S-matrix solution of the Lippmann-Schwinger equation for regular and singular potentials

J. A. Oller
Departamento de Física Universidad de Murcia ${ }^{1}$

in collaboration with D. R. Entem

- [I] arXiv:1609, next month
- [II] Long version, in preparation

2nd HSND, Madrid, September 8, 2016

[^0]
Overview

(1) Lippmann-Schwinger equation
(2) New exact equation in NR scattering theory
(3) LS equation in the complex plane
(4) N / D method with non-perturbative $\Delta(A)$
(5) Regular interactions
(6) Singular Interactions
(7) $T(A)$ in the complex plane
(8) Conclusions

Lippmann-Schwinger equation (LS)

Scattering T-matrix $T(z), \operatorname{Im}(z) \neq 0$, Two-body scattering

$$
\begin{aligned}
T(z) & =V-V R_{0}(z) T(z) \\
R_{0}(z) & =\left[H_{0}-z\right]^{-1} \\
H_{0} & =-\frac{1}{2 \mu} \nabla^{2} \\
H & =H_{0}+V
\end{aligned}
$$

- Resolvent of $H, R(z)$:

$$
\begin{aligned}
& R(z)=[H-z]^{-1} \\
& R(z)=R_{0}(z)-R_{0}(z) T(z) R_{0}(z)
\end{aligned}
$$

- Spectrum of $H: H\left|\psi_{\mathrm{p}}\right\rangle=E_{p}\left|\psi_{\mathrm{p}}\right\rangle$

Continuous spectrum: Povzner's result

$$
\left|\psi_{\mathbf{p}}\right\rangle=|\mathbf{p}\rangle-\lim _{\epsilon \rightarrow 0^{+}} R_{0}\left(E_{p}+i \epsilon\right) T\left(E_{p}+i \epsilon\right)|\mathbf{p}\rangle
$$

Bound States: Poles in $T(z)$ for $z \in \mathbb{R}^{-}$

- LS in momentum space

For definiteness we consider uncoupled spinless case by now:

$$
T\left(\mathbf{p}^{\prime}, \mathbf{p}, z\right)=V\left(\mathbf{p}^{\prime}, \mathbf{p}\right)-\int \frac{d^{3} q}{(2 \pi)^{3}} V\left(\mathbf{p}^{\prime}, \mathbf{q}\right) \frac{1}{\frac{q^{2}}{2 \mu}-z} T(\mathbf{q}, \mathbf{p}, z)
$$

- LS in partial waves

$$
\begin{gathered}
T_{\ell}\left(p^{\prime}, p, z\right)=\frac{1}{2} \int_{-1}^{+1} d \cos \theta P_{\ell}(\cos \theta) T\left(\mathbf{p}^{\prime}, \mathbf{p}, z\right) \\
\cos \theta=\hat{\mathbf{p}^{\prime}} \cdot \hat{\mathbf{p}} \\
T\left(\mathbf{p}^{\prime}, \mathbf{p}, z\right)=\sum_{\ell=0}^{\infty}(2 \ell+1) P_{\ell}(\cos \theta) T_{\ell}\left(p^{\prime}, p, z\right) \\
T_{\ell}\left(p^{\prime}, p, z\right)=V_{\ell}\left(p^{\prime}, p\right)+\frac{\mu}{\pi^{2}} \int_{0}^{\infty} d q q^{2} \frac{V_{\ell}\left(p^{\prime}, q\right) T_{\ell}(q, p, z)}{q^{2}-2 \mu z}
\end{gathered}
$$

Convention: $V\left(\mathbf{p}^{\prime}, \mathbf{p}\right) \rightarrow-V\left(\mathbf{p}^{\prime}, \mathbf{p}\right), T\left(\mathbf{p}^{\prime}, \mathbf{p}, z\right) \rightarrow-T\left(\mathbf{p}^{\prime}, \mathbf{p}, z\right)$

- On-shell unitarity (extensively used later)

Propagation of real two-body states

$$
\begin{aligned}
p^{\prime} & =p \\
E_{p} & =\frac{p^{2}}{2 \mu} \\
\operatorname{Im} T_{\ell}\left(p^{2}\right) & =\frac{\mu p}{2 \pi}\left|T_{\ell}\left(p^{2}\right)\right|^{2}, p>0 \\
\operatorname{Im} \frac{1}{T_{\ell}\left(p^{2}\right)} & =-\frac{\mu p}{2 \pi}
\end{aligned}
$$

Unitarity cut for $p^{2}>0$

Criterion for Singular Potentials

$$
\begin{gathered}
V(r) \xrightarrow[r \rightarrow 0]{ } \alpha r^{-\gamma} \\
\bar{\alpha}=\alpha+\ell(\ell+1)
\end{gathered}
$$

Potential	Ordinary	Singular
γ	<2	>2
$\gamma=2$	$\bar{\alpha}>0$	$\bar{\alpha} \leq 0$

Ordinary/Regular Potentials:

Standard quantum mechanical treatment Boundary condition: $u(0)=0$ and behavior at ∞
No extra free parameters

The One-Pion-Exchange (OPE) potential for the singlet $N N$ interaction $(r>0)$:

Yukawa potential

$$
V(r)=-\tau_{1} \cdot \tau_{2}\left(\frac{g_{A} m_{\pi}}{2 f_{\pi}}\right)^{2} \frac{e^{-m_{\pi} r}}{4 \pi r}
$$

Exchange of a pion between two nucleons

In many instances one has singular potentials

Multipole expansion

$$
\begin{aligned}
\Phi(\mathbf{x}) & =\int \frac{\rho\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime}=4 \pi \sum_{\ell, m} \frac{q_{\ell m}}{2 \ell+1} \frac{Y_{\ell m}(\theta, \phi)}{r^{\ell+1}} \\
q_{\ell m} & =\int Y_{\ell m}^{*}\left(\theta^{\prime}, \phi^{\prime}\right) r^{\ell \ell} \rho\left(\mathbf{x}^{\prime}\right) d^{3} x^{\prime}
\end{aligned}
$$

Van der Waals Force (molecular physics)

$$
V(r)=-\frac{3}{2} \frac{\alpha_{A} \alpha_{B}}{r^{6}} \frac{I_{A} I_{B}}{I_{A}+I_{B}}
$$

In QFT/EFT we treat composite objects as point like

Physical meaning for $r \rightarrow 0$?:
De Broglie length $\frac{1}{p} \gg r_{A} \sim 2 \AA$

Nuclear physics

OPE is singular attractive for the Deuteron in $N N$ scattering
${ }^{2 S+1} L_{J}:{ }^{3} P_{0} N N$ partial wave

$$
\begin{aligned}
& V(r)=\frac{m_{\pi}^{2}}{12 \pi}\left(\frac{g_{A}}{2 f_{\pi}}\right)^{2}[-4 T(r)+Y(r)] \\
& Y(r)=\frac{e^{-m_{\pi} r}}{r} \\
& T(r)=\frac{e^{-m_{\pi} r}}{r}\left[1+\frac{3}{m_{\pi} r}+\frac{3}{\left(m_{\pi} r\right)^{2}}\right]
\end{aligned}
$$

Triplet part of the OPE potential $V(r) \underset{r \rightarrow 0}{\longrightarrow} \frac{g_{A}^{2}}{4 \pi f_{\pi}^{2}} r^{-3}$

Math: Taking $r \rightarrow 0$ for a singular potential

- Full range $r \in] 0, \infty[$: Case, PR60,797(1950)
- Singular Attractive Potential

Near the origin the solution is the superposition of two oscillatory wave functions
One has to fix a relative phase, $\varphi(p)$ How to do it?. Mess.

Which are the appropriate boundary conditions? (Orthogonality of wave functions with different energy
$\rightarrow d \varphi(p) / d p=0)$
Case, PR60,797('50); Arriola, Pavón,
PRC72,054002('05)

The potential does not determine uniquely the scattering problem Plesset, PR41,278(1932), Case, PR60,797(1950)

- Singular Repulsive Potential

There is only one finite (vanishing) reduced wave function at $r=0$

The solution is fixed

Pavón Valderrama, Ruiz Arriola, Ann.Phys.323,1037('08)

Typically, the phenomenology is not accurate
E.g. this scheme a la Case does not fit well $N N$ phase shifts.

Two points of view in $N N$ scattering:

- Use a finite cutoff Λ fitted to data. Regularization dependence

It works phenomenologically
Entem,Machleidt, PRC68,041001(R)('03); Epelbaum,Gloeckle,Meißner,
NPA747,362('05); Epelbaum,Krebs,Meißner, PRL115,122301('15)

- Take $r \rightarrow 0(\Lambda \rightarrow \infty)$ (Renormalized solutions)

Energy-independent boundary condition Arriola, Valderrama, PLB580,149('04); PRC74,054002('05); Case, PR60,797(1950)
Subtractive renormalization Frederico,Timoteo,Tomio, NPA653,209('99); Yang,Elster,Phillips, PRC80,044002('09)
Include one/zero counterterm Entem et al.,PRC77,044006('08)
These three-methods are equivalent. Not phenomenologically successful.

Low-energy EFT paradigm:

Contact terms are necessary to reproduce short-distance physics
They are allowed by symmetry
They are required to make loops finite. Nonrenormalizable QFT/EFT
They are expected to be relatively important because of power-counting

New exact equation in NR scattering theory

Yukawa potential,

$$
V(\mathbf{q})=\frac{2 g}{\mathbf{q}^{2}+m_{\pi}^{2}}
$$

Singularity for $\mathbf{q}^{2}=-m_{\pi}^{2}$
${ }^{1} S_{0}$ potential: $\left({ }^{2 S+1} L_{J}\right) \quad g=\left(g_{A} m_{\pi} / \sqrt{8} f_{\pi}\right)^{2}$

$$
V(p)=\frac{g}{2 p^{2}} \log \left(4 p^{2} / m_{\pi}^{2}+1\right)
$$

Left-hand cut (LHC) discontinuity for On-shell scattering

$$
\begin{aligned}
p^{2}< & -m_{\pi}^{2} / 4=L \\
& \text { Born approximation } \\
\Delta_{1 \pi}\left(p^{2}\right)= & \frac{V\left(p^{2}+i 0^{+}\right)-V\left(p^{2}-i 0^{+}\right)}{2 i}=\operatorname{Im} V\left(p^{2}+i 0^{+}\right)=\frac{g \pi}{2 p^{2}}
\end{aligned}
$$

Full LHC Discontinuity, $p^{2}=-k^{2}<L$

$$
\begin{aligned}
2 i \Delta\left(p^{2}\right) & =T\left(p^{2}+i 0^{+}\right)-T\left(p^{2}-i 0^{+}\right) \\
\Delta\left(p^{2}\right) & =\operatorname{Im} T\left(p^{2}+i 0^{+}\right)
\end{aligned}
$$

The LS generates contributions with any number of pions to $\Delta\left(p^{2}\right)$, $p^{2}<L$
$\Delta_{n \pi}\left(p^{2}\right)$ for $p^{2}<-\left(n m_{\pi}^{2} / 2\right)$

How to calculate $\Delta(A)$?

G.E. Brown, A.D. Jackson "The Nucleon-Nucleon interaction", North-Holland, 1976. Page 86: "In practice, of course, we do not know the exact form of $\Delta\left(p^{2}\right)$ for a given potential ..."

$$
\begin{aligned}
p & =i k \pm \varepsilon, \varepsilon=0^{+}, p^{2}=-k^{2}<L \\
T(i k \pm \varepsilon, i k \pm \varepsilon) & =V(i k \pm \varepsilon, i k \pm \varepsilon) \\
& +\frac{\mu}{2 \pi^{2}} \int_{0}^{\infty} d q q^{2} \frac{V(i k \pm \varepsilon, q) T(q, i k \pm \varepsilon)}{q^{2}+k^{2}}
\end{aligned}
$$

The last integral, so calculated, IS PURELY REAL!!

You can try to calculate numerically just the once iterated OPE

$$
\frac{\mu}{2 \pi^{2}} \int_{0}^{\infty} d q q^{2} \frac{V(i k \pm \varepsilon, q) V(q, i k \pm \varepsilon)}{q^{2}+k^{2}} \in \mathbb{R}
$$

Notation: $A=p^{2}$

This is an example of:
Not all what you can calculate with a computer is the right answer!!

- GENERAL method:

Analytic extrapolation of the LS from its integral expression

$$
\begin{aligned}
& \mathrm{f}(\nu)=\Delta v(\nu, k)+\frac{\theta\left(k-2 m_{\pi}-\nu\right) m}{2 \pi^{2}} \int_{m_{\pi}+\nu}^{k-m_{\pi}} \frac{d \nu_{1} \nu_{1}^{2}}{k^{2}-\nu_{1}^{2}} \Delta v\left(\nu, \nu_{1}\right) \mathfrak{f}\left(\nu_{1}\right) \\
& \Delta(A)=\frac{\mathfrak{f}(-k)}{2}, k=\sqrt{-A}, \text { IE }: \quad-k+m_{\pi}<\nu<k-m_{\pi}
\end{aligned}
$$

- The limits in the IE ARE FINITE
- The denominator never vanishes, $\left|\nu_{1}\right| \leq k-m_{\pi}$ in the IE
- NO FREE PARAMETERS

Reason: Contact interactions (monomials) do not contribute to the discontinuity of $T(A)$
Short-distance physics is not resolved \rightarrow Contact interactions

$$
\mathfrak{f}(\nu)=\Delta v(\nu, k)+\frac{\theta\left(k-2 m_{\pi}-\nu\right) m}{2 \pi^{2}} \int_{m_{\pi}+\nu}^{k-m_{\pi}} \frac{d \nu_{1} \nu_{1}^{2}}{k^{2}-\nu_{1}^{2}} \Delta v\left(\nu, \nu_{1}\right) \mathfrak{f}\left(\nu_{1}\right)
$$

$$
\Delta(A)=\frac{\mathfrak{f}(-k)}{2}, k=\sqrt{-A}
$$

It can be applied to:

- Any local potential (spectral decomposition:)

$$
V\left(\mathbf{p}^{\prime}, \mathbf{p}\right)=\frac{1}{\pi} \int_{\mu_{0}^{2}}^{\infty} d \mu^{2} \frac{\eta\left(\mu^{2}\right)}{\mathbf{q}^{2}+\mu^{2}}, \mathbf{q}=\mathbf{p}^{\prime}-\mathbf{p}
$$

- Higher partial waves, $\ell \geq 0$
- Coupled Channels
- Nonlocal potentials due to relativistic corrections

LS equation in the complex plane

Analytical properties of the potential

- Local potential, spectral decomposition:

$$
V\left(\mathbf{q}^{2}\right)=\frac{1}{\pi} \int_{\mu_{0}^{2}}^{\infty} d \mu^{2} \frac{\eta\left(\mu^{2}\right)}{\mathbf{q}^{2}+\mu^{2}}, \mathbf{q}=\mathbf{p}^{\prime}-\mathbf{p}
$$

- S-wave projection:

$$
\begin{aligned}
v\left(p_{1}, p_{2}\right) & =\frac{1}{2 \pi} \int_{-1}^{+1} d t \int_{\mu_{0}^{2}}^{\infty} d \mu^{2} \frac{\eta\left(\mu^{2}\right)}{p_{1}^{2}+p_{2}^{2}-2 p_{1} p_{2} t+\mu^{2}} \\
= & \frac{1}{4 \pi p_{1} p_{2}} \int_{\mu_{0}^{2}}^{\infty} d \mu^{2} \eta\left(\mu^{2}\right) \\
\times & \left\{\log \left[\mu^{2}+\left(p_{1}+p_{2}\right)^{2}\right]-\log \left[\mu^{2}+\left(p_{1}-p_{2}\right)^{2}\right]\right\}
\end{aligned}
$$

Vertical cuts:

$$
p_{2}= \pm\left(p_{1} \pm i \sqrt{m_{\pi}^{2}+x^{2}}\right) x \in \mathbb{R}
$$

Analogously for p_{1}

$p_{1}=m_{\pi}$. Branch points at $\pm\left(p_{1} \pm i m_{\pi}\right)$

Deforming the integration contour in the LS equation

$k, k^{\prime} \in \mathbb{R}$ in the half-off-shell T-matrix $t\left(k, k^{\prime} ; k^{\prime 2} / m\right)$,

$$
t\left(k, k^{\prime} ; \frac{k^{\prime 2}}{m}\right)=v\left(k, k^{\prime}\right)+\frac{m}{2 \pi^{2}} \int_{0}^{\infty} \frac{d p_{1} p_{1}^{2}}{p_{1}^{2}-{k^{\prime 2}}^{\prime 2}} v\left(k, p_{1}\right) t\left(p_{1}, k^{\prime} ; \frac{k^{\prime 2}}{m}\right)
$$

$v\left(k, p_{1}\right)$ implies the vertical cuts

$$
p_{1}= \pm\left(k \pm i \sqrt{m_{\pi}^{2}+x^{2}}\right) x \in \mathbb{R}
$$

We add an increasing positive imaginary part to k

$$
k=k_{r}+i k_{i}, k_{i}>0
$$

We add an increasing positive imaginary part to k

$$
k=k_{r}+i k_{i}, k_{i}>0
$$

$$
\begin{aligned}
& k_{r}>0, k_{i}>m_{\pi} \\
& k_{r}<0, k_{i}<-m_{\pi}
\end{aligned}
$$

$$
\begin{aligned}
& k_{r}>0, k_{i}<-m_{\pi} \\
& k_{r}<0, k_{i}>m_{\pi}
\end{aligned}
$$

- $t\left(p_{1}, k^{\prime} ; k^{\prime 2} / m\right)$ follows the same pattern in terms of k^{\prime}.

Higher-order iterations

Twice-iterated LS:

$$
\begin{aligned}
t\left(k, k^{\prime} ; \frac{k^{\prime 2}}{m}\right)= & v\left(k, k^{\prime}\right)+\frac{m}{2 \pi^{2}} \int \frac{d p_{1} p_{1}^{2}}{p_{1}^{2}-k^{\prime 2}} v\left(k, p_{1}\right) v\left(p_{1}, k^{\prime}\right) \\
& +\left(\frac{m}{2 \pi^{2}}\right)^{2} \int \frac{d p_{1} p_{1}^{2}}{p_{1}^{2}-k^{\prime 2}} v\left(k, p_{1}\right) \int \frac{d p_{2} p_{2}^{2}}{p_{2}^{2}-k^{\prime 2}} v\left(p_{1}, p_{2}\right) v\left(p_{2}, k^{\prime}\right)+\ldots
\end{aligned}
$$

New vertical additions (VA):
p_{1} at $|\operatorname{Re} k|$
p_{2} at $|\operatorname{Re} k|-\delta_{1},|\operatorname{Re} k|+\delta_{1}$ for $\left|\operatorname{Im} p_{1}\right|>m_{\pi}$
But $|\operatorname{Im} k|-m_{\pi}>\left|\operatorname{Im} p_{1}\right|$ every step reduces in m_{π} the extent of the vertical lines

Analytical properties of $t\left(k, k^{\prime} ; k^{\prime 2} / m\right)$

The energy pole gives rise to the RHC $\left(k^{\prime 2}>0\right)$
Dynamics cuts: As a function $k\left(k^{\prime}\right)$ the same vertical cuts as for the potential $v\left(k, k^{\prime}\right)$:

$$
k= \pm\left(k^{\prime}+ \pm i \sqrt{m_{\pi}^{2}+x^{2}}\right)
$$

$|\operatorname{Im} k|>m_{\pi},\left|\operatorname{Im} k^{\prime}\right|<m_{\pi}$

Intersection between the added vertical contour and the standard vertical cuts

Calculation of $\Delta\left(-k^{2}\right)$: Discontinuity across the LHC

On-shell scattering $t\left(k, k ; k^{2} / m\right)$ LHC:

$$
\begin{aligned}
p & =-p \pm i \sqrt{m_{\pi}^{2}+x^{2}} \longrightarrow p= \pm \frac{i}{2} \sqrt{m_{\pi}^{2}+x^{2}} \\
p^{2} & \left.\left.=-\frac{1}{4}\left(m_{\pi}^{2}+x^{2}\right) \longrightarrow p^{2} \in\right]-\infty, L\right], L=-m_{\pi}^{2} / 4
\end{aligned}
$$

$$
\begin{aligned}
2 i \Delta\left(-k^{2}\right) & =t(i k+i \varepsilon, i k+i \varepsilon)-t(i k-i \varepsilon, i k+i \varepsilon) \\
& =(-1)^{\ell}\left\{t\left(-i k+\varepsilon^{-}, i k+\varepsilon\right)-t\left(-i k+\varepsilon^{+}, i k+\varepsilon\right)\right\} \\
& \varepsilon^{-}<\varepsilon<\varepsilon^{+}
\end{aligned}
$$

Spared slide

To explain the relation

$$
\begin{aligned}
& 2 i \Delta\left(-k^{2}\right)=t(i k+i \varepsilon, i k+i \varepsilon)-t(i k-i \varepsilon, i k+i \varepsilon) \\
&=2 i \operatorname{Im} t(i k+i \varepsilon, i k+i \varepsilon) \\
&=(-1)^{\ell}\left\{t\left(-i k+\varepsilon^{-}, i k+\varepsilon\right)-t\left(-i k+\varepsilon^{+}, i k+\varepsilon\right)\right\} \\
& \varepsilon^{-}<\varepsilon<\varepsilon^{+}
\end{aligned}
$$

$$
t\left(-i k+\varepsilon^{-}, i k+\varepsilon\right)
$$

$$
t\left(-i k+\varepsilon^{+}, i k+\varepsilon\right)
$$

$$
\begin{aligned}
& \operatorname{Im} t\left(-i k+\varepsilon^{-}, i k+\varepsilon\right)-\operatorname{Im} t\left(-i k+\varepsilon^{+}, i k+\varepsilon\right) \\
& =\operatorname{Im} v\left(i \nu+\varepsilon^{-}, i k+\varepsilon\right)-\operatorname{Im} v\left(i \nu+\varepsilon^{+}, i k+\varepsilon\right) \\
+ & \theta\left(k-\nu-2 m_{\pi}\right) \frac{m}{2 \pi^{2}} \int_{-k+m_{\pi}}^{k-m_{\pi}} \frac{d \nu_{1} \nu_{1}^{2}}{k^{2}-\nu_{1}^{2}} \\
\times & {\left[\operatorname{Im} v\left(i \nu+\varepsilon^{-}, i \nu_{1}+\varepsilon\right)-\operatorname{Im} v\left(i \nu+\varepsilon^{+}, i \nu_{1}+\varepsilon\right)\right] } \\
\times & {\left[\operatorname{Im} t\left(i \nu_{1}+\varepsilon-\delta, i k+\varepsilon\right)-\operatorname{Im} t\left(i \nu_{1}+\varepsilon+\delta, i k+\varepsilon\right)\right] . }
\end{aligned}
$$

- One needs to know

$$
\begin{aligned}
& \operatorname{Im} t\left(i \nu+\varepsilon^{-}, i k+\varepsilon\right)-\operatorname{Im} t\left(i \nu+\varepsilon^{+}, i k+\varepsilon\right) \\
& -k+m_{\pi}<\nu<k-m_{\pi}
\end{aligned}
$$

Proceeding in the same

Integral Equation $-k+m_{\pi}<\nu<k-m_{\pi}$:

$$
\begin{aligned}
\mathfrak{f}(\nu) & \equiv \operatorname{Im} t\left(i \nu+\varepsilon^{-}, i k+\varepsilon\right)-\operatorname{Im} t\left(i \nu+\varepsilon^{+}, i k+\varepsilon\right) \\
& =\operatorname{Im} v\left(i \nu+\varepsilon^{-}, i k+\varepsilon\right)-\operatorname{Im} v\left(i \nu+\varepsilon^{+}, i k+\varepsilon\right) \\
& +\theta\left(k-\nu-2 m_{\pi}\right) \frac{m}{2 \pi^{2}} \int_{\nu+m_{\pi}}^{k-m_{\pi}} \frac{d \nu_{1} \nu_{1}^{2}}{k^{2}-\nu_{1}^{2}} \\
& \times\left[\operatorname{Im} v\left(i \nu+\varepsilon^{-}, i \nu_{1}+\varepsilon\right)-\operatorname{Im} v\left(i \nu+\varepsilon^{+}, i \nu_{1}+\varepsilon\right)\right] \\
& \times\left[\operatorname{Im} t\left(i \nu_{1}+\varepsilon-\delta, i k+\varepsilon\right)-\operatorname{Im} t\left(i \nu_{1}+\varepsilon+\delta, i k+\varepsilon\right)\right]
\end{aligned}
$$

$$
\Delta(k)=(-1)^{\ell} \frac{\mathfrak{f}(-k)}{2}
$$

log-log plot for ${ }^{1} S_{0}$ (Yukawa Pot.) $\Delta(A) ; g_{A}=6.80$

- $\Delta_{1 \pi}, \Delta_{2 \pi}, \Delta_{3 \pi}, \Delta_{4 \pi}$, Asymptotic sol. (dots) $|A| \gg m_{\pi}^{2}$
- Full solution $\Delta(A)$
- Two-nucleon reducible diagrams [II]; Guo,Ríos,JAO, PRC89,014002('14);

Similar size to the other NLO irreducible diagrams

- All pion lines must be put on-shell $\longrightarrow A \leq-n^{2} M_{\pi}^{2} / 4$.
- As n increases their physical contribution fades away.
- This only occurs for the imaginary part!

Yukawa Potential: OPE ${ }^{1} S_{0}$

- The OPE ${ }^{1} S_{0}$ (Yukawa potential) is simple enough to derive suitable algebraic expression that can be analytically continued to obtain $\Delta(A)$:
$\Delta_{1 \pi}\left(p^{2}\right)=\frac{g \pi}{2 p^{2}} \theta(L-A)$
$\Delta_{2 \pi}(A)=\theta(4 L-A)\left(\frac{g_{A}^{2} m_{\pi}^{2}}{16 f_{\pi}^{2}}\right)^{2} \frac{M_{N}}{A \sqrt{-A}} \log \left(\frac{2 \sqrt{-A}}{m_{\pi}}-1\right)$
$\Delta_{3 \pi}(A)=\theta(9 L-A)\left(\frac{g_{A}^{2} m_{\pi}^{2}}{4 f_{\pi}^{2}}\right)^{3}\left(\frac{M_{N}}{4 \pi}\right)^{2} \frac{\pi}{4 A} \int_{2 m_{\pi}}^{2 \sqrt{-A}-m_{\pi}} d \mu_{1} \frac{1}{\mu_{1}\left(2 \sqrt{-A}-\mu_{1}\right)}$

$$
\theta\left(\mu_{1}-2 m_{\pi}\right) \int_{m_{\pi}}^{\mu_{1}-m_{\pi}} d \mu_{2} \frac{1}{\mu_{2}\left(2 \sqrt{-A}-\mu_{2}\right)}
$$

$$
\begin{aligned}
\Delta_{4 \pi}(A) & =\theta(16 L-A)\left(\frac{g_{A}^{2} m_{\pi}^{2}}{4 f_{\pi}^{2}}\right)^{4}\left(\frac{M_{N}}{4 \pi}\right)^{3} \frac{\pi}{4 A} \int_{3 m_{\pi}}^{2 \sqrt{-A}-m_{\pi}} d \mu_{1} \frac{1}{\mu_{1}\left(2 \sqrt{-A}-\mu_{1}\right)} \\
& \times \theta\left(\mu_{1}-3 m_{\pi}\right) \int_{2 m_{\pi}}^{\mu_{1}-m_{\pi}} d \mu_{2} \frac{1}{\mu_{2}\left(2 \sqrt{-A}-\mu_{2}\right)} \\
& \times \theta\left(\mu_{2}-2 m_{\pi}\right) \int_{m_{\pi}}^{\mu_{2}-m_{\pi}} d \mu_{3} \frac{1}{\mu_{3}\left(2 \sqrt{-A}-\mu_{3}\right)}
\end{aligned}
$$

This can be generalize for a diagram with n pions to

$$
\begin{aligned}
\Delta_{n \pi}(A) & =\theta\left(n^{2} L-A\right)\left(\frac{g_{A}^{2} m_{\pi}^{2}}{4 f_{\pi}^{2}}\right)^{n}\left(\frac{M_{N}}{4 \pi}\right)^{n-1} \frac{\pi}{4 A} \\
& \times \prod_{j=1}^{n-1} \theta\left(\mu_{j-1}-(n+1-j) m_{\pi}\right) \int_{(n-j) m_{\pi}}^{\mu_{j-1}-m_{\pi}} d \mu_{j} \frac{1}{\mu_{j}\left(2 \sqrt{-A}-\mu_{j}\right)}
\end{aligned}
$$

with $\mu_{0}=2 \sqrt{-A}$

Yukawa potential

- Asymptotic solution for $k \gg m_{\pi}$

$$
\begin{aligned}
& \frac{\mathfrak{f}^{\prime}(\nu)}{\mathfrak{f}(\nu)}=-\lambda \frac{\theta\left(k-2 m_{\pi}-\nu\right)}{k^{2}-\left(m_{\pi}+\nu\right)^{2}} \\
& \Delta(A)=\frac{\lambda \pi^{2}}{M_{N} A} e^{\frac{2 \lambda}{\sqrt{-A}} \operatorname{arctanh}\left(1-\frac{m_{\pi}}{\sqrt{-A}}\right)} \\
& \lambda=\frac{g M_{N}}{2 \pi}
\end{aligned}
$$

${ }^{3} P_{0}$: singular attractive potential; $m^{3} P_{0}$:singular repulsive potential $(g \rightarrow-g)$

$k \rightarrow+\infty$:
${ }^{3} P_{0}$: "Exponential" growth
$\mathrm{m}^{3} P_{0}$: Oscillatory-
"Exponential"
growth
${ }^{1} S_{0}$: Vanishes

N / D method with non-perturbative $\Delta(A)$

Once we now the exact $\Delta(A)$ for a given potential we can use S-matrix theory to solve the LS: N / D method with the full $\Delta(A)$

$$
T_{J \ell S}(A)=\frac{N_{J \ell S}(A)}{D_{J \ell S}(A)}
$$

$N_{J e S}(A)$ has Only LHC
$D_{J \ell S}(A)$ has Only RHC

Uncoupled Partial Waves

Exact knowledge of discontinuities

$$
\begin{aligned}
T_{\ell}(A) & =\frac{N_{\ell}(A)}{D_{\ell}(A)} \\
\operatorname{Im} \frac{1}{T_{\ell}(A)} & =-\rho(A) \equiv \frac{\mu \sqrt{A}}{2 \pi} A>0(\mathrm{RHC}) \\
\operatorname{Im} D_{\ell}(A) & =-N_{\ell}(A) \rho(A) A>0(\mathrm{RHC}) \\
\operatorname{Im} N_{\ell}(A) & =D_{\ell}(A) \Delta(A) A<L(\mathrm{LHC})
\end{aligned}
$$

$\left(m_{1}, m_{2}\right) N / D$ equations for $D(A)$ and $N(A)$

$$
\begin{gathered}
N / D_{m_{1} m_{2}} \\
N(A)=\sum_{i=1}^{m_{1}} \nu_{i}(A-C)^{m_{1}-i}+\frac{(A-C)^{m_{1}}}{\pi} \int_{-\infty}^{L} d k^{2} \frac{\Delta\left(k^{2}\right) D\left(k^{2}\right)}{\left(k^{2}-A\right)\left(k^{2}-C\right)^{m_{1}}} \\
D(A)=\sum_{i=1}^{m_{2}} \delta_{i}(A-C)^{m_{2}-i}-\frac{(A-C)^{m_{2}}}{\pi} \int_{0}^{\infty} d q^{2} \frac{\rho\left(q^{2}\right) N\left(q^{2}\right)}{\left(q^{2}-A\right)\left(q^{2}-C\right)^{m_{2}}}
\end{gathered}
$$

- $N(A)$ is substituted in $D(A)$
- Linear IE for $D(A)$ arises
- $D(0)=1$. To fix a floating constant in the ratio $T(A)=N(A) / D(A)$

Regular interactions

- N / D_{01} : Regular solution for an ordinary potential

Scattering is completely fixed by the potential

$$
\begin{aligned}
N(A) & =\frac{1}{\pi} \int_{-\infty}^{L} d \omega_{L} \frac{D\left(\omega_{L}\right) \Delta\left(\omega_{L}\right)}{\left(\omega_{L}-A\right)} \\
D(A) & =1-\frac{A}{\pi} \int_{0}^{\infty} d \omega_{R} \frac{\rho\left(\omega_{R}\right) N\left(\omega_{R}\right)}{\left(\omega_{R}-A\right) \omega_{R}} \\
& =1-\frac{i \mu \sqrt{A}}{2 \pi^{2}} \int_{-\infty}^{L} d \omega_{L} \frac{\Delta\left(\omega_{L}\right) D\left(\omega_{L}\right)}{\sqrt{\omega_{L}}\left(\sqrt{\omega_{L}}+\sqrt{A}\right)}
\end{aligned}
$$

- N / D_{11} : Additional subtraction in $N(A)$ is fixed in terms of scattering length

$$
\begin{aligned}
& D(A)=1+i a \sqrt{A}+i \frac{M_{N}}{4 \pi^{2}} \int_{-\infty}^{L} d \omega_{L} \frac{D\left(\omega_{L}\right) \Delta\left(\omega_{L}\right)}{\omega_{L}} \frac{A}{\sqrt{A}+\sqrt{\omega_{L}}} \\
& N(A)=-\frac{4 \pi a}{M_{N}}+\frac{A}{\pi} \int_{-\infty}^{L} d \omega_{L} \frac{D\left(\omega_{L}\right) \Delta\left(\omega_{L}\right)}{\left(\omega_{L}-A\right) \omega_{L}}
\end{aligned}
$$

Effective Range Expansion (ERE)

$$
k \cot \delta(k)=-\frac{1}{a}+\frac{1}{2} r k^{2}+\sum_{i=2} v_{i} k^{2 i}
$$

- N / D_{12} : Additional subtraction in $D(A), r$ is fixed

$$
\begin{aligned}
D(A) & =1+i a \sqrt{A}-\frac{a r}{2} A-i \frac{M_{N} A}{4 \pi^{2}} \int_{-\infty}^{L} d \omega_{L} \frac{D\left(\omega_{L}\right) \Delta\left(\omega_{L}\right)}{\omega_{L}} \\
& \times\left[\frac{\sqrt{A}}{\left(\sqrt{\omega_{L}}+\sqrt{A}\right) \sqrt{\omega_{L}}}-\frac{i}{a \omega_{L}}\right] \\
N(A) & =-\frac{4 \pi a}{M_{N}}+\frac{A}{\pi} \int_{-\infty}^{L} d \omega_{L} \frac{D\left(\omega_{L}\right) \Delta\left(\omega_{L}\right)}{\left(\omega_{L}-A\right) \omega_{L}}
\end{aligned}
$$

The results are just dependent on $\Delta(A)$ (input potential) and experimental ERE parameters

- N / D_{22} : Additional subtraction in $N(A), v_{2}$ is fixed

$$
\begin{aligned}
D(A)= & \left(1-\frac{2 v_{2}}{r} A\right)(1+i a \sqrt{A})-\frac{a r}{2} A \\
& +i \frac{M_{N}}{4 \pi^{2}} A \int_{-\infty}^{L} d \omega_{L} \frac{D\left(\omega_{L}\right) \Delta\left(\omega_{L}\right)}{\omega_{L}^{2}} \\
\times & {\left[\frac{A}{\sqrt{A}+\sqrt{\omega_{L}}}+i \frac{2}{r a^{2} \omega_{L}}\left(1+i a \sqrt{\omega_{L}}\right)(1+i a \sqrt{A})\right] } \\
N(A)= & -\frac{4 \pi a}{M_{N}}+A \frac{8 \pi a v_{2}}{M_{N} r}+\frac{A}{\pi} \int_{-\infty}^{L} d \omega_{L} \frac{D\left(\omega_{L}\right) \Delta\left(\omega_{L}\right)}{\omega_{L}^{2}} \\
\times & {\left[\frac{A}{\left(\omega_{L}-A\right)}+\frac{2}{r a \omega_{L}}\left(1+i a \sqrt{\omega_{L}}\right)\right] }
\end{aligned}
$$

The more subtractions are included the more perturbative N / D is with respect to $\Delta(A) . \Delta_{n \pi}(A)$ contributes for $A<n^{2} L$

Example: Regular case. ${ }^{1} S_{0}$ Yukawa potential

$N / D_{01} ; \mathbf{L S}$ (black dots)

Attractive singular interaction: ${ }^{3} P_{0}$
$\mathbf{N} / \mathbf{D}_{12} T(A)=0\left(N / D_{11}\right.$ does not converge $)$
At least one parameter is needed The scattering volume is fixed

N / D_{12};
LS (black dots);
Phase shifts: Granada analysis

We compare with

LS renormalized with one contact term:

$$
V\left(p_{1}, p_{2}\right) \rightarrow V\left(p_{1}, p_{2}\right)+C_{1} p_{1} p_{2}
$$

Repulsive singular interaction: ${ }^{3} P_{0}$
$\mathbf{N} / \mathbf{D}_{\mathbf{1 1}}$; No free parameters ; $T(0)=0$

Repulsive Singular Potential: LS is insensitive to all C_{i}

N / D_{12};
LS (black dots);

$T(A)$ in the complex plane

- As a bonus the non-perturbative- $\Delta N / D$ method allows to calculate $T(A)$ for $A \in \mathbb{C}$ in the 1 st $/ 2$ nd Riemann sheet

This is not trivial with LS
Look for and study resonances, virtual states and bound states
For bound states one does not need to solve the full-off-shell LS equation or Schrödinger equation

Bound State $A=(i k)^{2}$
Binding energy of near threshold bound state, $g_{A}=7.45$
One does not need to solve Schrödinger equation

$$
\text { Poles of } T(A) \leftrightarrow \text { zeros of } D(A)
$$

- As a bonus the non-perturbative- $\Delta N / D$ method allows to calculate $T(A)$ for $A \in \mathbb{C}$ in the 1st/2nd Riemann sheet

This is not trivial with LS

Binding energy of near threshold bound state, $g_{A}=7.45$
One does not need to solve Schrödinger equation
Poles of $T(A) \leftrightarrow$ zeros of $D(A)$

$A=(i k)^{2}$	$\mathrm{~N} / \mathrm{D}_{01}$	$\mathrm{~N} / \mathrm{D}_{11}$	Schrödinger
$\Delta_{1 \pi}$		2.02	
$\Delta_{2 \pi}$		2.18	
$\Delta_{3 \pi}$		2.21	
$\Delta_{4 \pi}$	0.89	2.22	
Non-perturbative	2.22	2.22	2.22

- Anti-bound (virtual) state for ${ }^{1} S_{0}$

$$
\begin{aligned}
T_{I I}^{-1}(A) & =T_{I}^{-1}(A)+2 i \rho(A) \\
& =\frac{D_{I}+N_{I} 2 i \rho(A)}{N_{I}}, \operatorname{Im} \sqrt{A} \geq 0
\end{aligned}
$$

Look for zero of $D_{I I}(A) \cdot E=A / M_{N}=$
N / D_{11} :
-0.070 (LO) , -0.067 (NLO,NNLO) MeV
For the other $N / D_{m_{1} m_{2}}:-0.066 \mathrm{MeV}$ always
G.E. Brown, A.D. Jackson "The Nucleon-Nucleon interaction", North-Holland, 1976. Page 86: "In practice, of course, we do not know the exact form of $\Delta\left(p^{2}\right)$ for a given potential and the N / D equations do not represent a practical alternative to the exact solution of the LS equation for potential scattering. . ."

Now (2016), this statement is superseded

Conclusions

- A new non-singular IE allows to calculate the exact $\Delta(A)$ in potential scattering for a given potential
- One can calculate the scattering amplitude for regular/singular potentials from its analytical/unitarity properties.
- Any proper solution for singular potentials can be found with this method
- We reproduce the LS outcome with/without one counterterm
- It can be straightforwardly used in the whole complex plane (bound states, resonances, virtual states)
- See Entem's talk about how to go beyond LS+one counterterm for an attractive singular potential.
- Including as well higher order chiral $N N$ potentials.

[^0]: $1_{\text {Partially funded by MINECO (Spain) and EU, project FPA2013-40483-P }}$

