-energy LHC, $\sim \mathcal{O}(p)$

An approximate algebraic solution for N_{JJ} results in powers of g

Λ

Two expansions: The Chiral one and that in powers of g

We join them simultaneously, $g(\mathbf{p}^2) \simeq \mathcal{O}(p)$

$$N_{JJ}^{(0)}(A) = N_{JJ}(D) + \frac{A - D}{\pi} \int_{-\infty}^{-m_{\pi}^2/4} dk^2 \frac{\mathrm{Im} T_{JJ}(k^2)}{(k^2 - A - i\epsilon)(k^2 - D)}$$

$$N_{JI} \doteq N_{JI}^{(0)} + N_{JI}^{(1)} + \mathcal{O}(p^2)$$
$$T_{JI} \doteq L_{JI}^{(0)} + L_{JI}^{(1)} + \mathcal{O}(p^2)$$

$$T_{JI} = N_{JI} - N_{JI} \cdot g \cdot N_{JI} + \dots$$

= $N_{JI}^{(0)} + N_{JI}^{(1)} - N_{JI}^{(0)} \cdot g \cdot N_{JI}^{(0)} + \mathcal{O}(p^2) + \dots$

$$N_{JI}^{(0)} = L_{JI}^{(0)}$$
, $N_{JI}^{(1)} = L_{JI}^{(1)} + N_{JI}^{(0)} \cdot g \cdot N_{JI}^{(0)}$

Departamento de Física, U. Murcia, Spain

Chiral effective field theory for nuclear matter

J. A. Oller

 Intr.
 Power Coun.
 Non-Perturbative
 E/A
 ⟨q̄q⟩
 Axial Coup.
 π Self-Energy
 Summary

 oo
 oo
 oo
 oo
 oo
 oo
 oo

 Non-perturbative
 ethods
 oo
 oo
 oo
 oo

We are providing approximate solutions to

$$T_{JI} = [N_{JI}^{-1} + g]^{-1} \leftrightarrow N_{JI} = T_{JI} |1 + gN_{JI}|^2 - |N_{JI}|^2 g^*$$

They coincide with those from the DR

- $N_{JI}(A)$ only has LHC
- With the same discontinuitiy along the cut

Algebraic approximation. Chiral counterterms enter directly in N_{JJ}

$$C_{S} = \frac{m}{16\pi} \frac{16\pi g_{0}/m + 3/a_{s} + 1/a_{t}}{(g_{0} + m/(4\pi a_{s}))(g_{0} + m/(4\pi a_{t}))} ,$$

$$C_{T} = \frac{m}{16\pi} \frac{1/a_{s} - 1/a_{t}}{(g_{0} + m/(4\pi a_{s}))(g_{0} + m/(4\pi a_{t}))} .$$

 $|g_0| \gg 1/a_t, |1/as| \longrightarrow |C_S| \sim 1/|g_0| \gg |C_T| = \mathcal{O}(m/16\pi a_t g_0^2)$ The $\mathcal{O}(p^0)$ counting for C_S , C_T is not spoiled by iterating them.

J. A. Oller

	Power Coun.	Non-Perturbative	$E/A \langle \bar{q}q \rangle$	Axial Coup.	π Self-Energy	
Non-pertu	urbative methods	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00		

Green, Cyan, Magenta: LO Blue, Orange, Black: NLO Bursts: DR

J. A. Oller

Departamento de Física, U. Murcia, Spain

Intr.	Power Coun.	Non-Perturbative	$E/A \langle \bar{q}q \rangle$	Axial Coup.	π Self-Energy	
Non pertu	rbative methods	000000000000000000000000000000000000000	00000000000000	00 00		

Green, Cyan, Magenta: LO Blue, Orange, Black: NLO Bursts: DR

	Power Coun. 0000000000	Non-Perturbative	E/A <\bar{q}q>	Axial Coup. 00	π Self-Energy O	
Non-pert	urbative methods					

Green, Cyan, Magenta: LO Blue, Orange, Black: NLO Bursts: DR

J. A. Oller

Intr. Power Coun. Non-Perturbative $E/A \langle \bar{q}q \rangle$ Axial Coup. π Self-Energy Summary oo oocococooo oo o o oococococoo oo o o

This formalism can also be applied to production diagrams JAO, Oset NPA629(1998)739, JAO PRD71(2005)054030

$$\xi_{JI}^{(0)} + \xi_{JI}^{(1)} = DL_{JI}^{(1)} - \left\{ L_{JI}^{(1)} + N_{JI}^{(0)^2} \cdot L_{10}, N_{JI}^{(0)} \right\} \cdot DL_{10}$$

In-medium unitarity loop

$$g \doteq L_{10,f} \longrightarrow L_{10} = L_{10,f} + L_{10,m}(\xi_1) + L_{10,m}(\xi_2) + L_{10,d}(\xi_1,\xi_2)$$
$$= L_{10,pp}(\xi_1,\xi_2) + L_{10,hh}(\xi_1,\xi_2)$$

J. A. Oller

Departamento de Física, U. Murcia, Spain

Nuclear matter energy density - Contributions

2

 $\mathcal{O}(p^6)$

J. A. Oller

Next-to-leading Order

	Power Coun. 0000000000	Non-Perturbative	<i>E/A</i> ⟨ <i>q</i> ∉	q) 0000	Axial Coup. 00	π Self-Energy O			
Nuclear m	uclear matter energy per particle								

Nuclear matter energy per particle

$$\begin{split} \mathcal{E}_{3} &= \frac{1}{2} \sum_{\sigma_{1},\sigma_{2}} \sum_{\alpha_{1},\alpha_{2}} \int \frac{d^{4}k_{1}}{(2\pi)^{4}} \frac{d^{4}k_{2}}{(2\pi)^{4}} e^{ik_{1}^{0}\eta} e^{ik_{2}^{0}\eta} G_{0}(k_{1})_{\alpha_{1}} G_{0}(k_{2})_{\alpha_{2}} \\ &\times \mathcal{T}_{NN}(k_{1}\sigma_{1}\alpha_{1},k_{2}\sigma_{2}\alpha_{2}|k_{1}\sigma_{1}\alpha_{1},k_{2}\sigma_{2}\alpha_{2}) \;. \end{split}$$

 $a = \frac{1}{2}(k_1 + k_2)$, $p = \frac{1}{2}(k_1 - k_2)$

$$\int \frac{dp^0}{2\pi} G_0(\mathbf{a} + \mathbf{p})_{\alpha_1} G_0(\mathbf{a} - \mathbf{p})_{\alpha_2} = -i \left[\frac{\theta(|\mathbf{a} + \mathbf{p}| - \xi_{\alpha_1})\theta(|\mathbf{a} - \mathbf{p}| - \xi_{\alpha_2})}{2a^0 - E(\mathbf{a} + \mathbf{p}) - E(\mathbf{a} - \mathbf{p}) + i\epsilon} - \frac{\theta(\xi_{\alpha_1} - |\mathbf{a} + \mathbf{p}|)\theta(\xi_{\alpha_2} - |\mathbf{a} - \mathbf{p}|)}{2a^0 - E(\mathbf{a} + \mathbf{p}) - E(\mathbf{a} - \mathbf{p}) - i\epsilon} \right].$$

$$A = 2ma^0 - \mathbf{a}^2$$

Power Coun.	Non-Perturbative	$E/A \langle \bar{q}q \rangle$	Axial Coup.	π Self-Energy	
		000000000000000000000000000000000000000			

Nuclear matter energy per particle

$$\begin{split} \mathcal{E}_{3} &= -4i\sum_{\sigma_{1},\sigma_{2}}\sum_{\alpha_{1},\alpha_{2}}\int\frac{d^{3}\mathbf{a}}{(2\pi)^{3}}\frac{d^{3}\mathbf{p}}{(2\pi)^{3}}\frac{dA}{2\pi}e^{iA\eta}\ T_{\alpha_{1}\alpha_{2}}^{\sigma_{1}\sigma_{2}}(\mathbf{p},\mathbf{a};A)\Bigg[\frac{1}{A-\mathbf{p}^{2}+i\epsilon}\\ &-\frac{\theta(\xi_{\alpha_{1}}-|\mathbf{a}+\mathbf{p}|)+\theta(\xi_{\alpha_{2}}-|\mathbf{a}-\mathbf{p}|)}{A-\mathbf{p}^{2}+i\epsilon}-2\pi i\delta(A-\mathbf{p}^{2})\theta(\xi_{\alpha_{1}}-|\mathbf{a}+\mathbf{p}|)\theta(\xi_{\alpha_{2}}-|\mathbf{a}-\mathbf{p}|)\Bigg]\,. \end{split}$$

$$\begin{split} \int_{-\infty}^{+\infty} \frac{dA}{2\pi} \frac{e^{iA\eta}}{A - \mathbf{p}^2 + i\epsilon} T^{\sigma_1 \sigma_2}_{\alpha_1 \alpha_2}(\mathbf{p}, \mathbf{a}; A) &= \oint_{C_I} \frac{dA}{2\pi} \frac{e^{iA\eta}}{A - \mathbf{p}^2 + i\epsilon} T^{\sigma_1 \sigma_2}_{\alpha_1 \alpha_2}(\mathbf{p}, \mathbf{a}; A) - \oint_{C_{I'}} \frac{dA}{2\pi} \frac{e^{iA\eta}}{A - \mathbf{p}^2 + i\epsilon} T^{\sigma_1 \sigma_2}_{\alpha_1 \alpha_2}(\mathbf{p}, \mathbf{a}; A) \\ &= \int_{A(\alpha)}^{B(\alpha)} \frac{dA}{2\pi} \frac{T^{\sigma_1 \sigma_2}_{\alpha_1 \alpha_2}(\mathbf{p}, \mathbf{a}; A) - T^{\sigma_1 \sigma_2}_{\alpha_1 \alpha_2}(\mathbf{p}, \mathbf{a}; A + 2i\epsilon)}{A - \mathbf{p}^2 + i\epsilon} \,. \end{split}$$

Departamento de Física, U. Murcia, Spain

Chiral effective field theory for nuclear matter

J. A. Oller

	Power Coun.	Non-Perturbative	$E/A \langle \bar{q}q \rangle$	Axial Coup.	π Self-Energy						
00	0000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00							
Nuclear m	Nuclear matter energy per particle										

$$\begin{split} L_{10}^{i_3}(\mathbf{a}^2, A + 2i\epsilon) - L_{10}^{i_3}(\mathbf{a}^2, A) &= -m \int \frac{d^3q}{(2\pi)^3} \theta(\xi_{\alpha_1} - |\mathbf{a} + \mathbf{q}|) \theta(\xi_{\alpha_2} - |\mathbf{a} - \mathbf{q}|) \left(\frac{1}{A - \mathbf{q}^2 + i\epsilon} - \frac{1}{A - \mathbf{q}^2 - i\epsilon} \right) \\ &= i2\pi m \int \frac{d^3q}{(2\pi)^3} \theta(\xi_{\alpha_1} - |\mathbf{a} + \mathbf{q}|) \theta(\xi_{\alpha_2} - |\mathbf{a} - \mathbf{q}|) \delta(A - \mathbf{q}^2) \; . \end{split}$$

$$\begin{split} \mathcal{E}_{3} &= -4 \sum_{I,J,\ell,S} \sum_{i_{3}=\alpha_{1}+\alpha_{2}} (2J+1) \chi(S\ell I)^{2} \int \frac{d^{3}P}{(2\pi)^{3}} \frac{d^{3}q}{(2\pi)^{3}} \theta(\xi_{\alpha_{1}} - |\mathbf{P} + \mathbf{q}|) \\ &\times \theta(\xi_{\alpha_{2}} - |\mathbf{P} - \mathbf{q}|) \Big[\mathcal{T}_{JI}^{i_{3}} \big|_{(\mathbf{q}^{2},\mathbf{P}^{2},\mathbf{q}^{2})} \\ &+ m \int \frac{d^{3}p}{(2\pi)^{3}} \frac{1 - \theta(\xi_{\alpha_{1}} - |\mathbf{P} + \mathbf{p}|) - \theta(\xi_{\alpha_{2}} - |\mathbf{P} - \mathbf{p}|)}{\mathbf{p}^{2} - \mathbf{q}^{2} - i\epsilon} \Big| \mathcal{T}_{JI}^{i_{3}} \big|_{(\mathbf{p}^{2},\mathbf{P}^{2},\mathbf{q}^{2})} \Big]_{(\ell,\ell,S)} \end{split}$$

It is real because of unitarity and Pauli-exclusion principle, involving both terms between the square brackets.

	Power Coun.	Non-Perturbative	E/A 〈	$\langle \bar{q}q \rangle$	Axial Coup.	π Self-Energy					
00	0000000000	000000000000000000000000000000000000000	000000000	00000	00						
Nuclear m	Nuclear matter energy per particle										

$$m\int \frac{d^3p}{(2\pi)^3} \frac{1}{\mathbf{p}^2 - \mathbf{q}^2 - i\epsilon} |T_{JJ}^{i_3}|^2_{(\mathbf{p}^2, \mathbf{P}^2, \mathbf{q}^2)}$$

is divergent. Expansion around ${\bf p}^2 \rightarrow \infty.$

$$T^{i_3}_{JI(\mathbf{p}^2,\mathbf{P}^2,\mathbf{q}^2)} = T^{i_3}_{JI(+\infty,\mathbf{P}^2,\mathbf{q}^2)} + \mathcal{O}(|\mathbf{p}|^{-2})$$

$$m \int \frac{d^3 p}{(2\pi)^3} \frac{1}{\mathbf{p}^2 - \mathbf{q}^2 - i\epsilon} \left\{ \left| \mathcal{T}_{JJ}^{i_3} \right|_{(\mathbf{p}^2, \mathbf{P}^2, \mathbf{q}^2)}^2 - \left| \mathcal{T}_{JJ}^{i_3} \right|_{(+\infty, \mathbf{P}^2, \mathbf{q}^2)}^2 \right\} - g(\mathbf{q}^2) \left| \mathcal{T}_{JJ}^{i_3} \right|_{(+\infty, \mathbf{P}^2, \mathbf{q}^2)}^2$$

Departamento de Física, U. Murcia, Spain

Chiral effective field theory for nuclear matter

J. A. Oller

	Power Coun. 0000000000	Non-Perturbative	<i>E/A</i> ⟨ <i>q̄q</i> ⟩	Axial Coup. 00	π Self-Energy 0				
Nuclear matter energy per particle									

More stable for pure neutron matter (less dependent on g_0).

J. A. Oller

Departamento de Física, U. Murcia, Spain

Nuclear matter energy per particle

$$\mathcal{E}_{3} = 4 \sum_{I,J,\ell,S} \sum_{i_{3}=\alpha_{1}+\alpha_{2}} (2J+1)\chi(S\ell I)^{2} \int \frac{d^{3}P}{(2\pi)^{3}} \frac{d^{3}q}{(2\pi)^{3}} \theta(\xi_{\alpha_{1}} - |\mathbf{P} + \mathbf{q}|)$$

$$\times \theta(\xi_{\alpha_{2}} - |\mathbf{P} - \mathbf{q}|) \left[-T_{JI}^{i_{3}} |_{(\mathbf{q}^{2}, \mathbf{P}^{2}, \mathbf{q}^{2})} + m \int \frac{d^{3}p}{(2\pi)^{3}} \frac{\theta(\xi_{\alpha_{1}} - |\mathbf{P} + \mathbf{p}|) + \theta(\xi_{\alpha_{2}} - |\mathbf{P} - \mathbf{p}|)}{\mathbf{p}^{2} - \mathbf{q}^{2} - i\epsilon} |T_{JI}^{i_{3}}|_{(\mathbf{p}^{2}, \mathbf{P}^{2}, \mathbf{q}^{2})}^{2} - m \int \frac{d^{3}p}{(2\pi)^{3}} \left\{ \frac{1}{\mathbf{p}^{2} - \mathbf{q}^{2} - i\epsilon} |T_{JI}^{i_{3}}|_{(\mathbf{p}^{2}, \mathbf{P}^{2}, \mathbf{q}^{2})} - \frac{1}{\mathbf{p}^{2}} |T_{JI}^{i_{3}}|_{\mathbf{p}^{2} \to \infty}^{2} \right\} + \tilde{g}_{0} |T_{JI}^{i_{3}}|_{\mathbf{p}^{2} \to \infty}^{2} \right]$$

$$g_{0} \text{ in NN scattering}$$

$$\tilde{g}_{0}, \text{ particle-particle intermediate state}$$

Chiral effective field theory for nuclear matter

J. A. Oller

Intr. 00	Power Coun. 0000000000	Non-Perturbative	<i>E/A</i> ⟨ <i>q̄q</i> ⟩	Axial Coup.	π Self-Energy 0	

Nuclear matte gv per particle

J. A. Oller

Departamento de Física, U. Murcia, Spain

	Power Coun.	Non-Perturbative	$E/A \langle \bar{q}q \rangle$	Axial Coup.	π Self-Energy	
00 In-medi	um chiral quark conde	00000000000000000000000000000000000000	000000000000000000000000000000000000000	00		
mmean						
		k_1		ς k1		
			,	\frown		
			Ę.			
		$\left\{ \begin{array}{c} \kappa_1 - q \end{array} \right\}$	}	$\kappa_1 - q$		
		$k_2 + q$	Ŕ	$k_2 + q$		
		k ₂		k2		
	. 1	$\int \int d^4k_1 d^4k_2$.,0.,0	δ	$\int \int \int d^4$	k
-	$\Xi_5^L = -\frac{\pi}{2} \sum_{i=1}^{n}$	$\sum \int \frac{1}{(2\pi)^4} \frac{1}{(2\pi)^4} \frac{1}{(2\pi)^4}$	$e^{i\kappa_1\eta}e^{i\kappa_2\eta}G_0(k_1)$	$\alpha_1 G_0(k_2) \alpha_2 \frac{1}{\partial k_1}$	$\frac{1}{\sqrt{0}}$ $i \sum \int \frac{1}{\sqrt{2\pi}}$	-)4
	$\sim \alpha_1, \alpha_2 \sigma$	$\sigma_{1}, \sigma_{2} J (2\pi) (2\pi)$		07	$1 \ \alpha_1', \alpha_2' \ J \ (27)$)
		(2 2 1 - 4]
	$\times V_{\alpha_1 \alpha_2; \alpha'_1 \alpha'_2}$	$(k)2B[2c_1\delta_{ij}+c_5\tau]$	$i_j \tau_{\alpha'_1 \alpha'_1}^3 \int G_0(k_1 - k_1)$	$q)_{\alpha_1'}G_0(k_2+q)$	$(V_{\alpha_2'}V_{\alpha_1'\alpha_2';\alpha_1\alpha_2})$	-k)
		c 14 1 14 1				1
	$\Xi_{4}^{L} = \sum \sum$	$\int \frac{d^{\prime} \kappa_1}{(m+1)^2} \frac{d^{\prime} \kappa_2}{(m+1)^2} e^{ik_1^0}$	$^{\eta}e^{ik_{2}^{0}\eta}G_{0}(k_{1})_{\alpha_{1}}2E$	$3[2c_1\delta_{ii}+c_5\tau]$	$[\frac{3}{4}\tau_{\alpha_{1}\alpha_{1}}^{3}]G_{0}(k_{2})_{\alpha_{2}}$	•
	$\alpha_1, \alpha_2 \sigma_1, \sigma_2$	$J (2\pi)^4 (2\pi)^4$		1 - 5 - 5 - 5	j alalj et -/··	-
	a [i —	$-\int d^4k$				1
	$\times \frac{0}{2L^0} \left \frac{1}{2} \right\rangle$	$\int \frac{d^{-\kappa}}{(2-)^4} V_{\alpha_1 \alpha_2; \alpha_1}$	$a_1' a_2'(k) G_0(k_1 - q)$	$)_{\alpha_1'}G_0(k_2+q)$	$_{\alpha_{2}^{\prime}}V_{\alpha_{1}^{\prime}\alpha_{2}^{\prime};\alpha_{1}\alpha_{2}}(-$	-k)
	$O\kappa_1^{\circ} \lfloor 2 {\alpha_1^{\prime}},$	α'_{2} $(2\pi)^{+}$	1 2	1	2 1 2 1 2	L
	-					

For Ξ_5 the derivative acts directly in the scattering amplitude. For Ξ_4 there is an integration by parts (extra sign).

J. A. Oller

Departamento de Física, U. Murcia, Spain

This is a general argument following from the power counting

Cancellations happen explicitly for all orders in $U\chi PT^{[3]}$.

Feynman-Hellman theorem:

$$\begin{split} m_q \langle \Omega | \bar{q}_i q_j | \Omega \rangle &- m_q \langle 0 | \bar{q}_i q_j | 0 \rangle = \frac{m_q}{2} \left(\delta_{ij} \frac{d}{d\hat{m}} + (\tau_3)_{ij} \frac{d}{d\bar{m}} \right) \left(\rho \, m + \mathcal{E} \right) \,, \\ \frac{\langle \Omega | \bar{q}_i q_j | \Omega \rangle}{\langle 0 | \bar{q}_i q_j | 0 \rangle} &= 1 - \frac{\rho \, \sigma_N}{m_\pi^2 f_\pi^2} + \frac{2c_5(\tau_3)_{ij}}{f_\pi^2} \left(\rho_p - \rho_n \right) - \frac{1}{f_\pi^2} \frac{\partial \mathcal{E}(\rho, m_\pi)}{\partial m_\pi^2} \end{split}$$

J. A. Oller

Chiral effective field theory for nuclear matter

Departamento de Física, U. Murcia, Spain

	Power Coun. 0000000000	Non-Perturbative	E/A ⟨āq⟩ ०००००००० ०० ●०	Axial Coup. 00	π Self-Energy 0				
In-medium chiral quark condensate									

Long-range NN interactions dominate in the quark condensate calculation.

Kaiser, Homont, Weise PRC77(2008)025204; Plohl, Fuchs NPA798(2008)75

We offered an explanation for this observed fact:

• The quark mass dependence of nucleon propagators cancels

$$\Xi_4 + \Xi_5 = 0$$

 $\bullet\,$ The short distance part $|{\bm p}|^2 \to \infty$ cancels when taking the derivative

$$rac{\partial \mathcal{E}(
ho, m_{\pi})}{\partial m_{\pi}^2}$$

Departamento de Física, U. Murcia, Spain

J. A. Oller

	Power Coun.	Non-Perturbative		$\bar{q}q\rangle$	Axial Coup.	π Self-Energy	
00	0000000000	000000000000000000000000000000000000000	000000000	0000	•0		
Axial-vecto	or couplings						

Contributions to the in-medium pion axial couplings

Intr. Power Coun.	Non-Perturbative	$E/A \langle \bar{q}q \rangle$	Axial Coup.	π Self-Energy	
Avial-vector couplings	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00		

 $V_{\rho} = 1$ $\mathcal{O}(p^4)$ Leading Order

 $V_{0} = 1$ $\mathcal{O}(p^5)$ Next-to-Leading Order

Diagrams 1-3 discussed in Meißner, Oller, Wirzba ANP297(2002)27

Diagram with π -WFR also discussed there (NN interaction contributions cancel as shown in [1])

Diagram 4 is one order too high

Diagrams 5–6 mutually cancel

$$f_t = f_\pi \left\{ 1 - \frac{\rho}{\rho_0} (0.26 \pm 0.04) \right\}$$
$$f_s = f_\pi \left\{ 1 - \frac{\rho}{\rho_0} (1.23 \pm 0.07) \right\}$$

Departamento de Física, U. Murcia, Spain

Contributions to the in-medium pion self-energy

NN-interactions cancel at $\mathcal{O}(p^5)$. Linear density approximation holds up to NLO

J. A. Oller

Summary & Outlook

Summary

- It is developed a power counting scheme for nmEFT combining short- and long-range multi-*N* interactions
- LO Regulator independent NN partial-waves T_{JIS}.
- Nuclear matter energy density (up to NLO)
- In-medium chiral quark condensate (up to NLO)
- In-medium f_t , f_s (up to NLO)
- In-medium pion self-energy (up to NLO)
- Quite good results at just NLO by applying non-perturbative methods of $U\chi PT$ to *NN*-interactions

	Power Coun.	Non-Perturbative		$\langle \bar{q}q \rangle$	Axial Coup.	π Self-Energy	Summary
00	0000000000	000000000000000000000000000000000000000	000000	000000	00		

Outlook

- Exact solution of $N_{JI}(A)$
- $V_{\rho} = 3$ contributions, 3 nucleon force (N²LO)
- Irreducible two-pion exchange (N³LO)
- "Genuine" 3-nucleon force (N⁴LO)

 $d_2 + v_2 + w_2 - 2 = 2$ and $V_{\rho} = 3$ (instead of 0 and 1, respectively)

- Clarify the dependence on \widetilde{g}_0
- Neutron stars, finite temperature, other N-point Green functions, adding strangeness...

Power Coun. 0000000000	Non-Perturbative	⟨ q q⟩ ⊃00000	Axial Coup. 00	π Self-Energy 0	Summary

Future perspectives? Personal view:

- Follow a chiral power counting in nuclear medium systematically (this power counting should be valid also in vacuum).
- Do not regularize integrals with finite cut-offs (e.g. for the particle-particle parts in two-nucleon intermediate states.)
- This cut-off dependence should be replaced by subtraction constants (counterterms) of natural size for the low-energy regime at hand. $\Lambda \rightarrow m_{\pi}$.
- This is against standard "arguments" for particle-hole expansions.

Intr.Power Coun.Non-PerturbativeE/A $\langle \bar{q}q \rangle$ Axial Coup. π Self-EnergySummary0000000000000000000000000000

Series of paper of the Munich group: Kaiser, Mühlbauer, Weise EPJA 31(2007)53 Fritsch, Kaiser, Weise NPA 750(2005)259 Kaiser, Fritsch, Weise NPA 724(2003)47 Kaiser, Fritsch, Weise NPA 697(2002)255 ...

- Expansion in the number of loops (perturbative calculations).
- There is no chiral power counting.
- They always take the standard counting for the nucleon propagators ~ O(p⁻¹).
 Infrared enhancements are not accounted for properly (They

know and point out this in some of their works).

• No connection with vacuum NN scattering. Ad hoc cut-off parameter fitted to nucler matter properties.