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== Lippmann-Schwinger equation

Lippmann-Schwinger equation (LS)

Scattering T-matrix 7'(z) , Im(z) # 0, Two-body scattering

T(z) =V —VRo(2)T(2)

1
Hy=— —V?
0 2
H=Hy+V
e Resolvent of H, R(z):
R(z) =[H — 2]~
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Lippmann-Schwinger equation

L)
Continuous spectrum: Povzner’s result

[p) =IP) — lim Ro(E, +ie)T(E, +ic)|p)

Bound States: Poles in T'(z) for z € R~

[ )
For definiteness we consider uncoupled spinless case by now:
/ / d3q / ]'
TP, p.2) =V, p) - V(P a)—T(a,p,2)
(2m) -z
p' '
} ‘ .

POTENTIAL
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Lippmann-Schwinger equation

e LS in partial waves

1 +1
TApp2) = [ deost PilcosO)T (o p.2)
—1
cos :1;’ )
T(p',p,2) =Y (20 + 1)Pi(cos O)Ty(p', p, z)
£=0

TR SV, ) Te(q,p, 2
Tu(p',p, 2) :W(p',p)+%/ dqgq® elp ’2q) «(gp,2)
™ Jo q* —2uz

Convention: V(pla p) - 7V(p/7 p) ' T(p/7p7 Z) - *T(p/,p,Z)
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Lippmann-Schwinger equation

e On-shell unitarity (extensively used later)
Propagation of real two-body states

P =p
_r
p 2,LL

- LD - -
ImT,(p?) :%m@z)\z Cp>0

1 wp
| =—-—
ng(pQ) 2

Unitarity cut for p2 > 0
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Lippmann-Schwinger equation

Criterion for Singular Potentials

V(r) — ar™7 Potential | Ordinary | Singular
=0 7y <2 > 2
y=2 a>0 a<0

a=a+Ll+1)

Ordinary/Regular Potentials:

Standard quantum mechanical treatment
Boundary condition: %(0) = 0 and behavior at co
No extra free parameters



S-matrix solution of the Lippmann-Schwinger equation for regular and si r potentials

Lippmann-Schwinger equation

The One-Pion-Exchange (OPE) potential for the singlet NN interaction
(r>0):

gamy\ > emmer
4

Yukawa potential Vir)=-m-7 <2f,T —

Exchange of a pion between two nucleons
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Lippmann-Schwinger equation

In many instances one has singular potentials

Multipole expansion

o p(X/) 3 7 qem }/Zm(97¢)
d(x) _/7|x—x’\d x’—47r272€+1iré+1
l,m

Qom = / Y5, (0, ) p(x)dPa!
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== Lippmann-Schwinger equation

Van der Waals Force (molecular physics)

3aAaB IAIB

Vir) = _AlB
(N=-3"15 Ta+tIg

In QFT/EFT we treat
composite objects as
point like

Physical meaning for r — 07:

De Broglie length
1% >> 7y~ 2A
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Lippmann-Schwinger equation

Nuclear physics
OPE is singular attractive for the Deuteron in NN scattering

2841 ;. 3Py NN partial wave

(r) =0 (9“‘) AT () + Y (7)

Y 12w \2fs
Y (r) ¢ .
e~ M 3 3
T(r) = r [1 * Myt * (m,rr)Q}
., 94,3

Triplet part of the OPE potential V (r) o In 2
r— 7r

Quark Models, pNRQCD, pNRQED, QCD’s EFTs, etc
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== Lippmann-Schwinger equation

Math: Taking r — 0 for a singular potential

e Full range 7 €]0, 0o[: Case, PR60,797(1950)

o Singular Attractive Potential

Near the origin the solution is the
superposition of two oscillatory wave
functions

One has to fix a relative phase,

»(p) How to do it?. Mess.

Which are the appropriate boundary
conditions? (Orthogonality of wave
functions with different energy

— dep(p)/dp = 0)

Case, PR60,797('50); Arriola, Pavén,
PRC72,054002(’05)
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Lippmann-Schwinger equation

The potential does not determine uniquely the scattering problem Plesset,
PR41,278(1932), Case, PR60,797(1950)

e Singular Repulsive Potential

There is only one finite (vanishing)
reduced wave function at 7 =0

The solution is fixed

Pavén Valderrama, Ruiz Arriola,
Ann.Phys.323,1037('08)

Typically, the phenomenology is not accurate

E.g. this scheme a la Case does not fit well NN phase shifts.
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Lippmann-Schwinger equation

Two points of view in NN scattering:

e Use a finite cutoff A fitted to data. Regularization dependence

It works phenomenologically
Entem,Machleidt, PRC68,041001(R)('03); Epelbaum,Gloeckle,MeiBner,
NPA747,362('05); Epelbaum,Krebs,MeiBner, PRL115,122301('15)

e Take r — 0 (A — o) (Renormalized solutions)

Energy-independent boundary condition Arriola, Valderrama, PLB580,149('04);
PRC74,054002('05); Case, PR60,797(1950)

Subtractive renormalization Frederico, Timoteo, Tomio, NPA653,209('99);
Yang,Elster,Phillips, PRC80,044002('09)

Include one/zero counterterm Entem et al.,PRC77,044006('08)

These three-methods are equivalent. Not phenomenologically successful.
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Lippmann-Schwinger equation

Low-energy EFT paradigm:
Contact terms are necessary to reproduce short-distance physics

They are allowed by symmetry
They are required to make loops finite. Nonrenormalizable QFT/EFT
They are expected to be relatively important because of power-counting
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I*New exact equation in NR scattering theory

New exact equation in NR scattering theory

Yukawa potential,

2

s

Singularity for q> = —m

18y potential: (2+1L ;) g = (gamx/V8fx)?
Vip) = 5 5 log(4p? /3 + 1)

Left-hand cut (LHC) discontinuity for On-shell scattering

pP<-mi/a=1L

Born approximation

V(p? +i0T) — V(p? —i0™)
24

= ImV(p® +i07) = L=

A (p?) =
1(p) 2p2
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New exact equation in NR scattering theory

Full LHC Discontinuity , p? = —k? < L
2iA(p?) =T (p* +i0T) — T(p* —i0T)
A(p?) =ImT(p* +i0™)

ANANAANNAAS

§ The LS generates contributions with
any number of pions to A(p?),
p? <L
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I*New exact equation in NR scattering theory

How to calculate A(A)?

G.E. Brown, A.D. Jackson “The Nucleon-Nucleon interaction”,
North-Holland, 1976. Page 86: “In practice, of course, we do not know
the exact form of A(p?) for a given potential ..."

p=ik+e,e=0", pP=—-k<L
T(ik e, ik +te) =V(ikte,ikLte)
o V(ik + T(q,ik +
_|_L2 dqq2 (i 572(1) (gaz €)
21 0 q +k'

The last integral, so calculated, IS PURELY REAL!!

You can try to calculate numerically just the once iterated OPE

*° V(ik+te q)V(g,ikte
7 dag? ( q)V(q )

— eR
212 J, 2+ k2
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I*New exact equation in NR scattering theory

Notation: A = p?

This is an example of:
Not all what you can calculate with a computer is the right
answer!!
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New exact equation in NR scattering theory

¢ GENERAL method:

from its integral expression

L c _ k—mny 2
f(v) = Av(v, k) + Ok = 2mn — v)m / dv Vleu(I/,ul)f(I/l)
. 1

2 .2 __
27 Mg +v k v

—k
A(A):%,k:\/—A,IE: —k+mz <v<k—mg
@ The limits in the IE ARE FINITE
@ The denominator never vanishes , |v1| < k — m, in the |E
o NO FREE PARAMETERS
Reason: Contact interactions (monomials) do not contribute to the

discontinuity of T'(A)
Short-distance physics is not resolved— Contact interactions
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New exact equation in NR scattering theory

L c o k—mny 2
f(v) = Av(v, k) + w / du1V12 Av(v,v1)f(v1)
. 1

2 2
27 Mg +v k v

A(A):M,kzﬂ

It can be applied to:

@ Any local potential (spectral decomposition:)
L[ 5 n(p?)
V(p',p) =*/ dp*——= ,q=p —p
T Ju2 q +p

o Higher partial waves, £ > 0
@ Coupled Channels

@ Nonlocal potentials due to relativistic corrections
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I*LS equation in the complex plane

LS equation in the complex plane

Analytical properties of the potential
e Local potential, spectral decomposition:

L[ 5 n(p?)
Vq2)=*/ AW~ ,q=p —p
( w3 A

e S-wave projection:
1 / LR B n(p?)
v\p1,P2) = 5= dt/ d,LL
Wrp2) = 57 -1 Juz T piAps = 2pipat + p?
1

= / h dpPn(p?)
dmpipz J 2

x{log [1? + (p1 + p2)*] —log [ + (p1 — p2)°] }
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LS equation in the complex plane

Vertical cuts:

p2=£(p1 £iym2 +22)z€R

Analogously for py

p1 = my. Branch points at +(p; & im.)
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I*LS equation in the complex plane

Deforming the integration contour in the LS equation

k, k' € R in the half-off-shell T-matrix t(k, k'; k'>/m),

12

t(k,K'; %) =v(k, k") +

12

m [ dpp? k
P U(kapl)t(phkl;ﬁ)a

ﬁ 0 p% — k‘/2
v(k,p1) implies the vertical cuts

pr=+(k£iy/m2 +22)zeR

A

k+imy
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equation in the complex plane

We add an increasing positive imaginary part to k

=k +iki, ki >0

kK+imy
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equation in the complex plane

We add an increasing positive imaginary part to k

k=k.+1ik;, ki >0

Pk+imy

k>0, ki >mg,
k<0, ki <-—mg



n for regular and si ar potentials

k>0, ki <—mg,
k. <0, k; >mg

s k=img

o t(p1, k'; k’g/m) follows the same pattern in terms of %'.
|Im K'|-m,

[Im K|-my

|Re K| |Re k| c
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LS equation in the complex plane

Higher-order iterations

Twice-iterated LS:
12

m dp1p?
27-(-2 p% _ k/Q

m \2 dp1p? dpopy
+( )/ .t (k‘,Pl)/ S v(pr,p2)v(p2, k') + ...

_ e Y _relrs
22 p% _ k'/2 p% _ k/Q

v(k,p1)v(p, k')

New vertical additions (VA):

p1 at |Re k|

p2 at |[Rek| — d1, |[Rek| + &1 for [Impy| > m,

But Imk| — m, > |Imp;| every step reduces in m, the extent of
the vertical lines

bl

]

Rek' Rek-3, Rek+s; C
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I*LS equation in the complex plane

Analytical properties of t(k, k'; k'”* /m)

The energy pole gives rise to the RHC (k’2 > 0)

Dynamics cuts: As a function k (k') the same vertical cuts as for the
potential v(k, k'):

k= +(k' + +iy/m2 + 22)

Imk| > m, , ImE| < m,

[im k|-my; [im K|-my
K+ mni K+ m i
ke
A [Re k| c e IReK c
K=imp:
i k-imp
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LS equation in the complex plane

k'+i mni K+i mn§
Ke  |rek| " IRek
k=i mp ¢ ke ¢

—[Im kJ+my =|Im k|+mn

Intersection between the added vertical contour and the standard
vertical cuts
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I*LS equation in the complex plane

Calculation of A(—?): Discontinuity across the LHC

On-shell scattering t(k, k; k?/m)
LHC:

p=—pLiym2+z? —)p::t%\/m%erQ

1
p2:—1(m721_—|—m2) —>p2 6]_OOaL] ) L:—mi/ﬁl

2iA(—k?) = t(ik + ie, ik + ig) — t(ik — i, ik + ic)
= (—l)f{t(—ik +e ik +¢e) —t(—ik+eT ik + 6)}

e <e<e"
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I*LS equation in the complex plane

Spared slide

o lkte

o ke —ik+e ® | ®—ik+e"

To explain the relation
2iA(—k?) = t(ik + ie, ik + ie) — t(ik — ic, ik + ie)
= 2iIm t(ik + ie, ik + ic)

= (—1)4{7:(—2'/@ +e7, ik +¢e) — t(—ik + et ik + 5)}

e <e<e"
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LS equation in the complex plane

t(—ik+¢e ik +¢) t(—ik +et, ik +¢)

Z(kfmﬂ-) Z k_mﬂ')

—i(k —my) —i(k —my)
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LS equation in the complex plane

Imt(—ik + ¢~ ik +¢) — Imt(—ik + &b, ik +¢)
=Imuv(iv +¢e ,ik +¢) — Imv(iv + &7, ik +¢)

m [P du?

+0(k —v —2my)

ﬁ —k+ma ki2 - V12
x[Imv(iv + e, ivy + &) — Imov(iv + e, ivy +¢)]
x [Imt(ivy + & — 0,ik +¢&) — Imt(ivy +e+6,ik +¢)] .

e One needs to know

Imt(iv + e ,ik +¢) — Imt(iv + et ik +¢)
—k+m, <v<k-—my
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LS equation in the complex plane

Proceeding in the same
Integral Equation —k +m, <v <k —my:

f(v) =lmt(iv + e ,ik +¢) — Imt(iv + e, ik +¢)
=Imv(iv +¢e,ik +¢) — Imv(iv + T, ik +¢)

m [P du?

202 Jyim, k=17

X [Imv(iv + e~ ,ivy +¢) — Imo(iv + e, ivy +¢)]

X [Imt(ivy + e — 0,ik + &) — Imt(ivy + e+ 6,1k +¢)] .

+0(k —v —2my,)

A =(-1y 1R
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I*LS equation in the complex plane

log-log plot for 1S; (Yukawa Pot.) A(A); g4 = 6.80

10000
1000
100
10

0.1 r

DA (L

0.01
0.001

0.0001 ¢

1e-05 : : : : :
1 10 100 1000 10000100000 1e+06

IAL(IL]

o Ay, Ao, Az, Ay, Asymptotic sol. (dots) |A| > m2

o Full solution A(A)
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equation in the complex plane

@ Two-nucleon reducible diagrams [i1]; Guo,Rios, JAO, PRC89,014002('14);

¢

Similar size to the other NLO
irreducible diagrams

@ All pion lines must be put on-shell — A < 771,21%"172(/4.
@ As n increases their physical contribution fades away.

@ This only occurs for the imaginary part!
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LS equation in the complex plane

Yukawa Potential: OPE 15,

e The OPE 1S; (Yukawa potential) is simple enough to derive suitable
algebraic expression that can be analytically continued to obtain A(A):

Air () =5 50(L — 4)

Aor(A) =0(AL — A) (gimi)z My, <2F 1)

16f2 ) AV—A

Agx(A) =0(9L — A) (%}?) ( s ) z /;_A_mw m

p1—mg
0 —2max dpg———F———
(b — 2m )/mw /12(2\/* — p2)
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LS equation in the complex plane

2 2\ 4 3 2vV—A—mn
Aur(A) =0(16L — A) (9“””) (MN> ﬁ/ dpn L
3ma pa(

4f2 A 2V—A — 1)
0 —3me) [ d !
x0(p1 — 3ma / g ——————————
' 2may 2[«52(2\/ —A— /1,2)
0> — 2m.) / B L
XO(p2 — 2may g ————————.
’ - * 3V —A — pis)

This can be generalize for a diagram with n pions to

Anx(A) =0(n’L — A) (931”%27)” (MN)"_I 7T

4f2 Arr 4A
x 1] 0(j—1 —(n+1- j)mﬂ)/ dpj— =
= n—qyme 1 (2V=A = )

with gy = 2v/—A
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I*LS equation in the complex plane

Yukawa potential

e Asymptotic solution for k& > m,

' (v) )\G(k —2m; —v)
f(v) k? — (mx +v)?

2 ma
A(A) _ A}ZAG‘/%MCtanh(l_ﬁ
gMn

2T
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I*LS equation in the complex plane

3P,: singular attractive potential; m?3P):singular
repulsive potential (¢ — —¢)

e

& &
| & !sg Ik 3Py
£ &l
= ==
ar- q.-
* k(mag) © o k(mg)
& 5 &
| & minus® Pg | & - All Together
£a o
< <
4 a4

* k(mag)

© k(ma)

k — +o0:

3Py: “Exponential”
growth

m?>P,: Oscillatory-
" Exponential”
growth

1So: Vanishes
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N / D method with non-perturbative A(A)

N/D method with non-perturbative A(A)

Once we now the exact A(A) for a given potential we can use S-matrix
theory to solve the LS: N/D method with the full A(A)

~ Nys(A) Nes(A) has Only LHC

Tres(A) =
ses(4) Dis(A) Djes(A) has Only RHC
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== N/ D method with non-perturbative A (A)

Uncoupled Partial Waves

Exact knowledge of discontinuities

TAA) = 5p
1 u\f
T = A= A'> 0 (RHC)

ImDy(A) = — N, (A)p(A) A > 0 (RHC)

Im N, (A) = Dy(A) A(A) A < L (LHC)
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N/ D method with non-perturbative A (A)

(m1,m2) N/D equations for D(A) and N(A)

A‘NY/DMI mo

- A(k*)D(k?)

2
e —opm
(q?

N(A) = i vi(A—C)™ ™" +

a-or |
D(A) = 267’(‘4 — C)mzfi . (A WC)mz /(;oodq2

@ N(A) is substituted in D(A)
o Linear IE for D(A) arises

@ D(0) = 1. To fix a floating constant in the ratio
T(A) = N(A)/D(A)
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== Regular interactions

Regular interactions

e N/Dy;: Regular solution for an ordinary potential
Scattering is completely fixed by the potential

L
N(4) = % /_ dWLDEZi)_A%L)

R e
_m\/ﬁ L d A(wr)D(wy,)
wr,

VoL (Ve + VA)
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Regular interactions

e N/D;y;: Additional subtraction in N(A) is fixed in terms of
scattering length

L
D(4) = 1+ia\/2+iM71\27 deD(wL)A(wL) A
47 — 0 wr, \/Z+\/CTL
dra A [T D(wr)Awr)
N(4) = —— 42 i, P@r)Awr)
(A4) MNH/_OO oy Heno

Effective Range Expansion (ERE)

1 1 )
keotd (k) = T + 57"k'2 + Z vik*

1=2
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Regular interactions

e N/D;5: Additional subtraction in D(A), r is fixed

D(A) = 1+im/Z_ﬂA MNA/ dooy, PWr)Awr) A(WL)
vl
(\/‘TL—i_\/i\/i awr,

N(4) = —4ﬂ+ / dL %LL)

The results are just dependent on A(A) (input potential) and
experimental ERE parameters
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Regular interactions

N/Dss: Additional subtraction in N(A), v, is fixed

ar

D(A) = (1—%—2A)(1+iuf)——A

L
+Z%A/ deD(wL)A(wL)
ar27" f_ w?

A .2 . .

[\/Z Y- + ZT'(IQLUL (14 iay/wr)(1+ Z(J,\/Z):|

Ny = gt A [ g, Dl st
A 2 .

[(wL ry + raor (1+ Za\/oTL)]

The more subtractions are included the more perturbative N/D is with
respect to A(A). A, (A) contributes for A < n?L
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== Regular interactions

Example: Regular case. 'S, Yukawa potential

14

1SO

12 -

10

big,

N/Dgy; LS (black dots)

L
100

L
150

L
200 250 300 350

Kk(MeV)

400



Lippmann-Schwinger equation for regular and si ar potentials

Attractive singular interaction: 3P,
N/D;2 T(A) =0 (N/D;; does not converge)
At least one parameter is needed The scattering volume is fixed

N/DIQ;

LS (black dots);
Phase shifts: Granada
analysis

0 50 100 150 200 250 300 350 400
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Singular Interactions

We compare with
LS renormalized with one contact term:
V(p1,p2) = V(p1,p2) + Cipip2
Repulsive singular interaction: 3P,
N/D11; No free parameters ; T'(0) =0

Repulsive Singular Potential: LS is insensitive to all C;



m3P0

0 50 Eul

Kk(MeV)

30

a0

/Di2;
LS (black dots);
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T (A) in the complex plane

T(A) in the complex plane

e As a bonus the non-perturbative-A N/D method allows to calculate
T(A) for A € C in the 1st/2nd Riemann sheet

This is not trivial with LS
Look for and study resonances, virtual states and bound states

For bound states one does not need to solve the full-off-shell LS equation
or Schrodinger equation

Bound State A = (ik)?

Binding energy of near threshold bound state, g4 = 7.45
One does not need to solve Schrodinger equation
Poles of T(A) «» zeros of D(A)
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T'(A) in the complex plane

e As a bonus the non-perturbative-A N/D method allows to calculate
T(A) for A € C in the 1st/2nd Riemann sheet

This is not trivial with LS
Binding energy of near threshold bound state, g4 = 7.45

One does not need to solve Schrodinger equation
Poles of T'(A) <> zeros of D(A)

A= (Zk)Q N/D()l N/D11 Schrédinger

Aln 2.02
Aoy 2.18
Asy 2.21
Aur 089 222

Non-perturbative  2.22 2.22 2.22
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T'(A) in the complex plane

e Anti-bound (virtual) state for 15
TNA) = T7N(A) + 2ip(A)
Dr+ Ny Qip(A)

= —————~ ImvVA>
N ,m\f_O

Look for zero of Dy;(A) . E=A/My =

N/Dlli
—0.070 (LO) , —0.067 (NLO,NNLO) MeV

For the other N/Dy,,m,: —0.066 MeV always
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T (A) in the complex plane

G.E. Brown, A.D. Jackson “The Nucleon-Nucleon interaction”,
North-Holland, 1976. Page 86: “In practice, of course, we do not know
the exact form of A(p?) for a given potential and the N/D equations do
not represent a practical alternative to the exact solution of the LS
equation for potential scattering. .."”

Now (2016), this statement is superseded



of the Lippmann-Schwinger equation for regular and

Conclusions

Conclusions

@ A new non-singular IE allows to calculate the exact A(A) in
potential scattering for a given potential

@ One can calculate the scattering amplitude for regular/singular
potentials from its analytical /unitarity properties.

@ Any proper solution for singular potentials can be found with this
method

@ We reproduce the LS outcome with/without one counterterm

o It can be straightforwardly used in the whole complex plane (bound
states, resonances, virtual states)
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Conclusions

e See Entem’s talk about how to go beyond LS+one counterterm for an
attractive singular potential.

e Including as well higher order chiral NN potentials.
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