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Lippmann-Schwinger equation

Lippmann-Schwinger equation (LS)

Scattering T -matrix T (z) , Im(z) 6= 0 , Two-body scattering

T (z) =V − V R0(z)T (z)

R0(z) = [H0 − z]
−1

H0 =− 1

2µ
∇2

H =H0 + V

• Resolvent of H, R(z):

R(z) =[H − z]−1

R(z) =R0(z)−R0(z)T (z)R0(z)
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Lippmann-Schwinger equation

• Spectrum of H: H|ψp〉 = Ep|ψp〉
Continuous spectrum: Povzner’s result

|ψp〉 =|p〉 − lim
ǫ→0+

R0(Ep + iǫ)T (Ep + iǫ)|p〉

Bound States: Poles in T (z) for z ∈ R
−

• LS in momentum space
For definiteness we consider uncoupled spinless case by now:

T (p′,p, z) = V (p′,p)−
∫

d3q

(2π)3
V (p′,q)

1
q2

2µ − z
T (q,p, z)

+ . . .

POTENTIAL

p’

p
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Lippmann-Schwinger equation

• LS in partial waves

Tℓ(p
′, p, z) =

1

2

∫ +1

−1

dcos θ Pℓ(cos θ)T (p
′,p, z)

cos θ =p̂′ · p̂

T (p′,p, z) =

∞
∑

ℓ=0

(2ℓ+ 1)Pℓ(cos θ)Tℓ(p
′, p, z)

Tℓ(p
′, p, z) =Vℓ(p

′, p) +
µ

π2

∫ ∞

0

dqq2
Vℓ(p

′, q)Tℓ(q, p, z)

q2 − 2µz

Convention: V (p′,p) → −V (p′,p) , T (p′,p, z) → −T (p′,p, z)
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Lippmann-Schwinger equation

• On-shell unitarity (extensively used later)
Propagation of real two-body states

p′ =p

Ep =
p2

2µ

ImTℓ(p
2) =

µp

2π
|Tℓ(p2)|2 , p > 0

Im
1

Tℓ(p2)
=− µp

2π

Unitarity cut for p2 > 0
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Lippmann-Schwinger equation

Criterion for Singular Potentials

V (r) −−−→
r→0

αr−γ

ᾱ =α+ ℓ(ℓ+ 1)

Potential Ordinary Singular
γ < 2 > 2

γ = 2 ᾱ > 0 ᾱ ≤ 0

Ordinary/Regular Potentials:

Standard quantum mechanical treatment
Boundary condition: u(0) = 0 and behavior at ∞
No extra free parameters
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Lippmann-Schwinger equation

The One-Pion-Exchange (OPE) potential for the singlet NN interaction
(r > 0):

Yukawa potential V (r) =− τ1 · τ2
(

gAmπ

2fπ

)2
e−mπr

4πr

Exchange of a pion between two nucleons

π
r1 = r1

′
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Lippmann-Schwinger equation

In many instances one has singular potentials

Multipole expansion

Φ(x) =

∫

ρ(x′)

|x− x′|d
3x′ = 4π

∑

ℓ,m

qℓm
2ℓ+ 1

Yℓm(θ, φ)

rℓ+1

qℓm =

∫

Y ∗
ℓm(θ′, φ′)r′

ℓ
ρ(x′)d3x′
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Lippmann-Schwinger equation

Van der Waals Force (molecular physics)

V (r) = −3

2

αAαB

r6
IAIB
IA + IB

In QFT/EFT we treat
composite objects as
point like

Physical meaning for r → 0?:

De Broglie length
1
p >> rA ∼ 2Å
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Lippmann-Schwinger equation

Nuclear physics
OPE is singular attractive for the Deuteron in NN scattering

2S+1LJ :
3P0 NN partial wave

V (r) =
m2

π

12π

(

gA
2fπ

)2

[−4T (r) + Y (r)]

Y (r) =
e−mπr

r

T (r) =
e−mπr

r

[

1 +
3

mπr
+

3

(mπr)2

]

Triplet part of the OPE potential V (r) −−−→
r→0

g2
A

4πf2
π
r−3

Quark Models, pNRQCD, pNRQED, QCD’s EFTs, etc
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Lippmann-Schwinger equation

Math: Taking r → 0 for a singular potential

• Full range r ∈]0,∞[: Case, PR60,797(1950)

r

E

• Singular Attractive Potential

Near the origin the solution is the
superposition of two oscillatory wave
functions
One has to fix a relative phase,
ϕ(p) How to do it?. Mess.

Which are the appropriate boundary
conditions? (Orthogonality of wave
functions with different energy
→ dϕ(p)/dp = 0)
Case, PR60,797(’50); Arriola, Pavón,
PRC72,054002(’05)
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Lippmann-Schwinger equation

The potential does not determine uniquely the scattering problem Plesset,

PR41,278(1932), Case, PR60,797(1950)

r

E

• Singular Repulsive Potential

There is only one finite (vanishing)
reduced wave function at r = 0

The solution is fixed

Pavón Valderrama, Ruiz Arriola,

Ann.Phys.323,1037(’08)

Typically, the phenomenology is not accurate

E.g. this scheme a la Case does not fit well NN phase shifts.
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Lippmann-Schwinger equation

Two points of view in NN scattering:

• Use a finite cutoff Λ fitted to data. Regularization dependence

It works phenomenologically
Entem,Machleidt, PRC68,041001(R)(’03); Epelbaum,Gloeckle,Meißner,
NPA747,362(’05); Epelbaum,Krebs,Meißner, PRL115,122301(’15)

• Take r → 0 (Λ → ∞) (Renormalized solutions)

Energy-independent boundary condition Arriola, Valderrama, PLB580,149(’04);
PRC74,054002(’05); Case, PR60,797(1950)
Subtractive renormalization Frederico,Timoteo,Tomio, NPA653,209(’99);
Yang,Elster,Phillips, PRC80,044002(’09)
Include one/zero counterterm Entem et al.,PRC77,044006(’08)

These three-methods are equivalent. Not phenomenologically successful.
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Lippmann-Schwinger equation

Low-energy EFT paradigm:
Contact terms are necessary to reproduce short-distance physics

They are allowed by symmetry
They are required to make loops finite. Nonrenormalizable QFT/EFT
They are expected to be relatively important because of power-counting
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New exact equation in NR scattering theory

New exact equation in NR scattering theory

Yukawa potential,

V (q) =
2g

q2 +m2
π

Singularity for q2 = −m2
π

1S0 potential: (2S+1LJ ) g = (gAmπ/
√
8fπ)

2

V (p) =
g

2p2
log(4p2/m2

π + 1)

Left-hand cut (LHC) discontinuity for On-shell scattering

p2 <−m2
π/4 = L

Born approximation

∆1π(p
2) =

V (p2 + i0+)− V (p2 − i0+)

2i
= ImV (p2 + i0+) =

gπ

2p2
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New exact equation in NR scattering theory

Full LHC Discontinuity , p2 = −k2 < L

2i∆(p2) =T (p2 + i0+)− T (p2 − i0+)

∆(p2) =ImT (p2 + i0+)

.

.

.

.

The LS generates contributions with
any number of pions to ∆(p2),
p2 < L

∆nπ(p
2) for p2 < −(nm2

π/2)
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New exact equation in NR scattering theory

How to calculate ∆(A)?

G.E. Brown, A.D. Jackson “The Nucleon-Nucleon interaction”,
North-Holland, 1976. Page 86: “In practice, of course, we do not know

the exact form of ∆(p2) for a given potential . . . ”

p =ik ± ε , ε = 0+ , p2 = −k2 < L

T (ik ± ε, ik ± ε) =V (ik ± ε, ik ± ε)

+
µ

2π2

∫ ∞

0

dqq2
V (ik ± ε, q)T (q, ik ± ε)

q2 + k2

The last integral, so calculated, IS PURELY REAL!!

You can try to calculate numerically just the once iterated OPE

µ

2π2

∫ ∞

0

dqq2
V (ik ± ε, q)V (q, ik ± ε)

q2 + k2
∈ R
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New exact equation in NR scattering theory

Notation: A = p2

This is an example of:
Not all what you can calculate with a computer is the right
answer!!
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New exact equation in NR scattering theory

• GENERAL method:
Analytic extrapolation of the LS from its integral expression

f(ν) = ∆v(ν, k) +
θ(k − 2mπ − ν)m

2π2

∫ k−mπ

mπ+ν

dν1ν
2
1

k2 − ν2
1

∆v(ν, ν1)f(ν1)

∆(A) =
f(−k)
2

, k =
√
−A , IE : −k +mπ < ν < k −mπ

The limits in the IE ARE FINITE

The denominator never vanishes , |ν1| ≤ k −mπ in the IE

NO FREE PARAMETERS

Reason: Contact interactions (monomials) do not contribute to the
discontinuity of T (A)
Short-distance physics is not resolved→ Contact interactions
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New exact equation in NR scattering theory

f(ν) = ∆v(ν, k) +
θ(k − 2mπ − ν)m

2π2

∫ k−mπ

mπ+ν

dν1ν
2
1

k2 − ν2
1

∆v(ν, ν1)f(ν1)

∆(A) =
f(−k)
2

, k =
√
−A

It can be applied to:

Any local potential (spectral decomposition:)

V (p′,p) =
1

π

∫ ∞

µ2
0

dµ2 η(µ2)

q2 + µ2
, q = p′ − p

Higher partial waves, ℓ ≥ 0

Coupled Channels

Nonlocal potentials due to relativistic corrections
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LS equation in the complex plane

LS equation in the complex plane

Analytical properties of the potential
• Local potential, spectral decomposition:

V (q2) =
1

π

∫ ∞

µ2
0

dµ2 η(µ2)

q2 + µ2
, q = p′ − p

• S-wave projection:

v(p1, p2) =
1

2π

∫ +1

−1

dt

∫ ∞

µ2
0

dµ2 η(µ2)

p21 + p22 − 2p1p2t+ µ2

=
1

4πp1p2

∫ ∞

µ2
0

dµ2η(µ2)

×
{

log
[

µ2 + (p1 + p2)
2
]

− log
[

µ2 + (p1 − p2)
2
]}
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LS equation in the complex plane

Vertical cuts:

p2 = ±(p1 ± i
√

m2
π + x2) x ∈ R

Analogously for p1

-2

-1

0

1

2
-2

-1

0

1

2

-1.0

-0.5

0.0

0.5

1.0

p1 = mπ. Branch points at ±(p1 ± imπ)
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LS equation in the complex plane

Deforming the integration contour in the LS equation

k, k′ ∈ R in the half-off-shell T -matrix t(k, k′; k′
2
/m),

t(k, k′;
k′

2

m
) =v(k, k′) +

m

2π2

∫ ∞

0

dp1p
2
1

p21 − k′2
v(k, p1)t(p1, k

′;
k′

2

m
) ,

v(k, p1) implies the vertical cuts

p1 = ±(k ± i
√

m2
π + x2) x ∈ R

k + i m π

p
1
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LS equation in the complex plane

We add an increasing positive imaginary part to k

k = kr + iki , ki > 0

k + i m π

p
1
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LS equation in the complex plane

We add an increasing positive imaginary part to k

k = kr + iki , ki > 0

k + i m π

p
1

kr > 0 , ki > mπ

kr < 0 , ki < −mπ
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LS equation in the complex plane

k − i m π

p
1

kr > 0 , ki < −mπ

kr < 0 , ki > mπ

• t(p1, k′; k′2/m) follows the same pattern in terms of k′.

|Im k|−mπ

C|Re k’| |Re k|

|Im k’|−mπ
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LS equation in the complex plane

Higher-order iterations

Twice-iterated LS:

t(k, k′;
k′

2

m
) =v(k, k′) +

m

2π2

∫

dp1p
2
1

p21 − k′2
v(k, p1)v(p1, k

′)

+
( m

2π2

)2
∫

dp1p
2
1

p21 − k′2
v(k, p1)

∫

dp2p
2
2

p22 − k′2
v(p1, p2)v(p2, k

′) + . . .

New vertical additions (VA):
p1 at |Re k|
p2 at |Re k| − δ1, |Re k|+ δ1 for |Im p1| > mπ

But |Im k| −mπ > |Im p1| every step reduces in mπ the extent of
the vertical lines

Re k+δ1Re k’

p
2

CRe k−δ1
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LS equation in the complex plane

Analytical properties of t(k, k′; k′2/m)

The energy pole gives rise to the RHC (k′
2
> 0)

Dynamics cuts: As a function k (k′) the same vertical cuts as for the
potential v(k, k′):

k = ±(k′ +±i
√

m2
π + x2)

|Im k| > mπ , |Im k′| < mπ

k’−i m
C

π

π

π

|Im k|−m

|Re k|

k’+i m

k’

k’+i m

C

π|Im k|−m

|Re k|

π

πk’−i m

k’



S-matrix solution of the Lippmann-Schwinger equation for regular and singular potentials

LS equation in the complex plane

−|Im k|+mπ

k’−i m
C

π

|Re k|

πk’+i m

k’

−|Im k|+mπ

k’+i m

C

|Re k|

π

πk’−i m

k’

Intersection between the added vertical contour and the standard
vertical cuts
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LS equation in the complex plane

Calculation of ∆(−k2): Discontinuity across the LHC

On-shell scattering t(k, k; k2/m)
LHC:

p = −p± i
√

m2
π + x2 −→ p = ± i

2

√

m2
π + x2

p2 = −1

4
(m2

π + x2) −→ p2 ∈]−∞, L] , L = −m2
π/4

2i∆(−k2) = t(ik + iε, ik + iε)− t(ik − iε, ik + iε)

= (−1)ℓ
{

t(−ik + ε−, ik + ε)− t(−ik + ε+, ik + ε)

}

ε− < ε < ε+
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LS equation in the complex plane

Spared slide

ik+ ε ik− ε+   ik− −ε

ε−ik−
−ik+ −ik+ε+−ε

To explain the relation

2i∆(−k2) = t(ik + iε, ik + iε)− t(ik − iε, ik + iε)

= 2iIm t(ik + iε, ik + iε)

= (−1)ℓ
{

t(−ik + ε−, ik + ε)− t(−ik + ε+, ik + ε)

}

ε− < ε < ε+
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LS equation in the complex plane

t(−ik + ε−, ik + ε) t(−ik + ε+, ik + ε)

ε−

ε

i(k −mπ)

−i(k −mπ)

C
ε+

ε

i(k −mπ)

−i(k −mπ)

C
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LS equation in the complex plane

Im t(−ik + ε−, ik + ε)− Im t(−ik + ε+, ik + ε)

= Im v(iν + ε−, ik + ε)− Im v(iν + ε+, ik + ε)

+θ(k − ν − 2mπ)
m

2π2

∫ k−mπ

−k+mπ

dν1ν
2
1

k2 − ν21

×
[

Im v(iν + ε−, iν1 + ε)− Im v(iν + ε+, iν1 + ε)
]

×
[

Im t(iν1 + ε− δ, ik + ε)− Im t(iν1 + ε+ δ, ik + ε)
]

.

• One needs to know

Im t(iν + ε−, ik + ε)− Im t(iν + ε+, ik + ε)

−k +mπ < ν < k −mπ



S-matrix solution of the Lippmann-Schwinger equation for regular and singular potentials

LS equation in the complex plane

Proceeding in the same
Integral Equation −k +mπ < ν < k −mπ:

f(ν) ≡Im t(iν + ε−, ik + ε)− Im t(iν + ε+, ik + ε)

=Im v(iν + ε−, ik + ε)− Im v(iν + ε+, ik + ε)

+θ(k − ν − 2mπ)
m

2π2

∫ k−mπ

ν+mπ

dν1ν
2
1

k2 − ν21

×
[

Im v(iν + ε−, iν1 + ε)− Im v(iν + ε+, iν1 + ε)
]

×
[

Im t(iν1 + ε− δ, ik + ε)− Im t(iν1 + ε+ δ, ik + ε)
]

.

∆(k) =(−1)ℓ
f(−k)
2
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LS equation in the complex plane

log-log plot for 1S0 (Yukawa Pot.) ∆(A); gA = 6.80

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1  10  100  1000  10000 100000 1e+06

|∆
(A

)|
 (

|L
|-1

)

|A| (|L|)

∆1π, ∆2π, ∆3π, ∆4π, Asymptotic sol. (dots) |A| ≫ m2
π

Full solution ∆(A)
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LS equation in the complex plane

Two-nucleon reducible diagrams [II]; Guo,Ŕıos,JAO, PRC89,014002(’14);

Similar size to the other NLO
irreducible diagrams

.

.

.

.

All pion lines must be put on-shell −→ A ≤ −n2M2
π/4.

As n increases their physical contribution fades away.

This only occurs for the imaginary part!
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LS equation in the complex plane

Yukawa Potential: OPE 1S0

• The OPE 1S0 (Yukawa potential) is simple enough to derive suitable
algebraic expression that can be analytically continued to obtain ∆(A):

∆1π(p
2) =

gπ

2p2
θ(L−A)

∆2π(A) =θ(4L−A)

(

g2Am
2
π

16f2
π

)2
MN

A
√
−A

log

(

2
√
−A

mπ

− 1

)

∆3π(A) =θ(9L−A)

(

g2Am
2
π

4f2
π

)3 (

MN

4π

)2
π

4A

∫

2
√
−A−mπ

2mπ

dµ1

1

µ1(2
√
−A− µ1)

θ(µ1 − 2mπ)

∫ µ1−mπ

mπ

dµ2

1

µ2(2
√
−A− µ2)
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LS equation in the complex plane

∆4π(A) =θ(16L−A)

(

g2Am
2
π

4f2
π

)4 (

MN

4π

)3
π

4A

∫

2
√
−A−mπ

3mπ

dµ1

1

µ1(2
√
−A− µ1)

×θ(µ1 − 3mπ)

∫ µ1−mπ

2mπ

dµ2

1

µ2(2
√
−A− µ2)

×θ(µ2 − 2mπ)

∫ µ2−mπ

mπ

dµ3

1

µ3(2
√
−A− µ3)

.

This can be generalize for a diagram with n pions to

∆nπ(A) =θ(n
2L−A)

(

g2Am
2
π

4f2π

)n (
MN

4π

)n−1
π

4A

×
n−1
∏

j=1

θ(µj−1 − (n+ 1− j)mπ)

∫ µj−1−mπ

(n−j)mπ

dµj
1

µj(2
√
−A− µj)

with µ0 = 2
√
−A
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LS equation in the complex plane

Yukawa potential

• Asymptotic solution for k ≫ mπ

f′(ν)

f(ν)
=− λ

θ(k − 2mπ − ν)

k2 − (mπ + ν)2

∆(A) =
λπ2

MNA
e

2λ√
−A

arctanh
(

1− mπ√
−A

)

λ =
gMN

2π
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LS equation in the complex plane

3P0: singular attractive potential; m3P0:singular

repulsive potential (g → −g)
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(
A
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m
−

2
π
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minus3P0

k(mπ)

|∆
(
A

)
|(

m
−

2
π

)

 1e-08
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 0.01
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All Together

k(mπ)

|∆
(
A

)
|(

m
−

2
π

)
k → +∞:
3P0: “Exponential”
growth
m3P0: Oscillatory-
”Exponential”
growth
1S0: Vanishes
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N/D method with non-perturbative ∆(A)

N/D method with non-perturbative ∆(A)

Once we now the exact ∆(A) for a given potential we can use S-matrix
theory to solve the LS: N/D method with the full ∆(A)

TJℓS(A) =
NJℓS(A)

DJℓS(A)

NJℓS(A) has Only LHC

DJℓS(A) has Only RHC

RHC

ǫ → 0

R → ∞

CI

ǫ → 0

R → ∞
CII

−m2
π
4

LHC
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N/D method with non-perturbative ∆(A)

Uncoupled Partial Waves

Exact knowledge of discontinuities

Tℓ(A) =
Nℓ(A)

Dℓ(A)

Im
1

Tℓ(A)
= −ρ(A) ≡

µ
√
A

2π
A > 0 (RHC)

ImDℓ(A) = −Nℓ(A)ρ(A) A > 0 (RHC)

ImNℓ(A) = Dℓ(A)∆(A) A < L (LHC)
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N/D method with non-perturbative ∆(A)

(m1,m2) N/D equations for D(A) and N(A)

N/Dm1 m2

N(A) =

m1
∑

i=1

νi(A− C)m1−i +
(A− C)m1

π

∫ L

−∞

dk
2 ∆(k2)D(k2)

(k2 −A)(k2 − C)m1

D(A) =

m2
∑

i=1

δi(A− C)m2−i −
(A− C)m2

π

∫ ∞

0

dq
2 ρ(q2)N(q2)

(q2 −A)(q2 − C)m2

N(A) is substituted in D(A)

Linear IE for D(A) arises

D(0) = 1. To fix a floating constant in the ratio
T (A) = N(A)/D(A)
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Regular interactions

• N/D01: Regular solution for an ordinary potential

Scattering is completely fixed by the potential

N(A) =
1

π

∫ L

−∞

dωL
D(ωL)∆(ωL)

(ωL −A)

D(A) = 1− A

π

∫ ∞

0

dωR
ρ(ωR)N(ωR)

(ωR −A)ωR

= 1− iµ
√
A

2π2

∫ L

−∞

dωL
∆(ωL)D(ωL)

√
ωL

(√
ωL +

√
A
)
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Regular interactions

• N/D11: Additional subtraction in N(A) is fixed in terms of
scattering length

D(A) = 1 + ia
√
A+ i

MN

4π2

∫ L

−∞

dωL
D(ωL)∆(ωL)

ωL

A√
A+

√
ωL

N(A) = − 4πa

MN
+
A

π

∫ L

−∞

dωL
D(ωL)∆(ωL)

(ωL −A)ωL

Effective Range Expansion (ERE)

kcotδ(k) = −1

a
+

1

2
rk2 +

∑

i=2

vik
2i
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Regular interactions

• N/D12: Additional subtraction in D(A), r is fixed

D(A) = 1 + ia
√
A− ar

2
A− i

MNA

4π2

∫ L

−∞

dωL
D(ωL)∆(ωL)

ωL

×
[

√
A

(
√
ωL +

√
A)

√
ωL

− i

aωL

]

N(A) = − 4πa

MN
+
A

π

∫ L

−∞

dωL
D(ωL)∆(ωL)

(ωL −A)ωL

The results are just dependent on ∆(A) (input potential) and
experimental ERE parameters
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Regular interactions

• N/D22: Additional subtraction in N(A), v2 is fixed

D(A) = (1− 2v2

r
A)(1 + ia

√
A)− ar

2
A

+i
MN

4π2
A

∫ L

−∞

dωL
D(ωL)∆(ωL)

ω2
L

×
[

A√
A+

√
ωL

+ i
2

ra2ωL
(1 + ia

√
ωL)(1 + ia

√
A)

]

N(A) = − 4πa

MN
+A

8πav2

MNr
+
A

π

∫ L

−∞

dωL
D(ωL)∆(ωL)

ω2
L

×
[

A

(ωL −A)
+

2

raωL
(1 + ia

√
ωL)

]

The more subtractions are included the more perturbative N/D is with
respect to ∆(A). ∆nπ(A) contributes for A < n2L
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Regular interactions

Example: Regular case. 1S0 Yukawa potential

 0

 2

 4

 6

 8

 10

 12

 14

 0  50  100  150  200  250  300  350  400

k(MeV)

δ 1
S
0

1
S0

N/D01; LS (black dots)
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Singular Interactions

Analytical properties determine the solutions for singular

potentials

Attractive singular interaction: 3P0

N/D12 T (A) = 0 (N/D11 does not converge)
At least one parameter is needed The scattering volume is fixed

-20

-15

-10

-5

 0

 5

 10

 15

 0  50  100  150  200  250  300  350  400

k(MeV)

δ 3
P
0

3
P0

N/D12;
LS (black dots);
Phase shifts: Granada
analysis
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Singular Interactions

We compare with

LS renormalized with one contact term:

V (p1, p2) → V (p1, p2) + C1p1p2

Repulsive singular interaction: 3P0

N/D11; No free parameters ; T (0) = 0

Repulsive Singular Potential: LS is insensitive to all Ci
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Singular Interactions
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T (A) in the complex plane

• As a bonus the non-perturbative-∆ N/D method allows to calculate
T (A) for A ∈ C in the 1st/2nd Riemann sheet

This is not trivial with LS

Look for and study resonances, virtual states and bound states

For bound states one does not need to solve the full-off-shell LS equation
or Schrödinger equation

Bound State A = (ik)2

Binding energy of near threshold bound state, gA = 7.45
One does not need to solve Schrödinger equation

Poles of T (A) ↔ zeros of D(A)
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T (A) in the complex plane

• As a bonus the non-perturbative-∆ N/D method allows to calculate
T (A) for A ∈ C in the 1st/2nd Riemann sheet

This is not trivial with LS

Binding energy of near threshold bound state, gA = 7.45
One does not need to solve Schrödinger equation

Poles of T (A) ↔ zeros of D(A)

A = (ik)2 N/D01 N/D11 Schrödinger

∆1π 2.02
∆2π 2.18
∆3π 2.21
∆4π 0.89 2.22

Non-perturbative 2.22 2.22 2.22
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T (A) in the complex plane

• Anti-bound (virtual) state for 1S0

T−1
II (A) = T−1

I (A) + 2iρ(A)

=
DI +NI 2iρ(A)

NI
, Im

√
A ≥ 0

Look for zero of DII(A) . E = A/MN =

N/D11:
−0.070 (LO) , −0.067 (NLO,NNLO) MeV

For the other N/Dm1m2
: −0.066 MeV always
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T (A) in the complex plane

G.E. Brown, A.D. Jackson “The Nucleon-Nucleon interaction”,
North-Holland, 1976. Page 86: “In practice, of course, we do not know

the exact form of ∆(p2) for a given potential and the N/D equations do

not represent a practical alternative to the exact solution of the LS

equation for potential scattering. . . ”

Now (2016), this statement is superseded
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Conclusions

Conclusions

A new non-singular IE allows to calculate the exact ∆(A) in
potential scattering for a given potential

One can calculate the scattering amplitude for regular/singular
potentials from its analytical/unitarity properties.

Any proper solution for singular potentials can be found with this
method

We reproduce the LS outcome with/without one counterterm

It can be straightforwardly used in the whole complex plane (bound
states, resonances, virtual states)
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Conclusions

• See Entem’s talk about how to go beyond LS+one counterterm for an
attractive singular potential.

• Including as well higher order chiral NN potentials.
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