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Introduction

Introduction

The X(3872) was first observed by Belle in B± → K±J/ψπ+π−

PRL91,262001(2003)

Quantum number JPC = 1++ LHCb PRL110,222001(2013)

• It mass is extremely close to the D0D̄∗0 threshold PDG 2016

MX −MD0 −MD∗0 = −0.12± 0.19 MeV

ΓX < 1.2 MeV

• Interplay of explicit mesonic and underlying degrees of freedom

It is a very interesting laboratory to put into practice general results of
S-matrix theory when crossed channel dynamics is integrated out
Oller, Oset PRD60,074023 (1999); Meißner,Oller, NPA679,671(2001)

• To be applied in this case or in other near-threshold XY Z states
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Introduction

Perturbating on pion-exchanges:

1/r3 “massless” OPE potential

(MD∗0 −MD0)2 −m2
π0

m2
π0

' 0.1→ 0

Intrinsic momentum scale

Λ = 8πf2
π/2µg

2 ' 350 MeV�
√

2µ|Eb| (. 30 MeV)

g = 0.6 ' gA/2, fπ = 92.4

XEFT Fleming et al. PRD76,034006(2007)

Braaten et al., PRD82,014013(2010)

Pavon, PRD85,114037(2012);

Supported by the full Faddeev solution Baru et al.,PRD84,074029(2011)
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Basic Formalism

Scattering Amplitude t(E)

Dispersion Relation for the inverse of t(E)

Imt(E)−1 = −ik

One subtraction is needed

∮
dz

t(z)−1

(z − E)(z − C)

E−plane

The only other structure apart from the threshold that can give rise to a
strong distortion in t(E)−1 is a pole at MZ

t(E) =
1

λ
E−MZ

+ β − ik

CDD pole Castillejo,Dalitz,Dyson,

PR,101,453(1956)

The general formula for a partial-wave without crossed-channel dynamics was deduced

in: Oller, Oset PRD60,074023 (1999)
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Basic Formalism

Final State Interactions (FSI)

• We follow the formalism of Meißner,Oller, NPA679,671(2001)

d(E) =
1

1 + E−MZ

λ (β − ik)
=

λ

E −MZ
t(E)

• It drives FSI in a production amplitude Γ(s):

Γ(E) = d(E)R(E) ,

R(E) has no right-hand cut

ImΓ(E) = θ(E)k t(E)Γ(E)∗

Diagrammatically (point-like source):

Γ(E) = v1 − v1(δ1 − ik)t(E)

Contact

+

FSI
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Basic Formalism

Partial-decay width formulae

TF = − VLVX
Q2 − P 2

X

B

X

K

F

ΓB→KF =
1

2MB

∫
(2π)4δ(P −Q− pk)

d3pK
(2π)32EK

dF |VL|
2|VX |2

|Q2 − P 2
X |2

dΓB→KF
dE

=
ΓB→KX(Q2) ΓX→F (Q2)

2π|E − EX + iΓX/2|2
,

dΓB→KF
dE

= ΓB→KX(Q2)ΓX→F (Q2)
|d(E)|2

2π|α|2
.
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Basic Formalism

D0D̄∗0 invariant-mass distributions

• Measured by Belle PRD81,031103(2010) and Babar PRD77,011102(2008)

from D0D̄0π0 +D0D̄0γ
• As a function of the invariant mass distribution of D0D̄∗0:
The proper equation can be obtained by splitting the three-body phase
space, introducing an intermediate D̄∗0(δ + E + p2

D∗/2MD∗ ,pD∗)

1 =

∫
(2π)4δ(pD∗ − pD − pπ)δ(δ + E +

p2
D∗

2MD∗0
− p2

D

2MD0
− p2

π

2Mπ0
)
d3pD∗

(2π)3

dE
2π

δ = MD∗0 −MD0 −Mπ0

E ′ = E − E =
p2
D̄

2µ
Finite width of the D∗0, Γ∗ ≈ 65 keV

dΓB→KD0D̄∗0

dE ′ =
ΓBB
√
E ′

√
2π
√
EX +

√
E2
X + Γ2

∗/4

∫ +∞

−∞
dE

Γ∗

(E ′ − E)2 +
Γ2
∗
4

ΓX |d(E)|2

2π|α|2

B =
ΓB→KXΓX→D0D̄∗0

(
ΓD∗0→D0π0 + ΓD∗0→D0γ

)
ΓBΓXΓ∗

=
ΓB→KXΓX→D0D̄∗0

ΓBΓX
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Basic Formalism

dΓB→KD0D̄∗0

dE ′ =
ΓBB
√
E ′

√
2π
√
EX +

√
E2
X + Γ2

∗/4

∫ +∞

−∞
dE

Γ∗

(E ′ − E)2 +
Γ2
∗
4

ΓX |d(E)|2

2π|α|2

B =
ΓB→KXΓX→D0D̄∗0

ΓBΓX

dM̂(E)

dE
=

ΓX |d(E)|2

2π|α|2∫ +∞

−∞
dE

dM̂(E)

dE
= N

N = 1 for bound state, narrow resonance

Mass distribution of the state

But not for a virtual state
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Basic Formalism

Finite width of the D∗0, Γ∗ ≈ 65 keV
Its importance was first emphasized in Braaten,Lu PRD76,094028(2007)

Moving to the pole position of the D∗0, δ − iΓ∗
2

k(E) =
√

2µE →
√

2µ(E + i
Γ∗
2

)

Alvarez-Ruso, Oller, Alarcon, PRD80,054011(2009)

This is appropriate because

λ =
Γ∗
2δ

= 4.5× 10−3 � 1

Hanhart, Kalashnikova, Nefediev, PRD81,094028(2010)

t(E) =
1

λ
E−MZ

+ β − i
√

2µ(E + iΓ∗/2)

1st Riemann Sheet (RS): Arg(E + iΓ∗/2) ∈ [0, 2π[
2nd RS: Arg(E + iΓ∗/2) ∈ [2π, 4π[
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Basic Formalism

Interference effects Voloshin, PLB579,316(2004), JPC = 1++,

X(3872) =
1√
2

(D0D̄∗0 + D̄0D∗0)

X(3872)→ D0D̄∗0 → D0(D̄0π0)

→ D̄0D∗0 → D̄0(D0π0)

Studied in detail in Hanhart, Kalashnikova, Nefediev, PRD81,094028(2010).
Very modest effects for above threshold production (λ� 1) and virtual
states. Suppressed for X → 0 (bound states) Voloshin, PLB579,316(2004)
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Basic Formalism

Event distributions

• D0D̄∗0

Ni(Ei) =

∫ Ei+∆/2

Ei−∆/2

dE′
∫ ∞

0

dEexpR(E′, Eexp)
√
Eexp

×

{
YD

∫ ∞
−∞

dE
Γ∗

(Eexp − E)2 + Γ2
∗0/4

dM̂(E)

dE
+ c̃bgD

}

• J/ψπ−π−

Ni(Ei) =

{
YJ

∫ Ei+∆/2

Ei−∆/2

dE′
∫ ∞
−∞

dER(E′, E)
dM̂(E)

dE
+ c̃bgJ∆

}

• Inclusive pp̄→ J/ψπ+π−

Ni =

∫ Ei+∆/2

Ei−∆/2

dE′
∫ ∞
−∞

dERpp̄(E
′, E)

(
Yp
dM̂(E)

dE
+ ζ + %E

)

7 free parameters:
3 Yields: YD,J,p.

4 Constants for combinatorial backgrounds: c̃bgD,J , ζ, %
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Basic Formalism

t(E) =
1

λ
E−MZ

+ β − i
√

2µ(E + iΓ∗/2)

3 free parameters in t(E)

Too many

We study interesting different scenarios with less free parameters
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Case 1. Single shallow bound-state pole

Case 1. Single shallow bound pole

t(E) =
1

−γ − ik
1 free parameter in t(E) Braaten, Lu, PRD76,094028(2007)

γ = −β +
λ

MZ
,

E

MZ
→ 0

• 8 free parameters

γ = 21.36+0.58
−0.53 MeV→ a = 9.24+0.23

−0.23 fm

• Bound State:

ER = −0.24+0.01
−0.01 − i 0.0325 MeV, g2 = 16.7+0.5

−0.4 GeV2, X = 1.0
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Case 2. Double virtual-state pole

Case 2. Double virtual-state pole

• We impose resonance poles at ER ± iGR/2, ER < 0 and GR → 0+.
This is appropriate for S waves Hanhart,Pelaez,Rios, PLB,739,375(2014)

• We deduce:

λ =

√
µ

2|ER|
(ER −MZ)2 ,

β =

√
µ

2|ER|
(MZ − 3ER) .

• Secular equation for the pole positions

−iκ is the momentum of the double virtual state

(k + iκ)2(k − iκ
2 − 2µMZ

2κ
) = 0

ER = −κ
2

2µ
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Case 2. Double virtual-state pole

• We fit 147 points:

Belle (2010) B → KD0D̄∗0: 50
Belle (2008) B+ → K+J/ψπ+π−: 40
BaBar (2008) B+ → K+J/ψπ+π−: 20
CDF (2009) inclusive pp̄→ J/Ψπ+π−: 37

• 9 free parameters

ER = −0.28+0.06
−0.04 , MZ = −8.91+0.07

−1.26 MeV

− 2 logL+ 2 logLmax = 10.7 for 138 dof (∆χ2 = nσ
√

2 · 138 ≈ 17nσ)

Etkin et al., PRD25,1786(1982)

• Outcome for scattering parameters:

β = −335 MeV , MZ = −8.91 MeV , λ = 3094 MeV2

γ = 1/a = −12 MeV , a = −16.45 fm , r = −7.96 fm

ER 6= −γ2/2µ = −0.075 MeV

• Poles

EV = −0.15− i0.13 , −0.41 + i0.12 MeV

EB = −75.4− i0.025 MeV
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Case 2. Double virtual-state pole

Case 2: Red dotted line
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Comparison with QFT-like approaches

Contact interaction plus s-channel exchange of bare
resonances

Contact s−channel exchange
bare state

[BHKKN] Baru,Hanhart,Kalashnikova,Kudryavtsev,Nefediev EPJA,44,93(2010)

Interplay of quark and meson degrees of freedom in a near-threshold resonance

[ABK] Artoisenet,Braaten,Kang, PRD,82,014013(2010) Using line shapes to

discriminate between binding mechanisms for the X(3872)
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Comparison with QFT-like approaches

[BHKKN]

D(E) = E − Ef −
(E − Ef )2

(E −MZ)2
+
i

2
gfk

t(E) =
gf

8π2µDF (E)

t(E) =
1

4π2µ

E − Ef + 1
2gfγV

(E − Ef )(γV + ik) + i
2gfγV k

gf =
2λ

β2

Ef = MZ −
λ

β

γV = −β

γV = 1/aV , aV scattering length in pure contact-interaction theory.

For |MZ | � |Ef | one recovers the standard Flatté approximation
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Comparison with QFT-like approaches

[BHKKN] gives quantitative analyses for |γV | between 20− 55 MeV

Case 2:
γV = −β = 335 MeV, much larger value
Ef = 0.236 MeV,

√
2µEf = ±25.1 MeV

gf = 0.055. Plots with increasing gf
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Comparison with QFT-like approaches

Detail of the near-threshold region
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Comparison with QFT-like approaches

Spectral density function w(E)

Baru,Haidenbauer,Hanhart,Kalashnikova,Kudryavtsev, PLB,586,53(2004)

Bare state |ψ0〉

|ψ0〉 =

∫
dkc0(k)|k〉

ω(E) = 4πµk|c0(E)|2θ(E)

W =

∫ ∞
0

dE ω(E)

Bound states |Bi〉

W = 1−
∑
i

Zi

Zi = |〈ψ0|Bi〉|2

One recovers results in Weinberg, PR,137,B672(1965); clear connection with
the pole-counting rule of Morgan NPA,543,632(1962)
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Comparison with QFT-like approaches

It provides a nice smooth transition from the clear bound states and
narrow resonances (gf → 0)

Still, conceptually, it is not fully settled as a quantitative estimate of
compositeness for resonances

A cutoff E+ = 1 MeV is introduced to cover the X(3872) energy region

W =

∫ E+

0

dE ω(E)

For [BHKKN] and our own parameterization ω(E) reads:

ω(E) = θ(E)
γV (Ef −MZ) k/π

|γV (E − Ef ) + i(E −MZ)k|2

= θ(E)
λk/π

|λ+ (β − ik)(E −MZ)|2

W →
√

8E+/µ

πgf
for gf � 1
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Comparison with QFT-like approaches
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W = 0.38 for our fit → sub-leading bare component.

To be expected because MZ = −8.91 MeV is relatively far away from
threshold.
ω(E) ∝ λ/M2

Z , connection with analysis in Morgan NPA,543,632(1962)
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Comparison with QFT-like approaches

[ABK]

∆ = MD+ +MD∗− −MD0 −MD∗0

κ2 =
√

2µ∆

t(E) =
(−γ1 − γ0 + 2κ2)(E − ν + g2γ0) + g2γ2

0

D(E)

D(E) = (2γ1γ0 − (γ0 + γ1)(κ2 − ik)− i2κ2k)(E − ν + g2γ0)

+ g2γ2
0(−2γ1 + κ2 − ik)

γ0, γ1: isoscalar and isovector scattering lengths for the pure zero-range
contact interactions.

λ =
2g2γ2

0(γ1 − κ2)2

(γ0 + γ1 − 2κ2)2

MZ = ν − g2γ0(γ1 − 2κ2)

γ0 + γ1 − 2κ2

β =
−2γ0γ1 + (γ0 + γ1)κ2

γ0 + γ1 − 2κ2
= −1/aV
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Comparison with QFT-like approaches

• [ABK] takes g = 0.4 from quark models + 3P0 model, CCC decay
models (ν > 50 MeV, Flatté limit)

• [ABK] argues that |γ1| � κ2 = 125 MeV

Expected scale for |γ1| is 400 MeV (1/r3 pion-exchange potential)

[ABK] secular equation for |γ1| � κ2 and γ → 0:

1

γ0
=
g2

ν
+

2

κ2

Fine-tuning resonance position (γ0 � κ2/2)

νF ≈ −
g2κ2

2

• Our fit with γ1 = 400 MeV corresponds to:

γ0 = 295 MeV g = 0.22
ν = −4.3 MeV νF = −3 MeV
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Comparison with QFT-like approaches

• Our type of fits are not discussed in [ABK]

[ABK] fits 28 points of D0D̄∗0 event distributions with 7 free parameters
Fixed: g = 0.4

• [ABK] estimates inverse scattering length γ = 28+12
−20 MeV from the

mass and with of the X(3872) in JΨπ+π−. Wrong if there is a CDD
close to threshold. E.g. cases 3.a-b below

• A fit is presented with fixed: g = 0.4, γ = 28 MeV, ν = −10,
γ1 = 250 MeV (γ0 = −204 MeV)

• The main point of [ABK] is to discern between binding mechanics in
two limit and fine-tuned cases:

Zero-range (γ0,1) or near-threshold resonance quarkonium

• But within such scenarios there are still interesting issues left over: type
of pole (simple, double, triplet), precise location, compositeness, further
discussions for large |1/a|, etc.
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Comparison with QFT-like approaches

Pole positions with Γ∗ = 65 keV 6= 0:

ρ = Γ∗/|ER| = 0.23, ρ1/2 = 0.48 , 8ER/MZ = 0.25

kV = −iκ
{

1 +
1

2
ρ1/2(±1∓ i)

}
kB = −i

(
µMZ

κ
− κ

2

)
− κ4ERΓ∗

M2
Z

Energy: E = k2/2µ− iΓ∗/2

EV = ER

(
1 + ρ1/2(±1∓ i)

)
EB = −−1

2µ

(
µMZ

κ
− κ

2

)2

− iΓ∗
2

(1− 8ER
MZ

)

Non-analytic in ρ→ stronger effects Hyodo, PRC90,055208(2014);

Hanhart,Pelaez,Rios,PLB739,375(2014)

EV = −0.15− i0.13 , −0.41 + i0.12 MeV

EB = −75.4− i0.025 MeV

With Γ∗ = 0: EV = ER = −0.28 , EB = −75.32 MeV
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Comparison with QFT-like approaches

Limitation of [BHKKN] and [ABK]

• They predict only λ ≥ 0

[BHKKN] [ABK]

λ =
γ2
V

2 gf λ =
2g2γ2

0(γ1−κ2)2

(γ0+γ1−2κ2)2

• Positive effective range r, v3, v5, etc, cannot be reproduced with λ ≥ 0:

r = − λ

µM2
Z

< 0

v3 = − λ

8µ3M4
Z

< 0

• ω(E) ≥ 0→ λ ≥ 0:

ω(E) = θ(E)
λk/π

|λ+ (β − ik)(E −MZ)|2

Constant contact term plus one s-channel bare-pole exchange picture
collapses for λ < 0
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Case 4. Triple virtual-state pole

Case 4. Triple virtual-state pole

Secular equation for case 2, double virtual pole at ER = −κ2/2µ < 0:

(k + iκ)2(k − iκ
2 − 2µMZ

2κ
) = 0

We impose the third pole at −iκ:

MZ = −3ER

• 8 free parameters

ER = −0.43± 0.07 MeV

− 2 logL+ 2 logLmax = 23.6 for 139 dof (17nσ)

• Outcome for scattering parameters:

β = 86.5 MeV , MZ = 1.3 MeV , λ = 99.2 MeV2

γ = −9.65 MeV , a = −20.5 fm , r = −12.2 fm

Both a and r and negative and large
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Case 4. Triple virtual-state pole

Case 4: Brown solid line
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Case 4. Triple virtual-state pole

This pole trajectory is not an explicit example considered in [BHKKN]

γV = −β = −86.5 MeV, larger in absolute value
Ef = 0.143 MeV,

√
2µEf = ±16.7 MeV

gf = 0.027. Plots with increasing gf
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Case 4. Triple virtual-state pole
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γV= -86.5 MeV, Ef=0.143 MeV, gf0=0.027

gf=0.1 gf0, W=0.98
gf=0.4 gf0, W=0.91
gf=1.0 gf0, W=0.75
gf=2.0 gf0, W=0.50

W = 0.75 for our fit, bare component is important.

This is in agreement with the fact that now MZ = 1.3 MeV, closer to
threshold.
Connection with analysis in Morgan NPA,543,632(1962)
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Case 4. Triple virtual-state pole

[ABK]

• [ABK] takes g = 0.4 from quark models + 3P0 model
• [ABK] argues that |γ1| � κ2 = 125 MeV

• Our fit has larger sensitivity on γ1 than case 2.

γ1 = 800 MeV:

γ0 = 33 MeV g = 0.18

ν = 2.3 MeV 2
κ2

+ g2

ν ' 2 g
2

ν ≈
1
γ0

γ1 = −800 MeV:

γ0 = 5.6 MeV g = 1.4

ν = 12.7 MeV g2

ν '
1
γ0

Both fine-tuning in γ0 and in ν plays an important role.
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Case 4. Triple virtual-state pole

Pole positions with Γ∗ = 65 keV 6= 0:

ρ = Γ∗/|ER| = 0.15 , ρ1/3 = 0.53

k1 = −iκ− κρ1/3

k2,3 = −iκ

(
1±
√

3

2
ρ1/3

)
+

1

2
κρ1/3

Energy: E = k2/2µ− iΓ∗/2

E1 = ER

(
1− i2ρ1/3

)
E2,3 = ER

(
1±
√

3

2
ρ1/3

)2

+ iER

(
1±
√

3

2
ρ1/3

)
ρ1/3

Non-analytic in ρ→ even stronger effects

EV = −0.35 + i0.45 , −0.87− i0.31 , −0.07− i0.17 MeV

With Γ∗ = 0: EV = ER = −0.43 MeV
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Case 4. Triple virtual-state pole

Triple & Double poles

• The triple-pole situation goes beyond the “general” treatment on pole
trajectories as a function of a strength parameter given in
Hanhart,Pelaez,Rios, PLB739,375(2014)

Now, assuming that there is at least one resonance pole, and that it is
not too far away from threshold, we are now in the position of writing
down the most general expression for the S-matrix in the vicinity of that
pole or its conjugate partner

This is not right when three (or more) poles coalesce
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Case 3. Near-threshold bound and virtual states

Case 3. Near-threshold bound and virtual states

σ1 = MD0 −MD∗0 , σ2 = MD+ −MD∗+

∆ = σ2 − σ1

• Conclusions in [BHKKN]:

However, a near-threshold t-matrix zero could exist only if several
requirements are met. First, one needs the direct interaction in the
mesonic channel to be strong enough to support a bound or virtual state.
Second, a nearby bare quark state should exist, with a weak coupling to
the mesonic channel . . . Without such special arrangements the
effective-range formulae are valid
. . . one can see then that MZ � ∆ only if all three poles are located very
close to the threshold.

• This conclusion is wrong. Why?
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Case 3. Near-threshold bound and virtual states

Let qi be the roots of secular equation

MZ = − 1

2µ
(q1(q2 + q3) + q2q3)

[BHKKN] requires that all |qi| � κ2 for |MZ | � ∆

But, even if |q1| � |q2|, |q3| with q2 + q3 ≈ O(|q2,3|2/|q1|) then
|MZ | � ∆

• Here I develop an explicit example

• We impose resonance poles at MR ± iGR/2, GR → 0+, both in
D0D̄∗0 and D+D∗−

As in case 2, but now for each of the two channels separately

• Pole position is independent of the two-meson threshold → Dominant
bare component in the resonance.
Connection with pole-counting criterion Morgan NPA,543,632(1962)
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Case 3. Near-threshold bound and virtual states

• D0D̄∗0: ER = MR − σ1 ,

λ̃ =

√
µ

2|ER|
(ER −M (1)

Z )2 ,

β̃ =

√
µ

2|ER|
(M

(1)
Z − 3ER) .

• D+D̄∗−: ER −∆ = MR − σ2

λ̃ =

√
µ

2(∆ + |ER|)
(ER −∆−M (2)

Z )2 ,

β̃ =

√
µ

2(∆ + |ER|)
(M

(2)
Z − 3(ER −∆)) .

• We equate expressions for λ̃, β̃ −→M
(i)
Z −→ λ̃, β̃

• D0D̄∗0 −D+D∗− scattering: Leading isospin-breaking effects due to
threshold branch-point singularity, ki(E).

t(E) =
1

2λ̃
E−MZ

+ 2β̃ − ik2 − ik1
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Case 3. Near-threshold bound and virtual states

For |E| << ∆, −ik2(E) ≈ κ2

κ2 =
√

2µ∆ , κR =
√

2µ|ER|

α =

√
κ2

κR
=

(
∆

|ER|

)1/4

'
(

8

0.4

)1/4

= 2.1

1st solution, case 3.a)

λ = 2λ̃ =
8µα2

κR(1 + α)2

(
ER +

√
|ER|(∆− ER)

)2

β = 2β̃ + κ2 =
4µ

κR(1 + α)

(
−ER + α

√
|ER|(∆− ER)

)
+ κ2

2nd solution, case 3.b): α↔ −α

• Bound state at ER required →MZ = ER + λ/(β + κR)
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Case 3. Near-threshold bound and virtual states

• 8 free parameters

Case 3.a Case 3.b

ER (MeV) −0.40+0.08
−0.01 −0.39+0.03

−0.02 MeV

− 2
Ndof

log L
Lmax

7.4 & 17nσ 6.4 & 17nσ



Study of lineshapes of the X(3872): Unveiling novel possible scenarios

Case 3. Near-threshold bound and virtual states

Case 3.a, Blue dashed; Case 3.b, Green-Dashed Dotted Lines
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Case 3. Near-threshold bound and virtual states

Case 3a

• Scattering parameters

λ = 254.6 MeV2, MZ = 0.33 MeV, β = 316.4 MeV

Bound state:

EB = −0.41 MeV, g2 = 1.51 GeV2, X = 0.07, Z = 1−X = 0.93

Virtual state:

EV = −0.57 MeV, g2 = 2.63 GeV2

Note: MZ < |EB |, |EV |

a = 0.44 fm , r = −469 fm , v2 = −364 fm3 , v3 = −56 fm5
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Case 3. Near-threshold bound and virtual states

Failure of ERE if MZ < |EB,V |
used e.g. in Hanhart,Kalashnikova,Kudryavtsev,Nefediev,PRD76,034007(07);
Braaten, Lu, PRD76,094028(07); Braaten, Stapleton, PRD81,014019(’10);
Zhang,Meng,Zheng,PLB680,453(09); Guo-Ying,Wen-Sheng,Qiang CPC,39,093101(15)

t(E)=

(
λ

E −MZ
+ β − ik

)−1

→ tERE(E)=

(
−
1

a
+

1

2
r2k2 + v2k

4 + v3k
6 +O(k8)− ik

)−1

 0
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 0.001
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 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

|t
(E

)|
 (

M
e
V

-1
)
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a=0.44 fm, r=-468.6 fm, MZ=0.33 MeV

t(E)
tERE(E)

Pole position

Light bound-virtual poles:

kB,V = i28.1, −i33.1 MeV

r: kB,V = i19.0, −i19.9 MeV

v2: 4 Poles
kB,V = ±8.9 + i20.2, ±9.6− i20.2 MeV

v3: kB,V = i21.3, −i22.0 MeV

No convergent pattern
It would also spoil the application of XEFT
Fleming, van Kolck, Mehen, Hammer, Braaten,. . . :
PRD76,034006(07)
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Case 3. Near-threshold bound and virtual states

This pole trajectory k1 ≈ −k2, |k3| � |k1,2| is not considered in
[BHKKN]. γV between 20-55 MeV

γV = −β = −316.4 MeV, Large number in absolute value
Ef = −0.47 MeV,

√
2µEf = ±i30.2 MeV

gf = 0.005. 10 times smaller than for case 2.

Plot with increasing gf
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Case 3. Near-threshold bound and virtual states
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γV= -316.4 MeV, Ef=-0.47 MeV, gf0=0.005

gf=0.1 gf0, W=0.00
gf=0.4 gf0, W=0.01
gf=1.0 gf0, W=0.03
gf=2.0 gf0, W=0.05
gf=10 gf0, W=0.18
gf=20 gf0, W=0.18

X ≈W = 0.03, Z ≈ 1−W = 0.97, bare component is overwhelming in
the bound state, EB = −0.41+0.08

−0.03 MeV.

This is in agreement with the fact that now MZ = 0.33 MeV is “on top”
of threshold.
Connection with analysis in Morgan NPA,543,632(1962)
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Case 3. Near-threshold bound and virtual states

• Compositeness for a bound state in the form X = g2 dG(E)
dE

Hyodo,Jido,Hosaka, PRC85,015201(2012); Aceti,Oset, PRD86,014012(2012);

Sekihara,Hyodo,Jido, PTEP2015,063D04(2015); Guo,Oller, PRD93, 096001 (2016)

X =− ig2
k

g2
k is the residue in the k variable Kang,Guo,Oller, PRD94,014012(2016)

Cases 2 and 3.a-b have a bound state (k1) and two virtual states

X = ig2
k =

(k1 + k2)(k1 + k3)

(k1 − k2)(k1 − k2)
=

(|k1| − |k2|)(|k1| − |k3|)
(|k1|+ |k2|)(|k1|+ |k3|)

≤ 1

Case 3.a, bound state: X = 0.069+0.005
−0.002, compares well with W = 0.03

(W = 0.09 if ω(E) is integrated up to ∞)

• For virtual state |X| is not bounded , Guo,Oller,PRD93, 096001(2016)

Cases 3: Virtual state k3, |k3| � |k2| > |k1|

X ≈ 1 + 2
|k2| − |k1|
|k3|

+ . . . > 1
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Case 3. Near-threshold bound and virtual states

Case 3b

• Scattering parameters

λ = 1880.2 MeV2, MZ = 2.87 MeV, β = 546.8 MeV

Bound state:

EB = −0.40 MeV, g2 = 3.58 GeV2, X = 0.16, Z = 1−X = 0.84

Virtual state:

EV = −0.85 MeV, g2 = 6.70 GeV2

a = 1.81 fm , r = −46.7 fm , v2 = −4.2 fm3 , v3 = −0.08 fm5

MZ > |EB |. Weinberg’s relation for elementariness Z applies Weinberg,

PR137,B672 (1965)

Z = 1−X = 2(−1+aκB)
−2+aκB

= 0.86 in good agreement
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Case 3. Near-threshold bound and virtual states

X = 0.16 is larger than in case 3a (X = 0.07).
This is in agreement with the fact that now MZ = 2.8� 0.33 MeV
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gf=1.0 gf0, W=0.05
gf=2.0 gf0, W=0.10
gf=10 gf0, W=0.15
gf=20 gf0, W=0.10

X ≈W = 0.05, Z ≈ 1−W = 0.95, bare component is overwhelming

Some disagreement between W and our determination or Weinberg’s
formula

When integrating up ∞→W = 0.16 and the agreement is restored
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Case 3. Near-threshold bound and virtual states

[ABK]

• [ABK] takes g = 0.4 from quark models + 3P0 model

• [ABK] argues that |γ1| � κ2 = 125 MeV

• [ABK] takes γ = 1/a = 28+12
−20 MeV from X(3872) mass

For cases 3.a-b γ is much bigger:

Case 3a: γ = 448 MeV Case 3b: γ = 109 MeV

One cannot estimate a from the mass of the resonance

γ �
√

2µ|EB |

[ABK] fine-tuning condition to obtain a small scattering length cannot be
applied here in these cases:

1

γ0
6= g2

ν
+

2

κ2
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Case 3. Near-threshold bound and virtual states

• Our fit has larger sensitivity on γ1 than case 2.

γ1 γ0 ν g
MeV MeV MeV

Case 3.a 800 -41 -1.6 0.21
Case 3.a -800 -165 -0.82 0.09
Case 3.b 800 -99 -2.3 0.21
Case 3.b -800 -402 -1.3 0.12

ν is small. Bare state is nearby threshold.
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Conclusions

Conclusions

• Study of line shapes of X(3872). Keep an open mind.

• Possibility of a near threshold zero of t(E) (CDD pole). Connection
with increasing elementariness Z.

• Three shallow poles are not necessary to have a near-threshold CDD.

• Double virtual-state pole. Triple virtual-state pole.

• Non-analytic dependence on Γ∗/ER → larger effects.

• Virtual- and bound-state poles simultaneously. MZ → 0, X → 0.

• It is not necessary a large scattering length to produce a shallow pole.
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Conclusions

CDF: J/ψπ+π− with error bands
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Conclusions

Limit α→∞

α =

(
∆

|ER|

)1/4

−−−−−→
|ER|→0

∞

Relevant for the X(3872).

Formulas get simpler

MZ →
4

3

√
∆|ER| = 1.8 MeV

β → 3κ2 = 374.7 MeV

λ→ 4∆κR = 898 MeV

Poles:
κB = κR EB = ER = −0.4 MeV
κV = 13

9 κR EV = −0.83 MeV
κV = 3κ2 EV = −9∆ = −73 MeV
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Conclusions

Limit α→∞, Γ∗ 6= 0

• Virtual states

EV = ER(
13

9
)2 + i

Γ∗
11
≈ −0.84 MeV

EV = −9∆− iΓ∗
2
≈ −73− i0.033 MeV

• Bound state:

EB = ER ≈ −0.4 MeV

The light EV and EB do not have imaginary part
X → 0, no width from the constituents in the bound state

Analytic corrections in Γ∗/ER → smaller effects.
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